浅析分形与混沌及其相关性
分形和混沌的基本概念和应用
分形和混沌的基本概念和应用在科学和数学领域中,分形和混沌是两个非常重要的概念。
它们不仅有着丰富的理论内涵,而且在实际应用中也有着广泛的用途。
本文旨在介绍分形和混沌的基本概念、性质以及其应用领域。
一、分形的基本概念和性质分形最初是由法国数学家Mandelbrot所提出的。
分形,定义简单点来说,就是在各种尺度下都表现出相似性的图形。
比如说,我们在放大树叶时,会发现树叶的分支和小结构上会有许多特征,在不断放大过程中,树叶上的分支和结构会产生类似于整个树叶的结构。
这个例子就是分形学的一个典型例子。
分形的最重要的特性是自相似性和不规则性。
自相似性是指,在分形中,任意一部分都与整个结构相似,这种相似性具有尺度不变性,即不会因为放大或缩小而改变。
不规则性是指,分形的形状十分奇特,与传统的几何图形相比,分形形状复杂多变,没有任何几何规律可循。
分形广泛用于科学研究、艺术美学、计算机图像处理等领域。
在生物学、地震学、天文学中也有广泛应用。
例如,在生物学中,许多生物组织和器官都具有分形结构,如肺组织、血管系统、神经元等。
利用分形理论可以更好地研究这些生物结构的形态和发展规律。
此外,在土地利用和城市规划领域,也可以应用分形理论来研究城市建筑的空间结构和空间分布规律。
二、混沌的基本概念和性质混沌又称为非线性动力学。
混沌指的是用微观因素推算出宏观效应的过程,该过程结果不可预测,但随着时间的推移,能够生成复杂、有规律的系统。
混沌体系可用方程式表示出来,但由于该方程式是个非线性方程式,所以其结果会随这方程式微小变化而产生巨大的差异。
混沌具有以下几个突出的性质:灵敏依赖于初始条件,长期不稳定,难以预测和控制。
混沌理论可以用于预测经济和金融领域中出现的一些紊乱现象,如股市波动。
混沌最初应用在天文学领域,例如研究太阳系中行星之间的轨道。
这些轨道不像我们所想的那样规律。
然而,混沌的发现不仅在天文学领域中应用,也在许多其它领域解决一些不规则的问题。
风险投资中混沌与分形浅谈
风险投资中混沌与分形浅谈导读:纵观整个风险投资市场当中,无论是股票市场,期货市场或者货币市场,所有的品种自从出现定价的一刻起,就是一个模糊不清的概念,其后期走势无法预测性以及不固定性,导致价格在经历一段时间之后便开始出现层级不清,混乱无章的状态当中。
要想在一个混沌不堪的市场当中获取收益,必须要对整个市场趋势分形。
市场趋势无论涨跌,都离不开三种趋势,上升趋势,下降趋势,横向整理趋势。
但是这只是笼统的说法,我们可以继续细分,上升趋势中又存在上升趋势,下降趋势,横向整理趋势。
下降趋势中也存在上升趋势,下降趋势和横向整理趋势。
横向整理趋势中也会存在上升趋势和下降趋势以及更小级别的横向整理。
依次细分下去,我们就会把整个大趋势分解为若干个次级趋势,次级趋势被分成若干个更小的趋势,这样,所有的形态便开始分清,之后我们才可以按照趋势进行交易环节。
如下图所示:上图当中将原油的走势分为了整个几个主要趋势之后,我们便可以长期的判定该行情的运行。
次级趋势如下图所示:上图当中我们将主要趋势中的一部分波段扩大,分为次级趋势的几个部分,可以看出价格依然处于一个下降五浪的过程当中,反弹六浪正在运行当中,根据分形我们依然可以把价格趋势继续细分如下图所示:上图中我们将次级趋势中的某一波段继续细分成更小级别的趋势,从图中我们已经可以看到,价格开始反弹并且向上突破多空分界点,此时可以多头建仓,但是其中一点必须注意,这只是我们小级别的趋势反转,之前的次级趋势的环节压制我们必须要考虑进去,也就是我们的大致目标为不会超过次级趋势。
我们可以继续将趋势继续细分成下图所示:上图中我们可以看出,价格出现上涨信号,并且一路上涨,我们可以多头建仓,但是我们必须要考虑到更加细小级别的次级趋势的压制,所以即便是多头建仓我们也要判定好点位是否能够满足。
从以上的趋势细分当中,我们可以看出原本混沌不清的行情我们便可以一一细分破解,之后寻找建仓点位,获取收益。
本质上的混沌与分形就是趋势细分的一个环节。
动力系统理论中的混沌与分形
动力系统理论中的混沌与分形混沌与分形是动力系统理论中的两个重要概念,它们在探索非线性系统行为和描述自然界的复杂性方面发挥着关键作用。
本文将从混沌与分形的基本原理、实际应用以及研究方向等多个角度来探讨这两个重要的理论概念。
一、混沌混沌是指在动力系统中,即使系统的运动规律是确定的,但其行为却表现出极端敏感的特性,即微小的初始条件改变会导致系统演化出完全不同的轨迹。
混沌理论的起源可以追溯到20世纪60年代,当时Lorenz通过研究大气环流模型,意外地发现了这一现象,这也被称为“蝴蝶效应”。
混沌现象的数学描述是通过非线性动力学方程实现的,例如著名的洛伦兹方程和Logistic映射等。
混沌行为的特点是演化过程不断变化,但却不失稳定性。
这种看似矛盾的特性给动力系统理论的研究带来了很大的挑战和启示。
混沌理论的实际应用非常广泛。
在天气和气候预测、金融市场、生态系统、心脏疾病等领域,混沌理论都发挥着重要作用。
通过混沌理论,我们能够更好地理解和预测这些复杂系统中的行为,为实际问题的解决提供了新的思路和方法。
目前,混沌理论仍然是一个活跃的研究领域。
研究人员致力于发展更精确的混沌理论模型,深入探究混沌行为的内在规律,以及在实际应用中的更多可能性。
二、分形分形是指具有自相似性和尺度不变性的几何形状。
与传统几何学中定义的规则形状不同,分形具有复杂的结构和非整数维度。
分形理论最早由Mandelbrot提出,并得到了广泛的应用。
