二项式定理及典型试题

合集下载

二项式定理(测试卷含答案)

二项式定理(测试卷含答案)

学习目标 1.能熟练地掌握二项式定理的展开式及有关概念.2.会用二项式定理解决与二项式有关的简单问题.1.二项式定理及其相关概念 二项式定理 公式(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n nb n ,称为二项式定理 二项式系数C k n (k =0,1,…,n )通项 T k +1=C k n an -k b k(k =0,1,…n ) 二项式定理的特例 (1+x )n =C 0n +C 1n x +C 2n x 2+…+C k n x k +…+C n nx n 2.二项式系数的四个性质(杨辉三角的规律)(1)对称性:C m n =C n-mn;(2)性质:C k n +1=C k -1n +C kn ;(3)二项式系数的最大值:当n 是偶数时,中间的一项取得最大值,即2C nn最大;当n 是奇数时,中间的两项相等,且同时取得最大值,即1122CCn n nn -+=最大;(4)二项式系数之和:C 0n +C 1n +C 2n +…+C r n +…+C n n=2n ,所用方法是赋值法.类型一 二项式定理的灵活应用 命题角度1 两个二项式积的问题例1 (1)在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=________.(2)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =________. 答案 (1)120 (2)-1解析 (1)f (3,0)+f (2,1)+f (1,2)+f (0,3)=C 36C 04+C 26C 14+C 16C 24+C 06C 34=120.(2)(1+ax )(1+x )5=(1+x )5+ax (1+x )5.∴x 2的系数为C 25+a C 15,则10+5a =5,解得a =-1.反思与感悟 两个二项式乘积的展开式中特定项问题(1)分别对每个二项展开式进行分析,发现它们各自项的特点. (2)找到构成展开式中特定项的组成部分. (3)分别求解再相乘,求和即得.跟踪训练1 (x +a x )(2x -1x )5的展开式中各项系数的和为2,则该展开式的常数项为( )A .-40B .-20C .20D .40 答案 D解析 令x =1,得(1+a )(2-1)5=2,∴a =1,故(x +1x )(2x -1x )5的展开式中常数项即为(2x -1x )5的展开式中1x 与x 的系数之和.(2x -1x )5的展开式的通项为T k +1=C k 525-k x 5-2k (-1)k , 令5-2k =1,得k =2,∴展开式中x 的系数为C 25×25-2×(-1)2=80, 令5-2k =-1,得k =3,∴展开式中1x 的系数为C 35×25-3×(-1)3=-40, ∴(x +1x )(2x -1x )5的展开式中常数项为80-40=40.命题角度2 三项展开式问题例2 ⎝⎛⎭⎫x 2+1x +25的展开式中的常数项是________. 答案6322解析 方法一 原式=⎣⎡⎦⎤⎝⎛⎭⎫x 2+1x +25, ∴展开式的通项为11k T +=15C k ⎝⎛⎭⎫x2+1x 15k -(2)1k (k 1=0,1,2,…,5). 当k 1=5时,T 6=(2)5=42,当0≤k 1<5时,⎝⎛⎭⎫x 2+1x 15k -的展开式的通项公式为21k T '+=215C k k -⎝⎛⎭⎫x 2125k k --⎝⎛⎭⎫1x 2k =215C k k -⎝⎛⎭⎫12125k k --·1252k k x --(k 2=0,1,2,…,5-k 1).令5-k 1-2k 2=0,即k 1+2k 2=5.∵0≤k 1<5且k 1∈Z ,∴⎩⎪⎨⎪⎧ k 1=1,k 2=2或⎩⎪⎨⎪⎧k 1=3,k 2=1. ∴常数项为42+C 15C 24⎝⎛⎭⎫1222+C 35C 1212×(2)3 =42+1522+202=6322.方法二 原式=⎝ ⎛⎭⎪⎫x 2+22x +22x 5=132x5·[(x +2)2]5 =132x 5·(x +2)10. 求原式的展开式中的常数项,转化为求(x +2)10的展开式中含x 5项的系数,即C 510·(2)5. ∴所求的常数项为C 510·(2)532=6322.反思与感悟 三项或三项以上的展开问题,应根据式子的特点,转化为二项式来解决,转化的方法通常为配方法,因式分解,项与项结合,项与项结合时,要注意合理性和简捷性. 跟踪训练2 求(x 2+3x -4)4的展开式中x 的系数.解 方法一 (x 2+3x -4)4=[(x 2+3x )-4]4=C 04(x 2+3x )4-C 14(x 2+3x )3·4+C 24(x 2+3x )2·42-C 34(x 2+3x )·43+C 44·44, 显然,上式中只有第四项中含x 的项,所以展开式中含x 的项的系数是-C 34·3·43=-768. 方法二 (x 2+3x -4)4=[(x -1)(x +4)]4=(x -1)4·(x +4)4=(C 04x 4-C 14x 3+C 24x 2-C 34x +C 44)(C 04x 4+C 14x 3·4+C 24x 2·42+C 34x ·43+C 44·44),所以展开式中含x 的项的系数是-C 3444+C 3443=-768.命题角度3 整除和余数问题例3 今天是星期一,今天是第1天,那么第810天是星期( ) A .一 B .二 C .三 D .四 答案 A解析 求第810天是星期几,实质是求810除以7的余数,应用二项式定理将数变形求余数.因为810=(7+1)10=710+C 110×79+…+C 910×7+1=7M +1(M ∈N *),所以第810天相当于第1天,故为星期一.反思与感悟 (1)利用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再利用二项式定理展开,只考虑后面(或前面)一、二项就可以了. (2)解决求余数问题,必须构造一个与题目条件有关的二项式.跟踪训练3 设a ∈Z ,且0≤a <13,若512 015+a 能被13整除,则a =________. 答案 1解析 ∵512 015+a =(52-1)2 015+a =C 02 015522 015-C 12 015522 014+C 22 015522 013-…+C 2 0142 015521-1+a ,能被13整除,0≤a <13. 故-1+a 能被13整除,故a =1. 类型二 二项式系数的综合应用 例4 已知(12+2x )n .(1)若展开式中第五项、第六项、第七项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式中前三项的二项式系数之和等于79,求展开式中系数最大的项.解 (1)由已知得2C 5n =C 4n +C 6n ,即n 2-21n +98=0,得n =7或n =14.当n =7时展开式中二项式系数最大的项是第四项和第五项, ∵T 4=C 37(12)4(2x )3=352x 3,T 5=C 47(12)3(2x )4=70x 4, ∴第四项的系数是352,第五项的系数是70.当n =14时,展开式中二项式系数最大的项是第八项,它的系数为C 714(12)7×27=3 432. (2)由C 0n +C 1n +C 2n =79,即n 2+n -156=0.得n =-13(舍去)或n =12. 设T k +1项的系数最大, ∵(12+2x )12=(12)12(1+4x )12, 由⎩⎪⎨⎪⎧C k 12·4k ≥C k -112·4k -1,C k 12·4k ≥C k +112·4k +1, 解得9.4≤k ≤10.4.∵0≤k ≤n ,k ∈N *,∴k =10. ∴展开式中系数最大的项是第11项, 即T 11=(12)12·C 1012·410·x 10=16 896x 10. 反思与感悟 解决此类问题,首先要分辨二项式系数与二项展开式的项的系数,其次理解记忆其有关性质,最后对解决此类问题的方法作下总结,尤其是有关排列组合的计算问题加以细心.跟踪训练4 已知⎝⎛⎭⎫2x -1x n展开式中二项式系数之和比(2x +x lg x )2n 展开式中奇数项的二项式系数之和少112,第二个展开式中二项式系数最大的项的值为1 120,求x . 解 依题意得2n -22n -1=-112,整理得(2n -16)(2n +14)=0,解得n =4,所以第二个展开式中二项式系数最大的项是第五项.依题意得C 48(2x )4(x lg x )4=1 120,化简得x 4(1+lg x )=1,所以x =1或4(1+lg x )=0, 故所求x 的值为1或110.1.在x (1+x )6的展开式中,含x 3项的系数为( ) A .30 B .20 C .15 D .10答案 C解析 因为(1+x )6的展开式的第(k +1)项为T k +1=C k 6x k ,x (1+x )6的展开式中含x 3的项为C 26x3=15x 3,所以系数为15.2.⎝⎛⎭⎫x 2+1x 2-23的展开式中常数项为( ) A .-8 B .-12 C .-20 D .20 答案 C解析 ⎝⎛⎭⎫x 2+1x 2-23=⎝⎛⎭⎫x -1x 6展开式的通项公式为T k +1=C k 6(-1)k x 6-2k.令6-2k =0解得k =3.故展开式中的常数项为-C 36=-20.3.当n 为正奇数时,7n +C 1n ·7n -1+C 2n ·7n -2+…+C n -1n ·7被9除所得的余数是( ) A .0 B .2 C .7 D .8 答案 C解析 原式=(7+1)n -C n n =8n -1=(9-1)n -1=9n -C 1n ·9n -1+C 2n ·9n -2-…+C n -1n ·9(-1)n-1+(-1)n -1.因为n 为正奇数,所以(-1)n -1=-2=-9+7,所以余数为7. 4.已知⎝⎛⎭⎫x -ax 5的展开式中含32x 的项的系数为30,则a 等于( )A. 3 B .- 3 C .6 D .-6 答案 D解析 ⎝⎛⎭⎫x -ax 5的展开式通项T k +1=C k 552kx -(-1)k a k ·2kx -=(-1)k a k C k 552k x-,令52-k =32,则k =1,∴T 2=-a C 1532x ,∴-a C 15=30,∴a =-6,故选D.5.若(x -m )8=a 0+a 1x +a 2x 2+…+a 8x 8,其中a 5=56,则a 0+a 2+a 4+a 6+a 8=________. 答案 128解析 由已知条件可得a 5=C 38·(-m )3=-56m 3=56,∴m =-1, 则a 0+a 2+a 4+a 6+a 8=(1+1)8+(-1+1)82=128.1.两个二项展开式乘积的展开式中特定项问题(1)分别对每个二项展开式进行分析,发现它们各自项的特点. (2)找到构成展开式中特定项的组成部分. (3)分别求解再相乘,求和即得. 2.