集合基础知识归纳

合集下载

集合的全部知识点总结

集合的全部知识点总结

集合的全部知识点总结集合是数学中一个重要的概念,它是由一些确定的事物构成的整体。

在数学中,集合有着丰富的应用和理论基础,下面将从集合的定义、表示、运算等方面进行全面总结。

一、集合的定义集合是指具有某种特定性质的事物的总和。

用大写字母A、B、C等表示集合,小写字母a、b、c等表示集合中的元素。

如果元素x属于集合A,我们用x∈A来表示。

如果元素y不属于集合A,我们用y∉A 来表示。

二、集合的表示1. 列举法:直接列出集合中的元素,用花括号{}括起来。

例如,集合A={1,2,3,4}表示A为包含有元素1、2、3、4的集合。

2. 描述法:通过给出满足某个条件的元素来表示集合。

例如,集合B={x|x是正整数且x<5}表示B为包含小于5的正整数的集合。

三、集合的运算1. 交集:集合A和集合B的交集,表示为A∩B,表示共同属于A和B的元素组成的集合。

2. 并集:集合A和集合B的并集,表示为A∪B,表示A和B中所有元素组成的集合。

3. 差集:集合A和集合B的差集,表示为A-B,表示属于A但不属于B的元素组成的集合。

4. 互斥:如果集合A和集合B没有共同元素,则称A和B互斥。

5. 子集:如果集合A的所有元素都属于集合B,则称A是B的子集,表示为A⊆B。

6. 相等:如果集合A和集合B互为子集,则称A与B相等,表示为A=B。

四、集合的性质1. 空集:不含任何元素的集合称为空集,用符号∅表示。

2. 等价类:将集合中的元素划分为若干等价类,每个类都满足某个特定的条件。

3. 无穷集合:包含无限多个元素的集合,例如自然数集合N、整数集合Z等。

五、集合的应用集合在数学中广泛应用于各个领域,特别是在概率论、统计学和离散数学中有着重要的作用。

在实际生活中,集合也常用于对事物进行分类、归纳和分析。

六、集合的补充除了上述基本的集合概念和运算外,还有一些补充的概念:1. 有限集合:只包含有限个元素的集合。

2. 无限集合:包含无限个元素的集合。

高一数学上集合知识点归纳

高一数学上集合知识点归纳

高一数学上集合知识点归纳在数学学科中,集合是一个重要的概念,涉及到众多的知识点。

本文将对高一数学上的集合知识点进行归纳,帮助同学们更好地理解和掌握这一部分内容。

一、集合的概念和表示法集合是指把具有共同特征的事物归到一起而成的整体。

可以通过列举法、描述法、符号法等方式来表示一个集合。

集合中的元素是指属于该集合的事物。

二、集合间的关系1.子集关系:若集合A的每一个元素都是集合B的元素,则称A是B的子集,记作A⊆B。

同时,根据子集关系,还可以定义真子集和空集。

2.相等关系:若集合A包含了与集合B相同的元素,且集合B也包含了与集合A相同的元素,则称A等于B,记作A=B。

3.交集和并集:交集是指两个集合共同包含的元素组成的集合,记作A∩B;并集是指两个集合中所有元素组成的集合,记作A∪B。

还可以定义空集和全集的交集和并集。

4.补集:对于给定的一个全集U,集合A在全集U中除去自己的元素组成的集合称为A的补集,记作A'。

三、集合的运算1.求并集:将两个集合中的元素全部加起来,重复的元素只计算一次。

2.求交集:取两个集合中相同的元素。

3.求差集:求一个集合中不属于另一个集合的元素组成的集合。

4.集合的运算律:并集和交集具有交换律、结合律和分配律。

四、集合的表示方式和常用符号1.集合的列举法:通过列出集合中的元素来表示集合。

2.集合的描述法:通过描述集合中元素的特征来表示集合。

3.集合的符号法:通过使用集合符号表示集合,例如用大写字母表示集合,用大括号表示元素。

五、集合的常用性质和定理1.空集的性质:空集是任何集合的子集,且空集是唯一的。

2.集合的幂集:对于一个集合A,由A的所有子集组成的集合称为A的幂集,记作P(A)。

3.集合的基本运算律:并集和交集运算满足交换律、结合律和分配律。

4.集合的排列组合:通过排列和组合的方式,可以求解集合中元素的排列和组合数量。

综上所述,高一数学上的集合知识点包括集合的概念和表示法、集合间的关系、集合的运算以及集合的常用性质和定理等内容。

集合的全部知识点总结

集合的全部知识点总结

集合的全部知识点总结集合是数学中的重要概念之一,广泛应用于各个领域。

在本篇文章中,将对集合的定义、运算、性质以及常见的集合类型进行总结和归纳。

一、集合的基本定义集合是由不同元素组成的整体。

通常用大写字母表示集合,用大括号{}表示,元素之间用逗号分隔。

例如,集合A可以表示为A={a, b, c}。

二、集合的运算1. 并集(Union)并集是指将两个或多个集合中的所有元素合并在一起形成的新集合。

记作A∪B,其中A和B是待操作的集合。

并集包含了A和B中的所有元素,不重复计数。

2. 交集(Intersection)交集是指两个或多个集合中共有的元素所组成的集合。

记作A∩B,其中A和B是待操作的集合。

交集只包含A和B中共有的元素,重复计数一次。

3. 差集(Difference)差集是指一个集合中除去与另一个集合共有的元素后所剩下的元素。

记作A-B,其中A和B是待操作的集合。

差集包含了属于A但不属于B的元素。

4. 补集(Complement)补集是指集合在某个全集中的补集合。

一般情况下,全集为给定环境中的所有元素。

记作A的补集为A'或A^c。

补集包含了全集中属于但不属于A的元素。