分形的自相似性意味着它的一部分与整体具有相似的结构,这种特性使得分形能够用于描述自然界中许多复杂的形状,如云朵、树枝、河流等。
分形的尺度不变性意味着它在不同的比例下具有相似的结构,这也是分形与传统几何形状的显著区别。
分形理论在各个领域有着广泛的应用。
在计算机图形学中,分形可以用于生成自然风景和仿真自然材料的纹理。
在金融市场中,分形理论可以用于预测和分析股票价格的波动。
在生物学中,分形可以用于描述复杂的生物结构,如血管网络和肺泡等。
上帝的指纹——分形与混沌
上帝的指纹——分形与混沌来源:王东明科学网博客云朵不是球形的,山峦不是锥形的,海岸线不是圆形的,树皮不是光滑的,闪电也不是一条直线。
——分形几何学之父Benoit Mandelbrot话说在一个世纪以前,数学领域相继出现了一些数学鬼怪,其整体或局部特征难以用传统的欧式几何语言加以表述。
著名的数学鬼怪包括处处不稠密而完备的Cantor集,每段长度都无限而围成有限面积的Koch曲线,面积为零而周长无限的Sierpinski三角形。
Koch 曲线Sierpinski 三角形这些数学鬼怪曾缠绕数学家多年,直到20世纪后半叶,才被美籍法国数学家Benoit Mandelbrot创立的分形几何学彻底制服。
分形几何学是新兴的科学分支混沌理论的数学基础。
1967年Mandelbrot在美国《科学》杂志上发表了题为“英国的海岸线到底有多长”的划时代论文,该文标志着分形萌芽的出现。
在这篇文章中Mandelbrot证明了在一定意义上任何海岸线都是无限长的,因为海湾和半岛会显露出越来越小的子海湾和子半岛,他将这种部分与整体的某种相似称为自相似性,它是一种特殊的跨越不同尺度的对称性,意味着图案之中递归地套着图案。
事实上,具有自相似性的现象广泛存在于自然界中,这些现象包括连绵起伏的山川,自由漂浮的云彩,江河入海形成的三角洲以及花菜、树冠、大脑皮层等等。
Mandelbrot将具有自相似性的现象抽象为分形,从而建立了有关斑痕、麻点、破碎、缠绕、扭曲的几何学。
这种几何学的维数可以不是整数,譬如Koch曲线的维数约为1.26,而Sierpinski三角形的维数则接近1.585。
分形植物(在生成分枝形状和叶片图案时遵循简单的递归法则)分形闪电(经历的路径是逐步形成的)Mandelbrot研究了一个简单的非线性迭代公式xn 1=xn2 c,式中xn 1和xn都是复变量,而c是复参数。
Mandelbrot发现,对某些参数值c,迭代会在复平面上的某几点之间循环反复;而对另一些参数值c,迭代结果却毫无规则可言。
分形与混沌在经济学中的应用
分形与混沌在经济学中的应用通识学院,经济学专业,经济学2班,李怀生,学号:2013011236摘要 : 分形与混沌本就是源自物理学方面的知识,但就是在现代经济学问题的分析中,有很多关联之处,本文就来介绍分形与混沌相关知识怎样与经济学结合,给经济学研究以重要的理论支持。
关键词:分形,混沌,经济学1关于分形1、1认识分形1、1、1分形的含义多少世纪以来,人们总就是用欧几里得几何的对象与概念来描述我们这个生存的世界。
而非欧几何的发现,引入了描画宇宙现象的新的对象。
分形就就是这样一种对象。
1、1、2分型起源的时间:分形的思想初见于公元1875至1925年数学家的著作。
但起初被认为毫无价值,分形一词就是曼德勃罗于1975年创造的,曼德勃罗在该领域有着广泛的发现分形一般具有自相似性。
此外还有几个必要条件。
一、具有精细的结构,即就是说在任意小的尺度之下,它总有复杂的细节。
二、如此的不规则,以至它的整体与局部都不能用传统的几何语言来描述。
三、大多数情况下可以以递归方式产生分形事物。
简而言之,自相似性就是分形的重要特征,这种自相似性可以就是近似的,也可能就是统计意义上的。
具有自相似性的现象都就是分形学所研究的范围,而分形维数就就是描述具有自相似性的现象在几何性质上的尺度,即可以用一个有效的空间维数来表示,这个维数可以不就是整数,而就是一个可以连续变化的数。
1、2对分形理论的认识:分形理论的诞生不过30多年,但它对多种学科的影响就是极其巨大的。
卷入分形狂潮的除数学家与物理学家外,还有化学家、生物学家、材料学家等,在社会科学领域,大批经济学家、金融学家乃至画家与电影制作家都蜂拥而入。
著名的电影“星球大战”就就是用分形技术创作的。
分形图像压缩被认为就是最具前景的图像压缩技术之一,分形图形被认为就是描述大自然景色最诱人的方法。
分形研究的内容包括对象的分形特征分析,即考察对象就是否具有分形特性,在哪个方面表现出分形特性,属于哪一种分形无标度区的确定与分形维数计算,即研究它在什么层次上具有分形特征分形维数的物理意义与应用,即研究它的内部结构、规律以及物理、化学性质与分形维数的关系。
生物学中的混沌与分形
生物学中的混沌与分形生命是一种神秘而又复杂的存在,生物学作为探究生命奥秘的学科,也常常涉及到许多神秘和复杂的现象。
混沌与分形是生物学中的两个非常重要的概念,它们被广泛地应用于生物学的研究当中,帮助我们更好地理解生物系统内部的复杂性和耦合性。
一、混沌理论在生物系统中的应用混沌现象是指一些看似随机但却呈现出复杂规律性的现象。
在生物学中,混沌现象常常出现在神经系统、心血管系统、生物钟和遗传系统等方面。
比如,在心血管系统中,心跳的节律可以被认为是一种混沌现象,这是由于心跳周期的长短具有一定的随机性和不确定性,但是却呈现出一定的规律性。
