[VIP专享]电磁学(赵凯华)答案[第2章 稳恒磁场]39
赵凯华所编《电磁学》第二版问题详解
第一章静电场§1.1 静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同种电荷而相互排斥。
3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果?答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
---------------------------------------------------------------------------------------------------------------------§1.2 电场电场强度思考题:1、在地球表面上通常有一竖直方向的电场,电子在此电场中受到一个向上的力,电场强度的方向朝上还是朝下?答:电子受力方向与电场强度方向相反,因此电场强度方向朝下。
2、在一个带正电的大导体附近P点放置一个试探点电荷q0(q0>0),实际测得它受力F。
若考虑到电荷量q0不是足够小的,则F/ q0比P点的场强E大还是小?若大导体带负电,情况如何?答:q0不是足够小时,会影响大导体球上电荷的分布。
赵凯华陈煕谋《电磁学》第三版的思考题和习题答案
静电场
§1.1 静电的基本现象和基本规律
思考题:
1、 给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方
向。你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。你所用的方法是否要求两球大小
相等?
答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠
3、 为了得到一库仑电量大小的概念,试计算两个都是一库仑的点电荷在真空中相距一米时 的相互作用力和相距一千米时的相互作用力。 解: 4、 氢原子由一个质子(即氢原子核)和一个电子组成。根据经典模型,在正常状态下,电 子绕核作圆周运动,轨道半径是 r=5.29×10-11m。已知质子质量 M=1.67×10-27kg,电子质 量 m=9.11×10-31kg。电荷分别为 e=±1.6×10-19 C,万有引力常数 G=6.67×10-11N·m2/kg2。 (1)求电子所受的库仑力;(2)库仑力是万有引力的多少倍?(3)求电子的速度。 解: 5、 卢瑟福实验证明:当两个原子核之间的距离小到 10-15 米时,它们之间的排斥力仍遵守 库仑定律。金的原子核中有 79 个质子,氦的原子核(即α粒子)中有 2 个质子。已知每个 质子带电 e=1.6×10-19 C,α粒子的质量为 6.68×10-27 kg.。当α粒子与金核相距为 6.9× 10-15m 时(设这时它们仍都可当作点电荷)。求(1)α粒子所受的力;(2)α粒子的加速 度。 解: 6、 铁原子核里两质子间相距 4.0×10-15m,每个质子带电 e=1.6×10-19 C。(1)求它们之间 的库仑力;(2)比较这力与所受重力的大小。 解: 7、 两个点电荷带电 2q 和 q,相距 l,第三个点电荷放在何处所受的合力为零? 解:设所放的点电荷电量为 Q。若 Q 与 q 同号,则三者互相排斥,不可能达到平衡;故 Q
新概念物理教程 电磁学 赵凯华 第二版2版 课后习题答案全解详解
可当作点电荷),求(")! 粒于所受的力;(’)! 粒子的加速度。
解:(")
!
&"
$" + " !#
’" ’’ (’
$ +
%
%& %"" (# %"# !"&%’ ," "+ %)" )$ %"# !"’
%"" %((
(# %"# !"& " &# %"# !"$
)’
%
$ %" (+
%"# !’ %,
’& ,由 " ! ’ 题的结果可知
’"
#
%
" !
!#(
%
!&&+, &)$ ,!
’&
#
%
" !
!#(
%
&+ -& , &
)$ ;
* 点的场强为
[ ] ’
# ’"
!’&
#%
" ! !#
&+ %$ ("
!
" &,
&
%)$
! (
"
" -& ,
&
%)$
[ ( ) ] $%
" ! !#
&+ %$
"
-&$
& %
设两平行线中左边一条带负电右边一条带正电原点取在二者中间场点的坐标为利用书上例题的结果有均匀电场与半径为的半球面的轴线平行试用面积分计算通过此半球面的电通量
赵凯华电磁学及课后习题答案
电场线起始于正电荷或无穷 远,止于负电荷或无穷远
应用:直线
应用:平面
34推广
应用:球面
续41
应用:球体
比较结果
§4 电势及其梯度
静电保守力
续45
点电荷系
续47
保守力小结
环路定理
电势能
续51
点电荷例
电势
电势差
叠加原理
续56
简例
电势计算法
第一章
静电场
§1 静电场的基本现象 和基本规律
电荷守恒定律
真空库仑定律
续库仑定律
§2 电场 电场强度
第二节
电场强度
点电荷的场强
点电荷系场强
电偶极子场强
带电体的场强
带电直线场强
续16
续17
带电平面场强
带电平的场强
续19
两个常用公式
带电圆环场强
续22
带电圆环场强
带电圆盘场强
1 C
1 C1
1 C2
1 Ck
电容器的电场能
电容器的能量
电容器带电时具有能量,实验如下:
. K.
a. b
将K倒向a 端 电容充电 再将K到向b端
C
R
灯泡发出一次强的闪光!