三、集合的性质1. 包含关系集合A包含集合B,当且仅当B中的每个元素都属于A。

记作A⊇B。

如果A包含B且B包含A,那么A和B是相等的集合,记作A=B。

2. 互斥关系集合A和集合B互斥,当且仅当两个集合没有共同的元素,即A∩B=∅。

3. 子集关系集合A是集合B的子集,当且仅当A中的每个元素都属于B。

记作A⊆B。

空集∅是任何集合的子集。

4. 幂集幂集是指一个集合的所有子集所组成的集合。

假设集合A={a, b},那么A的幂集为P(A)={{},{a},{b},{a,b}}。

四、常见的集合类型1. 自然数集合(N)自然数集合包含了从1开始的所有正整数。

即N={1, 2, 3, …}。

2. 整数集合(Z)整数集合包含了正整数、负整数和零。

集合的基本知识点总结

集合的基本知识点总结

集合的基本知识点总结1. 集合的定义集合是由一组元素组成的无序集合。

集合中的元素可以是任何类型的对象,包括数字、字母、符号、单词等。

2. 集合的表示方式集合可以用不同的方式表示,比如用大括号{}包围元素,用逗号分隔元素。

例如,集合{1, 2, 3, 4, 5}表示由数字1到5组成的集合。

3. 集合的性质集合具有以下几个基本性质:- 互异性:集合中的元素各不相同,即集合中的元素没有重复。

- 无序性:集合中的元素没有固定的顺序,不同的排列方式得到的集合是一样的。

- 确定性:一个元素要么属于集合,要么不属于集合。

集合中的元素是确定的,不会因为不同时间或不同条件而改变。

4. 集合的运算集合之间可以进行一些基本的运算,包括并集、交集、差集和补集。

- 并集:两个集合A和B的并集是由A和B中所有元素组成的集合,记作A∪B。

- 交集:两个集合A和B的交集是同时属于A和B的元素组成的集合,记作A∩B。

- 差集:集合A中去掉属于B的元素后得到的集合,记作A-B。

- 补集:集合A相对于全集U中不属于A的元素组成的集合,记作A的补集。

5. 集合的性质集合具有一些特殊的性质,包括空集、全集、子集、真子集、幂集等。

- 空集:不包含任何元素的集合,记作∅或{}。

- 全集:包含所有可能元素的集合,即包含所有集合的集合。

- 子集:如果集合A的所有元素都属于集合B,那么A是B的子集,记作A⊆B。

- 真子集:如果集合A是集合B的子集且A不等于B,则A是B的真子集,记作A⊂B。

- 幂集:集合A的所有子集组成的集合称为A的幂集,记作P(A)。

6. 集合的应用集合在数学、逻辑、计算机科学、统计学等领域都有重要的应用。

在数学中,集合论是数学的一个重要分支,研究集合的性质和运算规律。

在逻辑学中,集合被用来描述命题、谓词、命题函数等。

在计算机科学中,集合被用来描述数据结构、算法和程序设计。

在统计学中,集合被用来描述样本空间、事件空间等。

7. 集合的表示方法集合可以用不同的表示方法来描述,包括清单法、描述法和图示法。

集合基础知识

集合基础知识
集合基础知识
1.集合的有关概念 (1)某些指定的对象集在一起就成为一个集合,也简称集. (2)集合里元素的特性 1 确定性 对于任何一个对象,都能确定它是否为某一给定集合的元素.即对于集合 A 和某一对象 x,有一个明确的判断标准,是 xA,还是 xA,二者必居其一,不会模棱两 可.某班高个的同学不能组成集合. 2 互异性 集合中的任何两个元素都是互不相同的,相同的元素在集合中只算一个元 素.如方程 x22x+1=0 有两个等根 x1=x2=1,用集合表示为{1},而不能写为{1,1}. 3 无序性 集合中的元素是不排序的.如集合{1,2}可以写成{2,1}. (3)元素与集合的关系 如果 a 是集合 A 的元素,就说 a 属于集合 A,记作 aA;如果 a 不是集合 A 的元素, 就说 a 不属于集合 A,记作 aA. (4)集合的分类 集合的种类通常可分为有限集、无限集、空集(用符号表示). (5)集合的表示 1 集合的表示方法:列举法;描述法;图示法(即韦恩图法). 2 特定集合的表示 为了书写和使用的方便,规定常见的数集用特定的字母表示,即: 非负整数集(也称自然数集),记作 N;正整数集表示成 N*(N+); 整数集记作 Z;有理数集记作 Q;实数集记作 R. 2.集合与集合之间的关系 (1)子集 对于集合 A 和集合 B,如果集合 A 的任何一个元素都是集合 B 的元素,我们就说集合 A 包含于集合 B,或集合 B 包含集合,记作:AB (或 BA).显然有 AA. 对于任一集合 A,规定A. (2)真子集 如果 A 是 B 的子集,并且 B 中至少有一个元素不属于 A,那么集合 A 叫做集合 B 的真 子集.记作:AB (或 BA). 空集是任何非空集合的真子集,即对任意集合 A,有A. (3)集合的相等 集合 A、B,如果 AB,同时 BA,则称 A=B. 注意:①形式上不同的两个集合可能相等.例如,{x|x=2k1,kZ}与集合{y|y=2m+1, mZ}相等;集合{x|x2+3x+2=0,xN}与集合{身高 10 米的人}相等,貌似形式相同的两个集合 却不一定相等.例如,集合{x|x2+3x+2=0,xN}与集合{x|x2+3x+2=0,xZ}不相等,前者是后 者的真子集. ②严格区分并正确使用“、、、 、=”. 集合中表示关系的概念分两类,一类表示元素和集合之间的关系,有属于()和不属于 ()两个.另一类表示集合和集合之间关系,有包含、真包含、相等三个. 3.集合的运算 (1)交集 由所有属于集合 A 且属于集合 B 的元素所组成的集合,叫做 A 与 B 的交集,记作 AB,