混沌理论在生物学研究中的应用主要体现在以下几个方面:1. 生物信息处理在生物信息处理方面,混沌理论可以用于建立神经网络模型,帮助我们更好地模拟和理解神经元之间的交互过程。
此外,混沌理论还可以用于分析遗传密码子序列的随机性和复杂性,从而预测基因的功能和表达方式。
2. 生物节律研究在生物节律研究方面,混沌理论主要用于描述生物节律的复杂性和分层性。
例如,在赤潮生态学研究中,混沌现象被广泛应用于描述藻类群体的生长和迁移规律。
3. 生物系统稳定性分析混沌现象还可以用于分析生物系统的稳定性和复杂性。
生物系统中存在大量的非线性和随机性因素,例如,天气变化、食物链的变幻、天敌的侵袭等等,这些因素会影响生物群体的数量和分布。
混沌理论可以帮助我们更好地理解这些因素对生物系统稳定性产生的影响。
二、分形理论在生物系统中的应用分形是指一些看似简单却却具有内部复杂性和自我相似性的几何形状。
在生物学中,分形理论主要用于描述自然造型和空间分布的复杂性。
分形理论可以很好地表达生物体内部的分形结构、分形外表面以及分形空间分布等特征。
分形理论在生物学研究中的应用主要体现在以下几个方面:1. 生物形态研究在生物形态研究方面,分形理论主要用于描述生物体内部的分形结构和外表面的复杂性。
例如,分形理论可以很好地解释树枝结构、花瓣形态以及动物骨骼的结构等种种形态特征。
非线性动力学混沌和分形
非线性动力学混沌和分形非线性动力学是研究非线性系统行为的学科,其中混沌和分形是两个重要的概念。
本文将从混沌和分形的定义、产生原因以及在自然界和科学领域的应用等方面,探讨非线性动力学中的混沌和分形现象。
一、混沌的定义和产生原因混沌是指在非线性系统中表现出的随机、不可预测的行为。
它与线性系统中稳定、可预测的行为形成对比。
混沌的产生是由于非线性系统的敏感依赖性和非周期性。
非线性系统中存在着参数的微小变化对系统行为的剧烈改变的敏感依赖性。
也就是说,微小的输入扰动会在系统中产生指数级的放大效应,导致系统行为出现不可预测的、随机的演化轨迹。
非周期性是混沌的另一个重要特征。
与周期行为不同,混沌系统的演化轨迹不会重复,而是具有无限多的轨迹。
这种非周期性导致了混沌系统的随机性和不可预测性。
二、分形的定义和产生原因分形是指具有自相似性质的几何结构。
这种自相似性是指无论在何种尺度上观察,都能看到相似的图形形态。
分形在数学上可以通过重复迭代、自身放缩等方式来构造。
分形的产生原因与非线性动力学中的迭代过程密切相关。
在迭代过程中,每一次迭代都会根据某种规则对前一次结果进行变换或修改。
这种迭代的特性导致了分形的自相似性质。
三、混沌和分形在自然界中的应用混沌和分形不仅存在于数学和物理领域,也广泛存在于自然界中的各种系统中。
1. 混沌天气模型气象系统是典型的非线性系统,其中存在着许多复杂的变量相互作用。
应用混沌理论来模拟天气系统,可以更好地理解和预测天气变化。
例如,洛伦茨模型是一个典型的混沌系统,通过该模型可以模拟大气环流的混沌行为。
2. 分形地貌自然界中的许多地貌形状具有分形的特征。
例如,河流的分岔结构、山脉的起伏形态都展现了自相似的分形结构。
分形地貌的研究有助于了解地壳运动和地表形态的演化机制。
3. 植物生长模型植物生长是一个既复杂又多变的过程,涉及到生理、环境和遗传等多个因素的交互作用。
应用非线性动力学的方法,可以通过建立植物生长模型,研究植物生长的混沌行为以及其对环境的响应。
自然科学的混沌与分形
自然科学的混沌与分形一、引言自然科学是研究自然界现象和规律的学科,其中混沌与分形是近年来备受关注的研究领域。
混沌理论和分形几何不仅在物理学、化学、生物学等领域有广泛应用,而且在经济学、社会科学等其他领域也有重要意义。
本文将从混沌与分形的基本概念入手,介绍其在自然科学中的应用及意义。
二、混沌1.混沌的定义混沌是指某些动态系统表现出无序不规则的行为,即使系统初始状态非常相似,其演化结果也会有很大差异。
这些系统可能具有非线性特征或者对初值极其敏感。
2.混沌的起源20世纪60年代初期,美国数学家洛伦兹通过对大气运动方程组的研究发现了混沌现象。
他发现即使初始条件微小变化,天气预报结果也会截然不同。
这个发现引起了人们对于非线性动力系统的关注。
3.混沌在自然科学中的应用(1)天气预报:由于天气系统具有非线性特征,天气预报的准确性受到混沌现象的影响。
(2)流体力学:混沌现象在流体运动中也十分常见,如涡旋、湍流等。
(3)生物学:许多生物系统也表现出混沌行为,如心电图、神经元放电等。
三、分形1.分形的定义分形是指一类具有自相似性质的几何图形。
即使在不同尺度下观察,这些图形的局部结构都与整体结构相似。
分形具有无限细节和复杂性,其维度可能是非整数。
2.分形的起源20世纪70年代初期,法国数学家曼德博发现了著名的“曼德博集合”,这是一种具有自相似性质的复杂几何图形。
此后,人们开始研究分形几何,并发现了许多新型分形。
3.分形在自然科学中的应用(1)地理学:地球表面上许多地貌景观都呈现出分形特征,如海岸线、山脉等。
(2)物理学:许多物理系统也表现出分形行为,如布朗运动、液滴形成等。
(3)生物学:许多生物系统具有分形结构,如肺泡、血管等。
四、混沌与分形的关系混沌和分形是密不可分的。
在某些情况下,混沌现象可以导致分形结构的出现。
例如,曼德博集合就是一种由混沌现象产生的分形。
此外,混沌理论和分形几何也可以相互补充,共同解释自然界中复杂的现象。
分形和混沌
作为非线性科学三大理论前沿之一的分形理论,具有 一些不同与整形(欧氏几何里具有整数维的几何图形) 的特点,概括有五个基本特征或性质.