三项或三项以上的展开问题应根据式子的特点,转化为二项式来解决(有些题目也可转化为计数问题解决),转化的方法通常为配方、因式分解、项与项结合,项与项结合时要注意合理性和简捷性.3.用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开,只考虑后面(或者前面)一、二项就可以了. 4.求二项展开式中各项系数的和差:赋值代入.5.确定二项展开式中的最大或最小项:利用二项式系数的性质.课时作业一、选择题1.已知C 0n +2C 1n +22C 2n +…+2n C n n =729,则C 1n +C 3n +C 5n的值等于( ) A .64 B .32 C .63 D .31 答案 B解析 由已知条件得(1+2)n =3n =729,解得n =6.C 1n +C 3n +C 5n =C 16+C 36+C 56=32. 2.二项式⎝⎛⎭⎫x 2-1x 6的展开式中不含x 3项的系数之和为( ) A .20 B .24 C .30 D .36 答案 A解析 由二项式的展开式的通项公式 T k +1=C k 6·(-1)k x 12-3k,令12-3k =3,解得k =3,故展开式中x3项的系数为C36·(-1)3=-20,而所有系数和为0,不含x3项的系数之和为20.3.在(1+x)6(2+y)4的展开式中,含x4y3项的系数为()A.210 B.120 C.80 D.60答案 B解析在(1+x)6(2+y)4的展开式中,含x4y3的项为C46x4C342·y3=120x4y3.故含x4y3项的系数为120.4.在(1+x)n(n为正整数)的二项展开式中,奇数项的和为A,偶数项的和为B,则(1-x2)n 的值为()A.0 B.ABC.A2-B2D.A2+B2答案 C解析∵(1+x)n=A+B,(1-x)n=A-B,∴(1-x2)n=(1+x)n(1-x)n=(A+B)(A-B)=A2-B2.5.9192被100除所得的余数为()A.1 B.81 C.-81 D.992答案 B解析利用9192=(100-9)92的展开式,或利用(90+1)92的展开式.方法一(100-9)92=C09210092-C19210091×9+C29210090×92-…-C9192100×991+C9292992.展开式中前92项均能被100整除,只需求最后一项除以100的余数.由992=(10-1)92=C0921092-…+C9092102-C919210+1.前91项均能被100整除,后两项和为-919,因原式为正,可从前面的数中分离出1 000,结果为1 000-919=81,∴9192被100除可得余数为81.方法二(90+1)92=C0929092+C1929091+…+C9092902+C919290+C9292.前91项均能被100整除,剩下两项为92×90+1=8 281,显然8 281除以100所得余数为81.6.设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m等于()A.5 B.6 C.7 D.8答案 B解析∵(x+y)2m展开式中二项式系数的最大值为C m2m,.∴a=C m2m.同理,b=C m+12m+1∵13a=7b,∴13·C m2m=7·C m+1,2m+1∴13·(2m )!m !m !=7·(2m +1)!(m +1)!m !,∴m =6.7.(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60 答案 C解析 易知T k +1=C k 5(x 2+x )5-k y k , 令k =2,则T 3=C 25(x 2+x )3y 2,对于二项式(x 2+x )3,由T t +1=C t 3(x 2)3-t ·x t =C t 3x 6-t ,令t =1,所以x 5y 2的系数为C 25C 13=30.二、填空题8.已知(a -x )5=a 0+a 1x +a 2x 2+…+a 5x 5,若a 2=80,则a 0+a 1+a 2+…+a 5=________. 答案 1解析 (a -x )5的展开式的通项公式为T k +1=(-1)k a 5-k C k 5x k,令k =2,得a 2=a 3C 25=80, 知a =2,令二项展开式的x =1,得 15=1=a 0+a 1+…+a 5.9.在(a +b )n 的二项展开式中,若奇数项的二项式系数的和为128,则二项式系数的最大值为________. 答案 70解析 由题意知,2n -1=128,解得n =8. 展开式共n +1=8+1=9项. 得中间项的二项式系数最大,故展开式中系数最大的项是第5项,最大值为C 48=70. 10.(1.05)6的计算结果精确到0.01的近似值是________. 答案 1.34解析 (1.05)6=(1+0.05)6=C 06+C 16×0.05+C 26×0.052+C 36×0.053+…=1+0.3+0.037 5+0.002 5+…≈1.34.11.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,则a 1+a 2+…+a 7的值是________. 答案 -2解析 在(1-2x )7的二项展开式中,令x =0,则a 0=1,令x =1,则a 0+a 1+a 2+…+a 7=-1,所以a 1+a 2+…+a 7=-1-1=-2.12.已知(1-2x +3x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14. 求:(1)a 1+a 2+…+a 14; (2)a 1+a 3+a 5+…+a 13.解 (1)令x =1,得a 0+a 1+a 2+…+a 14=27, 令x =0,得a 0=1,所以a 1+a 2+…+a 14=27-1. (2)由(1)得a 0+a 1+a 2+…+a 14=27,① 令x =-1得a 0-a 1+a 2-…-a 13+a 14=67,②由①-②得:2(a 1+a 3+a 5+…+a 13)=27-67, 所以a 1+a 3+a 5+…+a 13=27-672.13.若等差数列{a n }的首项为a 1=C 11-2m5m-A 2m -211-3m (m ∈N *),公差是⎝ ⎛⎭⎪⎫52x -253x 2k 展开式中的常数项,其中k 为7777-15除以19的余数,求通项公式a n .解 由题意可得⎩⎪⎨⎪⎧5m ≥11-2m ,11-3m ≥2m -2,解得117≤m ≤135,∵m ∈N *,∴m =2,∴a 1=C 710-A 25=100,又7777-15=(1+19×4)77-15=C 077+C 177(19×4)+…+C 7777(19×4)77-15=(19×4)[C 177+C 277(19×4)+…+C 7777(19×4)76]-19+5,∴7777-15除以19的余数为5,即k =5. 又T k ′+1=C k ′5⎝⎛⎭⎫52x 5-k ′⎝ ⎛⎭⎪⎫-253x 2k ′ =C k ′5⎝⎛⎭⎫525-2k ′5153k x '-(-1)k ′,令5k ′-15=0可解得k ′=3, ∴d =C 35⎝⎛⎭⎫525-6(-1)3=-4, ∴a n =a 1+(n -1)d =104-4n . 四、探究与拓展14.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m =________. 答案 -3或1解析 在(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9中, 令x =-2,可得a 0-a 1+a 2-a 3+…+a 8-a 9=m 9, 即[(a 0+a 2+…+a 8)-(a 1+a 3+…+a 9)]=m 9, 令x =0,可得(a 0+a 2+…+a 8)+(a 1+a 3+…+a 9)∵(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,∴[(a 0+a 2+…+a 8)+(a 1+a 3+…+a 9)][(a 0+a 2+…+a 8)-(a 1+a 3+…+a 9)]=39, ∴(2+m )9m 9=(2m +m 2)9=39, 可得2m +m 2=3,解得m =1或-3.15.已知f (x )=(1+x )m ,g (x )=(1+5x )n (m ,n ∈N *). (1)若m =4,n =5时,求f (x )·g (x )的展开式中含x 2的项;(2)若h (x )=f (x )+g (x ),且h (x )的展开式中含x 的项的系数为24,那么当m ,n 为何值时,h (x )的展开式中含x 2的项的系数取得最小值?(3)若(1+5x )n (n ≤10,n ∈N *)的展开式中,倒数第2、3、4项的系数成等差数列,求(1+5x )n 的展开式中系数最大的项.解 (1)当m =4,n =5时,f (x )=(1+x )4=C 04x 0+C 14x 1+C 24x 2+C 34x 3+C 44x 4, g (x )=(1+5x )5=C 05(5x )0+C 15(5x )1+…+C 55(5x )5,则f (x )·g (x )的展开式中含x 2的项为(C 24·50C 05+C 14·5C 15+C 04·52C 25)x 2,即f (x )·g (x )的展开式中含x 2的项为356x 2.(2)因为h (x )=f (x )+g (x ),且h (x )的展开式中含x 的项的系数为24,则C 1m +5C 1n =24,即m =24-5n (其中1≤n ≤4,n ∈N *), 又h (x )的展开式中含x 2的项的系数为 C 2m +52C 2n=m (m -1)2+25n (n -1)2 =(24-5n )(23-5n )2+25n (n -1)2=25n 2-130n +276=25⎝⎛⎭⎫n -1352+107(其中1≤n ≤4,n ∈N *), 又因为⎪⎪⎪⎪2-135>⎪⎪⎪⎪3-135, 所以当n =3时(此时m =9),h (x )的展开式中含x 2的项的系数取得最小值111.(3)在(1+5x )n (n ≤10,n ∈N *)的展开式中,倒数第2、3、4项的系数分别为C n -1n ·5n -1,C n -2n ·5n -2,C n -3n ·5n -3, 又因为倒数第2、3、4项的系数成等差数列,所以2C n -2n ·5n -2=C n -1n ·5n -1+C n -3n ·5n -3, 整理得n 2-33n +182=0, 解得n =7或n =26,又因为n ≤10,n ∈N *,所以n =7,n =26(舍去)..;. 设二项式(1+5x )7的展开式中系数最大的项为第k +1项(即T k +1=C k 7(5x )k ),则⎩⎪⎨⎪⎧C k -17·5k -1≤C k 7·5k ,C k +17·5k +1≤C k 7·5k , 整理并解得173≤k ≤203, 又因为n ≤10,n ∈N *,所以k =6,即(1+5x )n 的展开式中系数最大的项为T 7=C 67(5x )6=109 375x 6.。