高中数学集合知识点归纳

高中数学集合知识点归纳

高中数学集合知识点归纳一、集合的基本概念1. 集合的定义:集合是由一些明确的、互不相同的元素所构成的整体,用大写字母如A, B, C等表示。

2. 元素:集合中的每一个成员被称为元素,用小写字母如a, b, c等表示。

3. 空集:不包含任何元素的集合称为空集,记作∅。

4. 集合的表示:集合通常可以通过列举法或描述法来表示。

例如,集合A = {1, 2, 3} 或 A = {x | x 是一个正整数}。

二、集合间的关系1. 子集:如果集合B的所有元素都是集合A的元素,则称B是A的子集,记作B ⊆ A。

2. 真子集:如果集合B是A的子集,并且B不等于A,则称B是A的真子集,记作B ⊂ A。

3. 补集:对于集合A,其在全集U中的补集是包含U中所有不属于A的元素的集合,记作A' 或 C_U(A)。

4. 交集:两个集合A和B的交集是包含同时属于A和B的所有元素的集合,记作A ∩ B。

5. 并集:两个集合A和B的并集是包含属于A或属于B的所有元素的集合,记作A ∪ B。

三、集合运算1. 德摩根定律:对于任意集合A和B,(A ∪ B)' = A' ∩ B' 和 (A ∩ B)' = A' ∪ B'。

2. 集合的幂集:一个集合的所有子集构成的集合称为该集合的幂集。

3. 笛卡尔积:两个集合A和B的笛卡尔积是所有可能的有序对(a, b)的集合,其中a属于A,b属于B,记作A × B。

四、特殊集合1. 有限集:包含有限个元素的集合称为有限集。

2. 无限集:包含无限个元素的集合称为无限集。

3. 有界集:如果集合中的所有元素都小于或等于某个实数,那么这个集合是有上界的;类似地,如果所有元素都大于或等于某个实数,则集合有下界。

4. 区间:实数线上的一段,包括开区间、闭区间和半开半闭区间。

五、集合的应用1. 函数的定义域和值域:函数的定义域是函数中所有允许输入的x值的集合;值域是函数输出的所有y值的集合。

集合的知识点公式归纳总结

集合的知识点公式归纳总结

集合的知识点公式归纳总结集合的知识点公式归纳总结一、引言集合是数学中重要的基础概念之一,广泛应用于各个数学分支以及其他学科领域。

本文旨在对集合的基本性质、运算、特殊集合等知识点进行归纳总结,以帮助读者更好地理解和应用集合相关的知识。

二、集合的基本定义1. 集合的概念:集合是由一些元素组成的整体或集合。

2. 集合的表示方法:通常用大写字母A、B、C等表示集合,元素用小写字母a、b、c等表示,集合的元素用花括号{}括起来。

3. 集合的元素:一个元素要么属于集合,要么不属于集合,元素与集合的关系用属于符号∈表示,不属于用∉表示。

三、集合的基本性质1. 集合的相等性:两个集合A和B相等,当且仅当A的所有元素都是B的元素,而B的所有元素也都是A的元素。

记作A = B。

2. 集合的包含关系:如果集合A的所有元素都是集合B的元素,那么称A是B的子集,记作A ⊆ B。

3. 空集:不含任何元素的集合称为空集,记作∅。

4. 全集:包含所有可能元素的集合称为全集,通常用大写字母U表示。

四、集合的运算1. 交集:集合A和集合B的交集是同时属于A和B的元素的集合,记作A ∩ B。

2. 并集:集合A和集合B的并集是属于A或B的元素的集合,记作A ∪ B。

3. 差集:集合A和集合B的差集是属于A但不属于B的元素的集合,记作A - B。

4. 补集:集合A相对于全集U的补集是全集U中不属于A的元素的集合,记作A'或A的补集。

五、集合的特殊集合1. 自然数集:包含0和正整数的集合,记作N。

2. 整数集:包括负整数、0和正整数的集合,记作Z。

3. 有理数集:包括所有能表示为两个整数的比值的数的集合,记作Q。

4. 无理数集:不能表示为两个整数的比值的数的集合。

5. 实数集:包括有理数和无理数的集合,记作R。

六、集合的常用公式1. 交换律:A ∩ B = B ∩ A,A ∪ B = B ∪ A2. 结合律:(A ∩ B) ∩ C = A ∩ (B ∩ C),(A ∪ B) ∪C = A ∪ (B ∪ C)3. 分配律:A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),A ∪(B ∩ C) = (A ∪ B) ∩ (A ∪ C)4. 德摩根定律:(A ∩ B)' = A' ∪ B',(A ∪ B)' = A' ∩ B'七、集合的应用举例1. 集合的分类:- 奇数集合:包含所有奇数的集合,记作O = {x | x ∈ Z, x为奇数}。

高一年级数学《集合》知识点总结

高一年级数学《集合》知识点总结

高一年级数学《集合》知识点总结【一】一.知识归纳:1.集合的相关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈A都有x∈B,则AB(或AB);2)真子集:AB且存有x0∈B但x0A;记为AB(或,且)3)交集:A∩B={xx∈A且x∈B}4)并集:A∪B={xx∈A或x∈B}5)补集:CUA={xxA但x∈U}注意:①?A,若A≠?,则?A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,掌握相关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。

4.相关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

5.交、并集运算的性质①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

二.例题讲解:【例1】已知集合M={xx=m+,m∈Z},N={xx=,n∈Z},P={xx=,p∈Z},则M,N,P满足关系A)M=NPB)MN=PC)MNPD)NPM分析一:从判断元素的共性与区别入手。

