圆锥体积公式推导PPT课件
圆锥体积公式推导
高
圆柱体积=底面积
高
圆面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
说出圆柱和圆锥各部分的名称及特征:
高 侧面 底面 有无数条 展开后是长方形或正方形或者平行四边形 有两个底面,是相等的圆形
圆柱的体积公式用字母表示是( 顶点 有一个顶点
V=s h
)。
侧面
高 底面
展开后是扇形
只有一条 有一个底面,是圆形
圆柱体积=底面积
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=底面积
高 高
1 3
圆柱体积=底面积 圆锥体积=底面积
高 高
圆柱体积=底面积 圆锥体积=底面积
高 高
1 3
圆锥体的体积公式推导
圆锥体的体积公式推导
圆锥体是一种常见的几何体,它由一个圆锥面和一个封闭底面圆共同构成,其中底面圆的面积为S,圆锥高为h。
推导圆锥体的体积公式需要运用积分学的知识。
假设圆锥体在z轴上,底面圆的圆心在原点,半径为r。
将圆锥体分成无数个薄片,每一层的厚度为dz,圆锥面积为A(z)。
则某一层的体积为 dV = A(z) * dz。
由于圆锥面积和高成比例,可得 A(z) = πr(z/h),代入上式得dV = πr(z/h) * dz。
将所有层的体积累加,得到整个圆锥体的体积公式为:
V = ∫[0,h] πr(z/h) dz = 1/3πrh
其中∫[0,h]表示对z从0到h积分,r为底面圆的半径,h为圆锥高。
故圆锥体的体积公式为1/3πrh。
- 1 -。
【课件】圆柱、圆锥、圆台的表面积与体积+课件高一下学期数学人教A版(2019)必修第二册
设圆台的上底面面积为S',下底面面积为S
r O
1
1
2
2
2
2
V圆台 (r r r r )h ( S S S S )h
3
3
1
这和V棱台 ( S S S S )h是一致的。
3
1
因而得 V台体 = ( S S S S )h
3
【练习】 如图,在直角梯形 ABCD 中,BC∥AD,∠ABC=90°,AB=5,
1
V锥体 Sh
3
1 2
r h
3
1
V台体 = ( S SS S )h
3
1
= h(r 2 rr r 2 )
3
2
感谢聆听
S圆柱 =πr +πr +2πrl 2πr (r l )
2
2
(1)圆柱的表面积、体积
圆柱的侧面展开图是什么?如何计算它的表面积?
r O
l
2 r
O
圆柱的侧面展开图是一个矩形,
S圆柱表面积 2r 2rl 2r (r l ).
2
V圆柱 = πr h
2
例1 将一个边长分别为4π,8π的矩形卷成一个圆柱的侧面,则
圆台的表面积为(
A.81π
)
B.100π
C.168π
D.169π
解 圆台的轴截面如图所示,
设上底面半径为 r,下底面半径为 R,则它的母线长为
l= h2+R-r2= 4r2+3r2=5r=10,
所以 r=2,R=8。
故 S 侧=π(R+r)l=π(8+2)×10=100π,
S 表=S 侧+πr2+πR2=100π+4π+64π=168π。故选 C。
部编版六年级数学下册第三单元《圆锥》(复习课件)
得到的是圆锥。 (1)以6 cm长的边所在直线为轴旋转一周时, d=16 cm,h=6 cm。 (2)以8 cm长的边所在直线为轴旋转一周时, d=12 cm,h=8 cm。
8.用如图所示的扇形纸片和圆形纸片能否制作成一个圆 锥?请通过计算说明理由。