(完整版)二项式定理测试题及答案

(完整版)二项式定理测试题及答案

二项式定理测试题及答案1.有多少个整数n 能使(n+i)4成为整数(B ) A.0 B.1 C.2 D.3 2. ()82x -展开式中不含..4x 项的系数的和为(B )A.-1B.0C.1D.23.若S=123100123100A A A A ++++L L ,则S 的个位数字是(C )A 0B 3C 5D 8 4.已知(x -xa )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( C ) A.28B.38C.1或38D.1或285.在3100(25)+的展开式中,有理项的个数是( D ) A.15个B.33个C.17个 D.16个6.在2431⎪⎪⎭⎫ ⎝⎛+x x 的展开式中,x 的幂指数是整数的项共有(C ) A .3项 B .4项C .5项D .6项7.在(1-x)5-(1-x)6的展开式中,含x 3的项的系数是( C )A 、-5B 、 5C 、10D 、-10 8.35)1()1(x x +⋅-的展开式中3x 的系数为( A )A .6B .-6C .9D .-9 9.若x=21,则(3+2x)10的展开式中最大的项为(B ) A.第一项 B.第三项 C.第六项 D.第八项 10.二项式431(2)3nx x-的展开式中含有非零常数项,则正整数n 的最小值为( A ) A .7B .12C .14D .511.设函数,)21()(10x x f -=则导函数)(x f '的展开式2x 项的系数为(C )A .1440B .-1440C .-2880D .2880 12.在51(1)x x+-的展开式中,常数项为( B ) (A )51 (B )-51 (C )-11 (D )1113.若32(1)1()n n x x ax bx n *+=+++++∈N L L ,且:3:1a b =,则n 的值为( C ) A.9B.10C.11D.1214.若多项式102x x +=10109910)1()1()1(++++⋅⋅⋅+++x a x a x a a ,则=9a ( )(A ) 9 (B )10 (C )9- (D )10- 解:根据左边x10的系数为1,易知110=a ,左边x 9的系数为0,右边x 9的系数为0109910109=+=+a C a a ,∴109-=a故选D 。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