能量从哪里来?
电容器释放。
问题:当电容器带有电量Q、相应的电压为U时, 所具有的能量W=?
电容器的电场能
W 1 Q2 2C
C的大小
(1)衡量一个实际的电容器的性能主要指标 耐压能力
(2)在电路中,一个电容器的电容量或耐压能力不够时,
可采用多个电容连接:
C1
如增大电容,可将多个电容并联:
C2
电磁学第四版赵凯华习题答案解析
电磁学第四版赵凯华习题答案解析第一章:电磁现象和电磁场基本定律
1. 问题:什么是电磁学?
答案:电磁学是研究电荷和电流相互作用所产生的现象和规律的科学。
2. 问题:什么是电磁场?
答案:电磁场是指由电荷和电流引起的空间中存在的物理场。
3. 问题:什么是电场?
答案:电场是指电荷在周围空间中所产生的物理场。
4. 问题:什么是磁场?
答案:磁场是指电流或磁体在周围空间中所产生的物理场。
5. 问题:电磁场有哪些基本定律?
答案:电磁场的基本定律有高斯定律、安培定律、法拉第定律和麦克斯韦方程组。
第二章:静电场
1. 问题:什么是静电场?
答案:静电场是指电荷分布不随时间变化的电场。
2. 问题:什么是电势?
答案:电势是指单位正电荷在电场中所具有的能量。
3. 问题:什么是电势差?
答案:电势差是指在电场中从一个点到另一个点所需做的功。
4. 问题:什么是电势能?
答案:电势能是指带电粒子在电场中由于位置改变而具有的能量。
5. 问题:什么是电容?
答案:电容是指导体上带电量与导体电势差之间的比值。
以上是电磁学第四版赵凯华习题的部分答案解析。
详细的解析请参考教材。
电磁学答案第二章
× 由(① — ②)
μ 0σ eω R
2
可得
(a < R ) (a > R )
2 3 μ 0σ eω R B= 3 2 μ 0σ eω R R 3 3 a
或
μ 0Q ω 6π R B= μ 0Q ω R 3 3 6π R a
(a < R ) (a > R )
若已知 电量Q
#
(a > b > 0 )
(a > b )
( a > b > 0)
dθ ∫ a + b cos θ =
1 a 2 b2
ta n θ
在 0 2π 上 不 连 续
ta n 1 x
π 的 主 值 在 0, 2
)
P. 148, 2-40 【解】:参见右图, ⑴ eυ × B ,向东偏; ⑵
1T=10 4 Gauss ) (
π × (15 × 10
4
3
)
2
⑵ 最大力矩
M max = =
π π
4
nlID2 B ×100 × 30 × 2.0 × 15 ×10
4 = 4.24N m
(
3 2
)
× 4.0
P. 147, 2-33 【解】:参见右图, 左右两半受力均沿x方向 左半边
d F1 x = I 2 d lB1 cos θ
x
h R
x = R R2 h2 = 3mm
⑷ 像素同时向东偏,不影响看电视.
P. 149, 2-47 【证】: 轨道半径 则 频率(转/秒) 即
D mυ = 2 eB eBD υ= 2m
υ f = πD
eB f = 2π m
大学物理《电磁学2·稳恒磁场》复习题及答案共72页
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
大学物理《电磁学2·稳恒磁场》复习 题及答案
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
电磁学(赵凯华)答案[第2章 稳恒磁场]
把 r0=10cm , a=1.0cm ,I=5.0A 带入上式,得 B=3.9×10-7(T)。把 r0=0cm , a=1.0cm ,I=5.0A 带入上式,得 B=2.8×10-7(T)。可见,正方形载流线圈中心的 B 要比轴线上的一点大的多。 2. 将一根导线折成正 n 边形,其外接圆半径为 a,设导线栽有电流为 I,如图所示。试 求:(1)外接圆中心处磁感应强度 B0;(2) 当 n→∞时,上述结果如何?
