常用运放电路图

合集下载

运放及其典型电路

运放及其典型电路

All rights reserved 版权所有,仿冒必究 Company Confidential 公司机密,不得公开
运放基本应用—比较器
带参考电压的滞回比较器电路 如下图(a)所示,同相输入端的电位为: 令uI=uN=uP,求出的uI就是阈值电压,因此得出: 当UREF>0V时,电路的传输特性如图(b)所示。
常用电路分类--环路控制(9) 环路控制(9)
双环控制
All rights reserved 版权所有,仿冒必究 Company Confidential 公司机密,不得公开
目录
运放基本应用
运放两个工作区 正/反相比例放大电路 加/减法电路 比较器电路
运放的常规应用 运放使用的一些注意事项 案例分享
All rights reserved 版权所有,仿冒必究 Company Confidential 公司机密,不得公开
运放基本应用--加/减法电路 加/减法电路
加/减法电路注意事项 为了减小偏置电流对电路的影响,运放同相输 入端和反相输入端的外围等效电阻应该相等。 电阻R1,R2和R3的阻值尽量在1千欧到1兆 欧之间选取,取值过大或过小,均可能给电路带 来负面影响。
All rights reserved 版权所有,仿冒必究 Company Confidential 公司机密,不得公开
运放基本应用--正/反相比例放大电路 正/反相比例放大电路
同相比例运算放大电路 计算关系如下: vo=(1+R3/R2)*vi; 同相比例放大电路的特点: 同相比例放大电路的输出信号与输 入信号同相,输出电压的大小与电 阻1+R3/R1值成比例。 偏置/补偿电阻R1取值近似为电阻 R2和R3的并联等效电阻。 电阻R1,R2和R3的阻值尽量在1千 欧到1兆欧之间选取,取值过大或过 小,均可能给电路带来负面影响。

(完整版)NE5532经典电路图

(完整版)NE5532经典电路图

NE5532功放说到小功率的耳放,不得不提到20世纪的运放之王NE5532,曾经出现在无数的优秀前级放大、调音电路之中,中频温暖细腻厚实,胆味十足,性价比很高!直到今天我们还能很容易地在一些中低档的音响产品中找到它。

由于其体积小、电路简单,所以是讲究实用性、低投入的动手派的首选。

因为NE5532从面世到如今已历经数载,大家对其电路也非常熟悉,有着多种多样的玩法。

在此介绍的耳放的特点是简单、功率小,侧重的是制作的过程。

一、原理分析NE5532是典型的双极型输入运算放大器,用单个NE5532组成的小功率电路有很多版本,本人通过不断地对比和思考,对那些五花八门的电路图作了修改,最终确定了原理图(图1)。

放大倍数是由R3(R4)和R5(R6)来控制的,理论上说如果R3(R4)为1kΩ,R5(R6)为100kΩ,则其放大倍数为100倍,但对于耳放来说,这会引起自激,再说就算真的能达到100倍,效果也不可能好,所以这个电路用于前级时也最好别调成100倍。

当然,对于耳放定2~3倍可以让负反馈适量、音质柔和、清晰更通透,但放大倍数也不能太小,否则也会影响音质,大家可以反复调试,达到自己满意的效果。

笔者是将R3(R4)定为1kΩ,R5(R6)定为20 kΩ,即2倍。

C5(C6)是输入回路的对地通路,在用于耳放电路时应该加大,原理图中的值为22 uF,但用于此耳放应该加大到100 uF。

在这里值得一提的是电源问题,如果你是使用的稳压电源,要注意稳压电源的滤波要给足,因为本电路本身就非常简单,那么对元器件的选取就比较挑剔,建议在选材时尽量选择质量好一点的元器件。

二、PCB绘制笔者使用Protel 99 SE进行布线设计,大家看到的这个PCB图(图2)是我画的第三版,也是我最满意的一版,前几版都存在着飞线,而这一版是没有的,网上的很多版本都存在着飞线的问题,这对挑剔的动手派是不能容忍的。

