6.2双闭环三相异步电动机串级调速系统

合集下载

双闭环三相异步电机调压调速系统实验报告

双闭环三相异步电机调压调速系统实验报告

“运动控制系统”专题实验实验报告电子与信息工程学院自动化科学与技术系(5)可调电阻(NMCL—03)(6)电机导轨及测速发电机(或光电编码器)(7)三相线绕式异步电动机(8)双踪示波器(9)万用表(10)直流发电机M03四.实验原理1.系统组成及原理双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流电源及三相绕线式异步电动机(转子回路串电阻)。

控制系统由电流调节器(ACR),速度调节器(ASR),电流变换器(FBC),速度变换器(FBS),触发器(GT),一组桥脉冲放大器等组成。

其系统原理图如图6-1所示。

图6-1整个调速系统采用了速度,电流两个反馈控制环。

这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。

在稳定运行情况下,电流环对电网振动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。

异步电机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。

但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率电子与信息工程学院自动化科学与技术系电子与信息工程学院自动化科学与技术系电子与信息工程学院自动化科学与技术系(2)空载电压为200V时n/(r/min) 1281 1223 1184 1107 1045I G/A 0.10 0.11 0.12 0.13 0.13U G/V 182 179 176 166 157 M/(N·m) 0.2265 0.2458 0.2636 0.2814 0.28312.闭环系统静特性n/(r/min) 1420 1415 1418 1415 1416 1412电子与信息工程学院自动化科学与技术系I G/A 0.11 0.14 0.16 0.19 0.21 0.26U G/V 203 200 201 200 200 199 M/(N·m) 0.2394 0.2795 0.3080 0.3777 0.3496 0.4482 静特性曲线:与开环机械特性比较,闭环静特性比开环机械特性硬得多,且随着电压降低,开环特性越来越软。

双闭环串级调速

双闭环串级调速

双闭环控制的串级调速系统由于串级调速系统机械特性的静差率较大,所以开环控制系统只能用于对调速精度要求不高的场合。

为了提高静态调速精度,并获得较好的动态特性,须采用闭环控制,通常采用具有电流反馈与转速反馈的双闭环控制方式。

由于串级调速系统的转子整流器是不可控的,系统本身不能产生电气制动作用,所谓动态性能的改善只是指起动与加速过程性能的改善,减速过程只能靠负载作用自由降速。

1. 双闭环控制串级调速系统的组成图1 所示为双闭环控制的串级调速系统原理图。

图中,转速反馈信号取自异步电动机轴上连接的测速发电机,电流反馈信号取自逆变器交流侧的电流互感器,也可通过霍尔变换器或直流互感器取自转子直流回路。

为了防止逆变器逆变颠覆,在电流调节器ACR输出电压为零时,应整定触发脉冲输出相位角为。

图1 所示的系统与直流不可逆双闭环调速系统一样,具有静态稳速与动态恒流的作用。

所不同的是它的控制作用都是通过异步电动机转子回路实现的。

2. 串级调速系统的动态数学模型在图1 所示的系统中,可控整流装置、调节器以及反馈环节的动态结构框图均与直流调速系统中相同。

在异步电动机转子直流回路中,不少物理量都与转差率有关,所以要单独处理。

(1) 转子直流回路的传递函数根据图2 的等效电路图可以列出串级调速系统转子直流回路的动态电压平衡方程式式中U d0 ——当 s=1 时转子整流器输出的空载电压,U i0——逆变器直流侧的空载电压,;L——转子直流回路总电感,L = 2L D + 2L T + L LL D——折算到转子侧的异步电动机每相漏感,;L T——折算到二次侧的逆变变压器每相漏感,;LL ——平波电抗器电感;R ——转差率为 s 时转子直流回路等效电阻,。

于是,式(1)可改写成将式(2)两边取拉氏变换,可求得转子直流回路的传递函数式中T Lr ——转子直流回路的时间常数,;K i ——转子直流回路的放大系数,。

转子直流回路的动态结构框图如图3所示。

6.2双闭环三相异步电动机串级调速系统

6.2双闭环三相异步电动机串级调速系统

6.2 双闭环三相异步电动机串级调速系统一.实验目的1.熟悉双闭环三相异步电动机串级调速系统的组成及工作原理。

2.掌握串级调速系统的调试步骤及方法。

3.了解串级调速系统的静态与动态特性。

二.实验内容1.控制单元及系统调试2.测定开环串级调速系统的静特性。

3.测定双闭环串级调速系统的静特性。

4.测定双闭环串级调速系统的动态特性。

三.实验系统组成及工作原理绕线式异步电动机串级调速,即在转子回路中引入附加电动势进行调速。

通常使用的方法是将转子三相电动势经二极管三相桥式不控整流得到一个直流电压,再由晶闸管有源逆变电路代替电动势,从而方便地实现调速,并将能量回馈至电网,这是一种比较经济的调速方法。

本系统为晶闸管亚同步闭环串级调速系统。

控制系统由速度调节器ASR,电流调节器ACR,触发装置GT,脉冲放大器MF,速度变换器FBS,电流变换器FBC等组成,其系统主回路原理图如图1-2所示,控制回路原理图可参考图1-1b所示。

四.实验设备和仪器1.电源控制屏(NMCL-32);2.低压控制电路及仪表(NMCL-31);3.触发电路和晶闸管主回路(NMCL—33);4.可调电阻(NMEL—03);5.直流调速控制单元(NMCL—18);6.电机导轨及测速发电机(或光电编码器);7.直流发电机M03;8.线绕电动机M09;9.双踪示波器;10.万用表;五.注意事项1.本实验是利用串调装置直接起动电机,不再另外附加设备,所以在电动机起动时,必须使晶闸管逆变角β处于βmin位置。