扇形圆弧的长:3.14×2×2×34=9.42(cm) 圆的周长:3.14×3=9.42(cm) 扇形圆弧的长和圆的周长相等,所以能制作成一个圆锥。
3 圆柱与圆锥
圆锥 整理复习
圆柱和圆锥的关系
当圆柱的上底面的面积等于0时,就变成了圆锥。
圆锥体积的推导
圆锥的体积等于与它等底 等高圆柱体积的三分之一。
圆锥的体积= 13× 底面积×高
Ⅴ 圆锥 =
13Ⅴ
圆柱=
1 Sh 3
填一填。
(1)一个圆柱的体积是75.36m³,与它等底等高的圆锥的体积 是(25.12)m³。
一定时间内,降落在水平地面上的水,在未经蒸发、渗漏、流失情况下, 所及的深度称为降水量(通常以毫米为单位)。测定降水量常用雨量器 和量筒。我国气象上规定按24小时的降水量为标准,降水级别如下表:
级别 降水量/mm
小雨 10以下
中雨
大雨
暴雨
大暴雨
10-24.9 25-49.9 50-99.9 100-199.9
知识点 2 运用圆锥的体积公式计算
2.计算下面各圆锥的体积。
(1) 13×36×5=60(cm3)
(2)
3.14×42×12×31=200.96(cm3)
(3)
3.14×(4÷2)2×5.4×13=22.608(cm3)
易错辨析
3.判断。(对的画“√”,错的画“×”) (1)圆柱的体积是圆锥体积的3倍。
圆锥ppt课件
在工程设计中的应用
圆锥在工程设计中也有着广泛的 应用,例如桥梁的设计、隧道的
设计等。
圆锥的形状和性质在工程设计中 有着重要的意义,例如圆锥的稳
定性、抗压性等。
圆锥在水利工程、土木工程等领 域也有着实际的应用,例如在设 计水坝、大坝等工程时,需要考
虑圆锥形的结构稳定性。
05
圆锥的相关公式与定理
圆锥的母线
利用手工绘制圆锥的草图
绘制底面
使用圆规和直尺,绘制出一个 圆形作为圆锥的底面。
连接底面和侧面
使用直尺或曲线板,将侧面与 底面平滑连接起来,得到圆锥 的草图。
准备工具
准备好纸、笔、圆规、直尺等 手工绘图工具。
绘制侧面
以底面圆心为顶点,用直尺绘 制出一个等腰三角形,作为圆 锥的侧面。
调整草图
可以使用橡皮等工具对草图进 行修改和调整,使其更加符合 要求。
圆锥的侧面积可以通过公式 S = πrl 来计算,其 中 r 是底面半径,l 是母线长度。
侧面积公式的推导
侧面积公式是由圆的周长公式和圆锥的侧面展开 图推导而来的。
3
侧面积的应用
圆锥的侧面积在几何学、工程、艺术等领域都有 广泛的应用。
圆锥的全面积
全面积公式
圆锥的全面积可以通过公式 S_total = πrl + πr² 来计算,其中 r 是底面半径,l 是母线长度。
06
圆锥的绘制方法
利用几何软件绘制圆锥
确定底面半径
首先需要确定圆锥的底面半径,可以使用几何软件中的测 量工具进行测量。
绘制圆
在几何软件中,选择画圆工具,并确定圆心和半径,绘制 出一个圆形。
绘制圆锥
选择画三角形工具,以圆心为顶点,绘制出一个等腰三角 形,然后选择“合并形状”工具,将三角形与圆形进行合 并,得到圆锥的侧面。
圆锥的体积公式推导
h =2厘米
求这个圆锥的体积, 小明的列式为 1 3.14 3 3 4 3 小杰的列式为 1 3.14 3 3 5 3
4 3
5
你认为( 小明)的列式是正确的。
例2
有一个圆锥形砂堆,测得底 面半径2米米,高是6米,已知每立方 米砂约重1.7吨,这堆砂大约重多少 吨?
等底等高的圆柱 和圆锥体积有什么关系呢? 等底等高圆柱 的体积是圆锥的3倍, 圆锥的体积是圆柱的三 分之一。
讨论:以下圆柱体积与圆锥体积之间有什么关系?
