控制轧制过程的基本原理

合集下载

轧制工艺过程控制原理与方法

轧制工艺过程控制原理与方法

轧机刚度可变的基本方 程:
h h x P C P
Km
Km
P P Km KE
1C
h -轧辊位置补偿之后的带钢轧出厚度偏差; C-轧辊位置补偿系数; KE-等效的轧机刚度系数; x-轧辊位1-104 Davy-Loewy带钢张力控制系统 轧机;2-张力计;3-液压缸位置;4-液压缸;5-张力偏差;
P金 属F(的B,压R,力H方, h程, f:,T, s )
塑性曲线B
金属的压力方程
曲线B的斜率代表轧件塑性 的塑性刚度M :
M P P h
(3)实际轧出厚度随辊缝而变化的规律
轧机的原始预调 辊缝值S0决定着 弹性曲线A的起 始位置。
图1-92 实际轧出厚度随辊缝变化的规律
(4)实际轧出厚度随轧机刚度而变化的规律
1.9 轧制工艺过程控制原理与方法
本节应掌握的知识点: 1.板带厚度控制基本原理; 2.板带宽度控制的基本方式; 3.板形的基本概念
高精度轧制,对板、带钢的要求:
1)板带钢的横向断面厚度分布均匀性; 2)板带钢的纵向断面厚度分布的均匀性 3)板带钢断面宽度在纵向长度上分布的均匀性。
为保证横向断面厚度分布的均匀而提出:
1)辊型及辊型设计; 2)板型及板型控制
为保证纵向厚度分布均匀而提出:
1)自动厚度控制理论; 2)自动厚度控制技术
为保证纵向宽度分布均匀而提出:
1)自由张力连轧; 2)小张力连轧。
1.9.1 厚度控制 (1 )产生板厚变化的原因 1) 轧辊辊型的影响
(a)圆柱形轧辊的空载辊缝;(b)受力过程中产生轧辊挠度
6-位置基准值;7-位置调节器;8-张力基准值
⑥带活套的热带连轧机组中间机架的张力控制系统

控制轧制

控制轧制

控制轧制是将塑性变形同固态相变结合在一起,使材料在加工时通过轧制温度、变形量、变形速率等控制获得所需外形和尺寸的同时,获得理想组织和优异强韧性的热轧技术。

控制轧制是在热轧过程中把金属范性形变和固态相变结合起来而省去轧后的热处理工序。

这是既能生产出强度、韧性兼优的钢材,而又能节约能耗的一项新工艺。

控制轧制对轧机的设备强度、动力和生产控制水平均提出了较高的要求。

控制轧制工艺主要用于含有微量元素的低碳钢种,钢中常含有铌、钒、钛,其总量一般小于0.1%。

控制轧制的内容是控制轧制参数,包括温度、变形量等,以控制再结晶过程,获得所要求的组织和性能(见金属塑性变形)。

加入某些微量元素可使钢的再结晶开始温度升高很多,同时适当地降低轧制温度。

从而使多道次变形的效果叠加,使再结晶在较大的变形量和较低的温度下进行,而使钢材获得符合要求的组织和性能的钢材。

控制轧制是以细化晶粒为主,用以提高钢的强度和韧性的方法。

控制轧制后奥氏体再结晶的过程,对获得细小晶粒组织起决定性作用。

根据奥氏体发生塑性变形的条件(再结晶过程、非再结晶过程或γ-α转变的两相区变形),控制轧制可分为三种类型。

(一)再结晶型的控制轧制它是将钢加热到奥氏体化温度,然后进行塑性变形,在每道次的变形过程中或者在两道次之间发生动态或静态再结晶,并完成其再结晶过程。

经过反复轧制和再结晶,使奥氏体晶粒细化,这为相变后生成细小的铁素体晶粒提供了先决条件。

为了防止再结晶后奥氏体晶粒长大,要严格控制接近于终轧几道的压下量、轧制温度和轧制的间隙时间。

终轧道次要在接近相变点的温度下进行。

为防止相变前的奥氏体晶粒和相变后的铁素体晶粒长大,特别需要控制轧后冷却速度。

这种控制轧制适用于低碳优质钢和普通碳素钢及低合金高强度钢。

(二)未再结晶型控制轧制它是钢加热到奥氏体化温度后,在奥氏体再结晶温度以下发生塑性变形,奥氏体变形后不发生再结晶(即不发生动态或静态再结晶)。

因此,变形的奥氏体晶粒被拉长,晶粒内有大量变形带,相变过程中形核点多,相变后铁素体晶粒细化,对提高钢材的强度和韧性有重要作用。

控制轧制

控制轧制
控轧控冷技术
控制轧制与控制冷却的概念
控制轧制(Controlled rolling) 在热轧过程中,通过对金属加热制度、变形制度和温度
制度的合理控制,使热塑性变形与固态相变相结合,以获得 细小晶粒组织,从而得到较高的综合性能的轧制工艺。
控制冷却(Controlled cooling) 控制轧后钢材的冷却速度达到改善钢材组织和性能的目
淬火
1、定义: 淬火是将钢加热到AC1或 AC3以上温度并保温,
出炉快速冷却,使奥氏体转变成为马氏体的热处理 工艺。
回火
1、定义:回火是把淬火后的钢件,重新加热到A1以 下某一温度,经保温后空冷至室温的热处理工艺。
2、目的:淬火钢件经回火可以减少或消除淬火应力, 稳定组织,提高钢的塑性和韧性,从而使钢的强度、 硬度和塑性、韧性得到适当配合,以满足不同工件 的性能要求。
载荷P压入被测材料表面,保持一定时间后卸除载荷,测出压 痕直径d,求出压痕面积F计算出平均应力值,以此为布氏硬度 值的计量指标,并用符号HB表示。
标注:D/P/T如120HB/10/3000/10,即表示此硬度值120 在D=10mm,P=3000kgf,T=10秒的条件下得到的。
简单标注:200~230HB
工艺性能:是指制造工艺过程中材料适应 加工的性能。如:铸造性、锻造性、焊接 性、切削加工性、热处理工艺性。
金属材料的性能
一、金属材料的机械性能
机械性能— 是指金属材料在外力作用时表现出来的性能。 外力形式:拉伸、压缩、弯曲、剪切、扭转等。 载荷形式:静载荷、冲击载荷、交变载荷等。
指标:强度、刚度、硬度、塑性、韧性和疲劳强度等。
残余压入深度
来表示
为了与习惯上数值越大硬度越高的概念相一 致采用一常数(k)减去(h3-h1)的差值表示硬 度值。为了简便起见又规定每0.002mm压入深度 作为一个硬度单位(即刻度盘上一小格。)