由于面积小,所以在接地方面要尽量争取一点接地,输入和输出端也可以根据实际情况进行改动。

运放基本应用电路

运放基本应用电路

运放基本应用电路运放基本应用电路运算放大器是具有两个输入端,一个输出端的高增益、高输入阻抗的电压放大器。

若在它的输出端和输入端之间加上反馈网络就可以组成具有各种功能的电路。

当反馈网络为线性电路时可实现乘、除等模拟运算等功能。

运算放大器可进行直流放大,也可进行交流放大。

R f使用运算放大器时,调零和相位补偿是必须注意的两个问题,此外应注意同相端和反相端到地的直流电阻等,以减少输入端直流偏流 U I 引起的误差。

U O 1.反相比例放大器 电路如图1所示。

当开环增益为 ∞(大于104以上)时,反相放大器的闭环增益为: 1R R U U A f I O uf -== (1) 图1 反相比例放大器 由上式可知,选用不同的电阻比值R f / R 1,A uf 可以大于1,也可以小于1。

若R 1 = R f , 则放大器的输出电压等于输入电压的负值,因此也称为反相器。

放大器的输入电阻为:R i ≈R 1直流平衡电阻为:R P = R f // R 1 。

其中,反馈电阻R f 不能取得太大,否则会 产生较大的噪声及漂移,其值一般取几十千欧 到几百千欧之间。

R 1的值应远大于信号源的 O 内阻。

2.同相比例放大器、同相跟随器 同相放大器具有输入电阻很高,输出电阻很低的特点,广泛用于前置放大器。

电路原理图如图2所示。

当开环增益为 ∞(大于104以上 图2 同相比例放大器 )时,同相放大器的闭环增益为:1111R R R R R U U A f f I O uf +=+== (2) 由上式可知,R 1为有限值,A uf 恒大于1。

同相放大器的输入电阻为:R i = r ic其中: r ic 是运放同相端对地的共模输入电阻,一般为108Ω;放大器同相端的直流平衡电阻为:R P = R f // R 1。

若R 1 ∞(开路),或R f = 0,则A u f 为1,于是同相放大器变为同相跟随器。

此时由于放大器几乎不从信号源吸取电流,因此 U可视作电压源,是比较理想的阻抗变换器。

十种运放精密全波整流电路

十种运放精密全波整流电路

十种运放精密全波整流电路图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计.图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益图2优点是匹配电阻少,只要求R1=R2图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点.图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K图8的电阻匹配关系为R1=R2图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称.图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性.图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡.精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态.结论:虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种.图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波.图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了.图3的优势在于高输入阻抗.其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高.两个单运放型虽然可以实现整流的目的,但是输入\输出特性都很差.需要输入\输出都加跟随器或同相放大器隔离.各个电路都有其设计特色,希望我们能从其电路的巧妙设计中,吸取有用的.例如单电源全波电路的设计,复合反馈电路的设计,都是很有用的设计思想和方法,如果能把各个图的电路原理分析并且推导每个公式,会有受益的。

常见运放滤波电路

常见运放滤波电路

滤波电路这节非常深入地介绍了用运放组成的有源滤波器。

在很多情况中,为了阻挡由于虚地引起的直流电平,在运放的输入端串入了电容。

这个电容实际上是一个高通滤波器,在某种意义上说,像这样的单电源运放电路都有这样的电容。

设计者必须确定这个电容的容量必须要比电路中的其他电容器的容量大100倍以上。

这样才可以保证电路的幅频特性不会受到这个输入电容的影响。

如果这个滤波器同时还有放大作用,这个电容的容量最好是电路中其他电容容量的1000 倍以上。

如果输入的信号早就包含了VCC/2 的直流偏置,这个电容就可以省略。

这些电路的输出都包含了VCC/2 的直流偏置,如果电路是最后一级,那么就必须串入输出电容。

这里有一个有关滤波器设计的协定,这里的滤波器均采用单电源供电的运放组成。

滤波器的实现很简单,但是以下几点设计者必须注意:1. 滤波器的拐点(中心)频率2. 滤波器电路的增益3. 带通滤波器和带阻滤波器的的Q值4. 低通和高通滤波器的类型(Butterworth 、Chebyshev、Bessell)不幸的是要得到一个完全理想的滤波器是无法用一个运放组成的。