1、底面积相等,圆锥的高是圆柱高的3倍
圆锥体积等于圆柱体积 2、底面积相等,圆柱的高是圆锥高的3倍
3、高相等,圆柱底面积是圆锥底面积的3倍
高
1分米
圆锥体积
2立方分米 3.14立方米
3.14平方米
3米
例1
一个圆锥形零件的底面面积 是75 平方厘米,高是8厘米。求这 个零件的体积。
1 ×75 ×8 3
ቤተ መጻሕፍቲ ባይዱ
= 200(cm ) 答:这个零件的体积是200立方厘米。
3
请你任选一组条件,求圆锥的体积:
(1)r=3厘米
h=2厘米
(2 ) d =6厘米
圆柱的体积是圆锥体积的9倍
圆柱的体积是圆锥体积的9倍
选择题:
1、有一个圆柱和一个圆锥,圆锥的体积
是圆柱体积的( 3 )
(1)三倍 (2)三分之一 (3)不能确定
2、有一个圆锥的体积是30立方厘米,与 它等底等高的圆柱体积( 3)立方 厘米 (1)10 (2)30 (3)90
口答圆锥体积:
底面积
6平方分米
圆锥的体积
圆锥的体积公式的推导 ppt课件
ppt课件
29
ppt课件
30
ppt课件
31
ppt课件
32
ppt课件
33
ppt课件
34
ppt课件
35
ppt课件
36
ppt课件
37
ppt课件
38
ppt课件
39
ppt课件
40
ppt课件
41
ppt课件
42
ppt课件
43
ppt课件
44
ppt课件
45
想一想:
圆柱变成圆锥的过程中, 什么没有变化?
ppt课件
73
自学指导(二): 圆柱和圆锥等底等高的情况下,体积有什么样的关系?
ppt课件
74
自学指导(二): 圆柱和圆锥等底等高的情况下,体积有什么样的关系?
ppt课件
75
自学指导(二): 圆柱和圆锥等底等高的情况下,体积有什么样的关系?
ppt课件
76
自学指导(二): 圆柱和圆锥等底等高的情况下,体积有什么样的关系?
ppt课件
7
圆柱变成圆锥的过程中,什么没有变化?
ppt课件
8
圆柱变成圆锥的过程中,什么没 有变化?
ppt课件
9
圆柱变成圆锥的过程中,什么没有变化?
ppt课件
10
圆柱变成圆锥的过程中,什么没有变化?
ppt课件
11
圆柱变成圆锥的过程中,什么没有变化?
ppt课件
12
圆柱变成圆锥的过程中,什么没有变化?
ppt课件
69
自学指导(二): 圆柱和圆锥等底等高的情况下,体积有什么样的关系?
ppt课件
70
《圆柱与圆锥——圆锥的体积》数学教学PPT课件(4篇)
圆锥的体积
一、问题导入、引入新课
看,小麦堆得像小山一
样,小麦丰收了!张小
玲和爷爷笑得合不搅嘴
这时,爷爷用竹子量了量麦堆的
高和底面的直径,出了个难题要
考一考小玲,让小玲算一算这堆
小麦大约有多少立方米?
二、探索新知
• 等底等高
1.估一估:你能估计出这个
圆锥的体积是圆柱几分之几
吗?
2.想一想:可以用什么
1、圆锥的体积等于圆柱体积的1/3( )
2、因为圆锥的体积等于圆柱体积的1/3,所以圆柱的体积比圆锥的体积大
( )
3、等底等高的圆柱与圆锥的体积比是3:1 ( )
4、把一个圆柱加工成一个与它等底的圆锥,削去部分的体积是这个圆锥体积的2倍( )
第一关
第二关:
一个圆锥形的零件,底面积是19平方厘米,高是12厘米,
与它等底等高的圆柱体铝坯。
15 ÷ 3 = 5(个)
)个
5
等底等高的圆柱和圆锥
1
圆锥 = 圆柱
3
2.计算下面各圆锥的体积。
1
9×3.6×3
=10.8(㎡)
1
3×3×3.14×8×3
=75.36(d㎡)
1
(8÷2)²×3.14×12×3
=200.96(cm²)
3. 一个圆锥形的零件,底面积是19cm2 ,高是12cm,
这个零件的体积是多少?
规范解答:
圆锥 =
×19×12=76(cm³)
答:这个零件的体积是76 cm3 。
4. 一个圆柱的底面周长是12.56dm,高是4.5dm,将它削成
最大的圆锥,削去部分的体积是多少?
圆锥的体积公式的推导
),
巩固练习
2、求下面各圆锥的体积。(单位:厘米) ( 1) ( 2)
6
3
练习2
8
10
1
2
3
主页
二、判断:
1、圆柱体的体积一定比圆锥体的体积大( × ) (√ )
1 2、圆锥的体积等于和它等底等高的圆柱体的 3
3、正方体、长方体、圆锥体的体积都等于底面 积×高。 (×) 4、等底等高的圆柱和圆锥,如果圆柱体的体积 是27立方米,那么圆锥的体积是9立方米。( √ )
圆锥的体积
1、说一说圆锥有哪些特征?