控制轧制与控制冷却培训

控制轧制与控制冷却培训

控制轧制与控制冷却培训一、轧制的基本原理和过程1. 轧制的概念和分类:介绍了轧制的定义和轧制根据加工方式和加工精度的不同可以分为粗轧和精轧。

2. 轧制的基本原理:介绍了轧制的原理,包括材料变形、变形力和摩擦力。

3. 操作技巧和注意事项:介绍了轧机的操作技巧和相关的注意事项,包括轧机的启动、停止和维护等内容。

二、控制轧制的关键参数1. 温度控制:介绍了轧制过程中温度的控制方法和关键参数。

2. 轧制力和轧制速度:介绍了轧制过程中轧辊的力和速度的控制方法和关键参数。

3. 压下量:介绍了轧制过程中的压下量的控制方法和关键参数。

三、冷却的基本原理和过程1. 冷却的概念和分类:介绍了冷却的定义和冷却方式的分类。

2. 冷却的基本原理:介绍了冷却的原理,包括热量传递和温度控制。

3. 操作技巧和注意事项:介绍了冷却设备的操作技巧和相关的注意事项,包括冷却水的供应和冷却温度的控制等内容。

四、控制冷却的关键参数1. 冷却水温度:介绍了冷却过程中冷却水温度的控制方法和关键参数。

2. 冷却水流量:介绍了冷却过程中冷却水流量的控制方法和关键参数。

3. 冷却时间:介绍了冷却过程中冷却时间的控制方法和关键参数。

五、轧制与冷却的协调控制1. 轧制和冷却的关联性:介绍了轧制和冷却之间的关联性,以及对产品性能和质量的影响。

2. 控制系统的应用:介绍了轧制和冷却中常用的控制系统,包括自动控制系统和人工控制系统等。

3. 故障处理和维护:介绍了轧制和冷却中常见的故障处理方法和设备维护技巧。

以上是本次控制轧制与控制冷却培训的主要内容概要,希望通过此次培训,能够提高操作工人对控制轧制与控制冷却的理解和技能,为公司的生产和产品质量提升贡献力量。

六、安全生产培训1. 轧制和冷却设备的安全操作规程:介绍了轧制和冷却设备的安全操作规程,包括设备启动、停止和紧急情况的处理等内容,以确保操作人员的安全。

2. 安全防护措施:介绍了轧制和冷却设备的安全防护措施,包括安全防护装置的使用和维护,以减少事故发生的可能性。

3.控制轧制的基本概念

3.控制轧制的基本概念

六十年代后期:美国采用控制轧制工艺生产出 六十年代后期:美国采用控制轧制工艺生产出σs> 422MPa的含 钢板,用来制造大口径输油钢管。日 的含Nb钢板 用来制造大口径输油钢管。 的含 钢板, 本用控制轧制工艺生产出强度高,低温韧性好的钢板, 本用控制轧制工艺生产出强度高,低温韧性好的钢板, 并开发出一系列新的控制轧制工艺, 并开发出一系列新的控制轧制工艺,提出了相应的控 制轧制理论。这期间人们重视奥氏体再结晶行为的研 制轧制理论。 究,开始认识到未再结晶区轧制的重要性。 开始认识到未再结晶区轧制的重要性。 七十年代:完成了控轧三阶段, 、 、 应用逐步 七十年代:完成了控轧三阶段,Nb、V、Ti应用逐步 完善。 完善。
控轧分类 1.奥氏体再结晶区控制轧制(Ⅰ型控制轧制) 奥氏体再结晶区控制轧制( 型控制轧制) 奥氏体再结晶区控制轧制 2.奥氏体未再结晶区控制轧制(Ⅱ型控制轧制) 奥氏体未再结晶区控制轧制( 型控制轧制) 奥氏体未再结晶区控制轧制 3.(r+α)两相区控制轧制 ( )
3.2 控轧工艺特点 一.控制加热温度 控制加热温度 二.控制轧制温 控制轧制温度 三.控制变形程度 控制变形程度 四.控制轧后冷却速度 控制轧后冷却速度 3.3 控轧的效应 一.提高综合性能 提高综合性能 既提高强度,又改善韧性,尤其是钢的 既提高强度,又改善韧性,尤其是钢的Tvs ↓↓ 二.简化工艺 简化工艺 三 . 节省合金元素 控制轧制可充分发挥Nb、 、 等微量合金元素的作用 控制轧制可充分发挥 、V、Ti等微量合金元素的作用 1
六十年代初:英国斯温顿研究所提出,铁素体 六十年代初:英国斯温顿研究所提出,铁素体微组织与性能之间的定量关系。 珠光体钢中显 微组织与性能之间的定量关系。 著名的Petch关系式明确表明了热轧时晶粒细化 关系式明确表明了热轧时晶粒细化 著名的 的重要性。 的重要性。 六十年代中期: 六十年代中期:英国钢铁研究会进行了一系列 研究:降碳改善塑性和焊接性能,利用 、 研究:降碳改善塑性和焊接性能,利用Nb、V 获得高强度, 对奥氏体再结晶的抑制作用以 获得高强度,Nb对奥氏体再结晶的抑制作用以 及细化奥氏体晶粒的各种途径。 及细化奥氏体晶粒的各种途径。