即使可能,由于各个元件之间的负杂互感而导致设计者要用非常复杂的计算才能完成滤波器的设计。

通常对波形的控制要求越复杂就意味者需要更多的运放,这将根据设计者可以接受的最大畸变来决定。

或者可以通过几次实验而最终确定下来。

如果设计者希望用最少的元件来实现滤波器,那么就别无选择,只能使用传统的滤波器,通过计算就可以得到了。

3.1 一阶滤波器一阶滤波器是最简单的电路,他们有20dB 每倍频的幅频特性3.1.1 低通滤波器典型的低通滤波器如图十三所示。

图十三3.1.2 高通滤波器典型的高通滤波器如图十四所示。

图十四3.1.3 文氏滤波器文氏滤波器对所有的频率都有相同的增益,但是它可以改变信号的相角,同时也用来做相角修正电路。

图十五中的电路对频率是F 的信号有90 度的相移,对直流的相移是0度,对高频的相移是180度。

集成运放基本运算电路

集成运放基本运算电路

( R 1 // R ' ) v i2 ] R f
R 2 ( R 1 // R R ' ) v i1 R 2 ( R 1 // R ' ) v i2 ] R f R
R 1 R 1 ( R 2 // R ' ) R 2 R 2 ( R 1 // R ' )
12.4 电压和电流转换电路
12.4.1 电流-电压变换器 12.4.2 电压-电流变换器
12.4.1 电流-电压变换器
图12.10是电流-电压变换器。
由图可知:vO = -iSRf
可见输出电压与输入 电流成比例,输出端的负 载电流:
图12.10电流-电压变换电路
iO
= vO RL
-iSRf RL
R
vo
( Rp R1
Rp Rn
v i1
Rp R2
v i2 )( R
Rf R
Rf
( v i1 R1
v i2 ) R2
Rf Rf
)
当 式中
RRpp RvRon1
vRRRRi1f21n//,// vRRRi22f
// R' 时,
12.1.3 双端输入求和电路
双端输入也称差动输入,双端输入求和运 算电路如图12.03所示。其输出电压表达式的推 导方法与同相输入运算电路相似。
图12.04 数据放大器原理图
解:vs1和vs2为 差模输入信号,为此vo1和vo2也是 差模信号,R1的中点为交流零电位。对A3是双端 输入放大电路。
所以
vo1
(1
R2 R1 /
2
)vS1
vo 2
(1
R2 R1 /
2
)vS2

运算放大器详细的应用电路(很详细)

运算放大器详细的应用电路(很详细)

§比例运算电路之蔡仲巾千创作8.1.1 反相比例电路1. 基本电路电压并联负反馈输入端虚短、虚断特点:反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低输出电阻小,带负载能力强要求放大倍数较大时,反馈电阻阻值高,稳定性差。

如果要求放大倍数100,R1=100K,Rf=10M2. T型反馈网络虚短、虚断8.1.2 同相比例电路1. 基本电路:电压串联负反馈输入端虚短、虚断特点:输入电阻高,输出电阻小,带负载能力强V-=V+=Vi,所以共模输入等于输入信号,对运放的共模抑制比要求高2. 电压跟随器输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§加减运算电路8.2.1 求和电路1.反相求和电路虚短、虚断特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系2.同相求和电路虚短、虚断8.2.2 单运放和差电路8.2.3 双运放和差电路例1:设计一加减运算电路设计一加减运算电路,使Vo=2Vi1+5Vi2-10Vi3解:用双运放实现如果选Rf1=Rf2=100K,且R4= 100K则:R1=50K R2=20K R5=10K例2:如图电路,求Avf,Ri解:§积分电路和微分电路8.3.1 积分电路电容两端电压与电流的关系:积分实验电路积分电路的用途将方波变成三角波(Vi:方波,频率500Hz,幅度1V)将三角波变成正弦波(Vi:三角波,频率500Hz,幅度1V)(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率200Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?积分电路的其它用途:去除高频干扰将方波变成三角波移相在模数转换中将电压量变成时间量§积分电路和微分电路8.3.2 微分电路微分实验电路把三角波变成方波(Vi:三角波,频率1KHz,幅度0.2V)输入正弦波(Vi:正弦波,频率1KHz,幅度0.2V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?§对数和指数运算电路8.4.1 对数电路对数电路改进基本对数电路缺点:运算精度受温度影响大;小信号时exp(VD/VT)与1差未几大,所以误差很大;二极管在电流较大时伏安特性与PN结伏安特性不同较大,所以运算只在较小的电流范围内误差较小。