二项式定理一、 求展开式中特定项 1、在的展开式中,的幂指数是整数的共有( ) A .项 B .项 C .项 D .项 【答案】C 【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C .3、若展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令,可得展示式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为, 4、二项式的展开式中的常数项为 . 【答案】112【解析】由二项式通项可得,(r=0,1,,8),显然当时,,故二项式展开式中的常数项为112.5、的展开式中常数项等于________.【答案】.【解析】因为中的展开式通项为,当第一项取时,,此时的展开式中常数为;当第一项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填. 6、设,则的展开式中常数项是 .【答案】 332,30x 4567()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=30......2,1,0=r =r 2531()x x+1x =232n =5n =2531()x x+10515r rr T C x -+=2r =2510C=82)x3488838122rrr r rr r x C xx C --+-=-=)()()(T 2=r 1123=T 41(2)(13)x x--1441(2)(13)x x--4(13)x -4C (3)r rx -204C 1=21x-14C (3)12x -=-12141420sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰()622x ⎛⋅+ ⎝332=-()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰的展开式的通项为,所以所求常数项为.二、 求特定项系数或系数和7、的展开式中项的系数是( )A .B .C .D . 【答案】A【解析】由通式,令,则展开式中项的系数是.8、在x (1+x )6的展开式中,含x 3项的系数是 . 【答案】15【解】的通项,令可得.则中的系数为15.9、在的展开式中含的项的系数是 . 【答案】-55【解析】的展开式中项由和两部分组成,所以的项的系数为. 10、已知,那么展开式中含项的系数为 . 【答案】135【解析】根据题意,,则中,由二项式定理的通项公式,可设含项的项是,可知,所以系数为.11、已知,则等于( )A .-5B .5C .90D .180【答案】D 因为,所以等于选D.12、在二项式 的展开式中,只有第5项的二项式系数最大,则________;展开式中的第4项=_______.6(=6663166((1)2r r r r r rr r T C C x ---+==-⋅⋅3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(228=-C ()61x +16r r r T C x +=2r =2615C =()61x x +3x 6(1)(2)x x -⋅-3x 6(1)(2)x x -⋅-3x 336)(2x C -226)(x -x C -⋅)(3x 552-2636-=-C C dx xn 16e 1⎰=nx x )(3-2x 66e111ln |6e n dx x x=⎰==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r rr r T C x -+=-2r =269135C ⨯=()()()()10210012101111x a a x a x a x +=+-+-++-L 8a 1010(1)(21)x x +=-+-8a8210(2)454180.C -=⨯=1)2nx =n【答案】,.【解析】由二项式定理展开通项公式,由题意得,当且仅当时,取最大值,∴,第4项为. 13、如果,那么的值等于( ) (A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令,代入二项式,得,令,代入二项式,得,所以,即,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1, 15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于 【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0, 所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等于 .【答案】【解析】当时,,解得,那么含的项就是,所以系数是-270. 17、设,若,则.【答案】0. 【解析】由81937x -21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-⋅=-4n =r n C 8n =119(163)333381()72C x x +-=-7270127(12)x a a x a x a x -=++++L 017a a a +++L 1x =7270127(12)x a a x a x a x -=++++L 70127(12)1a a a a -=++++=-L 0x =7270127(12)x a a x a x a x -=++++L 70(10)1a -==12711a a a ++++=-L 1272a a a +++=-L *3)()n n N -∈32-1x 270-1=x ()322--=n5=n x1()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯0(sin cos )k x x dx π=-⎰8822108)1(x a x a x a a kx ++++=-K 1238a a a a +++⋅⋅⋅+=0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰,令得:,即 再令得:,即 所以18、设(5x ﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4. (5x ﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r ??54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r??54﹣r=1×6×25=150,19、设,则 . 【答案】【解析】, 所以令,得到, 所以 三、 求参数问题20、若的展开式中第四项为常数项,则( )A .B .C .D .【答案】B【解析】根据二项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B. 21、二项式的展开式中的系数为15,则( )(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -⨯=++++K 01281a a a a ++++=K 0x =80128(120)000a a a a -⨯=+⨯+⨯++⨯K 01a =12380a a a a +++⋅⋅⋅+=8877108)1(x a x a x a a x ++++=-Λ178a a a +++=L 255178a a a +++=L 87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a nn =45672533333342)21()(---==n nn nxC xx C T 025=-n 5=n )()1(*N n x n ∈+2x =nA 、5B 、 6C 、8D 、10 【答案】B【解析】二项式的展开式中的通项为,令,得,所以的系数为,解得;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵,∴当,即时,. 23、若的展开式中的系数为10,则实数( ) A1 B .或1 C .2或 D . 【答案】B.【解析】由题意得的一次性与二次项系数之和为14,其二项展开通项公式,∴或,故选B . 24、设,当时,等于( )A .5B .6C .7D .8 【答案】C . 【解析】令,则可得,故选C . 四、 其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数. 试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣?20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,)()1(*N n x n ∈+k n kn k x C T -+⋅=12=-k n 2-=n k 2x 152)1(22=-==-n n C C n n n 6=n 4r+14T =C r r r a x-43r -=1r =133324T =C 48,2ax ax x a ==∴=()()411x ax ++2x a =53-53-4(1)ax +14r r rr T C a x +=22144101C a C a a +=⇒=53-23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+012254n a a a a +++⋅⋅⋅+=n 1x =2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-。

二项式定理典型例题(含解答)

二项式定理典型例题(含解答)