形态的不规则性.它是如此的不规则,以致不能用传统的 数学语言来描述; 结构的精细性,即具有任意小的比例细节; 局部与整体的自相似性,即局部与整体具有自相似性(这 种自相似性可以是严格的,近似的或统计的); 维数的非整数性,它的维数一般是分数的,并且大于其拓 扑维数; 生成的迭代性,分形虽然具有复杂结构,但是通常可以用 迭代方法生成.
返回混沌主页
下面我们来讲混沌的特性。
(1)确定系统的内在随机性. 混沌现象是由系统内部的非线性因素引起 的,是系统内在随机性的表现,而不是外来随 即扰动所产生的不规则结果。混沌理论的研究 表明,只要确定性系统中有非线性因素作用, 系统就会在一定的控制参数范围内产生一种内 在的随机性,即确定性混沌。 混沌现象是确定性系统的一种“内在随机 性”,它有别于由系统外部引入不确定随机影 响而产生的随机性。为了与类似大量分子热运 动的外在随机性和无序性加以区别,我们称所 研
初值x0与x0’之差z= | x0’- x0 |=13/(7* 23002) =1/ 10900是 非常小的,但经过3002次迭代之后结果就完全不同了。这就是 说, x0小数的前900位(或二进制的3002位)信息完全丧失。 这里并没有在迭代中进行“舍入”处理,而完全是由于初值的 不确定性造成的。
分形结束返回主页
我们再看一个著名的例子——“蝴蝶效应”.洛仑兹有一 个形象的比喻“巴西的一只蝴蝶扇动几下翅膀,可能会改变3 个月后美国得克萨斯的气候”。他说明了天气演变对初值 的敏感依赖性。用混沌学的术语表述就是,系统的长期行 为对初值的敏感依赖性。
(1)混沌的定义 (2)混沌的特性:
企业制度系统的复杂性——解读混沌与分形
企业制度系统的复杂性——解读混沌与分形企业制度系统的复杂性——解读混沌与分形随着世界经济的高速发展,企业已经成为现代经济社会不可或缺的组成部分。
然而,一个企业的运营不仅仅取决于它的管理人员,还取决于它的制度系统。
企业制度系统是一个影响企业成功的重要因素,因为它在制定目标、规划资源、安排工作流程、确保生产质量、控制成本和监测绩效方面起着关键作用。
然而,企业制度系统的复杂性也是企业经营中值得考虑的因素。
本文将通过对混沌与分形的探析来解读企业制度系统的复杂性,为企业管理者提供更好的思路。
一、混沌与分形的基本概念混沌理论源于20世纪60年代和70年代美国马萨诸塞州布兰戈国家实验室的一个研究小组,该小组成员包括托马斯·莱昂(Thomas Leon)和爱德华·洛伦兹(Edward Lorenz)。
混沌理论是研究某些非线性动力系统和小气候变化的科学原理,也被称为“蝴蝶效应”,即小的变化在系统中扩大到产生复杂而难以预测的结果。
蝴蝶效应的思想是,在一个复杂的系统,初始状态和后续状态之间的微小变化会以非线性的方式影响系统未来的发展。
分形是20世纪80年代引入的概念,指的是通过缩放重复结构来描述自然物理对象的几何特征。
分形可以使用数学公式表示,并且在物理、生物、社会、经济和文化等领域都可以找到应用。
分形的特点是自相似性、分形维数、维度不是整数等。
例如,我们可以通过放大孟菲斯大教堂的尖顶来观察到分形的自相似性:大尺寸的孟菲斯大教堂具有与小尺寸的尖顶相似的细节。
二、企业制度系统的复杂性企业的制度系统是指一系列规章制度、流程和程序,包括生产工艺、质量控制、产品研发、职业健康安全、人事管理、财务管理、市场营销等方面。
企业制度系统中的每个子系统都是相互协调、相互影响的,与整个组织的成功密切相关。
然而,企业制度系统的复杂性也是显而易见的。
首先,企业制度系统是由许多不同的子系统组成的。
这些子系统可能在不同的层次和部门之间互相交叉、互相影响。
4溷沌与分形
第九章混沌与分形混沌学习了牛顿力学后,往往会得到这样一种印象,或产生这样一种信念:物体受力已知的情况下,给定了初始条件,物体以后的运动情况(包括各时刻的位置和速度)。
就完全定了,并且可预测了。
这种认识被称作决定论的可预测性。
验证这种认识的最简单例子是抛体运动。
物体受的重力是已知的,一旦初始条件(抛出点的位置和抛出时速度)给定了,物体此后任何时刻的位置和速度也就决定了。
物体在弹力作用下的运动也是这样,已知的力和初始条件决定了物体的运动。
这两个例子中都可以写出严格的数学运动学方程,即解析解,从而使运动完全可以预测。
牛顿力学的这种决定论的可预测性,其威力曾扩及宇宙天体。
1757年。
哈雷慧星在预定的时间回归,1846年海王星在预言的方位上被发现,都惊人的证明了这种认识。
这样的威力曾使伟大的法国数学家拉普拉斯夸下海口:给定宇宙的初始条件,我们就能预言它的未来。
当今日蚀和月蚀的准确预测,宙宙探测器的成功发射与轨道设计,可以说是在较小范围内实现了拉普拉斯的壮语。
牛顿力学在技术中得到了广泛的成功的应用。
物理教科书中利用典型的例子对牛顿力学进行了定量的严格的讲解。
这些都使得人们对自然现象的决定论的可预测性深信不疑。
但是,这种传统的思想信念在20世纪60年代遇到了严重的挑战。
人门发现由牛顿力学支配的系统,虽然其运动是由外力决定的,但是在一定条件下,却是完全不能预测的。
原来,牛顿力学显示出的决定论的可预测性,只是那些受力和位置或速度有线性关系的系统才具有的。
这样的系统叫线性系统。
牛顿力学严格地成功处理过的系统都是这种线性系统。
对于受力复杂的非线性系统,情况就不同了。
下面通过一个实际例子说明这一点。
决定论的不可预测性。