(1)顶部:尖顶; 圆锥特征 (2)底面:是一个圆; (3)侧面:是一个曲面(展开是一个扇形); (4)底面圆周上任一点与顶点之间的距离都相等。 (5)高只有一条。
实验
小实验
想一想:
圆柱和圆锥的底面积和高
有什么关系?
圆柱和圆锥等底等高
你发现了什么? 圆柱的体积是与它等底 等高圆锥体积的3倍.
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=底面积
高 高
圆柱体积=底面积 圆锥体积=底面积
高 高
1 3
圆柱体积=底面积 圆锥体积=底面积
高 高
1 3
想一想,讨论一下:
要求圆锥的体积必须 知道什么?
必要条件 V =
1 3
sh
计算圆锥的体积所必须的条件可以是:
底面积和高 底面半径和高 底面直径和高 底面周长和高
圆锥体积
例1、一个圆锥形的零件,底面 积是19平方厘米,高是12厘米。 这个零件的体积是多少?
圆锥体积公式的推导(ppt)
参考刚才我们算出的结果,我们得出:
圆锥体积=兀r² ×h×1/n ×[(n/n)² + (n-1/n )²+(n-2/n )² +…… +(1/n )² ] = 兀r ² ×h×1/n³×[ 1²+ 2²+…… (n-2)² +(n-1)² ² +n ]
圆柱体积=兀r² ×h
因为兀r² ×h=兀r² ×h 所以只要证明1/n³×[ 1² + 2²+……(n-2)² +(n-1)² ] =1/3即可。 +n²
右图为一个倒圆锥 的横截面。 想一想:把右图三 角形无限平均细分 会出现什么?
示意图
无限平均细分 后,每一个部 分就会是一个 圆柱体。横截 面如左图一样, 是一个长方体。
设圆锥高为h,底面圆的半径是r,共平均分 成n份。 每份高:h÷n=h/n 第1份半径:r 第1份底面积:S=兀r² 第一份体积:兀r² h/n 也就是 兀r ² ×h×1/n 第二份体积:兀×h/n× (n-1/n ×r)² 也就是 兀r ² ×h/n ×(n-1/n )² 等同于 兀r² ×h×1/n ×(n-1/n )²
圆柱体积=底面积 圆锥体积=底面积
高 高
圆柱体积=底面积 圆锥体积=底面积
高 高
1 3
假设左图为 一个长方体。
假设左图为 一个长方体。 底面是一个 正方形。
Hale Waihona Puke 假设左图为 一个长方体。 底面是一个 正方形。 高的长度是 底边的2倍 取它的中心。 做一个四棱 锥 以此类推, 共能做出六 个
答案是没有。n是无穷大的,n+1也就=n。 1/n³ ×1/6×n×(n+1) ×(2n+1)
圆锥的体积公式推导
圆锥的体积公式推导
两方面,一方面介绍圆锥面方程,另一方面介绍圆锥的体积公式推导。
一:圆锥面方程为()2222y x a z +=,R
h a ==αcot (α为圆锥的半顶角,h 为圆锥的高,R 为圆锥的地面半径) 圆锥面可看成一条过原点的直线以倾角απ-,绕原点旋转形成。
现取xoz 平面,则该直线的解析式为
αcot x z =
可得该圆锥面方程为:
α
c o t 22y x z +±= 两边平方,并令a =αcot ,则上式可改写为:
()2222y x a z +=
此为定点在原点的圆锥面方程。
二:圆锥体积公式推导
注意到圆锥面在xoy 平面上的投影为半径为R 的圆。
设所形成的投影的体积为V
则:
222:R y x D z d x d y V D ≤+=⎰⎰
代入,可得:
d x d y
y x a V D ⎰⎰+=22 令
θc o s r x =,θsin r y =
[][]πθ2,0,,0∈∈R r
则:
dr r d V R ⎰⎰=
0220πθ 33
2R a π=
h R 23
2π= 圆锥面所形成的的投影的体积为h R 23
2π,则圆锥的体积为 h R h R h R 2223
132πππ=- h R V 231π=圆锥。
圆锥的体积公式推导
3、如图把圆柱形铅笔削成圆锥形,削 去部分的体积是圆柱体积的( 2 )
(1)三分之一 (2)三分之二 (3)无法确定
问:圆锥体积、削去部分的体积与圆 柱体积之间的比是(1): ( 2) : (3)
讨论:以下圆柱体积与圆锥体积之间有什么关系?