二项式定理典型例题典型例题一例1 在二项式nx x ⎪⎭⎫ ⎝⎛+421的展开式中前三项的系数成等差数列,求展开式中所有有理项.分析:典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.解:二项式的展开式的通项公式为:4324121C 21)(C rn r r n rr n r n r x x x T --+=⎪⎭⎫ ⎝⎛= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,123121-=====n n t n t t nn , 由已知:)1(8112312-+=+=n n n tt t ,∴8=n 通项公式为1431681,82,1,021C +-+==r rr rr T r x T 为有理项,故r 316-是4的倍数,∴.8,4,0=r 依次得到有理项为228889448541256121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有典型例题四例4(1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++xx 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.解:(1)103)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;用3)1(x -中的2x 乘以10)1(x +展开式中的3x 可得到531033102C 3C 3x x x =⋅;用 3)1(x -中的3x 项乘以10)1(x +展开式中的2x 项可得到521022103C C 3x x x -=⋅-,合并同类项得5x 项为:5521031041051063)C C 3C C (x x -=-+-.(2)2121⎪⎪⎭⎫ ⎝⎛+=++x x x x 1251)21(⎪⎪⎭⎫ ⎝⎛+=++x x x x .由121⎪⎪⎭⎫⎝⎛+x x 展开式的通项公式r rrrrr x x T --+=⎪⎭⎫ ⎝⎛=61212121C 1)2(C ,可得展开式的常数项为924C 612=.说明:问题(2)中将非二项式通过因式分解转化为二项式解决.这时我们还可以通过合并项转化为二项式展开的问题来解决.典型例题五例5 求62)1(x x -+展开式中5x 的系数.分析:62)1(x x -+不是二项式,我们通过22)1(1x x x x -+=-+或)(12x x -+展开. 解:方法一:[]6262)1()1(x x x x -+=-+ -+++-+=44256)1(15)1(6)1(x x x x x其中含5x 的项为55145355566C 15C 6C x x x x =+-.含5x 项的系数为6.方法二:[]6262)(1)1(x x x x -+=-+其中含5x 的项为555566)4(15)3(20x x x x =+-+-.∴5x 项的系数为6.方法3:本题还可通过把62)1(x x -+看成6个21x x -+相乘,每个因式各取一项相乘可得到乘积的一项,5x 项可由下列几种可能得到.5个因式中取x ,一个取1得到556C x .3个因式中取x ,一个取2x -,两个取1得到)(C C 231336x x -⋅⋅. 1个因式中取x ,两个取2x -,三个取1得到222516)(C C x x -⋅⋅. 合并同类项为5525161336566)C C C C (C x x =+-,5x 项的系数为6.典型例题六例6 求证:(1)1212C C 2C -⋅=+++n n n n n n n ;(2))12(11C 11C 31C 21C 1210-+=++++++n n nn n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质nn n n n n 2C C C C 210=++++ .解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--⋅=--=-⋅=k n kn n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =⋅=+++=-----11111012)C C C (n n n n n n n 右边.(2))!()!1(!)!(!!11C 11k n k n k n k n k k k n --=-⋅+=+11C 11)!()!1()!1(11+++=-++⋅+=k n n k n k n n . ∴左边112111C 11C 11C 11++++++++++=n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质求解.此外,有些组合数的式子可以直接作为某个二项式的展开式,但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:求10C 2C 2C 2C 22108107910810109+++++ 的结果.仔细观察可以发现该组合数的式与10)21(+的展开式接近,但要注意:10101099102210110010102C 2C 2C 2C C )21(⋅+⋅++⋅+⋅+=+从而可以得到:)13(21C 2C 2C 21010101099108210-=++++ . 典型例题七例7 利用二项式定理证明:98322--+n n 是64的倍数.分析:64是8的平方,问题相当于证明98322--+n n 是28的倍数,为了使问题向二项式定理贴近,变形1122)18(93++++==n n n ,将其展开后各项含有k 8,与28的倍数联系起来.解:∵98322--+n n 98)18(98911--+=--=++n n n n64)C 8C 8(112111⋅++⋅+=-+-++n n n n n 是64的倍数.说明:利用本题的方法和技巧不仅可以用来证明整除问题,而且可以用此方程求一些复杂的指数式除以一个数的余数.典型例题八例8 展开52232⎪⎭⎫ ⎝⎛-x x .分析1:用二项式定理展开式.解法1:52232⎪⎭⎫ ⎝⎛-x x 2232524150250523)2(23)2(23)2(⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=x x C x x C x x C 分析2:对较繁杂的式子,先化简再用二项式定理展开.解法2:10535232)34(232x x x x -=⎪⎭⎫ ⎝⎛-233254315530510)3()4()3()4()4([321-+-+=x C x C x C x 10742532243840513518012032xx x x x x -+-+-=. 说明:记准、记熟二项式nb a )(+的展开式,是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.典型例题九例9 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开.解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即∑=-⋅+=++=++10010101010)(])[()(k k k kz y x C z y x z y x .这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式ky x -+10)(展开,不同的乘积k kk z y x C ⋅+-1010)((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k kk z y x C ⋅+-1010)((10,,1,0 =k ).其中每一个乘积展开后的项数由ky x -+10)(决定,而且各项中x 和y 的指数都不相同,也不会出现同类项.故原式展开后的总项数为66191011=++++ ,∴应选D .典型例题十例10 若nx x ⎪⎭⎫⎝⎛-+21的展开式的常数项为20-,求n .分析:题中0≠x ,当0>x 时,把nx x ⎪⎭⎫ ⎝⎛-+21转化为nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+;当0<x 时,同理nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+.然后写出通项,令含x 的幂指数为零,解出n . 解:当0>x 时nn x x x x 2121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+,其通项为rn r n r r rn r n r x C xx C T 222221)()1()1()(--+-=-=,令022=-r n ,得r n =, ∴展开式的常数项为n nnC2)1(-;当0<x 时,nn n x x x x 21)1(21⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛-+, 同理可得,展开式的常数项为n n n C 2)1(-.无论哪一种情况,常数项均为nn n C 2)1(-. 令20)1(2-=-nn n C ,以 ,3,2,1=n ,逐个代入,得3=n .典型例题十一例11 1031⎪⎭⎫ ⎝⎛+x x 的展开式的第3项小于第4项,则x 的取值范围是______________. 分析:首先运用通项公式写出展开式的第3项和第4项,再根据题设列出不等式即可. 解: 1031⎪⎭⎫ ⎝⎛+x x 有意义必须0>x ;依题意有43T T <即3373102382101)(1)(⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛x x C x x C .∴31123891012910xx ⨯⨯⨯⨯⨯<⨯⨯(∵0>x ).解得5648980<<x .∴x 的取值范围是⎭⎬⎫⎩⎨⎧<<5648980x x .∴应填:5648980<<x .典型例题十二例12 已知n xx)1(2log +的展开式中有连续三项的系数之比为321∶∶,这三项是第几项?若展开式的倒数第二项为112,求x 的值.解:设连续三项是第k 、1+k 、2+k 项(+∈N k 且1>k ),则有32111∶∶∶∶=+-k n k n k n C C C , 即321!)1)(1(!!)(!!!)1)(1(!∶∶∶∶=--+-+--k n k n k n k n k n k n .∴321)1(1)(1)1)((1∶∶∶∶=+-+--k k k n k k n k n . ∴⎪⎪⎩⎪⎪⎨⎧=-+=+-⇒⎪⎪⎩⎪⎪⎨⎧=-+=+---32)()1(21132)()1(21)1)(()(k n k k n k k n k k k k n k n k n k 14=⇒n ,5=k 所求连续三项为第5、6、7三项.又由已知,1122log 1314=xx C .即82log =x x .两边取以2为底的对数,3)(log 22=x ,3log 2±=x ,∴32=x ,或32-=x .说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项,根据已知条件列出某些等式或不等式进行求解.典型例题十三例13 nx )21(+的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项. 分析:根据已知条件可求出n ,再根据n 的奇偶性;确定二项式系数最大的项.解:556)2(x C T n =,667)2(x C T n =,依题意有8226655=⇒=n C C n n . ∴8)21(x +的展开式中,二项式系数最大的项为444851120)2(x x C T ==.设第1+r 项系数最大,则有65222211881188≤≤⇒⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅++--r C C C C r r r r r r r r . ∴5=r 或6=r (∵{}8,,2,1,0 ∈r ).∴系娄最大的项为:561792x T =,671792x T =.说明:(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大,n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,解不等式的方法求得.典型例题十四例14 设nm x x x f )1()1()(+++=(+∈N n m ,),若其展开式中关于x 的一次项的系数和为11,问n m ,为何值时,含2x 项的系数取最小值?并求这个最小值.分析:根据条件得到2x 的系数关于n 的二次表达式,然后用二次函数性质探讨最小值.解:1111=+=+m n C C n m .211)(21222222-+=-+-=+n m n n m m C C n m499)211(55112211022+-=+-=-=n n n mn .∵+∈N n , ∴5=n 或6,6=m 或5时,2x 项系数最小,最小值为25. 说明:二次函数499)211(2+-=x y 的对称轴方程为211=x ,即5.5=x ,由于5、6距5.5等距离,且对+∈N n ,5、6距5.5最近,所以499)211(2+-n 的最小值在5=n 或6=n 处取得. 典型例题十五例15 若0166777)13(a x a x a x a x ++++=- ,求(1) 721a a a +++ ;(2) 7531a a a a +++;(3) 6420a a a a +++.解:(1)令0=x ,则10-=a ,令1=x ,则128270167==++++a a a a . ①∴129721=+++a a a .(2)令1-=x ,则701234567)4(-=+-+-+-+-a a a a a a a a ②由2②①-得:8256]4128[2177531=--=+++)(a a a a (3)由2②①+得:6420a a a a +++][210123456701234567)()(a a a a a a a a a a a a a a a a +-+-+-+-++++++++=8128])4(128[217-=-+=. 说明:(1)根据问题恒等式特点来用“特殊值”法.这是一种重要方法,它适用于恒等式.(2)一般地,对于多项式nn n x a x a x a a q px x g ++++=+= 2210)()(,)(x g 的各项的系数和为)1(g :)(x g 的奇数项的系数和为)]1()1([21-+g g .)(x g 的偶数项的系数和为)]1()1([21--g g .典型例题十六例16 填空:(1) 3230-除以7的余数_____________;(2) 155555+除以8的余数是___. 分析(1):将302分解成含7的因数,然后用二项式定理展开,不含7的项就是余数.解:3230-3)2(103-=3)8(10-=3)17(10-+=37771010910911010010-++++=C C C C又∵余数不能为负数,需转化为正数。