集合的基础知识点

集合的基础知识点

集合的基础知识点一、什么是集合集合是数学中的一个基本概念,它是由一些确定的元素所组成的整体。

集合中的元素可以是任何事物,比如数字、字母、人、动物等等。

集合的概念在数学中具有重要的地位,它是其他数学概念的基础。

二、集合的表示方法集合可以用不同的方式表示和描述,常见的表示方法有两种:1.列举法:通过列举集合中的元素来表示集合。

例如,集合A由元素1、2、3组成,可以表示为A={1, 2, 3}。

2.描述法:通过给出满足某种条件的元素来表示集合。

例如,集合B由大于0且小于10的整数组成,可以表示为B={x | 0 < x < 10}。

三、集合的基本操作集合作为一个整体,可以进行一些基本的操作,包括并集、交集、差集和补集等。

1.并集:将两个集合中的所有元素合并成一个新的集合。

记作A∪B,表示为A和B的并集。

2.交集:找出两个集合中共有的元素,组成一个新的集合。

记作A∩B,表示为A和B的交集。

3.差集:从一个集合中减去另一个集合中共有的元素,得到一个新的集合。

记作A-B,表示为A和B的差集。

4.补集:对于给定的全集U,集合A相对于全集U的补集是指在全集U中但不在集合A中的元素所组成的集合。

记作A’,表示为A的补集。

四、集合的基本性质集合具有一些基本的性质,包括空集、子集和幂集等。

1.空集:不包含任何元素的集合称为空集,记作∅或{}。

空集是任何集合的子集。

2.子集:如果一个集合的所有元素都属于另一个集合,那么这个集合被称为另一个集合的子集。

记作A⊆B,表示A是B的子集。

3.幂集:对于给定集合A,它的幂集是指由A的所有子集所组成的集合。

记作P(A)。

五、集合的运算律集合的运算满足一些基本的运算律,包括交换律、结合律、分配律和幂等律等。

1.交换律:对于任意两个集合A和B,A∪B = B∪A,A∩B = B∩A。

2.结合律:对于任意三个集合A、B和C,(A∪B)∪C = A∪(B∪C),(A∩B)∩C = A∩(B∩C)。

(完整版)集合知识点归纳

(完整版)集合知识点归纳

集合的基础知识一、重点知识归纳及讲解1.集合的有关概念一组对象的全体形成一个集合,集合里的各个对象叫做集合的元素⑴集合中的元素具有以下的特性①确定性:任给一元素可确定其归属.即给定一个集合,任何一个对象是不是这个集合的元素也就确定了.例如,给出集合{1,2,3,4},它只有1、2、3、4四个元素,其他对象都不是它的元素;而“所有的好人”、“视力比较差的全体学生”、“我国的所有小河流”就不能视为集合,因为组成它们的对象是不能确定的.②互异性:集合中的任何两个元素都是不同的对象,也就是说,集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个.例如,不能有{1,1,2},而必须写成{1,2}.③无序性:集合中的元素间是无次序关系的.例如,{1,2,3}与{3,2,1}表示同一个集合.(2)集合的元素某些指定的对象集在一起就成为一个集合,集合中的每个对象叫做这个集合的元素.若a 是集合A的元素,就说a属于集合A,记作a∈A.不含任何元素的集合叫做空集,记作φ.(3)集合的分类:有限集与无限集.(4)集合的表示法:列举法、描述法和图示法.列举法:将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开,常用于表示有限集.描述法:将所给集合中全部元素的共同特性和性质用文字或符号语言描述出来.常用于表示无限集.使用描述法时,应注意六点:①写清集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使用“且”,“或”;⑤所有描述的内容都要写在大括号内;⑥用于描述的语句力求简明、确切.图示法:画一条封闭的曲线,用它的内部来表示一个集合,常用于表示又需给具体元素的抽象集合,对已给出了具体元素的集合当然也可用图示法来表示.如:A={1,2,3,4}例1、设集合A={a,a+b, a+2b},B={a,ac,ac2} ,且A=B,求实数c值.分析:欲求c值,可列关于c的方程或方程组,根据两集合相等的意义及集合元素的互异性,有下面两种情况:(1)a+b=ac且a+2b= ac2,(2)a+b= ac2且a+2b=ac两种情况.解析:(1)a+b=ac且a+2b= ac2,消去b得:a+ ac2-2ac=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴c2-2c+1=0,即c=1,但c=1时,B中的三个元素也相同,舍去c=1,此时无解.(2)a+b= ac2且a+2b=ac,消去b得:2ac2-ac-a=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴2c2-c-1=0,即c=1或,但c=1时,B中的三个元素也相同,舍去c=1,∴.点评:两集合相等的意义是两集合中的元素都相同,在求集合中元素字母的值时,可能产生与互异性相矛盾的增解,这需要解题后进行检验,去伪存真.(5)常用数集及专用记号(1)非负整数集(或自然数集)N={0,1,2,……}(2)正整数集N*(或N+)={1,2,3,……}(3)整数集Z={0,?1,?2,……}(4)有理数集Q={整数与分数}(5)实数集R={数轴上的点所对应的数}.强调:实数集不可记为{R}或{实数集},0≠≠{} ,≠{0},≠{空集}.强调:排除0和负数的数集也可表示为R*、Z*、Q*或R+、Z+、Q+.2.基本运算1. 交集(1)定义:由所有属于集合A且属于集合B的元素所组合的集合叫A与B的交集.记作,即{,且}(2)交集的图示上图阴影部分表示集合A与B的交集.(3)交集的运算律,,,2. 并集(1)定义:由所有属于集合A或属于集合B的元素所组成的集合,记作,即{,或}(2)并集的图示以上阴影部分表示集合A与B的并集.(3)并集的运算律,,,3、补集(1)定义:设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集).记作,即C S A=(2)补集的图示4、常用性质A A=A,AΦ=Φ,A B=B A,A B A,A B B.A A=A,AΦ=A,A B=B A,A B A,A B B.,,例2、集合{,且},A U,B U,且{4,5},{1,2,3},{6,7,8},求集合A和B.分析:利用集合图示较为直观.解:由{4,5},则将4,5写在中,由{1,2,3},则将1,2,3写在集A中,由{6,7,8},则将6,7,8写在A、B之外,由与中均无9,10,则9,10在B中,故A={1,2,3,4,5},B={4,5,9,10}.5、容斥原理:有限集A的元素个数记作card(A).对于两个有限集A,B,有card(A∪B)= card(A)+card(B)- card(A∩B).二、难点知识剖析1、要注意区分一些容易混淆的符号(1)与的区别:表示元素与集合之间的关系,例如1N,-1N等;表示集合与集合之间的关系,例如N R,等.(2)a与{a}的区别:一般在,a表示一个元素,{a}而表示只有一个元素a的集合.例如,0{0},{1}{1,2,3}等,不能写成0={0},{1}{1,2,3},1{1,2,3}.(3){0}与Φ的区别:是含有一个元素0的集合,Φ是不含任何元素的集合,因此Φ{0}但不能写成Φ={0},Φ{0}.例3、已知集合M={x|x≤3},集合P={x|x<2},设,则下列关系式中正确的一个是()A、P∈MB、a∈MC、P MD、{a-3}P解析:集合M、P都是部分实数组成的集合,而a是一个具体的实数,故M、P间的关系应用“包含”,“不包含”来确定,而对a与集合M、P的关系只能用“属于”,“不属于”来确定,比较实数的大小,易判断C正确.小结:正确使用集合的符号是正确分析、解答问题的关键.2.理解集合所表示的意义(1)对由条件给出的集合,要明白它所表示的意义,即元素指什么,是什么范围.如{y R|y=}表示的为函数y=中y的取值范围,故{y R|y=}={y R|y};而{x R|y=}表示y=的x的取值范围,故{x R|y=}=R.(2)用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或韦恩图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用韦恩图表示,容易被忽视,如在关系式B A中,易漏掉B=Φ的情况.例4、设A=,B=(1)若A B=B,求的值;(2)若A B=B,求的值.分析:明确A B=B和A B=B的含义,根据问题的需要,将A B=B和A B=B转化为等价的关系式:和,是解决本题的关键.解析:首先化简集合A,得A={-4,0}(1)由于A B=B,则有可知集合B或为空集Φ,或只含有根0或-4.①若B=Φ,由得②若,代入得:,当时,B=,合题意.当时,B=,也符合题意.③若,代入得:,当时,②中已讨论,合题意当时,B=不合题意.由①、②、③得,.(2)因为A B=B,所以,又A={-4,0},而B至多只有两个根,因此应有A=B.由(1)知,【点评】:一般对于A B=B和A B=B这种类型的问题,都要注意转化为等价的关系式:和,且在包含关系中,注意不要漏掉B=的情况.并且当A、B中的元素的个数相同时,还存在或的情况时,只有A=B这一种情况.子集(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