轧制的原理

轧制的原理

轧制的原理
轧制是一种重要的金属加工方法,它通过辊轧将金属坯料压制成所需形状和尺寸的工件。

轧制的原理主要包括塑性变形、应力变形和金属流动等几个方面。

首先,塑性变形是轧制的基本原理之一。

在轧制过程中,金属坯料受到辊轧的挤压和拉伸作用,从而使其发生塑性变形。

金属坯料的晶粒在受力的作用下发生滑移和再结晶,从而改变了原来的形状和尺寸,最终形成所需的工件。

其次,应力变形也是轧制的重要原理之一。

在轧制过程中,金属坯料受到的应力会引起其内部结构和形状的变化。

通过合理控制轧制过程中的应力分布和应力状态,可以实现金属坯料的塑性变形和加工成形,从而得到符合要求的工件。

另外,金属流动也是轧制的关键原理之一。

在轧制过程中,金属坯料受到辊轧的挤压和变形,金属内部的晶粒和晶界会发生流动和重组,从而改变了金属的形状和结构。

通过合理控制金属的流动和变形,可以实现金属坯料的加工成形,从而得到满足要求的工件。

总的来说,轧制的原理是通过塑性变形、应力变形和金属流动等方式,将金属坯料加工成所需形状和尺寸的工件。

在轧制过程中,需要合理控制轧制参数和工艺流程,以确保金属的加工质量和工件的精度。

同时,还需要注意金属的热处理和表面处理,以提高工件的性能和表面质量。

通过对轧制原理的深入理解和掌握,可以更好地应用轧制技术,实现金属加工的高效、精密和可靠。

钢材控轧控冷工艺的原理

钢材控轧控冷工艺的原理

钢材控轧控冷工艺的原理钢材的控轧控冷工艺是一种重要的热处理工艺,它通过对钢材的热轧与冷处理过程进行精细控制,以实现对钢材组织和性能的调控。

钢材的控轧控冷工艺包括控轧与控冷两个方面。

控轧是指通过控制轧制温度、轧制速度、轧制负荷、轧制压力等工艺参数,来改变钢材的变形程度、变形速度和变形温度,在轧制过程中对钢材进行组织和性能的调控。

控轧工艺的原理主要包括以下几个方面:1.塑性变形原理:钢材在热轧过程中通过塑性变形来改变其晶粒结构和形态。

通过适当的控制轧制压力、轧制温度和变形程度,可以使钢材的晶粒细化,形成高强钢材的组织。

2.回火效应:控轧工艺中的控制冷却速率可以影响钢材的相变行为和形成的组织结构。

适当选择冷却速率可以实现奥氏体转变为铁素体,从而改善钢材的韧性,并且减少钢材的残余应力。

3.相变控制:控轧工艺可以通过控制变形温度和轧制速度来控制钢材的相变行为,例如马氏体相变。

通过选择合适的变形温度和轧制速度,可以实现马氏体的形成和相变产生的显微组织调控,从而获得高强度、高韧性的材料。

4.微量元素控制:在控轧工艺中,添加适量的微量合金元素可以改变钢材的组织和性能。

例如添加微量的硼元素可以细化晶粒,改善钢材的塑性和韧性。

控冷工艺是控制钢材在冷却过程中的温度和冷却速度,以实现对钢材组织和性能的调控。

控冷工艺的原理主要包括以下几个方面:1.相变控制:钢材的冷却速率会影响其相变行为和相变产物的组织结构。

通过控制冷却速率,可以实现奥氏体向铁素体的转变,形成细小的铁素体晶粒和均匀的组织结构。

2.马氏体相变控制:通过控制冷却速率,可以控制钢材从奥氏体向马氏体的相变行为。

适当调节冷却速度、冷却温度和冷却介质,可以实现马氏体的形成和马氏体组织的调控,从而获得高强度、高硬度的材料。

3.淬火与回火控制:控冷工艺还可以通过控制钢材的淬火和回火工艺参数,来调控钢材的组织和性能。

适当的淬火工艺可以实现钢材的高强度、高硬度,而回火工艺可以降低钢材的脆性和残余应力。

控轧控冷工艺基本原理

控轧控冷工艺基本原理

控轧控冷工艺基本原理控轧控冷工艺是一种通过控制轧制和冷却条件来调控钢材的组织和性能的加工工艺。

其基本原理是通过控制轧制温度、变形程度和冷却速度等参数,实现对钢材组织和性能的调控。

1. 控轧工艺原理控轧是指在钢材的轧制过程中,通过调整轧制温度和变形程度等参数,控制其组织和性能的加工工艺。

控轧工艺的基本原理是通过控制轧制温度和变形程度,调整钢材的晶粒度、相组成和形貌等因素,从而实现对钢材性能的调控。

在控轧过程中,调整轧制温度可以影响钢材的晶粒度和相组成。

通过控制轧制温度的高低,可以实现晶粒细化或粗化,进而影响钢材的力学性能和韧性。

同时,调整轧制温度还可以改变钢材中的相组成,如奥氏体、铁素体和贝氏体等的含量和分布,从而调节钢材的强度、硬度和耐腐蚀性能。

控轧过程中的变形程度也对钢材的组织和性能产生重要影响。

通过控制变形程度,可以实现钢材的晶粒细化、相变和组织调控。

在轧制过程中,钢材受到外力的变形,晶粒会发生形变和细化,从而提高钢材的强度和韧性。

同时,变形程度还可以引起钢材中的相变,如奥氏体向铁素体的相变,进一步改善钢材的性能。

2. 控冷工艺原理控冷是指在钢材的冷却过程中,通过调整冷却速度和冷却方式等参数,控制其组织和性能的加工工艺。

控冷工艺的基本原理是通过控制冷却速度,调整钢材的组织和性能。

在控冷过程中,调整冷却速度可以影响钢材的相组成和组织形貌。

通过控制冷却速度的快慢,可以实现钢材中相的相变和组织的调控。

当冷却速度较快时,钢材中的相变会受到限制,从而形成细小的相和均匀的组织。

相反,当冷却速度较慢时,钢材中的相变会较为充分,形成较大的相和不均匀的组织。

不同的冷却速度会影响钢材的强度、硬度和韧性等性能。

控冷过程中的冷却方式也会对钢材的组织和性能产生影响。

不同的冷却方式,如空冷、水冷、油冷等,具有不同的冷却速度和冷却效果。

通过选择合适的冷却方式,可以实现钢材组织的定向调控,从而达到钢材性能的要求。

3. 控轧控冷工艺的应用控轧控冷工艺广泛应用于钢材的生产和加工过程中。

两相区控制轧制

两相区控制轧制
压下量
适当的压下量可以促使钢材发生足够的变形,实现组织的优化和相变的控制。
轧制过程中的组织转变
奥氏体向铁素体的转变
在两相区内,随着温度的降低和应力的作用,奥氏体会逐渐 转变为铁素体。
相变过程
在轧制过程中,通过控制相变过程,可以获得不同比例的铁 素体和奥氏体组织,从而调整钢材的性能。
03
CHAPTER
3
拓展应用领域
积极探索两相区控制轧制在新能源、生物医学等 领域的应用,拓展其应用范围和价值。
05
CHAPTER
两相区控制轧制实验研究
实验设备与方法
实验设备
采用先进的轧制设备和控制系统,包 括轧机、加热炉、测温仪、测力系统 等。
实验方法
选取合适的实验材料,进行加热、轧 制、冷却等操作,并实时监测轧制过 程中的温度、压力等参数。
促进技术进步