用畅销名著《混沌——开创一门新科学》的作者格莱克的说法,蝴蝶效应指的是“今天在北京一只蝴蝶拍动一下翅膀,可能下月在纽约引起一场暴风雨。
”下面是几个混沌实例。
1.天体运动的混沌现象前已述及,三体问题,更不要说更多体的问题,不可能有解析解。
分形数学和混沌动力学的应用
分形数学和混沌动力学的应用分形数学和混沌动力学是当代科学中的两个重要分支,这两个科学领域一直在推动人类的科技和社会发展。
其中分形数学是指一种研究自相似和自校正的图形和模式的数学学科,而混沌动力学是研究复杂动态系统的定性和量化性质的数学分支。
在不同领域的应用中,这两个数学工具都有着非常广泛的应用。
一、分形数学的应用1. 绘图艺术分形可以作为一种绘图工具来创造出独特的图案和艺术作品。
利用计算机程序,可以轻松地绘制出各种奇妙的分形图形。
例如,曼德博集合是一种特殊的分形,可以用复数平面上的点作为初始值进行计算,最终得到一个有规律且具有吸引力的图案。
2. 经济学分形在经济学中有着广泛的应用。
某些市场中的价格变化和市场的行为可以通过分形来解释。
例如,股票价格和汇率的变化就具有分形特性。
研究这些分形模型可以帮助分析市场的变化和模式。
3. 生物学在生物学领域,分形被用于研究复杂的生物结构和系统,如血管分布、肺泡结构、心电图和DNA等。
通过分形分析,可以更深入地理解这些复杂系统的特性,并提供新的数据分析工具。
4. 地理学分形学可以用于研究地形地貌。
例如,分形分析可以帮助理解海岸线的弯曲程度和地质的形态,同时还可以用于海浪的形态和多汁沟谷的分形分析。
二、混沌动力学的应用1. 通讯加密混沌现象在通讯加密中被广泛应用。
通过使用混沌序列或流加密算法,可以有效地保护敏感数据的安全。
混沌动力学的特性,如无法预测、高度敏感性和随机性,可以用于建立高强度的加密算法。
2. 生物学混沌动力学的理论应用于生物学领域。
例如,生物钟的行动可以用混沌模型来模拟。
根据生物钟模型的预测,轻微的环境变化可以导致严重的失调。
此外,混沌动力学也用于研究心脏节律和癫痫发作。
3. 经济学混沌理论在经济学研究中也有着重要的应用。
例如,通过混沌模型可以研究金融市场的波动性和变化。
此外,混沌现象在个人财务规划和投资决策中也有广泛的应用。
4. 控制工程混沌现象可以用于设计混沌控制器,这种控制器可以将混沌动力学的随机性转换为稳定奇数。
动力系统理论中的混沌与分形
动力系统理论中的混沌与分形本文旨在探讨动力系统理论中的混沌与分形现象。
混沌与分形是动力系统理论中的两个重要概念,它们帮助我们理解非线性系统中的复杂行为。
通过对混沌和分形的介绍和解释,可以更好地理解这些现象对于动力系统理论的重要性。
一、混沌现象1.1 混沌的定义与特征混沌是一种看似随机、无序的、复杂的系统行为,但实际上具有确定性的特点。
混沌系统的演化过程是高度敏感的,微小的初始条件变化会导致系统行为的巨大差异。
1.2 混沌系统的示例尽管混沌系统无法通过常规的数学方法进行精确描述,但它们在自然界和科学领域中广泛存在。
例如,洛伦兹吸引子和双拱摆动等系统都展现了混沌行为。
1.3 混沌在动力系统中的应用混沌现象在动力系统控制和信息处理等领域有着重要的应用。
通过对混沌现象的研究,可以开发出一些混沌控制方法和混沌加密算法等技术。
二、分形现象2.1 分形的定义与特征分形是一种具有自相似性的几何形状。
分形对象的局部部分与整体之间存在着相似的结构,无论是放大还是缩小都能看到相似的形态。
2.2 分形的分类与例子分形可以分为确定性分形和随机分形,分形的例子包括科赫雪花曲线、谢尔宾斯基三角形和曼德尔布罗集合等。
2.3 分形在动力系统中的应用分形几何在动力系统的建模和分析中有广泛应用。
例如,在天气系统中,分形几何可以用来描述云朵的形状和天气的变化规律。
三、混沌与分形的关系混沌和分形都是非线性动力系统中的重要现象,它们之间存在着紧密的联系。
3.1 分形维度与混沌系统混沌系统的分维度是一个重要的非线性度量指标,在描述混沌系统的复杂性和自相似性方面起着关键作用。
3.2 分形分析揭示的混沌机制分形分析方法能够揭示混沌系统中的规律和结构。
通过分形分析可以得到混沌系统的分维度、分形维数等重要参数,从而更深入地理解混沌现象。
结论混沌与分形是动力系统理论中的重要概念,它们对于我们理解非线性系统中的复杂行为起到了关键作用。
混沌现象展示了非线性系统的敏感依赖性和不确定性,而分形则展示了系统的自相似性和复杂性。
给中学生的纯科普——分形与混沌
给中学生的纯科普——分形与混沌下面我们开始分别介绍分形与混沌。
分形是具有以非整数维形式充填空间的形态特征,通常被定义为一个粗糙或零碎的,Mandelbrot于1973年首次提出了分维和分形的思想。
分形是一个数学术语,也是一套以分形特征为研究主题的数学理论。
分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科,是研究一类现象特征的新的数学分科,相对于其几何形态,它与微分方程与动力系统理论的联系更为显著。
分形的自相似特征可以是统计自相似,构成分形也不限于几何形式,时间过程也可以,故而与随机过程中的鞅论关系密切。
上图可以看到西兰花一小簇是整个花簇的一个分支,而在不同尺度下它们具有自相似的外形。
故较小的分支通过放大适当的比例后可以得到一个与整体几乎完全一致的花簇,因此可以说西兰花簇是一个分形的实例。