常用运放电路图及计算公式

常用运放电路图及计算公式

Op Array AmpCircuitCollectionAN-31TL H 7057Practical Differentiatorf c e12q R2C1f h e12q R1C1e12q R2C2f c m f h m f unity gainTL H 7057–9IntegratorV OUT e b1R1C1t2t1V IN dtf c e12q R1C1R1e R2For minimum offset error dueto input bias currentTL H 7057–10Fast IntegratorTL H 7057–11Current to Voltage ConverterV OUT e l IN R1For minimum error due tobias current R2e R1TL H 7057–12Circuit for Operating the LM101without a Negative SupplyTL H 7057–13Circuit for Generating theSecond Positive VoltageTL H 7057–14 2Neutralizing Input Capacitance to Optimize Response TimeC N sR1R2C S TL H 7057–15Integrator with Bias Current CompensationAdjust for zero integrator drift Current drift typically 0 1 n A C over b 55 C to 125 C temperature rangeTL H 7057–16Voltage Comparator for Driving DTL or TTL Integrated CircuitsTL H 7057–17Threshold Detector for PhotodiodesTL H 7057–18Double-Ended Limit DetectorV OUT e 4 6V for V LT s V IN s V UT V OUT e 0V forV IN k V LT or V IN l V UTTL H 7057–19Multiple Aperture Window DiscriminatorTL H 7057–203Offset Voltage Adjustment for Inverting AmplifiersUsing Any Type of Feedback Element RANGE e g VR2R1JTL H 7057–21Offset Voltage Adjustment for Non-Inverting AmplifiersUsing Any Type of Feedback ElementRANGE e g V R2R1JGAINe 1aR5R4a R2TL H 7057–22Offset Voltage Adjustment for Voltage Followers RANGE e g VR3R1JTL H 7057–23Offset Voltage Adjustment for Differential AmplifiersR2e R3a R4RANGE e g V R5R4J R1R1a R3JGAIN eR2R1TL H 7057–24Offset Voltage Adjustment for InvertingAmplifiers Using 10k X Source Resistance or LessR1e 2000R3U R4R4U R3s 10k X RANGE e g VR3U R4R1JTL H 7057–254SECTION2 SIGNAL GENERATIONLow Frequency Sine Wave Generator with Quadrature OutputTL H 7057–26 High Frequency Sine Wave Generator with Quadrature Outputf o e10kHzTL H 7057–275Free-Running Multivibrator Chosen for oscillation at 100HzTL H 7057–28Wein Bridge Sine Wave OscillatorR1e R2C1e C2 Eldema 1869f e12q R1C110V 14mA BulbTL H 7057–29Function GeneratorTL H 7057–30Pulse Width ModulatorTL H 7057–316Bilateral Current SourceI OUT e R3V IN R1R5R3e R4a R5R1e R2TL H 7057–32Bilateral Current SourceI OUT eR3V INR1R5R3e R4a R5R1e R2TL H 7057–33Wein Bridge Oscillator with FET Amplitude StabilizationR1e R2C1e C2f e12q R1C1TL H 7057–347Low Power Supply for Integrated Circuit TestingTL H 7057–35 V OUT e1V k XTL H 7057–91Positive Voltage ReferenceTL H 7057–36Positive Voltage ReferenceTL H 7057–37 8Negative Voltage Reference TL H 7057–38Negative Voltage ReferenceTL H 7057–39Precision Current Sink I O eV IN R1V IN t 0VTL H 7057–40Precision Current SourceTL H 7057–41SECTION 3 SIGNAL PROCESSINGDifferential-Input Instrumentation AmplifierR4R2e R5R3A V eR4R2TL H 7057–429Variable Gain Differential-Input Instrumentation AmplifierGain adjustA V e10b4R6TL H 7057–43 Instrumentation Amplifier with g100Volt Common Mode RangeR3e R4R1e R6e10R3A V e R7 R6Matching determines common R1e R5e10R2mode rejectionR2e R3TL H 7057–4410Instrumentation Amplifier with g10Volt Common Mode RangeR1e R4R2e R5R6e R7Matching Determines CMRRA V e R6R2 1a2R1R3JTL H 7057–45High Input Impedance Instrumentation AmplifierR1e R4 R2e R3A V e1a R1 R2Matching determines CMRRMay be deleted to maximize bandwidth TL H 7057–46Bridge Amplifier with Low Noise CompensationReduces feed through ofpower supply noise by20dBand makes supply bypassingunnecessaryTrim for best commonmode rejectionGain adjustTL H 7057–4711Bridge Amplifier R1R S1e R2R S2V OUT e V a1bR1R S1JTL H 7057–48Precision DiodeTL H 7057–49Precision Clamp E REF must have a source im-pedance of less than 200X if D2is usedTL H 7057–50Fast Half Wave RectifierTL H 7057–51Precision AC to DC ConverterFeedforward compensation can be used to make a fast full wave rectifier without a filter TL H 7057–52Low Drift Peak DetectorTL H 7057–5312Absolute Value Amplifier with Polarity Detector V OUT e b l V IN l c R2R1R2 R1eR4a R3R3TL H 7057–54Sample and HoldPolycarbonate-dielectric capacitorTL H 7057–55Sample and HoldWorst case drift less than2 5mV secTeflon Polyethylene or PolycarbonateDielectric CapacitorTL H 7057–5613Low Drift IntegratorTL H 7057–57Q1and Q3should not have internal gate-protection diodes Worst case drift less than 500m V sec over b 55 C to a 125 CFast Summing Amplifier with Low Input CurrentTL H 7057–58In