集合知识点归纳

集合知识点归纳

集合知识点归纳集合是数学中一个非常基础且重要的概念,它在数学的各个领域都有着广泛的应用。

下面让我们一起来归纳一下集合的相关知识点。

一、集合的定义集合是把一些确定的、不同的对象汇集在一起组成的一个整体。

这些对象称为集合的元素。

例如,一个班级里的所有学生可以组成一个集合,班级里的每一个学生就是这个集合的元素。

二、集合的表示方法1、列举法把集合中的元素一一列举出来,写在大括号内。

例如,集合 A ={1, 2, 3, 4, 5} 。

2、描述法用集合中元素的共同特征来描述集合。

比如,集合 B ={x | x 是大于 5 的整数} 。

3、图示法包括韦恩图(Venn Diagram),通过图形直观地表示集合之间的关系。

三、集合中元素的性质1、确定性对于一个给定的集合,任何一个对象是不是这个集合的元素是确定的。

比如,“身高较高的同学”不能构成一个集合,因为“较高”没有明确的标准,不具有确定性。

2、互异性集合中的元素是互不相同的。

例如,集合{1, 2, 2, 3} 应该写成{1, 2, 3} 。

3、无序性集合中的元素没有顺序之分。

{1, 2, 3} 和{3, 2, 1} 表示的是同一个集合。

四、常见的数集1、自然数集 N :包括 0 和正整数。

2、正整数集 N +:不包括 0 的自然数集。

3、整数集 Z :包括正整数、负整数和 0 。

4、有理数集 Q :包括整数和分数。

5、实数集 R :包括有理数和无理数。

五、集合间的关系1、子集如果集合 A 的所有元素都属于集合 B ,那么集合 A 叫做集合 B 的子集,记作 A ⊆ B 。

例如,集合 A ={1, 2} ,集合 B ={1, 2, 3} ,则 A 是 B 的子集。

2、真子集如果集合 A 是集合 B 的子集,并且集合 B 中至少有一个元素不属于集合 A ,那么集合 A 叫做集合 B 的真子集,记作 A ⊂ B 。

比如,上述例子中,A 是 B 的真子集。

3、相等如果集合 A 和集合 B 的元素完全相同,那么集合 A 和集合 B 相等,记作 A = B 。

数学集合知识点基础总结

数学集合知识点基础总结

数学集合知识点基础总结一、集合的定义在数学中,集合是由不同对象组成的一个整体,这些对象称为集合的元素。

集合通常用大写字母A、B、C等来表示,而集合中的元素则用小写字母a、b、c等来表示。

如果元素a 属于集合A,我们通常用a∈A来表示;如果元素a不属于集合A,我们通常用a∉A来表示。

集合的定义可以通过列举元素的方式或者通过性质描述的方式来进行。

例如,我们可以定义一个集合A={1,2,3,4,5},表示集合A包含了元素1、2、3、4和5;我们也可以定义一个集合B={x|x是一个正整数且x<6},表示集合B包含了所有小于6的正整数。

二、集合的性质1. 互异性集合中的元素都是互异的,也就是说集合中的元素不会重复。

例如,集合A={1,2,3,4,5}中的每个元素都不会重复出现。

2. 无序性集合中的元素是无序的,也就是说集合中的元素的排列顺序是无关紧要的。

例如,集合A={1,2,3}和集合B={3,2,1}是等价的,它们代表的是同一个集合。

3. 确定性一个元素要么属于一个集合,要么不属于一个集合,不存在不确定性的情况。

例如,一个元素要么属于集合A,要么不属于集合A,不存在中间状态。

三、集合的运算在集合中,有许多常用的运算,包括并集、交集、差集和补集等。

下面将对这些运算进行详细介绍。

1. 并集两个集合A和B的并集,记作A∪B,表示的是A和B中的所有元素的总和。

换言之,A∪B={x|x∈A或者x∈B}。

例如,A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。

2. 交集两个集合A和B的交集,记作A∩B,表示的是A和B中共同的元素。

换言之,A∩B={x|x∈A且x∈B}。

例如,A={1,2,3},B={3,4,5},则A∩B={3}。

3. 差集集合A和B的差集,记作A-B,表示的是在A中但不在B中的元素。

换言之,A-B={x|x∈A且x∉B}。

例如,A={1,2,3},B={3,4,5},则A-B={1,2}。

数学知识点高中总结集合

数学知识点高中总结集合

数学知识点高中总结集合一、集合论1. 集合的概念集合是将具有共同特征的事物汇总在一起的概念。

集合中的元素可以是数字、字母、图形等各种事物。

2. 集合的表示方式通常用大写字母A、B、C...表示集合,用小写字母a、b、c...表示集合中的元素,集合中的元素用大括号{}括起来。

3. 集合的运算(1) 并集:集合A和集合B的并集,记为A∪B,表示集合A和B中所有的元素的集合。

(2) 交集:集合A和集合B的交集,记为A∩B,表示集合A和B中公共的元素的集合。

(3) 补集:集合A的补集,记为A',表示对于给定的全集U,与A不相交的元素的集合。

4. 集合的运算性质(1) 交换律:A∪B = B∪A,A∩B = B∩A(2) 结合律:A∪(B∪C) = (A∪B)∪C,A∩(B∩C) = (A∩B)∩C(3) 分配律:A∪(B∩C) = (A∪B)∩(A∪C),A∩(B∪C) = (A∩B)∪(A∩C),A∪(A'∩B) = A∪B,A∩(A'∪B) = A∩B(4) 对偶律:(A∩B)' = A'∪B',(A∪B)' = A'∩B'5. 集合的应用集合论在数学逻辑、概率统计、离散数学等领域有着广泛的应用,包括数理逻辑、概率计算、数据分析、数据库管理等方面。