分形一般有以下特质:在任意小的尺度上都能有精细的结构;太不规则以至难以用传统欧氏几何的语言描述;自相似Hausdorff维数会大于拓扑维数;且有著简单的递归定义。
(1)分形集都具有任意小尺度下的比例细节,或者说它具有精细的结构。
(2)分形集不能用传统的几何语言来描述,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。
(3)分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。
(4)一般,分形集的分形维数严格大于它相应的拓扑维数。
(5)在大多数令人感兴趣的情形下,分形集由非常简单的方法定义,可能以变换的迭代产生。
Koch曲线是一种外形像雪花的几何曲线,所以又称为雪花曲线,它是分形曲线中的一种,其Hausdorff维数是ln4/ln3,具体画法如下: (1)任意画一个正三角形,并把每一边三等分;(2)取三等分后的一边中间一段为边向外作正三角形,并把这“中间一段”擦掉;(3)重复上述两步,画出更小的三角形。
(4)一直重复,直到无穷,所画出的曲线叫做Koch曲线。
混沌(chaos)是指确定性动力学系统因对初值敏感而表现出的不可预测的、类似随机性的运动。
混沌理论与分形几何学
混沌理论与分形几何学展开全文我们都知道,心脏大体上必须呈现规则的活动,否则你将死亡。
然而脑部大体上必须呈现不规则的活动,否则你将发生癫痫。
这显示不规则(混沌)将导致复杂的系统。
它并不是完全的无秩序。
恰好相反,我认为生命与智慧便是基于混沌才可能发生。
脑部在设计上如此不稳定,所以最小的影响便可以导致秩序的形成。
——伊利亚普利高津目标:进一步了解混沌理论与分形几何学“范式”是来自于希腊,意义为“模型或模式”。
亚当斯密在他的书《心灵的力量》中,将范式定义为:“一组共同认定的假设”。
他又说:“范式是我们感知世界的方法,它如同是鱼类的水。
范式向我们解释世界,并协助我们预测世界的行为。
”社会的范式决定我们的行为与价值观。
医学的范式将决定我们对自己身体的了解。
我们对于市场的范式,将决定、并限制我们与市场之间的互动。
范式是我们观察世界的一片滤镜。
它是我们对于“实在”的观念。
由于它决定我们的实在,所以我们甚少留意它,甚至更少怀疑它。
我们个人的范式将决定我们个人的实在,以及我们对于世界的假设。
我们不会思考这些假设,我们是根据这些假设来思考。
我们无法直接观察世界,我们永远是透过范式的滤镜来观察世界。
我们永远无法观察世界的整体,我们仅能够看见其中的片段。
市场的情况也是如此。
我们无法观察它的整体,我们仅能够看见其中的片段。
我们的心智架构将自然而偏颇地引导我们,让我们仅看见符合我们个人范式的部分世界(市场)。
范式也会过滤接收的资讯,使它们来强化我们既有的范式(信心系统与心智模式)。
所以,市场便像大峡谷一样。
如果你大声向它呼喊:“技术分析!”回声也是“技术分析”。
如果你大喊:“占星术!”,回声也是“占星术”。
如果你喊道:“混沌!”你将听到“混沌”。
这使我们怀疑一项概念,是否有所谓固定而客观的宇宙(市场)?犹如置于红外线、一般光线与X光线下的物体一样,实体(市场)反映的是我们对它的感知,而这些感知未必对应真正的实体。
亚当斯密指出:“我们身处某种范式中时,我们很难想像任何其他的范式。
分形与混沌理论浅说
分形与混沌理论浅说有一个非常有趣的游戏,叫做猜一猜这个物品的价格,玩者只要报数值,而对方只要说对与错,玩者就可以逐渐知道物品的价格,而在无限的时间内,它的范围可以由大到小,由无数混沌的数值到精确的数值,恭喜你答对了。
计算机是二进制语言,那么是否可以将计算机变成一种预测工具呢?只要我们把从古到今所有知识信息收集起来,或是尽量收集起来,实际上计算机程序就能完成预测,你只需要问计算机问题,而计算机把问题分解为一系列的“是”与“否”,那么无论再复杂的问题都可以在几分钟内揭晓,如果这种软件可以开发,因为信息的有限不一定可以百分之一百预测,但却可以大体上预测的效果,并细小到个体事物,那么每个人都可以成为拥有类似特异感觉这样的预言先知了,因为存在个人信息库中的信息被联系与全息利用并诱导了出来,计算机并不是告诉你结果,结果是一种非线性过程,而是将正确与错误分别归类,这是计算机系统的强项也是相对可操作的,比如土豆是一种蔬菜,一种生物,一种植物,一种物质,一种自组织,是原子构成的等,那么将土豆的大体全息信息编写入计算机程序中,以此类推把各种信息以此归类组合,那么当你问这个物体是否是动物时,答案就会直接出现“否”,而答对就会出现“是”。
假如我们将人类已知的信息,可以包括宇宙,宗教,历史文化,哲学,科学,社会学,心理学,日常常识以及新发现的知识全息展开编入计算机,那么这套软件足以象《周易》一样预测未来信息了。
在《易经》体系中,所谓的占卜并不是偶然的,古代占卜是利用人脑潜意识对全息信息的判断,其特点不是逻辑判断而是在类似迷糊状态的认知反映到个体判断上,而达到预测的目的。
那么是否每个偶然的状态都有其存在意义呢?问题并非那么简单,这个问题还涉及并回到简单性与复杂性,混沌与有序上.占卜虽然是古代迷信的产物,但却也是潜意识的外化语言,是内化语言的摹本,也就是说在模拟练气功时调动出的潜意识,调动内在神灵,可以神通或特异感知的外化语言方式,其特点是偶然性或概率性,计算机也能协调完成做到这一点,而缺点在于需要通过你的自问自答,不出几分钟,你可以知道一件你从来没有看见过的东西的来历。
混沌理论和分形理论有什么不同?