addition to increasing speed the LM101A raises high and low frequency gain increases output drive capability and eliminates thermal feedbackPower Bandwidth 250kHzSmall Signal Bandwidth 3 5MHz Slew Rate 10V m sC5e6c 10b 8R f14Fast Integrator with Low Input CurrentTL H 7057–59Adjustable Q Notch Filterf O e12q R1C1e 60HzR1e R2e R3C1e C2e C23TL H 7057–6015Easily Tuned Notch Filter R4e R5R1e R3R4e R1f O e12q R40C1C2TL H 7057–61Tuned Circuitf O e12q0R1R2C1C2TL H 7057–62Two-Stage Tuned Circuitf O e12q0R1R2C1C2TL H 7057–6316Negative Capacitance MultiplierC e R2R3C1I L e V OS a R2I OSR3R S e R3(R1a R IN) R IN A VOTL H 7057–65Variable Capacitance MultiplierC e 1a R b R a J C1TL H 7057–66Simulated InductorL t R1R2C1R S e R2R P e R1TL H 7057–67Capacitance MultiplierC eR1R3C1I L eV OS a I OS R1R3R S e R3TL H 7057–68 17High Pass Active FilterTL H 7057–71Values are for100Hz cutoff Use metalized polycarbonate capacitors for good temperature stabilityLow Pass Active FilterTL H 7057–72 Values are for10kHz cutoff Use silvered mica capacitors for good temperature stabilityNonlinear Operational Amplifier with Temperature Compensated BreakpointsTL H 7057–7318Current MonitorV OUT e R1R3 R2I LTL H 7057–74Saturating Servo Preamplifier withRate FeedbackTL H 7057–75 Power BoosterTL H 7057–7619Analog MultiplierR5e R1 V b10JV1t0V OUT e V1V210TL H 7057–77Long Interval TimerLow leakage b0 017m F per second delayTL H 7057–78Fast Zero Crossing DetectorTL H 7057–79 Propagation delay approximately200nsDTL or TTL fanout of threeMinimize stray capacitancePin8Amplifier for Piezoelectric TransducerLow frequency cutoff e R1C1TL H 7057–80Temperature ProbeSet for0V at0 CAdjust for100mV CTL H 7057–81 20Photodiode AmplifierV OUT e R1I DTL H 7057–82Photodiode AmplifierV OUT e10V m ATL H 7057–83 Operating photodiode with less than3mVacross it eliminates leakage currentsHigh Input Impedance AC FollowerTL H 7057–84Temperature Compensated Logarithmic Converter1k X(g1%)at25 C a3500ppm CAvailable from Vishay UltronixGrand Junction CO Q81SeriesDetermines current for zerocrossing on output 10m Aas shownTL H 7057–8510nA k I IN k1mASensitivity is1V per decade21R o o t E x t r a c t o r2N 3728m a t c h e d p a i r sT L H 7057–8622Multiplier DividerTL H 7057–87 Cube GeneratorTL H 7057–8823A N -31O p A m p C i r c u i t C o l l e c t i o nFast Log Generator1k X (g 1%)at 25 C a 3500ppm CAvailable from Vishay Ultronix Grand Junction CO Q81SeriesTL H 7057–89Anti-Log Generator1k X (g 1%)at 25 C a 3500ppm CAvailable from Vishay Ultronix Grand Junction CO Q81SeriesTL H 7057–90LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION As used herein 1 Life support devices or systems are devices or 2 A critical component is any component of a life systems which (a)are intended for surgical implant support device or system whose failure to perform can into the body or (b)support or sustain life and whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system or to affect its safety or with instructions for use provided in the labeling can effectivenessbe reasonably expected to result in a significant injury to the userNational Semiconductor National Semiconductor National Semiconductor National Semiconductor CorporationEuropeHong Kong LtdJapan Ltd1111West Bardin RoadFax (a 49)0-180-530858613th Floor Straight Block Tel81-043-299-2309十种精密全波整流电路图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计.图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益图2优点是匹配电阻少,只要求R1=R2图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点.图5 和 图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K图8的电阻匹配关系为R1=R2图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称.图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性.图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡.精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态.结论:虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种. 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R 并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波.图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了.图3的优势在于高输入阻抗.其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高.两个单运放型虽然可以实现整流的目的,但是输入\输出特性都很差.需要输入\输出都加跟随器或同相放大器隔离.各个电路都有其设计特色,希望我们能从其电路的巧妙设计中,吸取有用的.例如单电源全波电路的设计,复合反馈电路的设计,都是很有用的设计思想和方法,如果能把各个图的电路原理分析并且推导每个公式,会有受益的.最后的结论供大家在电路设计的时候参考.。