二项式定理习题(带答案)

二项式定理习题(带答案)

(A)-540
(B)-162
(C)162
(D)540
33、A 解析:令 x=1,得 2n=64,得 n=6.设常数项为 Tr+1= Cr6(3 )6-r·(- )r
=Cr636-r·(-1)r·x3-r 令 3-r=0 得 r=3.∴常数项 T4=-540.
36、在
的二项展开式中,若只有 的系数最大,则
6、C7、C8、A9、A
16、3.若
的展开式中 的系数是(
A.14 )A
B.-14
B
C
C.42 D
D.-42
17、在
的展开式中 的系数是 ( )A.-14 B.14 C.-28 D.28
16、B 解析:(x-1)(x+1)8=(x-1)(1+x)8,∴含 x5 的项为 x·C x4+(-1)C x5=14x5,∴x5 的系数是 14,故选 B. 17、B 解析:(x-1)(x+1)8=(x-1)(1+x)8,∴含 x5 的项为 x·C x4+(-1)C x5=14x5,∴x5 的系数是 14,故选 B.
(3)二项式系数的和:
C
0 n
C1 nCຫໍສະໝຸດ 2 nCk n
C
n n
2n
奇数项的二项式系数的和等于偶数项的二项式系数和.即
C0n +C2n +
=C1n +C3n +
=2n-1
对称性 (2)二项式系数的三个性质 增减性和最值
二项式系数和
基本题型
(一)通项公式的应用
1、 (2x 1 )6 的展开式中第三项的二项式系数为________;第三项的系数为_______; x