解 (1)沿轴向取坐标轴 OX,如图所示。利用一段 载流直导线产生磁场的结果, 正方形载流线圈每边在点 P 产生的磁感应强度的大小
均为:
由分析可知,4 条边在点 P 的磁感应强度矢量的方向并不相同,其中 AB 边在 P 点的 B1 方 向如图所示。由对称性可知,点 P 上午 B 应沿 X 轴,其大小等于 B1 在 X 轴投影 的 4 倍。设 B1 与 X 轴夹角为 α 则:
根据等边三角形性质,O 点是⊿ACP 的中心,故:
sinα=
,所以 P 点的磁感应强度 BP 的大小为:
磁感应强度 BP 的方向沿 Z 轴方向。 4. 一宽度为 b 的半无限长金属板置与真空中,均匀通有电流 I0。P 点为薄板边线延长 线上一点,与薄板边缘距离为 d。如图所示。试求 P 点的磁感应强度 B。
解: (1)设正 n 边形线圈的边长为 b,应用有限长载流直导线产生磁场的公式,可知各边在圆 心处的感应强度大小相等,方向相同,即:
所以,n 边形线圈在 O 点产生的磁感应强度为:
因为 2θ=2π/n,θ=π/n,故有: 于纸面向外。
(2)当 n→∞时,θ 变的很小,tanθ≈θ,所以:
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力通根保1据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试、中件资且卷管包中料拒试路含调试绝验敷线试卷动方设槽技作案技、术,以术管来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内 故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
赵凯华所编《电磁学》第二版答案解析
第一章静电场§1.1 静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同种电荷而相互排斥。
3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果?答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
计算题:1、真空中两个点电荷q1=1.0×10-10C,q2=1.0×10-11C,相距100mm,求q1受的力。
解:2、真空中两个点电荷q与Q,相距5.0mm,吸引力为40达因。
已知q=1.2×10-6C,求Q。
解:1达因=克·厘米/秒=10-5牛顿3、为了得到一库仑电量大小的概念,试计算两个都是一库仑的点电荷在真空中相距一米时的相互作用力和相距一千米时的相互作用力。
解:4、氢原子由一个质子(即氢原子核)和一个电子组成。
根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r=5.29×10-11m。
已知质子质量M=1.67×10-27kg,电子质量m=9.11×10-31kg。
电磁学(赵凯华_陈熙谋第三版)第二章_习题及解答
新概念物理教程・电磁学# # 第二章# 恒磁场# 习题解答
# # ! ! " " 如本题图, 两条无限长直载流导线垂直而不 相交,其间最近距离为 # $ ! " $ !", 电流分别为 %% $ " " $ # 和 %! $&’ $ #" & 点到两导线的距离都是 #, 求 & 点的磁感 应强度 !" !$ %! ( %! ! ! #! % ! " )(" %" )%$ !) ! ! !* # $ !!!"" $ ( &" $ $ $)" ! )%$ $ $$" )! %&" ! )(" %" )!" $ )%$ ! 的方向如下: 设电流 %% 的方向为 (* 轴方向, 电流 %! 的方向 解:’ $ 为 (+ 轴方向, 则 !% 沿 !+ 方向, !! 沿 (, 方向, ! 在 +, 平 "" $ 面内, 它与 , 轴的夹角为 ’(!)’* $ $((" )(见右图) 。 &" $
#
习题 ! ! "
#
#
’
#& $ & !!#
#
#
&
#& $ !* # %&"’%( " ! ’ ! # & ! & +*
!