两相区控制轧制是金属材料加工领域的一项重要技术,其发展推动 了相关领域的技术进步和产业升级。
两相区控制轧制的原理与技术发展
原理
两相区控制轧制的基本原理是在奥氏体和铁素体两相区进行轧制,通过控制轧制温度、轧制速度、道次变形量等 工艺参数,实现对金属材料的组织结构和性能的调控。
技术发展
随着科技的不断进步,两相区控制轧制技术也在不断发展完善。目前,两相区控制轧制技术已经广泛应用于钢铁、 有色金属等领域,成为提高材料性能、降低生产成本的重要手段。未来,两相区控制轧制技术将继续向着精细化、 智能化、绿色化的方向发展。
04
CHAPTER
两相区控制轧制的挑战与前 景
面临的挑战
技术难度大
两相区控制轧制涉及复杂的相变 和流动行为,需要精确控制温度、
应力和应变等参数,技术难度较 大。

《2024年UCM冷连轧机薄带钢轧制板形控制的研究及有限元仿真》范文

《2024年UCM冷连轧机薄带钢轧制板形控制的研究及有限元仿真》范文

《UCM冷连轧机薄带钢轧制板形控制的研究及有限元仿真》篇一一、引言随着现代工业的快速发展,冷连轧机在钢铁生产中扮演着越来越重要的角色。

尤其对于薄带钢的生产,轧制过程中的板形控制成为影响产品质量的关键因素。

UCM冷连轧机作为一种先进的轧机设备,其轧制板形控制技术的研究及仿真分析具有重要的现实意义。

本文将重点探讨UCM冷连轧机在薄带钢轧制过程中的板形控制技术及其有限元仿真研究。

二、UCM冷连轧机板形控制技术研究2.1 轧制过程基本原理UCM冷连轧机通过连续轧制工艺,实现对薄带钢的精准轧制。

在此过程中,板形控制技术的关键在于控制轧制过程中的力、速度、温度等参数,以保证轧制出的带钢具有理想的板形。

2.2 板形控制技术分析板形控制技术主要包括厚度控制、宽度控制和形状控制三个方面。

在UCM冷连轧机中,通过精确的液压系统、控制系统和机械系统,实现对轧制力的精确控制,从而实现对板形的有效控制。

此外,通过调整轧辊的凸度、倾斜度等参数,也可以有效地改善带钢的板形。

三、有限元仿真研究3.1 有限元法基本原理有限元法是一种有效的数值分析方法,可以用于模拟复杂工艺过程中的力学行为。

在UCM冷连轧机的板形控制研究中,通过有限元法可以模拟轧制过程中的应力、应变、温度等物理量的变化,从而为优化轧制工艺提供依据。

3.2 仿真模型建立建立仿真模型是有限元仿真的关键步骤。

在UCM冷连轧机的仿真模型中,需要考虑到轧机的结构、轧辊的材质和几何形状、轧制力、摩擦力等参数。

通过合理的模型简化,建立出能够反映实际轧制过程的仿真模型。

3.3 仿真结果分析通过有限元仿真,可以得到轧制过程中带钢的应力、应变、温度等物理量的分布情况。

通过对仿真结果的分析,可以了解轧制过程中带钢的变形行为,从而为优化轧制工艺提供依据。

同时,通过对比仿真结果和实际生产数据,可以验证仿真模型的准确性,为进一步优化轧制工艺提供支持。

四、实验验证与结果分析为了验证UCM冷连轧机板形控制技术的有效性和有限元仿真的准确性,我们进行了实验验证。

轧机工作原理

轧机工作原理

轧机工作原理
轧机是一种常见的工业设备,用于加工金属材料,特别是钢铁材料。

它的工作原理主要包括下面几个步骤:
1. 准备工作:在轧机工作之前,需要先准备要加工的金属材料。

这通常包括将金属块切割成具有适当尺寸和形状的金属板或金属棒。

2. 进料:金属材料进入轧机的工作区域。

在进料区域,有一个连续供给系统将金属材料逐渐送入轧机的辊子之间。

3. 压下辊:轧机里的辊子由电动机或液压系统控制。

主辊和副辊之间的间距可以调整,以控制加工材料的厚度。

主辊通过作用力将金属材料压在副辊上。

4. 轧制:金属材料在主辊和副辊之间通过多次往复的压力作用下,逐渐被压扁和延长。

这个过程中,金属材料的温度可能会升高,因此需要注意冷却措施,以避免过热。

5. 收料:经过轧制后的金属材料从轧机的出口处取出。

通常会使用传送带或其他输送设备将其传送到下一个工序中。

轧机是一种高效的金属加工设备,能够在短时间内将金属材料加工成所需的形状和尺寸。

它在许多工业领域都得到了广泛的应用,包括建筑、制造业、汽车工业等。

精选控制轧制和控制冷却工艺讲义

精选控制轧制和控制冷却工艺讲义
有助于控制轧制钢的显微组织细化和韧性改善。这种工艺可用于任何化学成分的钢。例如在改善低C中Mn-Nb-V,低Mo钢的韧性也获得成功。采用这种工艺,新日本钢铁公司已建立了北极用厚壁X70 级管线的大规模生产系统。
5.2.2现代化宽厚板厂控制轧制和控制冷却技术
近三十年以来 ,控制轧制和控制冷却技术在国外得到了迅速的发展 ,国外大多数宽厚板厂均采用控制轧制和控制冷却工艺 ,生产具有高强度、高韧性、良好焊接性的优质钢板。
获得细小铁素体晶粒的途径——三阶段控制轧制原理
奥氏体再结晶区域轧制 (≥ 950℃ )在奥氏体再结晶区域轧制时 ,轧件在轧机变形区内发生动态回复和不完全再结晶。在两道次之间的间隙时间内 ,完成静态回复和静态再结晶。加热后获得的奥氏体晶粒随着反复轧制——再结晶而逐渐变细。
图中第Ⅰ 阶段 ,由于轧件温度较高 ,奥氏体再结晶在短时间内完成且迅速长大 ,未见明显的晶粒细小。
不然,出于平整道次压下率确定不合适,引起晶粒严重不均,产生个别特大晶粒,造成混晶,导致性能下降。
道次变形分配
满足奥氏体再结晶区和未再结晶区临界变形量的要求,要考虑轧机设备能力及生产率的要求。压下量的分配一殷在奥氏体区采用大的道次变形量 ,以增加奥氏体的再结晶数量,细化晶粒。在未再结晶区在不发生部分再结晶的前提下,尽可能采用大的道次变形量,以增加形变带,为铁素体相变形核创造有利条件。在轧机能力比较小的条件下,采用在未再结晶区多道次、每道次小变形量并缩短中间停留时间的快轧控制方案,也取得较好的效果,而且不降低轧机产量。经验结论 在未再结晶区大于45—50%的总变形率有利于铁素休晶粒细化。
5.2板带钢控轧与控冷应用实例
5.2.1北极管线用针状铁素体钢
管线钢的发展历史
60年代末70年代初,美国石油组织在API 5LX和API 5LS标准中提出了微合金控轧钢X56、X60、X65三种钢 .这种钢突破了传统钢的观念,碳含量为0.1-0.14%,在钢中加入≤0.2%的Nb、V、Ti等合金元素,并通过控轧工艺使钢的力学性能得到显著改善。到1973年和1985年,API标准又相继增加了X70和X80钢,而后又开发了X100管线钢,碳含量降到0.01-0.04%,碳当量相应地降到0.35以下,真正出现了现代意义上的多元微合金化控轧控冷钢。