二项式定理练习题及答案解析

二项式定理练习题及答案解析

二项式定理练习题及答案解析一、选择题1.二项式(a+b)2n的展开式的项数是()A.2n B.2n+1C.2n-1D.2(n+1)[答案] B2.(x-y)n的二项展开式中,第r项的系数是()A.Crn B.Cr+1nC.Cr-1n D.(-1)r-1Cr-1n[答案] D3.在(x-3)10的展开式中,x6的系数是()A.-27C610 B.27C410C.-9C610 D.9C410[答案] D[解析]∵Tr+1=Cr10x10-r(-3)r.令10-r=6,解得r=4.∴系数为(-3)4C410=9C410.4.(2010•全国Ⅰ理,5)(1+2x)3(1-3x)5的展开式中x的系数是() A.-4 B.-2C.2 D.4[答案] C[解析](1+2x)3(1-3x)5=(1+6x+12x+8xx)(1-3x)5,故(1+2x)3(1-3x)5的展开式中含x的项为1×C35(-3x)3+12xC05=-10x+12x=2x,所以x的系数为2.5.在2x3+1x2n(n∈N*)的展开式中,若存在常数项,则n的最小值是()A.3 B.5C.8 D.10[答案] B[解析]Tr+1=Crn(2x3)n-r1x2r=2n-r•Crnx3n-5r.令3n-5r=0,∵0≤r≤n,r、n∈Z.∴n的最小值为5.6.在(1-x3)(1+x)10的展开式中x5的系数是()A.-297 B.-252C.297 D.207[答案] D[解析]x5应是(1+x)10中含x5项与含x2项.∴其系数为C510+C210(-1)=207.7.(2009•北京)在x2-1xn的展开式中,常数项为15,则n的一个值可以是()A.3 B.4C.5 D.6[答案] D[解析]通项Tr+1=Cr10(x2)n-r(-1x)r=(-1)rCrnx2n-3r,常数项是15,则2n=3r,且Crn=15,验证n=6时,r=4合题意,故选D.8.(2010•陕西理,4)(x+ax)5(x∈R)展开式中x3的系数为10,则实数a等于()A.-1 B.12C.1 D.2[答案] D[解析]Cr5•xr(ax)5-r=Cr5•a5-rx2r-5,令2r-5=3,∴r=4,由C45•a=10,得a=2.9.若(1+2x)6的展开式中的第2项大于它的相邻两项,则x的取值范围是()A.112<x<15B.16<x<15C.112<x<23D.16<x<25[答案] A[解析]由T2>T1T2>T3得C162x>1C162x>C26(2x)2∴112<x<15. 10.在32x-1220的展开式中,系数是有理数的项共有()A.4项B.5项C.6项D.7项[答案] A[解析]Tr+1=Cr20(32x)20-r-12r=-22r•(32)20-rCr20•x20-r,∵系数为有理数,∴(2)r与220-r3均为有理数,∴r能被2整除,且20-r能被3整除,故r为偶数,20-r是3的倍数,0≤r≤20.∴r=2,8,14,20.二、填空题11.(1+x+x2)•(1-x)10的展开式中,x5的系数为____________.[答案]-16212.(1+x)2(1-x)5的展开式中x3的系数为________.[答案] 5[解析]解法一:先变形(1+x)2(1-x)5=(1-x)3•(1-x2)2=(1-x)3(1+x4-2x2),展开式中x3的系数为-1+(-2)•C13(-1)=5;解法二:C35(-1)3+C12•C25(-1)2+C22C15(-1)=5.13.若x2+1ax6的二项展开式中x3的系数为52,则a=________(用数字作答).[答案] 2[解析]C36(x2)3•1ax3=20a3x3=52x3,∴a=2.14.(2010•辽宁理,13)(1+x+x2)(x-1x)6的展开式中的常数项为________.[答案]-5[解析](1+x+x2)x-1x6=x-1x6+xx-1x6+x2x-1x6,∴要找出x-1x6中的常数项,1x项的系数,1x2项的系数,Tr+1=Cr6x6-r(-1)rx-r=Cr6(-1)rx6-2r,令6-2r=0,∴r=3,令6-2r=-1,无解.令6-2r=-2,∴r=4.∴常数项为-C36+C46=-5.三、解答题15.求二项式(a+2b)4的展开式.[解析]根据二项式定理(a+b)n=C0nan+C1nan-1b+…+Cknan-kbk+…+Cnnbnn得(a+2b)4=C04a4+C14a3(2b)+C24a2(2b)2+C34a(2b)3+C44(2b)4=a4+8a3b+24a2b2+32ab3+16b4.16.m、n∈N*,f(x)=(1+x)m+(1+x)n展开式中x的系数为19,求x2的系数的最小值及此时展开式中x7的系数.[解析]由题设m+n=19,∵m,n∈N*.∴m=1n=18,m=2n=17,…,m=18n=1.x2的系数C2m+C2n=12(m2-m)+12(n2-n)=m2-19m+171.∴当m=9或10时,x2的系数取最小值81,此时x7的系数为C79+C710=156.17.已知在(3x-123x)n的展开式中,第6项为常数项.(1)求n;(2)求含x2的项的系数;(3)求展开式中所有的有理项.[解析](1)Tr+1=Crn•(3x)n-r•(-123x)r=Crn•(x13)n-r•(-12•x-13)r=(-12)r•Crn•xn-2r3.∵第6项为常数项,∴r=5时有n-2r3=0,∴n=10.(2)令n-2r3=2,得r=12(n-6)=2,∴所求的系数为C210(-12)2=454.(3)根据通项公式,由题意得:10-2r3∈Z0≤r≤10r∈Z令10-2r3=k(k∈Z),则10-2r=3k,即r=10-3k2=5-32k.∵r∈Z,∴k应为偶数,∴k可取2,0,-2,∴r=2,5,8,∴第3项、第6项与第9项为有理项.它们分别为C210•(-12)2•x2,C510(-12)5,C810•(-12)8•x-2.18.若x+124xn展开式中前三项系数成等差数列.求:展开式中系数最大的项.[解析]通项为:Tr+1=Crn•(x)n-r•124xr.由已知条件知:C0n+C2n•122=2C1n•12,解得:n=8.记第r项的系数为tr,设第k项系数最大,则有:tk≥tk+1且tk≥tk-1.又tr=Cr-18•2-r+1,于是有:Ck-18•2-k+1≥Ck8•2-kCk-18•2-k+1≥Ck-28•2-k+2即8!(k-1)!•(9-k)!×2≥8!k!(8-k)!,8!(k-1)!•(9-k)!≥8!(k-2)!•(10-k)!×2.∴29-k≥1k,1k-1≥210-k.解得3≤k≤4.∴系数最大项为第3项T3=7•x35和第4项T4=7•x74.。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