混沌理论和分形理论有什么不同?混沌理论解释了为何看似完全确定的方程(包括微分方程和迭代方程),但仍然会出现一些看似「随机性」的东西。
与真正的「随机」现象不同,「混沌」虽然表面上看起来没有规律,但其迭代的模式(或者其微分方程的形式)则是可以确定的。
例如大家熟悉的「蝴蝶效应」,就来源于微分方程求解中的一个实际问题,只要初始条件一些微小的变动,方程后续的演化就会非常不同,尽管方程是确定性的,但方程后续的演化却是不确定的。
分形理论希望解释世界上的各种自相似现象以及有关「维度」的问题。
自相似其实很好理解,一个系统的局部可能与整个系统有某种相似性,一棵树上的一个分支与整棵树是非常相似的,这就是「自相似性」。
而「维度」则与度量有关,我们要度量一根线的长度,我们可以拿一维的尺子来测量,我们要度量一个圆的面积,我们可以用一些小方格去覆盖它,这些小方格就是二维的尺子,可如果是一条弯弯曲曲的线,那么用一维的尺子会得到无穷大的结果,可二维的尺子又测不到任意的面积,这表明在一维和二维之间还有着在此之间的分形维度。
而这二者之间也有联系,这二者都与「迭代」有关。
混沌研究的是「迭代」本身的性质,而分形研究的是一种让系统保持(在各尺度下)性质不变的「迭代」;同时,这二者还都与复杂性有关,一个系统要最「复杂」,常常会处在「混沌边缘」,从而自然演生出各种自相似(分形)特征。
国学解量子古今发先声这二个理论纠缠都是人类思维向自然界的复杂性宣战的工具。
但各有其要点,混沌致力于从复杂性中用代数法则找出那相对稳定的准规律,而分形则立足于从几何的角度从不规则几何形态,如云,乱流,网落,树皮,复杂地形(海岸线曲折)找出自相似性,包括对称,映射与微结构。
分形几何学起于六十年代从股票曲线峯值与屁股的比例入手,所谓高峰与大屁股同时存在于一个股票曲线中,而这是动态图像中捕捉到的瞬间变化中,可用作预报市场之用,如美国的伊利诺波形分析。
创建于2017.12.13净观山王混沌理论:核外电子的轨速是倾斜的运转表现出来电磁场也都是倾斜的波动(没有一个是正对称形的)。
动力系统理论中的混沌与分形研究
动力系统理论中的混沌与分形研究动力系统理论是研究描述物体运动规律的数学理论。
其中的混沌与分形研究是动力系统理论中的重要内容。
混沌理论描述了一种看似无序但却具有确定规律的运动状态,而分形理论则描述了不规则而又自相似的几何形态。
本文将从混沌和分形的基本概念入手,介绍动力系统理论中的混沌与分形研究的应用与意义。
一、混沌的基本概念混沌,顾名思义,是一种“无秩序”的状态。
然而,在混沌现象背后却存在着确定的规律。
在动力系统理论中,混沌是指非线性系统在某一特定参数范围内产生的不可预测的运动状态。
混沌的特点表现在两个方面:灵敏依赖于初始条件和对微小扰动的放大。
这意味着微小的初始条件变化可以导致系统最终状态的巨大差异,即所谓的蝴蝶效应。
混沌在天气预报、金融市场和生物系统中的应用都存在广泛而重要的意义。
二、分形的基本概念分形,是指一种具有自相似性的几何形态。
分形意味着物体的每一部分都是整体的缩小或放大。
分形的特点是不规则性与自相似性。
在动力系统理论中,分形被广泛应用于描述复杂非线性系统的结构与形态。
分形理论的应用可见于自然界中的云朵形态、海岸线的曲折程度等。
三、混沌与分形的关系混沌与分形是动力系统理论中密切相关的两个概念。
虽然混沌和分形可以被看作是两个独立的概念,但在动力系统中它们往往相互关联。
事实上,混沌与分形更多是作为动力系统理论中的研究手段和表征方法,用于描述非线性系统的运动特征和结构特征。
混沌和分形不仅在自然科学中有重要应用,在社会科学和人文科学中也有广泛的研究价值。
四、混沌与分形的应用与意义混沌与分形在多个领域的应用与意义不可忽视。
在天气预报中,混沌理论的应用可以帮助提高预测准确度;在金融市场中,分形理论可以帮助分析市场波动性和趋势;在生物系统中,混沌理论与分形理论可以帮助理解生物系统的复杂性与变异性。
此外,在信息科学、图像处理、信号处理等领域,混沌与分形的研究也具有重要的应用意义。
总结起来,动力系统理论中的混沌与分形研究对于深入理解非线性系统的运动规律和结构特征具有重要意义。
实验四函数的迭代、混沌与分形解读
实验四函数的迭代、混沌与分形[实验目的]1. 认识函数的迭代;2. 了解混沌和分形.迭代在数值计算中占有很重要的地位,了解和掌握它是很有必要的.本实验将讨论用Newton迭代求方程根的问题,以及迭代本身一些有趣的现象.§1 基本理论1.1 迭代的概念给定某个初值,反复作用以同一个函数的过程称为迭代.函数f(x)的迭代过程如下:x0,x1=f(x0),x2=f(x1),……..,x n=f(x n-1)…..,它生成了一个序列{x n}迭代序列.许多由递推关系给出的数列,都是递推序列.例如数列.X0=1,x n=1+1/(1+x n-1) (n=1,2,…………..)是由函数f(x)=1+1/(1+x)=(2+x)/(1+x)取初值为1所得的迭代序列.1.2 迭代序列的收敛性定理设函数f(x)满足:(1)对任意x∈(a,b),f(x)∈(a,b);(2)f(x)在(a,b)内可导,且存在常数L使得|f(x)'|=L<1,则当初值x0∈(a,b)时,由f(x)生成的迭代序列收敛.在迭代函数f(x)连续的条件下,如果迭代数列收敛,则它一定收敛于方程x=f(x)的根.该方程的根也称函数f(x)的不动点.设x*为f(x)的不动点,f(x)'在x*的附近连续,若|f(x*)'|<1,则称不动点x*是稳定的;若f(x*)'=0,则称不动点x*是超稳定的.在超稳定点x*附近,迭代过程x n+1=f(x n)收敛到x*的速度是非常快的.1.3 Newton迭代法设函数g(x)具有一阶导数,且g(x)'≠0,则函数f(x)=x-g(x)/g(x)'的迭代称为Newton迭代,若函数f(x)存在不动点,则它一定是方程g(x)=0的根,故Newton迭代法可用来求方程g(x)=0的根.