然后才能加大β角,使逆变器的逆变电压缓慢减少,电机平稳加速。

2.本实验中,α角的移相范围为90°~150°,注意不可使α<90°,否则易造成短路事故。

3.接线时,注意绕线电机的转子有4个引出端,其中1个为公共端,不需接线。

4.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。

异步电动机的串级调速

异步电动机的串级调速

2024年1月16日星期二
向低于同步速方向的串级调速
串附加电动势之前:电机匀速转动,I2,Te=Tl; 串附加电动势之后:
I2'
sE20 R2
E f jsX 20
I2'
I2
Te ' Te
n
s s' n s I2 ' I2 ' I2 n'
Te ' Te
电机在转速n′处实现平衡,转速调为n ′ 。
串级调速的原理与基本类型
一.串级调速的原理 二.串级调速的基本运行状态及功率关系 三.串级调速系统的基本类型
2024年1月16日星期二
绕线型异步电动机的转子
2024年1月16日星期二
绕线型异步电动机的转子
2024年1月16日星期二
集电环
三相绕线型异步电动机示意图
转子三相绕组接成 Y 形
2024年1月16日星期二
2024年1月16日星期二
4. 高于同步转速的回馈制动运行状态 s<0,Te<0。则
Pem Te0 0
PM (1 s)Pem 0 Ps s Pem 0
说通明 过电 定动 子机 回从馈轴给上电吸网收;机另械 一功 部率 分变PM为,转一差部功分率变P为s,电通磁过功产率生PemE•,f 装置回馈给电网。
迟一个角度 p 。
电流越大,这个强迫延时换相 角就越大,但有:
00 p 300
2024年1月16日星期二
3.转子整流器的故障状态 (Id过大,p 300
特征:
当重叠达到600、 强迫延时 换相角达到300时的电压电流波 形如右图所示。
如果负载电流继续增大, 重叠角又会大于600,但强迫延 时换相角会保持300不变。原因 是:即使前面两个管子换流未 换完,后面该导通的管子也会 承受正压而导通,这样,就会 出现共阴极管和共阳极管都在 换流,四个二极管同时导通---转子整流器短路的故障情况 。

实验三 双闭环三相异步电动机串级调速系统 实验

实验三 双闭环三相异步电动机串级调速系统 实验

实验三双闭环三相异步电动机串级调速系统实验一.实验目的⒈ 熟悉双闭环三相异步电动机串级调速系统的组成、工作原理、调试方法。

⒉ 了解双闭环三相异步电动机串级调速系统的静态和动态特性。

二.实验设备⒈ MCL – 31 低压控制电路及仪表。

⒉ MCL – 32 电源控制屏。

⒊ MCL – 33 触发电路及晶闸管主回路。

⒋ MEL – 03 三相可调电阻器。

⒌ MEL – 11 电容箱。

⒍ 绕线式异步电动机–直流电动机–测速机组。

⒎ 万用表。

⒏ 双踪示波器。

三.实验原理众所周知,在绕线转子异步电动机的转子侧引入一个可控的附加电动势,就可调节电动机的转速。

但由于电动机转子回路感应电动势E r 的频率随转差率而变化,所以附加电动势的频率亦必须随电动机转速而变化。

这就相当于在转子侧加入一个可变压变频的装置。

实际系统中是将转子交流电动势整流成直流电动势,然后再引入一个附加的直流电动势,控制此附加直流电动势的幅值,就可以调节异步电动机的转速。

这样就把交流变压变频的复杂问题,转化为与频率无关的直流变压问题,对问题的分析与工程实现都方便多了。

对于附加的直流电动势,较好的方案是采用工作在有源逆变状态的晶闸管可控整流装置,它既能够平滑的调节电压,以满足对电动机转速平滑调节的要求,从节能的角度又能够吸收从异步电动机转子侧传递来的转差功率并加以利用。

绕线转子异步电动机电气串级调速系统原理图如下图所示。

电气串级调速系统原理图四.实验内容⒈ 控制单元调试在主电路切断电源的情况下,进行控制单元调试。

⑴ 转速调节器( ASR )输出正、负限幅值的调试使转速调节器为 PI 调节器,将 MCL – 31 的给定端 U g 与转速调节器的“ 2 ” 端相接,接通控制电路电源﹙红色指示灯亮﹚。

分别加入一定的正、负输入电压,调节转速调节器的正、负限幅电位器 RP1 、 RP2 ,使转速调节器输出正、负限幅值等于± 5V 。

⑵ 电流调节器输出控制角 a 的调试使电流调节器为 PI 调节器,将 MCL – 31 的给定端 U g 与电流调节器的输入端“ 3 ” 端相接,电流调节器的输出端“ 7 ” 端与 MCL3 – 3 的 U ct 端相接,接通控制电路电源﹙红色指示灯亮﹚。

实验四 双闭环三相异步电动机调压调速系统

实验四 双闭环三相异步电动机调压调速系统

实验四双闭环三相异步电动机调压调速系统实验四双闭环三相异步电动机调压调速系统实验四双闭环三相异步电动机调压调速系统(验证性)一.实验目的1.熟悉相位控制交流调压调速系统的组成与工作。

2.介绍双闭环三相异步电动机调压变频系统的原理及共同组成。

3.通过测定系统的静特性和动态特性进一步理解交流调压系统中电流环和转速环的作用。

二.实验内容1.测定绕线式异步电动机转子串电阻时的人为机械特性。

2.测定双闭环交流调压调速系统的静特性。

3.测定双闭环交流调压调速系统的动态特性。

三.实验系统共同组成及工作原理双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流调压器及三相绕线式异步电动机(转子回路串电阻)。