钢材的控制轧制和控制冷却

钢材的控制轧制和控制冷却

钢材的控制轧制和控制冷却一、名词解释:1、控制轧制:在热轧过程中通过对金属的加热制度、变形制度、温度制度的合理控制,使热塑性变形与固态相变结合,以获得细小晶粒组织,使钢材具有优异的综合力学性能。

2、控制冷却:控制轧后钢材的冷却速度、冷却温度,可采用不同的冷却路径对钢材组织及性能进行调控。

3、形变诱导相变:由于热轧变形的作用,使奥氏体向铁素体转变温度Ar3上升,促进了奥氏体向铁索体的转变。

在奥氏体未再结晶区变形后造成变形带的产生和畸变能的增加,从而影响Ar3温度。

4、形变诱导析出:在变形过程中,由于产生大量位错和畸变能增加,使微量元素析出速度增大。

两相区轧制后的组织中既有由变形未再结晶奥氏体转变的等轴细小铁素体晶粒,还有被变形的细长的铁素体晶粒。

同时在低温区变形促进了含铌、钒、钛等微量合金化钢中碳化物的析出。

5、再结晶临界变形量:在一定的变形速率和变形温度下,发生动态再结晶所必需的最低变形量。

6、二次冷却:相变开始温度到相变结束温度范围内的冷却控制。

二、填空:1、再结晶的驱动力是储存能,影响其因素可以分为:一类是工艺条件,主要有变形量、变形温度、变形速度。

另一类是材料的内在因素,主要是材料的化学成分和冶金状态。

2、控制冷却主要控制轧后钢材冷却过程的(冷却温度)、(冷却速度)等工艺条件,达到改善钢材组织和性能的目的。

3、固溶体的类型有(间隙式固溶)和(置换式固溶),形成(间隙式)固溶体的溶质元素固溶强化作用更大。

4、根据热轧过程中变形奥氏体的组织状态和相变机制不同,将控制轧制划分为三个阶段,即奥氏体再结晶型控制轧制、奥氏体未再结晶型控制轧制、在A+F两相区控制轧制。

5、以珠光体为主的中高碳钢,为达到珠光体团直径减小,则要细化奥氏体晶粒,必须采用(奥氏体再结晶)型控制轧制。

6、控制轧制是在热轧过程中通过对金属的(加热制度)、(变形制度)、(温度制度)的合理控制,使热塑性变形与固态相变结合使钢材具有优异的综合力学性能。

轧制理论)轧制原理

轧制理论)轧制原理

轧制理论的发展趋势与未来展望
1 2
智能化发展
随着人工智能和大数据技术的应用,轧制理论的 智能化发展成为趋势,实现轧制过程的自动化和 智能化控制。
新材料和新工艺研究
未来轧制理论将继续在新材料、新工艺的研究方 面发挥重要作用,推动行业的创新发展。
3
绿色可持续发展
轧制理论将注重绿色可持续发展,致力于降低能 耗和减少环境污染,实现行业的可持续发展。
轧制理论)轧制原理
目录
量 • 轧制过程的模拟与优化 • 轧制理论的应用与发展
01
轧制原理概述
轧制的基本概念
轧制是一种金属加工工艺,通过两个 旋转的轧辊将金属坯料压缩,使其发 生塑性变形,从而获得所需形状和性 能的金属制品。
轧制过程中,金属坯料通过轧辊的摩 擦力作用被牵引,经过连续的塑性变 形,形成一定规格和形状的成品或半 成品。
智能算法进行故障诊断和预警,提高轧制过程的稳定性和可靠性。
05
轧制理论的应用与发展
轧制理论在钢铁工业中的应用
轧制工艺优化
轧制理论为钢铁工业提供了优化轧制工艺的方法,提高了产品质 量和生产效率。
新材料研发
轧制理论在新材料研发中发挥了重要作用,推动了钢铁材料的不 断升级和革新。
节能减排
轧制理论的应用有助于钢铁工业实现节能减排,降低生产过程中 的能耗和污染物排放。
利用测厚系统实时监测板材厚度, 反馈调整轧制参数,以实现厚度 控制的自动化和精细化。
04
轧制过程的模拟与优化
轧制过程的数值模拟技术
有限元法
01
通过将轧制过程划分为一系列小的单元,利用数学方程描述每
个单元的行为,从而模拟整个轧制过程。
有限差分法