% 点磁感应强度 ! 的方向在平行于导体薄板的平面内且与电流方向垂直。 ( ! ) 在维持 ! ’$ ( ! # 为常量的条件下令 #"% 时,% 点的磁感应强度为 ) ’ #& ! ( ! "
赵凯华所编《电磁学》第二版答案
第一章静电场§1.1 静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同种电荷而相互排斥。
3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果?答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
--------------------------------------------------------------------------------------------------------------------- §1.2 电场电场强度思考题:1、在地球表面上通常有一竖直方向的电场,电子在此电场中受到一个向上的力,电场强度的方向朝上还是朝下?答:电子受力方向与电场强度方向相反,因此电场强度方向朝下。
2、在一个带正电的大导体附近P点放置一个试探点电荷q0(q0>0),实际测得它受力F。
若考虑到电荷量q0不是足够小的,则F/ q0比P点的场强E大还是小?若大导体带负电,情况如何?答:q0不是足够小时,会影响大导体球上电荷的分布。
电磁学(赵凯华)答案[第2章稳恒磁场]
1.一边长为2a的载流正方形线圈,通有电流I。
试求:(1)轴线上距正方形中心为r0处的磁感应强度;(2) 当a=1.0cm , I=5.0A , r0=0 或10cm时,B等于多少特斯拉?解(1)沿轴向取坐标轴OX,如图所示。
利用一段载流直导线产生磁场的结果,正方形载流线圈每边在点P产生的磁感应强度的大小均为:,式中:由分析可知,4条边在点P的磁感应强度矢量的方向并不相同,其中A B边在P点的B1方向如图所示。
由对称性可知,点P上午B应沿X轴,其大小等于B1在X轴投影的4倍。
设B1与X轴夹角为α则:把r0=10cm , a=1.0cm ,I=5.0A 带入上式,得B=3.9×10-7(T)。
把r0=0cm , a=1.0cm ,I=5.0A 带入上式,得B=2.8×10-7(T)。
可见,正方形载流线圈中心的B要比轴线上的一点大的多。
2. 将一根导线折成正n边形,其外接圆半径为a,设导线栽有电流为I,如图所示。
试求:(1)外接圆中心处磁感应强度B0;(2) 当n→∞时,上述结果如何?解: (1)设正n边形线圈的边长为b,应用有限长载流直导线产生磁场的公式,可知各边在圆心处的感应强度大小相等,方向相同,即:所以,n边形线圈在O点产生的磁感应强度为:因为2θ=2π/n,θ=π/n,故有:由右手法则,B0方向垂直于纸面向外。
(2)当n→∞时,θ变的很小,tanθ≈θ,所以:代入上述结果中,得:此结果相当于一半径为a,载流为I的圆线圈在中心O点产生磁感应强度的结果,这一点在n→∞时,是不难想象的。
3. 如图所示,载流等边三角形线圈ACD,边长为2a,通有电流I。
试求轴线上距中心为r0处的磁感应强度。
解:由图可知,要求场点P的合场强B,先分别求出等边三角形载流线圈三条边P点产生的磁感应强度Bi ,再将三者进行矢量叠加。
大学_新概念物理教程电磁学第二版(赵凯华陈熙谋著)课后答案下载
新概念物理教程电磁学第二版(赵凯华陈熙谋著)课后答案下载新概念物理教程电磁学第二版(赵凯华陈熙谋著)内容提要章静电场恒定电流场1.静电的基本现象和基本规律1.1 两种电荷1.2 静电感应电荷守恒定律1.3 导体、绝缘体和半导体1.4 物质的电结构1.5 库仑定律2.电场电场强度2.1 电场2.2 电场强度矢量E2.3 电场线2.4 电场强度叠加原理2.5 电荷的连续分布2.6 带电体在电场中受的力及其运动2.7 场的概念3.高斯定理3.1 立体角3.2 电通量3.3 高斯定理的表述及证明3.4 球对称的电场3.5 轴对称的电场3.6 无限大带电平面的电场3.7 从高斯定理看电场线的性质4.电势及其梯度4.1 静电场力所作的功与路径无关 4.2 电势与电势差4.3 电势叠加原理4.4 等势面4.5 电势的梯度4.6 电偶极层5.静电场中的导体5.1 导体的平衡条件5.2 导体上的电荷分布5.3 导体壳(腔内无带电体情形)5.4 导体壳(腔内有带电体情形)6.