十种运放精密全波整流电路

十种运放精密全波整流电路

十种运放精密全波整流电路图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计.图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益图2优点是匹配电阻少,只要求R1=R2图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点.图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K图8的电阻匹配关系为R1=R2图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称.图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性.图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡.精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态.结论:虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种.图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波.图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了.图3的优势在于高输入阻抗.其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高.两个单运放型虽然可以实现整流的目的,但是输入\输出特性都很差.需要输入\输出都加跟随器或同相放大器隔离.各个电路都有其设计特色,希望我们能从其电路的巧妙设计中,吸取有用的.例如单电源全波电路的设计,复合反馈电路的设计,都是很有用的设计思想和方法,如果能把各个图的电路原理分析并且推导每个公式,会有受益的。

运算放大器11种经典电路

运算放大器11种经典电路

运算放大器的11钟经典电路虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。

而运放的输出电压是有限的,一般在 10 V~14 V。

因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。

开环电压放大倍数越大,两输入端的电位越接近相等。

“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。

因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路。

在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。

图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。

流过R1的电流I1 = (Vi - V-)/R1 ……a 流过R2的电流I2 = (V- - Vout)/R2 ……b V- = V+ = 0 ……c I1 = I2 ……d 求解上面的初中代数方程得Vout = (-R2/R1)*Vi 这就是传说中的反向放大器的输入输出关系式了。

lm324芯片常用电路

lm324芯片常用电路

LM324四运放的应用LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“V o”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端V o的信号与该输入端的相位相同。

LM324的引脚排列见图2。

图 1 图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

下面介绍其应用实例。

●反相交流放大器电路见附图。

此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。

电路无需调试。

放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

●同相交流放大器见附图。

同相交流放大器的特点是输入阻抗高。

其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。

R4的阻值范围为几千欧姆到几十千欧姆。

●交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小。

因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

运算放大器11种经典电路

运算放大器11种经典电路

精心整理运算放大器组成的电路五花八门,令人眼花了乱,是模拟电路中学习的重点。

在分析它的工作原理时倘没有抓住核心,往往令人头大。

特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。

????遍观所有模拟电子技术的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。

???今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。

???虚短和虚断的概念???由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB以上。

而运放的输出电压是有限的,一般在10V~14V。

因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。

开环电压放大倍数越大,两输入端的电位越接近相等。

????“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

???由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。

因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路。

???在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

LM324应用电路图

LM324应用电路图

LM324系列运算放大器就是价格便宜得带差动输入功能得四运算放大器。

可工作在单电源下,电压范围就是3、0V-32V或+16V、LM324得特点:1、短跑保护输出2、真差动输入级3、可单电源工作:3V-32V4、低偏置电流:最大100nA(LM324A)5、每封装含四个运算放大器。

6、具有内部补偿得功能。

7、共模范围扩展到负电源8、行业标准得引脚排列9、输入端具有静电保护功能LM324引脚图(管脚图)LM324应用电路图:1、LM324电压参考电路图2、LM324多路反馈带通滤波器电路图3、LM324高阻抗差动放大器电路图4、LM324函数发生器电路图5、LM324双四级滤波器6、LM324维思电桥振荡器电路图7、LM324滞后比较器电路图恒流源运算放大器LM324得D单元构成恒流源,使用中为保证恒流源得线性度,应充分保证电阻R16与R17阻值不小于R14与R15得10倍,且R14与R15、R16与R17两两之间阻值误差要尽可能地小,只有这样才能保证锯齿波得线性度,调试时有时测得得锯齿波为下凹得,这就是由于R14与R15或R16与R17两个电阻之间阻值有较大得差值造成得。