控制系统由电流调节器(acr),速度调节器(asr),电流变换器(fbc),速度变换器(fbs),触发器(gt),一组桥脉冲放大器等组成。

其系统原理图如图7-1所示。

整个变频系统使用了速度,电流两个反馈控制环路。

这里的速度环路促进作用基本上与直流变频系统相同而电流环路的促进作用则有所不同。

在平衡运转情况下,电流环路对电网波动仍存有很大的抗扰促进作用,但在再生制动过程中电流环路仅起至管制最小电流的促进作用,不能发生最佳再生制动的恒流特性,也不可能将就是恒转矩再生制动。

异步电机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。

但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率全部消耗在转子电阻中,使转子过热。

四.实验设备和仪器1.mcl系列教学实验台主控制屏。

2.mcl―18组件。

3.mcl―33组件。

4.三相拖线型异步电动机-功率直流发电机-测距发电机组5.mel―03三相调节器电阻器。

6.mel―11组件。

7.双踪示波器。

.8.万用表。

五.注意事项1.互连asr形成输出功率负反馈时,为了避免震荡,可以预先把asr的rp3电位器逆时针旋到底,并使调节器压缩倍数最轻,同时,asr的“5”、“6”端的互连调节器电容(预置7μf)。

浅析三相异步电动机的串级调速

浅析三相异步电动机的串级调速

浅析三相异步电动机的串级调速作者:梁永成来源:《中国新技术新产品》2014年第04期摘要:串级调速即将可调节电势附加至绕线式电动机的转子回路中,通过附加电势的串入,对电动机转差进行改变,用以调整电动机速度。

附加电势会将其所在电路中大部分的转差功率吸收掉,再将电势吸收的反差功率通过附加装置转换能量再次利用,或返还回电网。

关键词:串级调速:转差率;电动机中图分类号:TM34 文献标识码:A1 原理概述电阻调速在绕线式电动机的转子回路中调速效率极低,将调速电阻串联入转子回路中,回路中会产生一定的转差功率损耗,转差功率会随着转速的降低而不断的增加,换言之,转差功率的损耗量便会越高,但是由于调速电阻的串入便会造成转差功率的消耗,因此系统效率便无法提升。

2 调速方法三相异步式电动机的转速可以通过“60f/p(1-s)”公式进行计算求得,式中f代表供电频率,P代表极对数,s则为转差率。

通过改变f、p、s值中的任何一个,均能够对转速予以改变。

串级调速是在传统的串电阻调速基础上发展而来的,其原理继承了一部分原有调速结构的原理,但在转差功率的利用上远远优于串电阻调速的方式。

使得转差功率被最大程度的加以利用,提高了电机的整体效率。

并且将控制量引入电动转子侧,即并将一个同转子的相数相附加且回路频率相同的电势串入绕线式电动机转子的回路中,通过附加电势实现电机的调速。

而转差功率的大部分则被串入的附加电势所吸收,再利用产生附加电势的装置设法把所吸收的这部分转差功率回馈入电网,就能使电动机在低速运转时具有较高的效率。

以下通过分析对附加电势的改变是如何对电动机的转速进行调节的,串级调速系统对电动机的调速原理是什么。

异步电动机在云状过程中具有自然机械性,此时附加电势为零,电动机运转速度稳定且接近额定转速值,若是电动机对恒转矩进行拖动而负载,那么转子每项的电流为,由于定子电压相对较为恒定,因此气隙磁通始终不会改变,电动机中电磁转矩T =,当电势串入到电动机的转子回路中,且转子的感应电势同相位之间的差角不小于90°,那么电动机主要向下进行调速。

双闭环三相异步电机串级调速系统毕业设计(可编辑修改word版)

双闭环三相异步电机串级调速系统毕业设计(可编辑修改word版)