静电能6.1 点电荷之间的.相互作用能 6.2 电荷连续分布情形的静电能6.3 电荷在外电场中的能量7.电容和电容器7.1 孤立导体的电容7.2 电容器及其电容7.3 电容器储能(电能)8.静电场边值问题的性定理8.1 问题的提出8.2 几个引理8.3 叠加原理8.4 性定理8.5 静电屏蔽8.6 电像法9.恒定电流场9.1 电流密度矢量9.2 欧姆定律的微分形式9.3 电流的连续方程9.4 两种导体分界面上的边界条件 9.5 电流线在导体界面上的折射9.6 非静电力与电动势9.7 恒定电场对电流分布的调节作用 __提要思考题习题第二章恒磁场1.磁的基本现象和基本规律1.1 磁的库仑定律1.2 电流的磁效应1.3 安培定律1.4 电流单位——安培2.磁感应强度毕奥-萨伐尔定律2.1 磁感应强度矢量B2.2 毕奥-萨伐尔定律2.3 载流直导线的磁场2.4 载流圆线圈轴线上的磁场2.5 载有环向电流的圆筒在轴线上产生的磁场3.安培环路定理3.1 载流线圈与磁偶极层的等价性3.2 安培环路定理的表述和证明3.3 磁感应强度B是轴矢量3.4 安培环路定理应用举例4.磁场的“高斯定理”磁矢势4.1 磁场的“高斯定理”4.2 磁矢势5.磁场对载流导线的作用5.1 安培力5.2 平行无限长直导线间的相互作用5.3 矩形载流线圈在均匀磁场中所受力矩5.4 载流线圈的磁矩5.5 磁偶极子与载流线圈的等价性5.6 直流电动机基本原理5.7 电流计线圈所受磁偏转力矩6.带电粒子在磁场中的运动6.1 洛伦兹力6.2 洛伦兹力与安培力的关系6.3 带电粒子在均匀磁场中的运动6.4 荷质比的测定6.5 回旋加速器的基本原理6.6 霍耳效应6.7 等离子体的磁约束__提要思考题习题第三章电磁感应电磁场的相对论变换第四章电磁介质第五章电路第六章麦克斯韦电磁理论电磁波电磁单位制附录A 矢量的乘积和对称性立体角曲线坐标系附录B 矢量分析提要附录C 二阶常系数微分方程附录D 复数的运算习题答案索引新概念物理教程电磁学第二版(赵凯华陈熙谋著)目录本书是面向21世纪课程教材,是已出版的《新概念物理教程电磁学》的修订版。
赵凯华所编《电磁学》第二版问题详解
第一章静电场§1.1 静电的根本现象和根本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引枯燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同种电荷而相互排斥。
3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果?答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
--------------------------------------------------------------------------------------------------------------------- §1.2 电场电场强度思考题:1、在地球外表上通常有一竖直方向的电场,电子在此电场中受到一个向上的力,电场强度的方向朝上还是朝下?答:电子受力方向与电场强度方向相反,因此电场强度方向朝下。
2、在一个带正电的大导体附近P点放置一个试探点电荷q0(q0>0),实际测得它受力F。
假如考虑到电荷量q0不是足够小的,如此F/ q0比P点的场强E大还是小?假如大导体带负电,情况如何?答:q0不是足够小时,会影响大导体球上电荷的分布。
电磁学习题第二章答案
电磁学习题第二章答案电磁学习题第二章答案电磁学习题是电磁学课程中的重要组成部分,通过解答学习题,可以帮助我们巩固理论知识,加深对电磁学的理解。
本文将为大家提供电磁学习题第二章的答案,希望对大家的学习有所帮助。
第一题:一根长为L的直导线,通以电流I,求其产生的磁场强度H。
答案:根据安培环路定理,直导线产生的磁场强度与电流成正比,与导线的长度成反比。
因此,直导线产生的磁场强度H与电流I和导线的长度L满足以下关系式:H = I / (2πL)其中,H为磁场强度,I为电流,L为导线长度。
第二题:一根直导线上通有电流I,求距离导线d处的磁感应强度B。
答案:根据比奥萨伐尔定律,距离直导线d处的磁感应强度B与电流I和距离d成正比。