§2 实验内容与练习2.1 迭代的收敛对于函数迭代,最重要的问题是迭代序列的收敛性.一般说,迭代序列是否收敛取决于迭代函数与初值.作为一个例子,我们用来讨论用Newton迭代法求函数g(x)=(x-17)5/3(x-5)-2/3的根,其Mathematica程序为:Clear[g,x];g[x_]:=(x-17)^(5/3)*(x-5)^(-2/3);f[x_]=Factor[x-g(x)]/D[g[x],x]];x0=5.5;n=20;For[i=1,i<=n,i++,x0=N[f[x0]];Print[i,”“,x0,”“,D[f[x],x]/.x->x0]]执行结果见表4.1.表4.1的结果说明迭代序列收敛于g(x)的零点17.我们注意到程序中取的迭代处值为5.5,如果其它的数作为初值,所得的迭代序列是否收敛于17呢?我们可以取其它初值做实验,结果得到表4.2(表中第三列是迭代序列的前6位有效数字首次为17.0000的步数).从表4.2中可看出,只要初值不取5,迭代序列都收敛于17,且收敛速度与初值的选取关系不大.前面程序中使用的f(x)为g(x)的化简过的Newton迭代函数,用Mathematica命令可检查出它为(25x-85)/(x+3)(注意,这个式子扩充了原迭代函数在x=5,x=17处的定义),解方程f(x)=x.得到x=17,与x=5.即17和5是f(x)的两个不动点,有前面的讨论知这两个不动点是有区别的:对于17,不管初值取为多少(只要不为5),迭代序列总是收敛于它;而对于5,只要初值取为5时,迭代序列才以它为极限,这样一种现象在函数的迭代中普遍存在,为方便区分起见,我们给这样两种点各一个名称:像17这样的所有附近的点在迭代过程中都趋向于它的不动点,称为吸引点;而像5这样的所有附近的点在迭代过程中都远离它的不动点,称为排斥点.上面的f(x)=(25x-85)/(x+3)是一个分式线性函数,对于一般的分式线性函数,迭代序列是否总是收敛呢?练习1 编程判断函数f(x)=(x-1)/(x+1)的迭代序列是否收敛.在上节我们已经指出,如果迭代序列收敛,一定收敛到函数的某个不动点,这就是说,迭代函数存在不动点是迭代序列收敛的必要条件.那么如果迭代函数存在不动点,迭代序列是否一定收敛呢?练习2 先分别求出分式线性函数f1(x)=(x-1)/(x+3),f2(x)=(-x+15)/(x+1)的不动点,再编程判断它们的迭代序列是否收敛.运用上节的收敛定理可以证明:如果迭代函数在某不动点处具有连续的导数且导数值介于-1与1之间,那么取该不动点附近的点为初值所得到的迭代序列一定收敛到该不动点.练习3 你能否说明为什么17是f(x)=(25x-85)/(x+3)的吸引点,而5是f(x)的排斥点?尽量多找些理由支持这个结论.练习4 能否找到一个分式线性函数(ax+b)/(cx+d),使它产生的迭代序列收敛到给定的数?用这种办法计算2.2.2迭代的”蜘蛛图”对函数的迭代过程,我们可以用几何图象来直观地显示它.在xoy平面上,先作出函数y=f(x)与y=x的图象,对初值x0,在曲线y=f(x)上可确定一点p0,它以x0为横坐标,过p0引平行x轴的直线,设该直线与y=x交与点Q1作平行于y轴的直线它与曲线y=f(x)的交点记为p1,重复上面的过程,就在曲线y=f(x)上得到点列p1,p2,……,如图4.1,不难知道,这些点的横坐标构成的序列x0,x1,x2,……,xn……就是迭代序列.若迭代序列收敛,则点列p1,p2,……趋向于y=f(x)与y=x的交点p*,因此迭代序列是否收敛,可以在图上观查出来,这种图因其形状像蜘蛛网而被称为“蜘蛛网”图。
蝴蝶效应之谜—走进分形与混沌读后总结
蝴蝶效应之谜——走进分形与混沌读后随笔第一篇 美哉分形1.1有趣的分形龙(1)简单的迭代,进行多次之后,产生了越来越复杂的图形;(2)越来越复杂的图形表现出一种“自相似性”;(3)迭代次数较少时,图形看起来是一条折来折去的“线”,随着迭代次数的增加(迭代次数→无穷)最后的图形看起来像是一个“面”。
1.2简单的分形皮亚诺和space filling curve科赫曲线(雪花);分形(fractals )1.3分数维及其计算方法在经典几何中,是用拓扑的方法来定义维数的,即空间的维数等于决定空间中任何一点位置所需变量的数目。
德国数学家豪斯多夫(F. Hausdorff )1919年给出了维数的新定义。
用自相似定义的维数可以如此简单而直观的理解:首先将图形按照1:N 的比例缩小,然后,如果原来的图形可以由M 个缩小之后的图形拼成的话,这个图形的维数d ,也叫豪斯多夫维数,即()()n M d ln ln = 1.4再回到分形龙1.5大自然中的分形分形具有以下特征:(1)分形具有自相似性。
(2)分形具有无穷多的层次。
(3)分形的维数可以是一个分数。
(4)分形通常可以由一个简单的递归、迭代的方法产生出来。
生成分形的三种方法简单的线性迭代法;线性迭代与随机过程相结合;非线性迭代法。
特例,一种很重要的与随机过程有关的分形:扩散置限凝聚。
(闪电、石头裂纹等)1.6分形之父的启示本华 曼德勃罗(B. Mandelbrot )。
曼德勃罗集(非线性迭代)1.7魔鬼的聚合物——曼德勃罗集 朱利亚集都是复数,其中,C Z C Z Z n n +=+211.8朱利亚的故事西方谚语“在木匠看来,月亮也是木头做的”。
即每个人都用自己的方式来理解世界。
分形龙网址[OL]/cd/java/fractals.html曼德勃罗集和朱利亚集网址[OL] /cd/java/iterfrac.html第二篇 奇哉混沌2.1拉普拉斯妖混沌理论是研究一个动力系统的长期行为。