本文就高性能集成四运放LM324得参数,进行实用电路设计,论述电路原理。

LM324就是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它得内部包含四组形式完全相同得运算放大器, 除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示得符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo得信号与该输入端得位相反;Vi+(+)为同相输入端,表示运放输出端Vo得信号与该输入端得相位相同。

LM324得引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

集成运算放大电路简介

集成运算放大电路简介

六、输入偏置电流 IIB
定义:输出电压等于零时,两个输入端偏置电流的
平均值。
七、差模输入电阻 rid
定义:
一般集成运放为几兆欧。
八、共模抑制比 KCMR
定义:
多数集成运放在 80 dB 以上,高质量的可达 160 dB。
九、最大共模输入电压 UIcmax
输入级能正常放大差模信号情况下允许输入的最 大共模信号。
接入30pF的校正电容起 相位补偿的作用,防止电路 产生自激振荡。
30pF
IC13 +VCC
R7
T15
R8
T16
T17
-VEE
图 4.3.1-3 中间级示意图
4. 输出级
T14、 T18 、T19准互补 对称电路;
D1、 D2 、R9、R10为 过流保护电路;
T15 、R7、R8为输出级 设置合适的静态工作点。
图设计考虑了热效应的影响,减小了失调电压、失调电流及 它们的温漂,增大了共模抑制比和输入电阻。
• 第四代产品:采用了斩波稳零和动态稳零技术,使各性能
指标参数更加理想化,一般情况下不需要调零就能正常工作 ,大大提高了精度。
4.5 集成运放的种类及选择
4.5.2 集成运放的种类 一、按工作原理分类
1.电压放大型:F007、F324、C14573 2.电流放大型:LM3900、F1900 3.跨导型:LM3080、F3080 4.互阻型:AD8009、AD8011
IC13
D1
R7
R8 T15
uI
D2
T18
+VCC
T14
R9 uO
R10
T19
-VEE 图4.3.1-4 F007输出级

LM324应用电路图

LM324应用电路图

LM324系列运算放大器是价格便宜的带差动输入功能的四运算放大器。

可工作在单电源下,电压范围是3.0V-32V或+16V.LM324的特点:1.短跑保护输出2.真差动输入级3.可单电源工作:3V-32V4.低偏置电流:最大100nA(LM324A)5.每封装含四个运算放大器。

6.具有内部补偿的功能。

7.共模范围扩展到负电源8.行业标准的引脚排列9.输入端具有静电保护功能LM324引脚图(管脚图)LM324应用电路图:1.LM324电压参考电路图2.LM324多路反馈带通滤波器电路图3.LM324高阻抗差动放大器电路图4.LM324函数发生器电路图5.LM324双四级滤波器6.LM324维思电桥振荡器电路图7.LM324滞后比较器电路图恒流源运算放大器LM324的D单元构成恒流源,使用中为保证恒流源的线性度,应充分保证电阻R16与R17阻值不小于R14与R15的10倍,且R14与R15、R16与R17两两之间阻值误差要尽可能地小,只有这样才能保证锯齿波的线性度,调试时有时测得的锯齿波为下凹的,这是由于R14与R15或R16与R17两个电阻之间阻值有较大的差值造成的。

本文就高性能集成四运放LM324的参数,进行实用电路设计,论述电路原理。

LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。

它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。

每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。

LM324的引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CN s
R1 CS R2
VOUT e 4 6V for VLT s VIN s VUT VOUT e 0V for VIN k VLT or VIN l VUT
TL H 7057 – 19
TL H 7057 – 15
Integrator with Bias Current Compensation
Multiple Aperture Window Discriminator
TL H 7057–9
VOUT e b fc e
1 R1C1
1 2qR1C1