因此,距离导线d处的磁感应强度B与电流I和距离d满足以下关系式:B = μ0I / (2πd)其中,B为磁感应强度,I为电流,d为距离导线的距离,μ0为真空中的磁导率,其值为4π×10^-7 T·m/A。
第三题:一根长为L的直导线,通以电流I,求距离导线d处的磁场强度H。
答案:根据比奥萨伐尔定律,距离直导线d处的磁感应强度B与电流I和距离d成正比。
而磁场强度H与磁感应强度B成正比。
因此,距离导线d处的磁场强度H与电流I、导线长度L和距离d满足以下关系式:H = μ0I / (2πd)其中,H为磁场强度,I为电流,L为导线长度,d为距离导线的距离,μ0为真空中的磁导率,其值为4π×10^-7 T·m/A。
第四题:一根长为L的直导线,通以电流I,求距离导线d处的磁场强度H和磁感应强度B。
答案:根据比奥萨伐尔定律,距离直导线d处的磁感应强度B与电流I和距离d成正比。
而磁场强度H与磁感应强度B成正比。
因此,距离导线d处的磁场强度H和磁感应强度B与电流I、导线长度L和距离d满足以下关系式:H = μ0I / (2πd)B = μ0I / (2πd)其中,H为磁场强度,B为磁感应强度,I为电流,L为导线长度,d为距离导线的距离,μ0为真空中的磁导率,其值为4π×10^-7 T·m/A。
赵凯华所编《电磁学》第二版问题详解
第一章静电场§1.1 静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同种电荷而相互排斥。
3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果?答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
计算题:1、真空中两个点电荷q1=1.0×10-10C,q2=1.0×10-11C,相距100mm,求q1受的力。
解:2、真空中两个点电荷q与Q,相距5.0mm,吸引力为40达因。
已知q=1.2×10-6C,求Q。
解:1达因=克·厘米/秒=10-5牛顿3、为了得到一库仑电量大小的概念,试计算两个都是一库仑的点电荷在真空中相距一米时的相互作用力和相距一千米时的相互作用力。
解:4、氢原子由一个质子(即氢原子核)和一个电子组成。
根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r=5.29×10-11m。
已知质子质量M=1.67×10-27kg,电子质量m=9.11×10-31kg。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.一边长为2a的载流正方形线圈,通有电流I。
试求:(1)轴线上距正方形中心为r0处的磁感应强度;(2) 当a=1.0cm , I=5.0A , r0=0 或10cm时,B等于多少特斯拉?解(1)沿轴向取坐标轴OX,如图所示。
利用一段载流直导线产生磁场的结果,正方形载流线圈每边在点P产生的磁感应强度的大小均为:,式中:由分析可知,4条边在点P的磁感应强度矢量的方向并不相同,其中AB边在P点的B1方向如图所示。
由对称性可知,点P上午B应沿X轴,其大小等于B1在X轴投影的4倍。
设B1与X轴夹角为α则:把r0=10cm , a=1.0cm ,I=5.0A 带入上式,得B=3.9×10-7(T)。
把r0=0cm , a=1.0cm ,I=5.0A 带入上式,得B=2.8×10-7(T)。
可见,正方形载流线圈中心的B要比轴线上的一点大的多。
2. 将一根导线折成正n边形,其外接圆半径为a,设导线栽有电流为I,如图所示。
试求:(1)外接圆中心处磁感应强度B0;(2) 当n→∞时,上述结果如何?解: (1)设正n边形线圈的边长为b,应用有限长载流直导线产生磁场的公式,可知各边在圆心处的感应强度大小相等,方向相同,即:所以,n边形线圈在O点产生的磁感应强度为:因为2θ=2π/n,θ=π/n,故有:由右手法则,B0方向垂直于纸面向外。
(2)当n→∞时,θ变的很小,tanθ≈θ,所以:代入上述结果中,得:此结果相当于一半径为a,载流为I的圆线圈在中心O点产生磁感应强度的结果,这一点在n→∞时,是不难想象的。
3. 如图所示,载流等边三角形线圈ACD,边长为2a,通有电流I。
试求轴线上距中心为r0处的磁感应强度。