摘要本毕业论文所研究的是双闭环三相异步电动机的串级调速的基本原理与实现方法。

对于绕线式异步电动机来说,由于改变其转子绕组控制变量以实现调速,转子侧的控制变量有电流、电动势、电阻等。

通常转子电流随负载的大小决定,不能任意调节;而转子回路阻抗的调节属于耗能型调速,缺点较多,所以转子侧的控制变量只能是电动势,这也是本文所要研究的重点之一。

利用串级调速系统,就是使绕线式异步电动机实现高性能调速的有效办法。

用转子串反电动势来代替电阻,吸收转差功率;用双闭环控制提高系统的静、动态性能。

把这种用附加电动势的方法将转差功率回收利用的调速称为双闭环串级调速。

这是本文所必须研究的,也是本文的核心所在。

并通过利用MATLAB 软件对双闭环串级调速系统进行仿真,仿真结果表明通过双闭环串级调速系统能及时地对给定速度进行反馈,提高调速的准确性。

关键词:双闭环;串级;调速;MATLAB.AbstractThe graduation thesis studies three-phase asynchronous motor is double loop bunch_rank speed-control of the basic principle and implement method. With wound rotor series, asynchronous motors can adjust speeds through control variables, which include electric current, electromotive force and resistance, etc. on the rotor side. Typically, the rotor current is determined by the load and cannot be adjusted freely. In contrast, adjusting rotor’s return circuit impedance tends to consume more power along with other disadvantages. Therefore, electromotive force should be the only control variable on the rotor side, which is also one of the major points research in this paper.In summary, concatenation control system is one effective means to realize high control ability in series-wound asynchronous motors. Specifically, it is used to replace resistance with rotor’s electromotive force and absorb slip power; and to enhance the static and dynamic capabilities of the system using double closed loop. We refer to this method of utilizing additional electromotive force to recycle slip power as concatenation control with double close loop, which is also the focus of this paper. And through the use of MATLAB software on the double closed loop bunch_rank speed- control system, and simulation draw simulation diagram,the results show that by double closed loop bunch_rank speed-control system can timely given speed feedback, to improve the accuracy of speedKeywords: double-loop;cascade;governor;MATLAB.目录摘要 (I)Abstract (II)1绪论 (1)2串级调速的原理 (3)2.1异步电动机转子附加电动势时的工作情况 (3)2.2串级调速的功率传递关系 (4)2.3串级调速系统及其附加电动势的获得 (5)3双闭环三相异步电机的静态特性和动态特性 (9)3.1三相异步电动机串级调速开环工作机械特性 (9)3.2三相异步电动机单闭环ASR 系统静特性 (11)3.3双闭环调速系统的静态和动态特性 (13)4总体设计方案 (17)4.1双闭环三相异步电机串级调速各个模块的功能 (17)4.2串级调速系统设计 (23)4.3双闭环系统设计 (24)4.4总电路图的设计 (25)5系统仿真 (27)5.1仿真软件的简介 (27)5.2具体的软件仿真设计 (27)5.3系统的仿真、仿真结果的输出及结果分析 (36)总结 (37)参考文献 (38)致谢 (39)1绪论电力传动自动控制系统是把电能转换成机械能的装置。

三相异步电机的调速

三相异步电机的调速

一.基频以下变频调速 A),保持 为常数
上式对s求导,即 有最大转矩和临界转差率为
一.基频以下变频调速 B),保持 为常数 为防止磁路的饱和,当降低定子电源频率时,保持 为常数,使气 隙每极磁通 为常数,应使电压和频率按比例的配合调节。这时,电动 机的电磁转矩为 上式对s求导,即 有最大转矩和临界转差率为
当某一瞬间电势的极性 与 或同相时,有转子回路电流为
反相
式中“–”号表示 与 反相,“+”号表示 与 同相。异步电动机的电磁 转矩为
当电动机定子电压及负载转矩都保持不变时,转子电流可看成常数;同时考虑到电 动机正常运行时s很小,sx2《 r2 忽略sx2 则: 在负载转矩 一定的条件下,若 转子串入 与 反相,则
变频调速原理及其机械特性
改变异步电动机定子绕组供电电源的频率 ,可以改变同步 转速n 1 ,从而改变转速。如果频率 连续可调,则可平滑的调 节转速,此为变频调速原理。
三相异步电动机运行时,忽略定子阻抗压降时,定子每相电 压为 如果降低频率 ,且保持定子电源电压 不变,则气隙每 极磁通 将增大,会引起电动机铁芯磁路饱和,从而导致过大 的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。 因此,降低电源频率 时,必须同时降低电源电压 ,以达到控 制磁通 的目的。对此,需要考虑基频(额定频率)以下的调 速和基频以上调速两种情况
三相异步电动机的调速
根据三相异步电动机的转速公式为
通过上式可知,改变交流电机转速的方 法有三种 1.变转差率调速:改变s实现调速; 2.变极调速:改变p来实现调速 3.变频调速:改变f1实现调速
三相异步电动机的调速
改变转差率的方法很多,常用的方案有改变异步电动机的定子 电压调速,采用电磁转差(或滑差)离合器调速,转子回路串电 阻调速以及串极调速。前两种方法适用于鼠笼式异步电动机,后 者适合于绕线式异步电动机。这些方案都能使异步电动机实现平 滑调速,但共同的缺点是在调速过程中存在转差损耗,即在调节 过程中转子绕组均产生大量的钢损耗( )(又称转差功 率),使转子发热,系统效率降低;主要存在调速范围窄、效率低, 对电网污染较大,不能满足交流调速应用的广泛需求; 改变电机的极数的调速,无法实现连续调速,并且接线麻烦, 应用的场合少;但价格便宜; 改变频率进行调速是最理想的,但这个梦想经历了百年之久, 直至20世纪70年代,大功率晶体管(GTR)的开发成功,才实现 变频调速,随着电子技术和计算机技术的日益发展变频调速技术 日益成熟,应用得越来越广泛了

双闭环控制的异步电动机串级调速系统的设计

双闭环控制的异步电动机串级调速系统的设计

本科毕业设计(论文)题目双闭环控制的异步电动机串级调速系统的设计学生姓名学号教学院系电气信息学院专业年级电气工程及其自动化09级指导教师职称单位西南石油大学辅导教师职称单位完成日期2013年6月9日Southwest Petroleum University Graduation ThesisThe Design of Double Closed Loop Control ofAsynchronous Motor Cascade Speed Regulation SystemSchool of Electrical Engineering and Information2013-6Grade: 2009 Name: Speciality: Electrical Engineering and Automation Instructor:摘要绕线式异步电动机的串级调速系统,属于改变转差功率的调速系统,在我国交流调速技术的发展中,它是结构简单、发展较快、应用较广的一种系统。

其基本原理是利用不可控的整流电路将转子交流电动势转成直流电动势,在利用工作的在逆变状态的三相可控整流电路来获得一个可调的直流电压作为附加电动势,以改变转差功率,以实现转速的调节。