二、函数与映射1. 函数的概念函数是一个或多个自变量通过某种规则与一个因变量之间的对应关系。

2. 函数的表示方式通常用f(x)或y来表示函数,其中x为自变量,y为因变量,f(x)表示x经过某种规则后得到的结果。

3. 函数的性质(1) 定义域:函数的所有可能的自变量的取值的集合。

(2) 值域:函数所有可能的因变量的取值的集合。

(3) 单调性:函数在定义域上单调递增或单调递减。

(4) 奇偶性:函数的奇偶性由函数的对称中心来决定。

(5) 周期性:若存在正数T,使对于函数f(x)有f(x+T) = f(x),则称函数f(x)为周期函数,T 称为函数f(x)的周期。

集合知识点总结归纳

集合知识点总结归纳

集合知识点总结归纳一、集合的定义集合是指具有某种共同性质的对象的汇聚。

这些对象可以是数字、字母、图形、物体等。

集合用大括号{}表示,其中的对象称为元素。

例如,集合A={1,2,3,4,5},表示A是由数字1、2、3、4、5组成的集合。

在集合中,元素是没有顺序的,且不重复。

集合中没有元素的情况称为空集,记作Φ。

二、集合的运算1. 并集:设A和B是两个集合,A∪B表示A和B的并集,即集合A和B中所有元素的集合。

例如,A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。

2. 交集:设A和B是两个集合,A∩B表示A和B的交集,即同时属于A和B的元素的集合。

例如,A={1,2,3},B={2,3,4},则A∩B={2,3}。

3. 差集:设A和B是两个集合,A-B表示A和B的差集,即属于A但不属于B的元素的集合。

例如,A={1,2,3},B={2,3,4},则A-B={1}。

4. 补集:设U为全集,A为U的子集,A的补集记作A'或者~A,表示U中所有属于但不属于A的元素的集合。

5. 笛卡尔积:设A和B是两个集合,A×B表示A和B的笛卡尔积,即由所有形如(a,b)的有序数对组成的集合,其中a∈A,b∈B。

三、特殊集合1. 自然数集合:N={1,2,3,4,5,...}。

2. 整数集合:Z={...,-3,-2,-1,0,1,2,3,...}。

3. 有理数集合:Q={m/n|m,n∈Z,n≠0}。

4. 实数集合:R表示所有实数的集合。

5. 复数集合:C表示所有复数的集合。

四、集合的关系与表示方法1. 包含关系:若集合A中的每个元素都属于集合B,则称A是B的子集,记作A⊆B,或者B的超集,记作B⊇A。

2. 相等关系:若A⊆B且B⊆A,则称A等于B,记作A=B。

3. 元素的属于关系:若某个元素属于某个集合A,记作a∈A,否则记作a∉A。

4. 集合的表示方法:- 列举法:直接列举出集合中的元素。

高一数学集合的知识点归纳总结

高一数学集合的知识点归纳总结

高一数学集合的知识点归纳总结一、集合的概念和表示集合是由一些确定的、互不相同的对象组成的整体,这些对象称为集合的元素。

集合的表示方法有三种:描述法、列举法和等价关系法。

二、集合的运算1. 并集:表示由两个或多个集合中所有的元素组成的集合,记作A∪B。

2. 交集:表示两个或多个集合中共有的元素组成的集合,记作A∩B。

3. 差集:表示一个集合中除去与另一个集合共有的元素之外的元素组成的集合,记作A-B。

4. 互补集:表示对于给定的全集U,与某个给定集合A中的元素不相同的元素所组成的集合,记作A'。

三、集合的性质1. 互斥性:两个集合没有共同的元素,即A∩B=∅。

2. 全集性:某个给定集合A的所有元素都是全集U的元素,即A⊆U。

3. 空集性:一个集合中没有任何元素,记作∅。

4. 幂集性:一个集合的所有子集所组成的集合称为幂集,记作P(A)。

四、集合的关系和判定1. 包含关系:若A中的每一个元素都是B中的元素,则称A是B的子集,记作A⊆B。

2. 相等关系:若A是B的子集且B是A的子集,则称A和B相等,记作A=B。

3. 真包含关系:若A是B的真子集(A不等于B),则称A真包含于B,记作A⊂B。

4. 子集数量关系:若集合A和集合B都是有限集合,且A的元素个数小于B的元素个数,则称A的元素个数少于B的元素个数,记作|A|<|B|。

五、常见的数学符号和概念1. 自然数集:{1, 2, 3, 4, ...},用符号N表示。

2. 整数集:{..., -3, -2, -1, 0, 1, 2, 3, ...},用符号Z表示。

3. 有理数集:用两个整数的比表示的数的集合,用符号Q表示。

4. 实数集:包含有理数和无理数的集合,用符号R表示。

5. 空集:没有任何元素的集合,用符号∅表示。

六、集合的应用1. 排列组合:通过对集合的操作和排列组合的方法,可以解决一些计数问题。

2. 概率论:集合论是概率论的重要基础,通过集合的运算和性质,可以推导出概率计算的公式。

集合的知识点重点总结归纳

集合的知识点重点总结归纳

集合的知识点重点总结归纳集合的知识点重点总结归纳一、引言集合是数学中最基本的概念之一,它广泛应用于数学、逻辑、计算机科学等领域。

本文将对集合的相关知识点进行总结归纳,旨在帮助读者更深入地理解集合的概念、性质和运算法则。

二、集合的概念1. 集合的定义:集合是由一些确定的、不重复的元素组成的整体。

用大写字母表示集合,用小写字母表示集合中的元素。

2. 元素与集合的关系:若一个元素属于某个集合,我们称它为该集合的元素。

反之,若一个元素不属于某个集合,我们称它为该集合的非元素。

3. 空集与全集:没有元素的集合称为空集,用符号∅表示。

包含所有可能元素的集合称为全集,用符号U表示。

三、集合的表示方法1. 列举法:通过列举集合中的元素来表示集合。

例如,集合A={1, 2, 3}表示A是由元素1、2、3组成的集合。

2. 描述法:通过描述元素的特征来表示集合。

例如,集合B={x | x是正整数}表示B是由所有正整数组成的集合。

四、集合的运算法则1. 并集:对于两个集合A和B,它们的并集是包含A和B中所有元素的集合,用符号∪表示。

即A∪B={x | x∈A或x∈B}。

2. 交集:对于两个集合A和B,它们的交集是包含A和B中共同元素的集合,用符号∩表示。

即A∩B={x | x∈A且x∈B}。

3. 差集:对于两个集合A和B,A中属于而B中不属于的元素构成的集合称为A相对于B的差集,用符号A-B表示。

即A-B={x | x∈A且x∉B}。

4. 互斥集:若两个集合A和B的交集为空集,则称A和B为互斥集。