轧制原理与工艺教材ppt

轧制原理与工艺教材ppt

对未来轧制技术研究的建议与期望
THANKS
感谢观看
将轧制后的金属材料进行冷却和矫直,去除残余应力,提高材料质量。
对成品进行质量检查,包括尺寸、形状、表面质量等。
压力控制
控制轧制过程中的压力和变形量,防止材料破裂和过度变形。
温度控制
控制金属材料的加热品的质量和尺寸精度,确保产品质量符合要求。
绿色环保、可持续发展理念在轧制领域的体现和应用
新材料、新工艺、新技术的引入和应用
智能化、自动化、远程控制技术的融合和创新
加强基础理论研究,提高轧制技术的科学性和系统性
加强产学研合作,促进科技成果转化和应用推广
加强人才培养,建设高素质的轧制技术研究和应用团队
加强创新研究,推动新技术、新工艺、新材料的研发和应用
轧制分类
轧制是通过两个旋转的轧辊施加压力,使金属在两个轧辊之间发生塑性变形,从而获得所需形状和性能的金属制品。
轧制原理
在古代,人们已经使用简单的轧机来加工金属,如用碾压机将金属板压成薄片。
古代轧制
近代轧制
现代轧制
随着工业革命的发展,轧制技术得到了广泛应用和改进,出现了各种型号的轧机和现代化的生产线。
轧制质量控制
04
轧制实践与应用
轧制在工业中的应用
广泛应用于汽车、建筑、机械、电子等领域,用于生产各种厚度和宽度的板材。
板材轧制
主要生产各种截面的钢轨、工字钢、角钢、槽钢等型材。
型材轧制
用于生产各种规格的钢管,如无缝钢管、焊管等。
管材轧制
如轧制花纹钢板、压花板等装饰性板材,以及超薄带材等。
特殊轧制
轧制技术的发展趋势
高精度轧制技术
采用先进的自动化控制系统和测量技术,提高轧制精度和产品质量。