t2 t1
VIN dt
fc m fh m funity gain
R1 e R2 For minimum offset error due to input bias current
TL H 7057 – 10
Fast Integrator
Op Amp Circuit Collection
Op Amp Circuit Collection
SECTION 1 BASIC CIRCUITS Inverting Amplifier
National Semiconductor Application Note 31 February 1978
Polycarbonate-dielectric capacitor
Low Drift Peak Detector
TL H 7057 – 53
12
Absolute Value Amplifier with Polarity Detector
VOUT e b l VIN l c R2 R4 a R3 e R1 R3
R2 R1
TL H 7057 – 54
Sample and Hold
Gain adjust AV e 10b4 R6
TL H 7057 – 43
Instrumentation Amplifier with g 100 Volt Common Mode Range
R3 e R4 R1 e R6 e 10R3 AV e R1 e R5 e 10R2 R2 e R3 R7 R6
TL H 7057 – 29
Function Generator
TL H 7057 – 30
Pulse Width Modulator
TL H 7057 – 31
6
Bilateral Current Source
Bilateral Current Source
IOUT e
R3 VIN R1 R5
R3 e R4 a R5 R1 e R2
TL H 7057–36
8
Negative Voltage Reference
Negative Voltage Reference
TL H 7057 – 39
TL H 7057 – 38
Precision Current Sink
Precision Current Source
VIN IO e R1 VIN t 0V
Circuit for Generating the Second Positive Voltage
TL H 7057–13
TL H 7057 – 14
2
Neutralizing Input Capacitance to Optimize Response Time
Double-Ended Limit Detector
TL H 7057 – 4
Inverting Amplifier with High Input Impedance
Non-Inverting Summing Amplifier
RS e 1k for 1% accuracy
TL H 7057 – 5
Source Impedance less than 100k gives less than 1% gain error
Current to Voltage Converter
VOUT e lIN R1 For minimum error due to bias current R2 e R1
TL H 7057 – 12
TL H 7057 – 11
Circuit for Operating the LM101 without a Negative Supply
Adjust for zero integrator drift Current drift typically 0 1 n A C over b 55 C to 125 C temperature range
TL H 7057 – 16
Voltage Comparator for Driving DTL or TTL Integrated Circuits
TL H 7057–21
Offset Voltage Adjustment for Voltage Followers
Offset Voltage Adjustment for Differential Amplifiers
RANGE e g V
R1 J
R3 R2 e R3 a R4 RANGE e g V GAIN e R2 R1
TL H 7057 – 40
TL H 7057 – 41
SECTION 3
SIGNAL PROCESSING Differential-Input Instrumentation Amplifier
R4 R5 e R2 R3 AV e R4 R2
TL H 7057 – 42
9
Variable Gain Differential-Input Instrumentation Amplifier
TL H 7057 – 46
Bridge Amplifier with Low Noise Compensation
Reduces feed through of power supply noise by 20 dB and makes supply bypassing unnecessary Trim for best common mode rejection Gain adjust

R3UR4 R1
J
TL H 7057 – 25
4
SECTION 2
SIGNAL GENERATION Low Frequency Sine Wave Generator with Quadrature Output
TL H 7057 – 26
High Frequency Sine Wave Generator with Quadrature Output
C1995 National Semiconductor Corporation TL H 7057 RRD-B30M115 Printed in U S A
Practical Differentiator
Integrator
fc e fh e
1 2qR2C1 1 1 e 2qR1C1 2qR2C2
TL H 7057 – 6
Fast Inverting Amplifier with High Input Impedance
Non-Inverting AC Amplifier
VOUT e
R1 a R2 VIN R1
RIN e R3 R3 e R1UR2
TL H 7057 – 8
AN-31
TL H 7057 – 7
R3
R1 a R2 a R4
J R1 V
R4
2b
R2 V1 R1
VOUT e b R4
R5 e R1UR2UR3UR4 For minimum offset error due to input bias t
R1
V1
a
V2 V a 3 R2 R3
J
TL H 7057 – 3 R1UR2 e R3UR4 For minimum offset error due to input bias current
IOUT e
R3 VIN R1 R5
R3 e R4 a R5 R1 e R2
TL H 7057 – 32
TL H 7057 – 33
Wein Bridge Oscillator with FET Amplitude Stabilization
R1 e R2 C1 e C2 fe 1 2qR1 C1
TL H 7057 – 34
Non-Inverting Amplifier
VOUT e b RIN e R1
R2 VIN R1
VOUT e
R1 a R2 VIN R1
TL H 7057 – 2
TL H 7057 – 1
Difference Amplifier
Inverting Summing Amplifier
VOUT e
For R1 e R3 and R2 e R4 VOUT e R2 (V2 b V1) R1
Matching determines common mode rejection
TL H 7057 – 44
10
Instrumentation Amplifier with g 10 Volt Common Mode Range
R1 e R4 R2 e R5 R6 e R7 Matching Determines CMRR AV e R6 2R1 1a R2 R3
TL H 7057 – 47
11
Bridge Amplifier
Precision Diode
R1 R2 e RS1 RS2 VOUT e V a
1
b
相关文档
最新文档