5. 包含关系:若集合A的所有元素都属于集合B,则称A是B 的子集,用符号A⊆B表示。

若集合A是集合B的子集且A≠B,则称A为B的真子集,用符号A⊂B表示。

6. 补集:对于集合A而言,全集U中不属于A的元素构成的集合称为A的补集,用符号A'表示。

即A'={x | x∈U且x∉A}。

五、集合的性质1. 唯一性:在同一个集合中,每个元素都是独一无二的,不允许重复。

集合论基础知识整理

集合论基础知识整理

集合论基础知识整理在数学中,集合论是一门研究集合及其属性、操作和关系的学科。

它是现代数学的基础之一,也是许多其他数学领域如代数、拓扑学和数理逻辑的基础。

一、集合和元素集合是由元素组成的整体。

用大写字母表示集合,用小写字母表示集合中的元素。

例如,集合A={1, 2, 3},其中1、2、3是A的元素。

二、集合的表示方法1. 列举法:直接列举集合中的元素。

例如,集合B={a, b, c},其中a、b、c是B的元素。

2. 描述法:用一种性质或条件描述集合中的元素。

例如,集合C={x | x是正整数且x<5},表示C是由小于5的正整数组成的集合。

三、集合的运算1. 交集(∩):两个集合中共有的元素构成的新集合。

例如,集合D=A∩B={1, 2},表示D是集合A和集合B的交集。

2. 并集(∪):两个集合中所有元素构成的新集合。

例如,集合E=A∪B={1, 2, 3, a, b, c},表示E是集合A和集合B的并集。

3. 差集(-):从一个集合中去除另一个集合中的元素。

例如,集合F=A-B={3},表示F是集合A减去集合B的差集。

4. 补集('):集合A相对于全集U中未包括的元素的集合。

例如,集合A'={x | x∈U 且 x∉A},表示A'是集合A的补集。

四、集合的性质1. 包含关系:一个集合的所有元素都属于另一个集合。

例如,若集合G={1, 2},则A⊆G。

2. 空集:不包含任何元素的集合,用符号∅表示。

3. 相等:两个集合具有相同的元素。

例如,若集合H={1, 2, 3},则A=H。

五、集合的应用1. 数学证明:集合论为数学证明提供了基础。

通过集合论的概念和运算,可以推导出更复杂的数学结论。

2. 数据分析:在统计学和数据分析中,集合论用于描述和操作样本、事件和属性。

3. 计算机科学:集合论是计算机科学中的基本概念之一,用于定义数据结构和算法。

六、集合的进一步研究1. 无限集合:具有无穷多个元素的集合。

(完整版)集合知识点归纳

(完整版)集合知识点归纳

集合的基础知识一、重点知识归纳及讲解1.集合的有关概念一组对象的全体形成一个集合,集合里的各个对象叫做集合的元素⑴集合中的元素具有以下的特性①确定性:任给一元素可确定其归属.即给定一个集合,任何一个对象是不是这个集合的元素也就确定了.例如,给出集合{1,2,3,4},它只有1、2、3、4四个元素,其他对象都不是它的元素;而“所有的好人”、“视力比较差的全体学生”、“我国的所有小河流”就不能视为集合,因为组成它们的对象是不能确定的.②互异性:集合中的任何两个元素都是不同的对象,也就是说,集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个.例如,不能有{1,1,2},而必须写成{1,2}.③无序性:集合中的元素间是无次序关系的.例如,{1,2,3}与{3,2,1}表示同一个集合.(2)集合的元素某些指定的对象集在一起就成为一个集合,集合中的每个对象叫做这个集合的元素.若a 是集合A的元素,就说a属于集合A,记作a∈A.不含任何元素的集合叫做空集,记作φ.(3)集合的分类:有限集与无限集.(4)集合的表示法:列举法、描述法和图示法.列举法:将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开,常用于表示有限集.描述法:将所给集合中全部元素的共同特性和性质用文字或符号语言描述出来.常用于表示无限集.使用描述法时,应注意六点:①写清集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使用“且”,“或”;⑤所有描述的内容都要写在大括号内;⑥用于描述的语句力求简明、确切.图示法:画一条封闭的曲线,用它的内部来表示一个集合,常用于表示又需给具体元素的抽象集合,对已给出了具体元素的集合当然也可用图示法来表示.如:A={1,2,3,4}例1、设集合A={a,a+b, a+2b},B={a,ac,ac2} ,且A=B,求实数c值.分析:欲求c值,可列关于c的方程或方程组,根据两集合相等的意义及集合元素的互异性,有下面两种情况:(1)a+b=ac且a+2b= ac2,(2)a+b= ac2且a+2b=ac两种情况.解析:(1)a+b=ac且a+2b= ac2,消去b得:a+ ac2-2ac=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴c2-2c+1=0,即c=1,但c=1时,B中的三个元素也相同,舍去c=1,此时无解.(2)a+b= ac2且a+2b=ac,消去b得:2ac2-ac-a=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴2c2-c-1=0,即c=1或,但c=1时,B中的三个元素也相同,舍去c=1,∴.点评:两集合相等的意义是两集合中的元素都相同,在求集合中元素字母的值时,可能产生与互异性相矛盾的增解,这需要解题后进行检验,去伪存真.(5)常用数集及专用记号(1)非负整数集(或自然数集)N={0,1,2,……}(2)正整数集N*(或N+)={1,2,3,……}(3)整数集Z={0,¡1,¡2,……}(4)有理数集Q={整数与分数}(5)实数集R={数轴上的点所对应的数}.强调:实数集不可记为{R}或{实数集},0≠≠{} ,≠{0},≠{空集}.强调:排除0和负数的数集也可表示为R*、Z*、Q*或R+、Z+、Q+.2.基本运算1. 交集(1)定义:由所有属于集合A且属于集合B的元素所组合的集合叫A与B的交集.记作,即{,且}(2)交集的图示上图阴影部分表示集合A与B的交集.(3)交集的运算律,,,2. 并集(1)定义:由所有属于集合A或属于集合B的元素所组成的集合,记作,即{,或}(2)并集的图示以上阴影部分表示集合A与B的并集.(3)并集的运算律,,,3、补集(1)定义:设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集).