铜板带冷轧机的轧制原理及参数控制

铜板带冷轧机的轧制原理及参数控制

铜板带冷轧机的轧制原理及参数控制铜板带冷轧机是一种重要的金属加工设备,广泛应用于冶金、机械、建筑等行业。

它通过冷轧的方式将铜板带加工成所需厚度和尺寸的产品。

本文将深入探讨铜板带冷轧机的轧制原理及参数控制,以帮助读者更好地理解这个主题。

一、铜板带冷轧机的轧制原理铜板带冷轧机的轧制原理是基于金属塑性变形的规律。

在冷轧过程中,铜板带经过多次通过轧制辊的压力作用,使其产生塑性变形,从而实现厚度和尺寸的调整。

其具体步骤如下:1. 进料与切割:将铜板带送入冷轧机,切割成适当的长度以便进行下一步工序。

2. 初轧:将切割好的铜板带经过初轧辊的压力作用,使其产生初步的变形。

初轧可以消除材料的内应力,提高材料的塑性,为后续的轧制做好准备。

3. 中轧:经过初轧后,铜板带再经过中轧辊的压力作用,进一步实现厚度和尺寸的调整。

中轧一般采用多个辊道串联,逐步减小辊道间隙,从而使铜板带的厚度得到更细致的控制。

4. 终轧:在中轧之后,铜板带进入终轧辊的作用区域。

终轧辊通常采用高速旋转,通过较大的轧制力对铜板带进行再次变形,使其达到所需的厚度和尺寸。

5. 出料:经过终轧后,铜板带被送出冷轧机,进入后续工序或成为最终产品。

二、参数控制对轧制效果的影响在铜板带冷轧过程中,参数控制对轧制效果起到至关重要的作用。

以下是几个常见的参数及其对轧制效果的影响:1. 辊道间隙:辊道间隙是指轧制辊之间的距离。

辊道间隙的大小直接影响到铜板带的厚度控制。

辊道间隙过大会导致轧制力不足,铜板带厚度无法准确控制;而辊道间隙过小则会造成过度压制,容易引起辊道磨损和变形。

辊道间隙的调整是铜板带冷轧中重要的参数控制之一。

2. 轧辊直径:轧辊直径的大小也会对轧制效果产生影响。

较大的轧辊直径可以提高轧制效率,但厚度控制相对较差;而较小的轧辊直径则有利于获得更好的厚度控制。

在实际应用中,需要根据具体需求来选择适当的轧辊直径。

3. 轧制速度:轧制速度是指铜板带在冷轧机中通过轧制辊的速度。

轧制技术的原理和应用

轧制技术的原理和应用

轧制技术的原理和应用1. 原理轧制技术是指通过将金属材料通过辊道的冷热处理,使其产生塑性变形,以达到调整材料形状和尺寸的目的。

它的原理主要包括以下几个方面:1.1 塑性变形原理轧制主要利用金属材料的塑性性质,通过对材料的应力施加,使其发生塑性变形。

在轧制过程中,金属材料在辊道间受到来自多个方向的应力,使其分子发生位移和滑移,从而实现塑性变形。

1.2 辊道形状原理轧制过程中,辊子的形状对于材料的塑性变形起着重要作用。

辊道形状包括辊线形状、辊子轴向形状和辊子表面形状等。

通过设计不同形状的辊道,可以实现不同的压下效果和材料形状调整。

1.3 温度控制原理轧制过程中的材料温度对于材料性能和形状调整也具有重要的影响。

通过控制轧制过程中的温度,可以调整材料的硬度、韧性和形状。

2. 应用轧制技术广泛应用于金属材料的生产和加工过程中,主要包括以下几个方面的应用:2.1 金属板材的生产轧制技术在金属板材的生产中起着关键的作用。

通过控制轧机辊子的形状和温度,可以将原材料加工成不同形状和尺寸的金属板材,用于制造汽车、船舶、建筑和家电等领域。

2.2 金属线材的生产轧制技术也被广泛应用于金属线材的生产中。

通过控制轧机的参数和辊道形状,可以将金属坯料加工成各种规格的线材,用于制造钢筋、线网和电缆等产品。

2.3 金属型材的生产轧制技术在金属型材的生产中也有重要的应用。

通过轧机和辊道的配合,可以将金属坯料加工成各种形状和尺寸的型材,用于制造建筑结构、机械零部件和管道等产品。

2.4 金属材料的改性处理轧制技术还可以用于金属材料的改性处理。

通过控制轧制过程中的温度和应力施加,可以改变金属材料的晶体结构和力学性能,实现强化、退火和淬火等处理效果。

2.5 金属材料的表面处理轧制技术还可以用于金属材料的表面处理。

通过轧制过程中辊子的表面形状和摩擦力,可以改变金属材料的表面粗糙度和纹理,实现抛光、压纹和压花等处理效果。

结论轧制技术是一种重要的金属材料加工方法,通过塑性变形和温度控制,可以实现材料形状和性能的调整。

控制轧制过程的基本原理

控制轧制过程的基本原理

控制轧制过程的基本原理历史背景历史上,碳是提高钢的强度的最重要的化学元素,但碳对许多工艺性能如焊接性能、成型性能有不利的阻碍。

因此,用碳强化的钢的应用受到限制。

为了保证钢结构的安全性,要求钢的强度和韧性达到优良的配合,这种含碳较高的钢往往要进行成本高的热处理,如淬火加回火。

为了扩大成本低的高强度钢的应用,物理冶金学家们建议用其它强化机制来替代碳的强化。

图1显示,依照d-1/2规律(2),晶粒细化是同时提高强度和韧性的最有效的方法。

操纵轧制工艺是达到此目的的工业技术,该技术把成型过程与显微组织的操纵过程结合起来。

均热温度为了使加热工艺易于进行,传统方法是采纳较高的均热温度。

因此,轧制工艺从钢坯加热开始就要操纵晶粒尺寸,而且其成效是明显的。

人们明白,奥氏体晶粒长大与均热温度决定于均热时要求产生的冶金反应,即使微合金化元素溶于固溶体,其缘故将于下面得到解决。

关于钢种而言,最低的均热温度决定于铌、碳含量。

如图2所示,关于0.10%C、0.03%Nb.的钢来说,其最低均热温度为1150℃。

形成专门稳固的TiN,如图3(3)所示,它可在相当高的均热温度下操纵奥氏体晶粒尺寸。

另外钛还能够夺走N b(C、N)相中的N,形成的N b C化合物更易溶解。

在钢中一样氮含量的情形下,T i的最佳含量,即化学比含量,一样专门低,低于0.02%。

log(Nb)(C)=2.96-7510/T…Nordberg and Aronssonlog(Nb)(C+12/14N)=2.26-6770/T…Irvine再结晶操纵轧制钢在热变形过程中发生再结晶。

操纵这一过程使其发生多次再结晶可导致有效晶粒细化。

应当注意每道次轧制应采纳的最小变形量,否则将会发生晶粒长大,如图4(4)所示。

图5(5)显示出一种典型的轧制制度可获得大约50μm的平均晶粒尺寸。

在有铌微合金化的情形下,能够得到更细小的晶粒尺寸。

这是因为扩散操纵的过程,如道次间的晶粒长大,由于铌原子的直径比γ-Fe原子大15.2%,扩散过程受到专门大阻碍。

控制轧制及控制冷却技术在型钢生产中的应用

控制轧制及控制冷却技术在型钢生产中的应用

控制轧制及控制冷却技术在型钢生产中的应用一、导言在当今工业领域中,钢铁工业一直扮演着不可或缺的角色。

而型钢作为钢铁产品中的重要一员,其质量和性能的提升一直是企业和行业追求的目标。

控制轧制及控制冷却技术作为一种重要的生产工艺,对型钢的生产和性能提升具有重要意义。

本文将从控制轧制和控制冷却技术在型钢生产中的基本原理、关键技术和应用实例等方面展开探讨,旨在深入了解这一主题的重要性和具体应用。

二、控制轧制技术控制轧制技术是指钢铁生产中利用先进的控制系统和设备,对轧制过程中的参数进行精确控制,以获得高质量、高性能的型钢产品的一种技术。

这项技术最早应用于薄板生产领域,后来逐步在型钢生产中得到推广和应用。

1. 温度控制:在轧制过程中,控制轧制技术可以通过对钢坯的温度进行精确调控,以保证轧制过程中的塑性变形性能,从而得到均匀、细腻的晶粒结构。

2. 形状控制:利用控制轧制技术可以对轧制过程中的轧辊、模具等设备进行精确控制,获得符合设计要求的型钢截面形状和尺寸精度。

3. 轧制力控制:控制轧制技术可以实现对轧制力的实时监测和调节,避免轧制过程中的过度变形,并保证产品的尺寸和形状精度。

三、控制冷却技术控制冷却技术是指在型钢生产过程中,通过对冷却过程的控制,使钢材在冷却过程中获得理想的组织和性能。

这项技术的应用可以有效提高型钢的强度、韧性和耐磨性等性能,同时降低产品的变形和裂纹率。

1. 冷却介质控制:通过选择不同的冷却介质和控制冷却速度,可以使型钢获得不同的组织和性能,如马氏体组织、贝氏体组织等,从而满足不同领域对型钢性能的要求。

2. 温度控制:在控制冷却技术中,对冷却过程中的温度进行精确控制,可以有效控制组织相变,并获得理想的力学性能,如强度、韧性等。

3. 冷却速度控制:通过对型钢冷却速度进行控制,可以获得不同的组织和性能,如快速冷却可以获得细小的组织和高强度,而缓慢冷却则可以得到较好的塑性和韧性。

四、控制轧制及控制冷却技术在型钢生产中的应用实例1. 控制轧制技术在型钢生产中的应用:某钢铁企业引进了先进的控制轧制系统和设备,通过对轧制过程中的温度、形状和轧制力等参数进行精确控制,生产出了高精度、高强度的型钢产品,受到了市场的广泛认可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

控制轧制过程的基本原理
历史背景
历史上,碳是提高钢的强度的最重要的化学元素,但碳对许多工艺性能如焊接性能、成型性能有不利的影响。

因此,用碳强化的钢的应用受到限制。

为了保证钢结构的安全性,要求钢的强度和韧性达到优良的配合,这种含碳较高的钢往往要进行成本高的热处理,如淬火加回火。

为了扩大成本低的高强度钢的应用,物理冶金学家们建议用其它强化机制来替代碳的强化。

图1(1)显示,根据d-1/2规律(2),晶粒细化是同时提高强度和韧性的最有效的方法。

控制轧制工艺是达到此目的的工业技术,该技术把成型过程与显微组织的控制过程结合起来。

均热温度
为了使加热工艺易于进行,传统方法是采用较高的均热温度。

因此,轧制工艺从钢坯加热开始就要控制晶粒尺寸,而且其效果是明显的。

人们知道,奥氏体晶粒长大与均热温度决定于均热时要求产生的冶金反应,即使微合金化元素溶于固溶体,其原因将于下面得到解决。

对于钢种而言,最低的均热温度决定于铌、碳含量。

如图2所示,对于0.10%C、0.03%Nb.的钢来说,其最低均热温度为1150℃。

钛形成非常稳定的TiN,如图3(3)所示,它可在相当高的均热温度下控制奥氏体晶粒尺寸。

另外钛还可以夺走N b(C、N)相中的N,形成的N b C 化合物更易溶解。

在钢中一般氮含量的情况下,T i的最佳含量,即化学比含量,一般很低,
低于0.02%。

log(Nb)(C)=2.96-7510/T…Nordberg and Aronsson
log(Nb)(C+12/14N)=2.26-6770/T…Irvine
再结晶控制轧制
钢在热变形过程中发生再结晶。