串级调速完全克服了转子串电阻调速的缺点,它具有高效率、无级平滑调速、较硬的低速机械特性等优点。

本设计介绍了双闭环异步电动机串级调速方式的设计,主要设计方面包括调速方式的设计,主接线的设计,串级调速主电路的设计,保护电路的设计,触发器的选择,直接启动方式。

首先根据设计要求确定调速方案和主电路的结构型式,主电路和闭环系统确定下来后,重在对电路各元件参数的计算和器件的选型,包括整流变压器、整流元件、平波电抗器、保护电路以及电流和转速调节器的参数计算,从而达到设计要求,其中有绘制完整的双闭环控制的异步电动机串级调速系统图,主接线图,控制电路图,最后采用了MATLAB建模与仿真证明了该系统。

实验二 双闭环三相异步电动机调压调速系统

实验二  双闭环三相异步电动机调压调速系统

实验二双闭环三相异步电动机调压调速系统姓名:杨鹏08225049 李洋08225008 洪斌08225009 吕箭平09225017一.实验目的1.熟悉相位控制交流调压调速系统的组成与工作。

2.了解并熟悉双闭环三相异步电动机调压调速系统的原理及组成。

3.了解绕线式异步电动机转子串电阻时在调节定子电压调速时的机械特性。

4.通过测定系统的静特性和动态特性进一步理解交流调压系统中电流环和转速环的作用。

二.实验内容1.测定绕线式异步电动机转子串电阻时的人为机械特性。

2.测定双闭环交流调压调速系统的静特性。

3.测定双闭环交流调压调速系统的动态特性。

三.实验系统组成及工作原理双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流电源及三相绕线式异步电动机(转子回路串电阻)。

控制系统由电流调节器(ACR),速度调节器(ASR),电流变换器(FBC),速度变换器(FBS),触发器(GT),一组桥脉冲放大器等组成。

其系统原理图如图2-1所示。

整个调速系统采用了速度,电流两个反馈控制环。

这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。

在稳定运行情况下,电流环对电网振动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。

异步电机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。

但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率全部消耗在转子电阻中,使转子过热。

四.实验设备和仪器1.教学实验台主控制屏。

2.NMCL—33组件3.MEL-03(A)组件4.NMCL —18组件5.NMEL —09组件6.电机导轨及测速发电机(或光电编码器)、直流发电机M037.线绕电动机M09 8.双踪示波器 9.万用表五.实验记录和计算采用直流发电机,转矩可按下式计算n P R I U I M O S G G G /)(55.92++=S R =18Ω系统闭环特性的测定调节Ug ,使转速至n =1300r/min ,从轻载按一定间隔做到额定负载,测出闭环静特性2/3U通过实验数据及开环人为机械特性可知:当Ug=Ue时负载在空载与额定值之间变化时,电动机的转速变化不大,此电动机表现的机械特性为硬特性。

实验二、双闭环三相异步电机调压调速系统实验

实验二、双闭环三相异步电机调压调速系统实验

实验二双闭环三相异步电机调压调速系统实验一、实验目的(1)了解并熟悉双闭环三相异步电机调压调速系统的原理及组成。

(2)了解转子串电阻的绕线式异步电机在调节定子电压调速时的机械特性。

(3)通过测定系统的静态特性和动态特性,进一步理解交流调压系统中电流环和转速环的作用。

二、实验所需挂件及附件三、实验线路及原理异步电动机采用调压调速时,由于同步转速不变和机械特性较硬,因此对普通异步电动机来说其调速范围很有限,无实用价值,而对力矩电机或线绕式异步电动机在转子中串入适当电阻后使机械特性变软其调速范围有所扩大,但在负载或电网电压波动情况下,其转速波动较大,因此常采用双闭环调速系统。

双闭环三相异步电机调压调速系统的主电路由三相晶闸管交流调压器及三相绕线式异步电动机组成。

控制部分由“速度调节器”、“电流调节器”、“转速变换”、“触发电路”、“正桥功放”等组成。

其系统原理框图如下图所示。

整个调速系统采用了速度、电流两个反馈控制环。

这里的速度环作用基本上与直流调速系统相同,而电流环的作用则有所不同。

系统在稳定运行时,电流环对抗电网扰动仍有较大的作用,但在启动过程中电流环仅起限制最大电流的作用,不会出现最佳启动的恒流特性,也不可能是恒转矩启动。

异步电动机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正、反转,反接和能耗制动。

但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率 P s=SP M全部消耗在转子电阻中,使转子过热。

交流调压器应采用宽脉冲或双窄脉冲进行触发。

实验装置中使用双窄脉冲。

实验线路如下所示。

图中晶闸管均在DJK02上,用其正桥,将D42三相可调电阻接成三相负载,其所用的交流表均在DJK01控制屏的面板上。

在本实验中DJK04上的“调节器I”做为“速度调节器”使用,“调节器II”做为“电流调节器”使用。

整个系统环节较多,一般要经过检查、调试、整定才能良好地运行;可参照下面的“实验方法”:名称内容主要作用参考值实验值备注[打√]转速调节器[ I ] 运放调零平衡,可免0V正限幅值作用不大近零负限幅值最大电流-6V放大倍数:外接电阻快调节积分时间:外接电容消偏差0.47UF电流调节器[ II ] 运放调零平衡,可免0V 正限幅值最大电压+6V 负限幅值作用不大近零四、实验内容(1)测定三相绕线式异步电动机转子串电阻时的机械特性。