记作,即C S A=(2)补集的图示4、常用性质A A=A,AΦ=Φ,A B=B A,A B A,A B B.A A=A,AΦ=A,A B=B A,A B A,A B B.,,例2、集合{,且},A U,B U,且{4,5},{1,2,3},{6,7,8},求集合A和B.分析:利用集合图示较为直观.解:由{4,5},则将4,5写在中,由{1,2,3},则将1,2,3写在集A中,由{6,7,8},则将6,7,8写在A、B之外,由与中均无9,10,则9,10在B中,故A={1,2,3,4,5},B={4,5,9,10}.5、容斥原理:有限集A的元素个数记作card(A).对于两个有限集A,B,有card(A∪B)= card(A)+card(B)- card(A∩B).二、难点知识剖析1、要注意区分一些容易混淆的符号(1)与的区别:表示元素与集合之间的关系,例如1N,-1N等;表示集合与集合之间的关系,例如N R,等.(2)a与{a}的区别:一般在,a表示一个元素,{a}而表示只有一个元素a的集合.例如,0{0},{1}{1,2,3}等,不能写成0={0},{1}{1,2,3},1{1,2,3}.(3){0}与Φ的区别:是含有一个元素0的集合,Φ是不含任何元素的集合,因此Φ{0}但不能写成Φ={0},Φ{0}.例3、已知集合M={x|x≤3},集合P={x|x<2},设,则下列关系式中正确的一个是()A、P∈MB、a∈MC、P MD、{a-3}P解析:集合M、P都是部分实数组成的集合,而a是一个具体的实数,故M、P间的关系应用“包含”,“不包含”来确定,而对a与集合M、P的关系只能用“属于”,“不属于”来确定,比较实数的大小,易判断C正确.小结:正确使用集合的符号是正确分析、解答问题的关键.2.理解集合所表示的意义(1)对由条件给出的集合,要明白它所表示的意义,即元素指什么,是什么范围.如{y R|y=}表示的为函数y=中y的取值范围,故{y R|y=}={y R|y};而{x R|y=}表示y=的x的取值范围,故{x R|y=}=R.(2)用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或韦恩图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用韦恩图表示,容易被忽视,如在关系式B A中,易漏掉B=Φ的情况.例4、设A=,B=(1)若A B=B,求的值;(2)若A B=B,求的值.分析:明确A B=B和A B=B的含义,根据问题的需要,将A B=B和A B=B转化为等价的关系式:和,是解决本题的关键.解析:首先化简集合A,得A={-4,0}(1)由于A B=B,则有可知集合B或为空集Φ,或只含有根0或-4.①若B=Φ,由得②若,代入得:,当时,B=,合题意.当时,B=,也符合题意.③若,代入得:,当时,②中已讨论,合题意当时,B=不合题意.由①、②、③得,.(2)因为A B=B,所以,又A={-4,0},而B至多只有两个根,因此应有A=B.由(1)知,【点评】:一般对于A B=B和A B=B这种类型的问题,都要注意转化为等价的关系式:和,且在包含关系中,注意不要漏掉B=的情况.并且当A、B中的元素的个数相同时,还存在或的情况时,只有A=B这一种情况.子集(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不
是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习
惯的由小到大的数轴顺序书写。

2.集合中的每个对象叫做这个集合的元素集合
元素与集合的关系用“∈属于”和“∉不属于”表示;
(1)如果a是集合A的元素,就说a属于A,记作a∈A
(2)如果a不是集合A的元素,就说a不属于A,记作a∉A
例如:1∈Z,2.5∉Z,0∈N;
3.集合的表示方法,常用的有列举法和描述法
(1)列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
(2)描述法:把集合中的元素的公共属性描述出来,写在大括号内。

如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;
4.有限集和无限集的概念
5.常用数集及其记法
自然数集,记作N 整数集,记作Z 有理数集,记作Q 实数集,记作R
除0数集用符号*或+表示,比如正整数集,记作N*或N+;非零整数集记作Z*;
6.描述法表示集合应注意集合的代表元素
{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

注意:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。

下列写法{实数集},{R}也是错误的。

7.不含任何元素的集合叫做空集,记作∅;
8.韦恩图表示集合
注意:一般无限集,不宜采用列举法。

1.子集、全集、补集
(1)子集与真子集的区别与联系:集合A的真子集一定是其子集,而集合A的子集不一定是真子集;
若集合A中有n个元素,则其子集个数为2n,真子集个数为2n-1.
(2)集合A与其补集∁U A的关系为:A∩(∁U A)=∅,A∪(∁U A)=U.
(3)子集、全集、补集等概念实质上是生活中的“部分”、“全体”、“剩余”等概念在数学中的抽象与反映.当A⊆S时,∁S A的含义是:从集合S中去掉集合A的元素后,由所有剩余的元素组成的新集合.集合A的元素并上∁S A的元素后即合成集合S.
2.交集、并集
(1)对于交集概念的把握要注意以下三方面:
①交集仍是一个集合.
②交集中的元素都是两个集合的“公共元素”,即若x∈(A∩B),一定有x∈A且x∈B.
③交集中包括了两个集合的全体公共元素,即若x∈A且x∈B,一定有x∈(A∩B).
(2)对于并集的理解应注意:
若x∈(A∪B),则有三种可能:
①x∈A但x∉B;②x∈B但x∉A;③x∈A且x∈B
集合相等:
⑴若集合A与集合B的元素相同,则称集合A等于集合B.
⑵对集合A和集合B,如果集合A的任何一个元素都是集合B的元素,同时
集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A = B.
⑶对于两个集合A 和B,如果A⊆B,同时B⊆A ,那么就说这两个集合相等,
记作A = B.
⑷对于两个有限数集A = B ,则这两个有限数集A、B中的元素全部相同,由
此可推出如下性质:①两个集合的元素个数相等;②两个集合的元素之和相等;③
两个集合的元素之积相等.。

相关文档
最新文档