1、底面积相等,圆锥的高是圆柱高的3倍
2、底面积相等,圆柱的高是圆锥高的3倍
圆锥体积等于圆柱体积
圆柱的体积是圆锥体积的9倍
3、高相等,圆柱底面积是圆锥底面积的3倍
4、高相等,圆锥底面半径是圆柱底面半径的3倍
圆柱的体积是圆锥体积的9倍
ቤተ መጻሕፍቲ ባይዱ圆锥的体积是圆柱体积的3倍
圆锥的体积
水北中学 王党根
等底等高
你有什么发现?等底等高的 圆柱和圆锥的体积有什么关 系呢?
等底等高圆柱的体积 是圆锥的3倍。 圆锥体积公式: V= sh
1 3
口答圆锥体积:
底面积
6平方分米
高
1分米
圆锥体积
2立方分米 3.14立方米
3.14平方米
3米
例1
一个圆锥形零件的底面面积 是75 平方厘米,高是8厘米。求这 个零件的体积。
4 3
5
你认为( 小明)的列式是正确的。
例2
工地上有一些沙子,堆起来 近似于一个圆锥,直径4米,高1.2米, 这堆沙子大约多少立方米?已知每立 方米砂约重1.7吨,这堆砂大约重多 少吨?
选择题:
1、有一个圆柱和一个圆锥,圆锥的体积
是圆柱体积的( 3 )
(1)三倍 (2)三分之一 (3)不能确定
2、 有一圆锥的体积是30立方厘米,与 它等底等高的圆柱体积是( 3 )立 方厘米 (1)10 (2)30 (3)90
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
2 D
63 4
B
C
3
2 D
3
6
4
C B3
思 考:
1、一个圆锥与一个圆练柱习等底3等好高, 已知圆锥的体积是 8 立方米, 圆柱的体积是( 24立方米 )。
2、一个圆锥与一个圆柱等底等体积, 已知圆柱的高是 2 厘米, 圆锥的 高是( 6 厘米 )。
3、一个圆锥与一个圆柱等高等体积, 已知圆柱的底面积是 6平方米, 圆锥的底面积是( 18平方米 )。
圆锥体积公式推导
实验
小实验
圆锥的体积V等于和它等底等高 的圆柱体积的三分之一
V圆柱=sh
V=
1 3
sh
圆锥的体积等于和它等底等高 的圆柱体积的三分之一
2.一个圆柱和一个圆锥等底等高,体 积相差20立方厘米,圆锥、圆柱的体 积各是多少?
动动手:
1.一堆圆锥形的煤体积是12立方米,底 面积是6立方米,高是多少?
2.如图,直角梯形ABCD,以AB为旋
转轴旋转一周,所成几何图形的体积
是多少?
A
D
6 4
B
C
3
3.如图,直角梯形ABCD,以AB为旋转轴旋转一 周,所成几何图形的体积是多少? A
1 2 3 主页
判断
1 、圆锥的体积是圆柱体积的 1 。
3
2、圆锥的体积比圆柱的体积小。
3、圆锥体积比和它等底等高的圆柱体积少
1 3
4、一个圆柱和一个圆锥的体积相等,底面 积也相等,那么圆锥高是圆柱高的3倍。
1.一个圆柱和一个圆锥等底等高,体 积相加的和为48立方厘米,圆锥、圆 柱的体积各是多少?
V=
1 3
sh
2
1、一个圆柱体体积是27立方分
米,与它等底等高的圆锥的体积是
(
)立方分米。
2、一个圆锥体积是15立方厘 米,与它等底等高的圆柱的体积是 ( )立方厘米.
巩固练习
练习2
2、求下面各圆锥的体积。(单位:厘米)
(1)Βιβλιοθήκη (2)78 10
3
1 2 3 主页
一堆大米,近似于圆锥形,量得 底面周 长是18.84分米,高6分米。它的体积是多 少立方分米?如果每立方分米大米重0.5 千克,这堆大米有多少千克?