控制这一过程使其发生多次再结晶可导致有效晶粒细化。

应当注意每道次轧制应采用的最小变形量,否则将会发生晶粒长大,如图4(4)所示。

图5(5)显示出一种典型的轧制制度可获得大约50μm的平均晶粒尺寸。

在有铌微合金化的情况下,可以得到更细小的晶粒尺寸。

这是因为扩散控制的过程,如道次间的晶粒长大,由于铌原子的直径比γ-Fe原子大15.2%,扩散过程受到很大阻碍。

变形前的奥氏体晶粒愈小,轧制温度愈低,每道次变形量愈大,最终再结晶后的晶粒尺寸愈小。

文献[6]表明,如果最后三道次变形至少约25%,大于图5报道的15%,再结晶控
制轧制的25mm板可以获得20μm的细小的奥氏体晶粒。

热机械加工工艺
如果变形温度很低以至于不能发生再结晶,奥氏体晶粒则变为伸长的晶粒。

合金元素含量较高的钢种,其再结晶的温度较高。

在这一方面,碳、氮化物形成元素,即使含量很少,也是非常有效的,而铌是最有效的元素。

图6(7)表明,仅含0.03%Nb的钢,在温度低于950℃时,经每道次标准变形量的轧制后,不会发生再结晶。

这里有两个方面的原因(8):首先,固溶态下铌原子在某种程度上会推迟再结晶的发生;还有,铌在这样一种位错多的组织中将以碳化物或碳氮化物形式快速析出。

这些应变诱导析出的粒子最终完全抑制了再结晶的发生。

图7说明了这一原理。

奥氏体/铁素体转变
在纯净钢中,在奥氏体向铁素体转变时,最合适的形核位置是奥氏体晶粒边界。

当变形奥氏体向铁素体转变时,晶粒内部的位错带也可成为形核位置。

形核后,铁素体晶粒长大直到晶粒间紧密接触。

在一定的冷却温度下,有细小的奥氏体晶粒,特别是拉长的奥氏体晶粒转变成的铁素体晶粒将变的更细,因为奥氏体晶粒表面积与体积之比增加了。

已报道过一些描述铁素体晶粒尺寸的回归公式。

就实际的轧制条件和空冷而言,一个相当简单的关系式,即铁素体的晶粒尺寸dα略小于垂直于轧制面的奥氏体晶粒尺寸hγ的一半,很好地描述了已再结晶或变形的奥氏体的转变(9)。

dα≈0.4×hγ
图8为表示经不同的轧制过程所得到的铁素体晶粒尺寸的示意图。

加速冷却
采用较快的冷却速度,可以进一步细化晶粒,这由于相变开始温度降低,在过冷奥氏体中形核更多。

控制冷却最早在热带轧钢厂得到应用(10),其后在其它轧钢厂推广和优化(11),特别是板材的TMCP轧制工艺中,控冷得到了很好的应用。

TMCP代表热机械控制工艺,该工艺将热机械加工和冷却结合起来。

图9显示了被应用的冷却制度:结构钢空冷后得到铁素体-珠光体组织,加速冷却避免了珠光体转变而得到铁素体-贝氏体组织。

实际上,加速冷却一般在约550℃时终止,接下来是空冷。

加速冷却对晶粒细化有双重作用:
1)如上所述,多边形铁素体晶粒尺寸得到细化。

冷却速率愈快,铁素体晶粒越小。

图10(12)说明为什么在实际生产中优先采用热机械轧制和加速冷却相结合的工艺。

2)当加速冷却时,大约50%的组分是贝氏体组织,这种贝氏体的晶粒尺寸较铁素体更细小,约为1μm,并具有较高的位错密度,如图11所示(13),这样钢的强度显
著增加,同时韧性也得到一定程度的改善。

结果
由细晶粒组织导致优异的力学能力,这种高强度结构钢可应用于恶劣的工作条件。

图12(14)给出了铁素体晶粒尺寸对低碳钢性能的影响。

可以通过仔细控制整个生产过程中的轧制条件—时间、温度和形变来获得晶粒细化。

在过去的十年里,上述工艺应用于低合金高强度钢的大生产中,用这种工艺生产的钢大约占世界钢的总产量的百分之十。

参考文献
1)L.Meyer and H.de Boer, Welding of HSLA Structural Steel, ASM, Metals Park, Ohio, 1978,p. 42-62.
2) E.O.Hall and N.J.Petch, JISI, V ol.174 (1953), p.25-28
3)J.M. Gray and A. J. DeArdo, HSLA Steels Metallurgy and Applications, ASM Int, USA, 1986,P. 83-96.
4)K. Hulka, 8th Process Techn.Conf. Proc. 1988. Warrendale (PA), 1988, p. 13-21 5) C. M. Ssllars and J. A.Whiteman, presented at Product Technology Conference on Controlled Processing of HSLA Steels, York, 1976, unpublished.
6)W. Roberts, A. Sandberg, T. Siwecki and T. Werlefors, Steels Technolohy and Applications, ASM, Metals Park, Ohio, 1984, p. 67-84
7)L. J. Cuddy, Thermomechanical Processing of Microalloyed Austenite, TMS of ASME, Warrendale (PA), 1982,p.129-140
8)S. Yamamoto, C. Ouchi and T.Osuka, ibid. Lit. 7, p. 613-639
9) B.Engl and K. Kaup, ibid.Lit. 7, p.467-482
10)E. R. Morgan, T. E. Dancy and M. Korchynsky, AISI Yearbook 1965, 53 (1965), p.921-929
11)C. Ouchi, J. Tanaka, I, Kozasu and K. Tsukada, Micon 78, ASTM, Philadelphia (PA), 1979, P. 105-125
12)L. J. Cuddy, Accelerated Cooling of Steel, TMS of ASME. Warrendale (PA), 1986, p.
235-243
13)W. M. Hof, M. K. Graf, H. G. Hillenbrand, B.Hob and P. A. Peters, ibid. Lit. 3, p.
467-474
14)K. Lorenz, W. M. Hof, K. Hulka, K. Kaup, H. Litzke and U. Schrape, Stahl und Eisen 101 (1981), p.593-600
15)European Standard EN 10113-1993。

相关文档
最新文档