双闭环控制串级调速系统

双闭环控制串级调速系统

齐齐哈尔大学串级调速系统1主电路方案的确定全面比较单闭环和双闭环调速系统,把握系统要求实现的功能,选择最适合设计要求的虚拟控制电路。

根据系统实际,选择转速,电流双闭环调速系统。

对于交流异步电动机转差功率消耗型调速系统,当转速较低时转差功率消耗较大,从而限制了调速范围。

如果要设法回收转差功率,就需要在异步电动机的转子侧施加控制,此时可以采用绕线转子异步电动机。

常见的绕线转子异步电动机用转子回路串电阻调速,这种调速方法简单、操作方便且价格便宜,但在电阻上将消耗大量的能量,效率低,经济性差,同时由于转子回路附加电阻的容量大,可调的级数有限,不能实现平滑调速。

为了克服上述缺点,必须寻求一种效率较高、性能较好的绕线转子异步电动机转差功率同馈型调速方法,串级调速系统就是一个很好的解决方案。

串级调速是通过绕线式异步电动机的转子回路引入附加电势而产生的。

它属于变转差率来实现串级调速的。

与转子串电阻的方式不同,串级调速可以将异步电动机的功率加以应用(回馈电网或是转化为机械能送回到电动机轴上),因此效率高。

它能实现无级平滑调速,低速时机械特性也比较硬。

特别是晶闸管低同步串级调速系统,技术难度小,性能比较完善,因而获得了广泛的应用。

2系统静态及动态要求若采用转速负反馈和PI调节器的单闭环调速系统虽然可以在保证系统稳定的条件下实现转速无静差,不过当对系统的动态性能要求较高,例如要求快速起制动,突加负载动态速降小等等,单闭环系统难以满足要求,因为在单闭环系统中不能完全按照需要来控制动态过程的电流或转矩,在单闭环调速系统中,只有电流截止负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想地控制电流的动态波形,当电流从最大值降低下来以后,电机转矩也随之减少,因而加速过程必然拖长。

若采用双闭环调速系统,则可以近似在电机最大电流(转矩)受限的条件下,充分利用电机的允许过载能力,使电力拖动系统尽可能用最大的加速度起动,到达稳态转速后,又可以让电流迅速降低下来,使转矩马上与负载相平衡,从而转入稳态运行,此时起动电流近似呈方形波,而转速近似是线性增长的,这是在最大电流(转矩)受到限制的条件下调速系统所能得到的最快的起动过程。

实验七双闭环三相异步电动机调压调速系统

实验七双闭环三相异步电动机调压调速系统

实验七双闭环三相异步电动机调压调速系统一.实验目的1.熟悉相位控制交流调压调速系统的组成与工作。

2.了解并熟悉双闭环三相异步电动机调压调速系统的原理及组成。

3.了解绕线式异步电动机转子串电阻时在调节定子电压调速时的机械特性。

4.通过测定系统的静特性和动态特性进一步理解交流调压系统中电流环和转速环的作用。

二.实验内容1.测定绕线式异步电动机转子串电阻时的人为机械特性。

2.测定双闭环交流调压调速系统的静特性。

3.测定双闭环交流调压调速系统的动态特性。

三.实验系统组成及工作原理双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流调压器及三相绕线式异步电动机(转子回路串电阻)。

控制系统由电流调节器(ACR),速度调节器(ASR),电流变换器(FBC),速度变换器(FBS),触发器(GT),一组桥脉冲放大器等组成。

其系统原理图如图7-1所示。

整个调速系统采用了速度,电流两个反馈控制环。

这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。

在稳定运行情况下,电流环对电网振动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。

异步电机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。

但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率全部消耗在转子电阻中,使转子过热。

四.实验设备和仪器1.MCL系列教学实验台主控制屏。

2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。

3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)。

4.电机导轨及测速发电机、直流发电机5.MEL—03三相可调电阻器(或自配滑线变阻器450Ω,1A)6.绕线式异步电动机7.MEL—11组件8.直流电动机M039.双踪示波器。

.10.万用表五.注意事项1.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。

异步电动机的串级调速

异步电动机的串级调速

4. 高于同步转速的回馈制动运行状态 s<0,Te<0。则
PemTe00
P M(1s)P em 0 Ps sPem0
说通明 过电 定动 子机 回从馈轴给上电吸网收;机另械 一功 部率 分变PM为,转一差部功分率变P为s,电通磁过功产率生PemE ,f 装置回馈给电网。
可见,三相交流附加电势的取得在实际中十分困难。 超同步串级调速系统系统装置复杂,费用高。
实用的串级调速系统,一般采用低同步串级调速: 将转子电路接整流电路; 在直流回路中串入直流附加电动势; 通过调节直流附加电势的大小来调速的控制方案。
主要介绍低同步串级调速系统的基本类型。
低同步串级调速系统,首先把转子交流能量通过二极管整流桥整 成直流电,在直流电路中串入可调直流电源,调节所串入的直流电源 的电压对转子调速,并从直流附加电源将转差功率回馈电网。
I2'
sE 20 R2
E f jsX 20

I2'
I2

Te ' Te

n
s s'
n

s

I2 '

I
2
'

I2

n'
Te ' Te
电机在转速n′处实现平衡,转速调为n ′ 。
向高于同步速方向的串级调速
串附加电动势之前:电机匀速转动,I2,Te=Tl; 串附加电动势之后:
方向相反,频率相同
* 这种向下调速的情况成为向低于同步速方 向的串级调速。
b. 如串入的附加电势