解:由图可知,要求场点P的合场强B,先分别求出等边三角形载流线圈三条边P点产生的磁感应强度Bi ,再将三者进行矢量叠加。
由有限长载流导线的磁场公式可知,AC边在P点产生的磁感应强度BAC的大小为:由于⊿ACP为等腰三角形,且PC垂直AC,即:代入上述结果中,得:由右手螺旋定则可知,BAC的方向垂直于ACP平面向外,如图所示。
由对称性可知,AC,CD,DA三段载流导线在P点产生的磁感应强度BAC、BCD、BDA在空间方位上对称,且它们在垂直于Z轴方向上的分量相互抵消,而平行于Z轴方向上的分量相等,所以:根据等边三角形性质,O点是⊿ACP的中心,故:,并由⊿EOP可知sinα=,所以P点的磁感应强度BP的大小为:磁感应强度BP的方向沿Z轴方向。
4. 一宽度为b的半无限长金属板置与真空中,均匀通有电流I0。
P点为薄板边线延长线上一点,与薄板边缘距离为d。
如图所示。
试求P点的磁感应强度B。
解: 建立坐标轴OX,如图所示,P点为X轴上一点。
整个金属板可视为无限多条无限长的载流导组成,取其任意一条载流线,其宽度为dx,上载有电流dI=I0dx/b,它在P点产生的场强为:dB的方向垂直纸面向里。
由于每一条无限长直载流线P点激发上的磁感应强度dB具有相同的方向,所以整个载流金属板在P点产生的磁感应强度为各载流线在该点产生的dB的代数和,即:BP方向垂直纸面向里。
5. 两根导线沿半径方向引到金属环上的A、C两点,电流方向如图所示。
试求环中心O处的磁感应强度。
解: 由毕-萨定律可知,两载流直线的延长线都通过圆心O,因此她们在O点产生的磁感应强度为零。
图中电流为I1的大圆弧在O点产生的B2的方向垂直纸面向里。
应用载流圆线圈在中心处产生磁场的结果B=μ0I/2r,可知B1、B2的大小为:则O点的磁感应强度的大小为:设大圆弧和小圆弧的电阻为R1、R2,则:有:, 因大圆弧和小圆弧并联,故I1R1 = I2R2,即:,代入表达式得B0=0。
6. 如图所示,一条无限长导线载有电流I,该导线弯成抛物线形状,焦点到顶点的距离为a,试求焦点的磁感应强度B。
解: 本题采用极坐标。
用毕-萨定律得电流元Idl在焦点P处产生的磁感应强度为: , 由于Idl与r的夹角为θ,由图可知,Idlsinθ=Irdψ,所以dB的大小为: ,方向由右手螺旋定则可知,垂直纸面向外。
由于所有电流元Idl在P点产生的磁感应强度方向相同,所以P点的总产生的磁感应强度为: ,因抛物线的极坐标方程为:, 因此:7. 如图所示,两块无限大平行载流导体薄板M、N,每单位宽度上所载电流为j,方向如图所示,试求两板间Q点处及板外P点处的磁感应强度B。
解: 无限长载流直导线产生磁感应强度的公式B=μ0Ir0/2πr可知,M板Q点激发的磁感应强度BM的大小为:, dBx = -dBcosα,dBy = dBsinα由对称性可知:, 设Q点到M板的垂直距离为a,则:由几何关系可知:a/r=cosα,x=tanα,dx=ada/cos2α,代入上式:BM的方向沿X轴方向,因此,Q点的磁感应强度BM+BN=0,采用同样的方法得,M板在P 点产生磁感应强度为:N板在P点产生磁感应强度为:,表明在P点两块板产生磁感应强度相同,所以P点的B为B = BM+BN= -μ0ji,B的方向沿X轴负向。
8. 如图所示,通有电流强度为I的细导线,平行的、紧密的单层缠绕在半个木球上,共有N匝,设木球的半径为R,试求球心O点处的磁感应强度。
解: 由图可知,绕有载流导线的木球可看成是有无限多个不同半径的同心载流圆线圈组成,球心O在载流圆线圈的轴线上,则球心O点的磁感应强度B0是各个载流圆线圈在该点激发的磁感应强度的矢量和。
如图坐标系OXY,在X轴线上距原点Ox处任取一弧宽为dl的圆环,半径为y,圆环上绕有dN匝导线,即:通过该圆环上的电流dI=IdN=2INdθ/π,由载流线圈在轴线上任意一点产生的磁感应强度公式,可知dI在O点激发的磁感应强度dB大小为:dB的方向沿X轴正向。
由几何关系:x=Rsinθ,y=Rcosθ,带入上式得:由于所有载流线圈在O点激发的B方向相同,故O点总的磁感应强度可由矢量积分简化为标量积分,即:B0的方向沿X轴正向。
9.均匀带电的球面绕着它的某一直径作匀速旋转。
试求在该球面上各点的磁感应强度B.解: 如图所示,均匀带电的球面绕沿X轴的直径以角速度ω旋转。
球面上任意面元所带电荷因旋转而形成电流。