Ef

与转子感生电势sE 20
方向相同,频率相同
* 这种向上调速的情况称为向高于同步 速方向的串级调速。

双闭环串级调速系统

双闭环串级调速系统

第 2 部分
双闭环控制的串级调速系统
双闭环控制的串级调速系统
双闭环控制的串级调速系统
启动
调速 (Ud-Ui) Id/Ir
第 3 部分
双闭环控制的串级调速系统动态结构图
双闭环控制的串级调速系统动态结构图
转速调节器是调速系统的主导调节器,它使转速n很快地跟随给定电压 变化,对负载变化起抗扰作用,要保证稳定性和较好的稳态精度。 电流调节器作为内环的调节器,在外环转速的调节过程中,它的作用 是使电流紧紧跟随其给定电压(即外环调节器的输出量)变化。在转速 动态过程中,保证获得电机允许的最大电流,从而加快动态过程。
第 4部分
系统的MATLAB仿真
系统的MATLAB仿真
系统的MATLAB仿真
第 5部分
串级调速系统的启动方式
串级调速系统的启动方式
放映结束
运动控制系统
6.5 双闭环串级调速系统
内容提要
一、传统串级调速系统
二、双闭环控制的串级调速系统
三、双闭环控制的串级调速系统动态结 构图
四、系统的MATLAB仿真
第 1 部分
传统的串级调速系统
传统的串级调速系统
UR为三相整流装置(二极管)将电机转子电动势整流 为直流电压Ud,提供可调的直流电压,作为电机调速 所需的附加直流电动势。 UI为三相可控整流装置,有源逆变,将转差功率变换为 交流功率,回馈电网。

实验四双闭环三相异步电动机调压调速系统

实验四双闭环三相异步电动机调压调速系统

实验四双闭环三相异步电动机调压调速系统(验证性)一.实验目的1.熟悉相位操纵交流调压调速系统的组成与工作。

2.了解双闭环三相异步电动机调压调速系统的原理及组成。

3.通过测定系统的静特性和动态特性进一步明白得交流调压系统中电流环和转速环的作用。

二.实验内容1.测定绕线式异步电动机转子串电阻时的人为机械特性。

2.测定双闭环交流调压调速系统的静特性。

3.测定双闭环交流调压调速系统的动态特性。

三.实验系统组成及工作原理双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流调压器及三相绕线式异步电动机(转子回路串电阻)。

操纵系统由电流调剂器(ACR),速度调剂器(ASR),电流变换器(FBC),速度变换器(FBS),触发器(GT),一组桥脉冲放大器等组成。

其系统原理图如图7-1所示。

整个调速系统采纳了速度,电流两个反馈操纵环。

那个地址的速度环作用大体上与直流调速系统相同而电流环的作用那么有所不同。

在稳固运行情形下,电流环对电网波动仍有较大的抗扰作用,但在起动进程中电流环仅起限制最大电流的作用,可不能显现最正确起动的恒流特性,也不可能是恒转矩起动。

异步电机调压调速系统结构简单,采纳双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。

但在恒转矩负载下不能长时刻低速运行,因低速运行时转差功率全数消耗在转子电阻中,使转子过热。

四.实验设备和仪器1.MCL系列教学实验台主操纵屏。

2.MCL—18组件。

3.MCL—33组件。

4.三相绕线型异步电动机-负载直流发电机-测速发电机组5.MEL—03三相可调电阻器。

6.MEL —11组件。

7.双踪示波器。

.8.万用表。

五.注意事项1.接入ASR 组成转速负反馈时,为了避免振荡,可预先把ASR 的RP3电位器逆时针旋到底,使调剂器放大倍数最小,同时,ASR 的“5”、“6”端接入可调电容(预置7μF )。

3.测取静特性时,须注意电流不准超过电机的额定值(0.55A )。

实验四 双闭环三相异步电动机调压调速系统

实验四 双闭环三相异步电动机调压调速系统

实验四双闭环三相异步电动机调压调速系统实验四双闭环三相异步电动机调压调速系统实验四双闭环三相异步电动机调压调速系统(验证)一.实验目的1.熟悉相控交流调压调速系统的组成和工作。

2.了解双闭环三相异步电动机调压调速系统的原理及组成。

3.通过测量交流调压系统的静态和动态特性,进一步了解电流环和速度环在交流调压系统中的作用。

二.实验内容1.测量绕线式异步电动机转子串电阻时的人工机械特性。

2.测量双闭环交流调压调速系统的静态特性。

3.测量双闭环交流调压调速系统的动态特性。

三.实验系统组成及工作原理双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流调压器和三相绕线式异步电动机(转子回路串联电阻)。

控制系统由电流调节器(ACR)、速度调节器(ASR)、电流转换器(FBC)、速度转换器(FBS)、触发器(GT)、一组桥式脉冲放大器等组成。

系统原理图如图7-1所示。

整个调速系统采用了速度,电流两个反馈控制环。

这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。

在稳定运行情况下,电流环对电网波动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。

异步电动机调压调速系统结构简单。

采用双闭环系统时,静态误差率小,易于实现正向、反向、反向连接和能耗制动。

然而,在恒定转矩负载下,它不能长时间低速运行,因为在低速运行时,所有的转差功率都消耗在转子电阻中,导致转子过热。

四.实验设备和仪器1.MCL系列教学实验平台主控制面板。

2.Mcl-18组件。

3.Mcl-33组件。

4.三相绕线型异步电动机-负载直流发电机-测速发电机组5.mel―03三相可调电阻器。

6.mel―11组件。

7.双踪示波器。

.8.万用表。

五、预防措施1.接入asr构成转速负反馈时,为了防止振荡,可预先把asr的rp3电位器逆时针旋到底,使调节器放大倍数最小,同时,asr的“5”、“6”端接入可调电容(预置7μf)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2 双闭环三相异步电动机串级调速系统
一.实验目的
1.熟悉双闭环三相异步电动机串级调速系统的组成及工作原理。

2.掌握串级调速系统的调试步骤及方法。

3.了解串级调速系统的静态与动态特性。

二.实验内容
1.控制单元及系统调试
2.测定开环串级调速系统的静特性。

3.测定双闭环串级调速系统的静特性。

4.测定双闭环串级调速系统的动态特性。

三.实验系统组成及工作原理
绕线式异步电动机串级调速,即在转子回路中引入附加电动势进行调速。

通常使用的方法是将转子三相电动势经二极管三相桥式不控整流得到一个直流电压,再由晶闸管有源逆变电路代替电动势,从而方便地实现调速,并将能量回馈至电网,这是一种比较经济的调速方法。

本系统为晶闸管亚同步闭环串级调速系统。

控制系统由速度调节器ASR,电流调节器ACR,触发装置GT,脉冲放大器MF,速度变换器FBS,电流变换器FBC等组成,其系统主回路原理图如图1-2所示,控制回路原理图可参考图1-1b所示。

四.实验设备和仪器
1.电源控制屏(NMCL-32);
2.低压控制电路及仪表(NMCL-31);
3.触发电路和晶闸管主回路(NMCL—33);
4.可调电阻(NMEL—03);
5.直流调速控制单元(NMCL—18);
6.电机导轨及测速发电机(或光电编码器);
7.直流发电机M03;
8.线绕电动机M09;
9.双踪示波器;
10.万用表;
五.注意事项
1.本实验是利用串调装置直接起动电机,不再另外附加设备,所以在电动机起动时,必须使晶闸管逆变角β处于βmin位置。

然后才能加大β角,使逆变器的逆变电压缓慢减少,电机平稳加速。

2.本实验中,α角的移相范围为90°~150°,注意不可使α<90°,否则易造成短路事故。

3.接线时,注意绕线电机的转子有4个引出端,其中1个为公共端,不需接线。

4.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。

5.测取静特性时,须注意电流不许超过电机的额定值(0.55A)。

6.三相主电源连线时需注意,不可换错相序。

逆变变压器采用MEL-03三相芯式变压器的高压绕组和中压绕组,注意不可接错。

7.系统开环连接时,不允许突加给定信号U g起动电机。

8.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。

9.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。

10.绕线式异步电动机:P N=100W,U N=220V,I N=0.55A,n N=1350,M N=0.68,Y 接。

六.实验方法
1.移相触发电路的调试(主电路未通电)
(a)用示波器观察NMCL—33的双脉冲观察孔,应有间隔均匀,幅值相同的双脉冲;
(b)将面板上的U blf端接地,调节偏移电压U b,使U ct=0时,α接近1500。

将正组触发脉冲的六个键开关“接通”,观察正桥晶闸管的触发脉冲是否正常(应有幅值为1V~2V的双脉冲)。

(c)触发电路输出脉冲应在30°≤β≤90°范围内可调。

可通过对偏移电压调节电位器及ASR输出电压的调整实现。

例如:使ASR输出为0V,调节偏移电压,实现β=30°;再保持偏移电压不变,调节ASR的限幅电位器RP1,使β=90°。

2.控制单元调试
按直流调速系统方法调试各单元
3.求取调速系统在无转速负反馈时的开环工作机械特性。

a.断开NMCL—18的ASR的“3”至NMCL-33的U ct的连接线,NMCL-31A的G(给定)的U g端直接加至U ct,且U g调至零。

直流电机励磁电源开关闭合。

电机转子回路接入每相为10Ω左右的三相电阻。

b.NMCL-32的“三相交流电源”开关拨向“交流调速”。

合上主电源,即按下主控制屏绿色“闭合”开关按钮,这时候主控制屏U、V、W端有电压输出。

c.缓慢调节给定电压U g,使电机空载转速达到最高,调节直流发电机负载电阻,在空载至一定负载的范围内测取7~8点,读取直流发电机输出电压U d,输出电流i d以及被测电
注:采用直流发电机,转矩可按下式计算
n P R I U I M O S G
G G /)(55.92
++= 式中 :
M ——三相异步电动机电磁转矩; I G ——直流发电机电流; U G ——直流发电机电压; R S ——直流发电机电枢电阻;
P 0——机组空载损耗。

不同转速下取不同数值:n=1500r/min ,Po=13.5W ;n=1000r/min ,Po=10W ;n=500r/min ,Po=6W 。

3.闭环系统调试
MCL —31的G (给定)输出电压U g 接至ASR 的“2”端,ACR 的输出“7”端接至U ct 。

调节U g ,使ACR 饱和输出,调节限幅电位器RP 1,使β=30O 。

合上主电源。

调节给定电压U g ,使电机空载转速n 0=1300转/分,观察电机运行是否正常。

调节ASR,ACR 的外接电容及放大倍数调节电位器,用慢扫描示波器观察突加给定的动态波形,确定较佳的调节器参数。

4.双闭环串级调速系统静特性的测定
调节给定电压U g ,使电机空载转速n 0=1300转/分,调节直流发电机负载电阻,在空载至额定负载的范围内测取7~8点,读取直流发电机输出电压U d ,输出电流i d 以及被测电动
5.系统动态特性的测定
用慢扫描示波器观察并用示波器记录:
(1)突加给定起动电机时的转速n ,定子电流i 及输出U gi 的动态波形。

(2)电机稳定运行时,突加,突减负载时的n, I,U gi 的动态波形。

七.实验报告
1.根据实验数据,画出开环,闭环系统静特性n =f (M),并进行比较。

2.根据动态波形,分析系统的动态过程。

相关文档
最新文档