将球面分成许多环状球带,每一球带因旋转而形成的电流在X轴上任意一点P处都将产生磁感应强度dB。
设球面半径为R,面电荷密度为σ,绕沿X轴的直径以角速度为ω旋转,球心在原点O。
取从φ到(φ+dφ)的环状球带,其面积为dS=2πrdl=2πrRdφ,所带电量为dQ=σdS=2πRrσdφ,由于旋转,该球带上电荷形成沿环状带流动的电流,电流强度为dI=dQ/T ,T为旋转周期,故:dI=ωdQ/2π=ω2πRrσdφ/2π=Rσωr dφ设该环状球带的中心位于x处,则:x=Rcosφdx=-Rsinφdφ = -rdφ因此,dI可表为dI = -Rσωdx,该环状球带dI在直径上任意一点P点产生的dB为:, 式中i是X轴方向的单位矢量,式中的r为r2 = R2 △x2,把r2和dI的表达式带入,得:, 因φ取值从0到π,相应的x从R到-R,故式中dx为负值,若σ>0则dB与I同方向。
场点P总的磁感应强度为:式中:, 故:, 由于BP与直径上各点P的位置无关,所以在作为转轴的直径上磁感应强度B处处相同。
10. 真空中有两点电荷±q,相距为 3d ,她们都以角速度ω绕一与两点电荷连线垂直的轴转动,+q到轴的距离为d。
试求转轴与电荷连线交点处的场强B。
解: 设转轴与电荷连线交点为O。
根据运动电荷产生磁场公式,可知+q在O处产生的磁感应强度为:, 方向由右手法则可知与ω相同。
同理,-q在O处产生的磁感应强度为: , 方向由右手法则可知与ω相反,则由场叠加原理,得O点的总磁感应强度为: , B的方向与ω相同。
11. 一边长为a=0.1m,带电量为q=1.0×10-10C的均匀带电细棒,以速度v=1.0m/s沿X轴正方向运动。
当运动到与Y轴重合时,细棒的下端到原点O的距离为l=0.1m,如图所示。
试求此时坐标原点O处的磁感应强度B。
解: 均匀带电细棒运动时,将产生磁场。
在均匀带电细棒上,纵坐标为y处取一线元dy,该线元上的带电量为dq=λdy=qdy/a,根据运动电荷产生磁场公式可知,dq在O点产生的磁感应强度的大小为:方向垂直于纸面向里。
带电细棒在O点产生的磁感应强度的大小为:方向垂直于纸面向里。
12.如图(a)所示的电缆,由半径为r1的导体圆柱和同轴的内外半径为r2和r3的导体圆桶构成。
电流I0从导体圆柱流入,从导体圆桶流出,设电流都是均匀分布在导体的横截面上,以r表示到轴线的垂直距离。
试求r从0到∞的范围内各处的磁感应强度。
解: 取电缆的中央轴为Z轴,把电缆中的电流分解为一系列与Z轴平行的无限长直流导线。
这些载流导线在空间各点产生的磁场均无z分量,因此电缆电流在空间的磁场也无z分量。
若电缆电流的磁场有径向分量Br,则由对称性,在任意以Z轴为中央轴,以r为半径的柱面上各点的Br应相同。
取相应的柱形高斯面,如图(b)所示,则有:因B无z分量,故等式右边前两项为零,于是:,由高斯定理可知:,h 所以Br=0。
即电缆电流的磁场无径向分量。
在半径为r的周围上各点的B大小相同,记为B(r),B(r)的方向沿切向,如图(c)所示。
去积分环路L,由安培环路定理可知:,若0≤r≤r1,则: 故:;若r1≤r≤r2,则:;若r2≤r≤r3,则:; 若r> r3,则:结果表明,在电缆电流的外部,磁感应强度B为零,磁场被约束在电缆内部。
13. 如图所示,为均匀密绕的无限长直螺线管的一端,半径为R,O点为该端面的中心,已知螺线管单位长度上的线圈匝数为n,通过电流为I。
试求;端面近中心处的磁感应强度B的轴向分量和径向分量。
解: 取坐标系如图。
螺线管中心轴线上靠近端面中心的P点,设OP=z<<R,则有:cosβ1≈-1,cosβ2≈-z/R。
所以端面近中心处的磁感应强度B的轴向分量为:以端面O点为中心做半径为r,高为dz的圆形高斯面S,设下底面的轴向磁场为Bz,上底面的轴向磁场为Bz+dBz。
侧面的径向磁场分量为Br,根据高斯定理,有:整理上式,得端面近中心处的磁感应强度B径向分量Br为:14. 如图所示,一半径为R的无限长直非导体圆筒均匀带电,电荷面密度为σ,若受到外力矩的作用,圆筒从静止开始以匀角加速度β绕OO’轴转动,试求t时刻圆筒内为均匀磁场。
解: 管外磁场强度为零。
过管内场点P点作一矩形积分回路abcda。
由安培环路定理可知,有:分析系统可知,积分回路所包围的电流的代数和为:由题可知ω=ω0+βt,t=0时ω0=0,则ω=βt,所以:因此:即得B=μ0σRβt,B的方向根据σ的情况而定。