(完整版)⼆项式定理(习题含答案)⼆项式定理⼀、求展开式中特定项 1、在的展开式中,的幂指数是整数的共有() A .项 B .项 C .项 D .项【答案】C 【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C .3、若展开式中的常数项为.(⽤数字作答)【答案】10【解】由题意得,令,可得展⽰式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为, 4、⼆项式的展开式中的常数项为.【答案】112【解析】由⼆项式通项可得,(r=0,1,,8),显然当时,,故⼆项式展开式中的常数项为112.5、的展开式中常数项等于________.【答案】.【解析】因为中的展开式通项为,当第⼀项取时,,此时的展开式中常数为;当第⼀项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填. 6、设,则的展开式中常数项是.【答案】 332,30x 4567()r r rrr r x C x x C T 6515303303011--+?==30......2,1,0=r =r 2531()x x+1x =232n =5n =2531()x x+10515r rr T C x -+=2r =2510C=82)x3488838122rrr r rr r x C xx C --+-=-=)()()(T 2=r 1123=T 41(2)(13)x x--1441(2)(13)x x--4(13)x -4C (3)r rx -204C 1=21x-14C (3)12x -=-12141420sin 12cos 2x a x dx π=-+()622x ??+ ?332=-()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ??=-+=+=-+= ??的展开式的通项为,所以所求常数项为.⼆、求特定项系数或系数和7、的展开式中项的系数是()A .B .C .D .【答案】A【解析】由通式,令,则展开式中项的系数是.8、在x (1+x )6的展开式中,含x 3项的系数是.【答案】15【解】的通项,令可得.则中的系数为15.9、在的展开式中含的项的系数是.【答案】-55【解析】的展开式中项由和两部分组成,所以的项的系数为. 10、已知,那么展开式中含项的系数为.【答案】135【解析】根据题意,,则中,由⼆项式定理的通项公式,可设含项的项是,可知,所以系数为.11、已知,则等于()A .-5B .5C .90D .180【答案】D 因为,所以等于选D.12、在⼆项式的展开式中,只有第5项的⼆项式系数最⼤,则________;展开式中的第4项=_______.6(=6663166((1)2r r r r r rr r T C C x ---+==-??3633565566(1)22(1)2T C C --=-??+-?332=-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(228=-C ()61x +16r r r T C x +=2r =2615C =()61x x +3x 6(1)(2)x x -?-3x 6(1)(2)x x -?-3x 336)(2x C -226)(x -x C -?)(3x 552-2636-=-C C dx xn 16e 1=nx x )(3-2x 66e111ln |6e n dx x x=?==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r rr r T C x -+=-2r =269135C ?=()()()()10210012101111x a a x a x a x +=+-+-++-L 8a 1010(1)(21)x x +=-+-8a8210(2)454180.C -=?=1)2nx =n【答案】,.【解析】由⼆项式定理展开通项公式,由题意得,当且仅当时,取最⼤值,∴,第4项为. 13、如果,那么的值等于()(A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令,代⼊⼆项式,得,令,代⼊⼆项式,得,所以,即,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代⼊⼆项式,可得(﹣2)7 =﹣1, 15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等于.【答案】【解析】当时,,解得,那么含的项就是,所以系数是-270. 17、设,若,则.【答案】0. 【解析】由81937x -21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-?=-4n =r n C 8n =119(163)333381()72C x x +-=-7270127(12)x a a x a x a x -=++++L 017a a a +++L 1x =7270127(12)x a a x a x a x -=++++L 70127(12)1 a a a a -=++++=-L 0x =7270127(12)x a a x a x a x -=++++L 70(10)1a -==12711a a a ++++=-L 1272a a a +++=-L *3)()n n N -∈32-1x 270-1=x ()322--=n5=n x1()x x C 1270313225-=-(sin cos )k x x dx π=-?8822108)1(x a x a x a a kx ++++=-K 1238a a a a ++++=0(sin cos )(cos sin )k x x dx x x ππ=-=--?,令得:,即再令得:,即所以18、设(5x ﹣)n 的展开式的各项系数和为M ,⼆项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x ⽆关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由⼆项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4. (5x ﹣)n 的展开式的通项公式为 T r+1=(5x )4﹣r ?(﹣1)r ?=(﹣1)r ?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为(﹣1)r54﹣r=1×6×25=150,19、设,则.【答案】【解析】,所以令,得到,所以三、求参数问题20、若的展开式中第四项为常数项,则()A .B .C .D .【答案】B【解析】根据⼆项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B. 21、⼆项式的展开式中的系数为15,则()(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -?=++++K 01281a a a a ++++=K 0x =80128(120)000a a a a -?=+?+? ++?K 01a =12380a a a a ++++=8877108)1(x a x a x a a x ++++=-Λ178a a a +++=L 255178a a a +++=L 87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a nn =456725333342)21()(---==n nn nxC xx C T 025=-n 5=n )()1(*N n x n ∈+2x =nA 、5B 、 6C 、8D 、10 【答案】B【解析】⼆项式的展开式中的通项为,令,得,所以的系数为,解得;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵,∴当,即时,. 23、若的展开式中的系数为10,则实数() A1 B .或1 C .2或 D .【答案】B.【解析】由题意得的⼀次性与⼆次项系数之和为14,其⼆项展开通项公式,∴或,故选B . 24、设,当时,等于()A .5B .6C .7D .8 【答案】C .【解析】令,则可得,故选C .四、其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利⽤⼆项式表⽰,使其底数⽤8的倍数表⽰,利⽤⼆项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+20162013﹣20162012+…+2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,)()1(*N n x n ∈+k n kn k x C T -+?=12=-k n 2-=n k 2x 152)1(22=-==-n n C C n n n 6=n 4r+14T =C r r r a x-43r -=1r =133324T =C 48,2ax ax x a ==∴=()()411x ax ++2x a =53-53-4(1)ax +14r r rr T C a x +=22144101C a C a a +=?=53-23(1)(1)(1)(1)n x x x x ++++++++2012n n a a x a x a x =++++012254n a a a a ++++=n 1x =2 312(21)22222225418721n nn n n +-++++==-=?+=?=-。

(完整版)二项式定理典型例题解析

(完整版)二项式定理典型例题解析

二项式定理 概念篇【例1】求二项式(a — 2b)4的展开式. 分析:直接利用二项式定理展开•解:根据二项式定理得 (a — 2b)4=c 0 a 4+c 4 a 3( — 2b)+C 4 a 2( — 2b)2+C 3 a( — 2b)3+C 4 (— 2b)4=a 4 — 8a 3b+24a 2b 2— 32ab 3+i6b 4.说明:运用二项式定理时要注意对号入座,本题易误把— 2b 中的符号“―”忽略【例2】展开(2x -2代2x分析一:直接用二项式定理展开式•解法一:(2x - 32)5=C °(2x)5+c l (2x)4(— q )+C ;(2x)3( — q )2+c 5(2x)2(—与)3+2x2x 2x 2xC 5 (2x)( — 2)4+C ;( — 2)52x 2 2x 2分析二:对较繁杂的式子,先化简再用二项式定理展开解法二:35--和件[C 5 (4x 3)5+C 1 (4x 3)4(— 3)+C 5 (4x 3)3(— 3)2+C 3 (4x 3)2( — 3)3+C 4 (4x 3)( — 3)4 + C 5( — 3)5]荷(1024x 15— 3840x 12+5760x 9— 4320x 6+l620x 3— 243) 32x 10说明:记准、记熟二项式(a+b)n 的展开式是解答好与二项式定理有关问题的前提条件对较复杂的二项式,有时先化简再展开会更简便【例3】在(x — ■ 3)10的展开式中,x 6的系数是 ________ . 解法一:根据二项式定理可知x 6的系数是c 4°.解法二:(x —,3)10 的展开式的通项是 T r+1=C ;0X 10—r ( — 3 )r .令10— r=6,即r=4,由通项公式可知含 x 6项为第5项,即T 4+1=C :0x 6( — . 3 )4=9C 40x 6. ••• x 6的系数为9C :0.上面的解法一与解法二显然不同,那么哪一个是正确的呢?问题要求的是求含 x 6这一项系数,而不是求含 x 6的二项式系数,所以应是解法二正确 如果问题改为求含 x 6的二项式系数,解法一就正确了,也即是C :0.说明:要注意区分二项式系数与指定某一项的系数的差异 二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项=32x 5— 12Ox 2+180 x135 405+87243 10 .32x=327°=32x 5— 120x 2+180 x 135 405x 4 +8x 7243 32x 10 .式无关,后者与二项式、二项式的指数及项数均有关【例4】已知二项式(3 . x — —)10,3x(1) 求其展开式第四项的二项式系数; (2) 求其展开式第四项的系数; (3) 求其第四项.分析:直接用二项式定理展开式•解:(3..X — -2)10 的展开式的通项是 T r+i =C ;o (3.、x )10—r ( — 2)r (r=o , 1,…,10).3x3x•••第9项为常数项,其值为256说明:二项式的展开式的某一项为常数项, 就是这项不含“变元”,一般采用令通项T r+1中的变元的指数为零的方法求得常数项.【例6】(1)求(1+2x)7展开式中系数最大项; (2)求(1 — 2x)7展开式中系数最大项.分析:利用展开式的通项公式, 可得系数的表达式, 列出相邻两项系数之间关系的不等 式,进而求出其最大值.7!2r7! 2r 1即 r!(7r)!(r 1)!(7 r 1)!7! 2r7! 2r 1r !(7 r)!(r 1)!(7 r 1)!(1)展开式的第 4项的二项式系数为 C ?0=120.(2)展开式的第 (3)展开式的第 2 4 项的系数为 C ;037(— — )3= — 77760.34 项为—77760( x )7十,即一77760 • x .z\.(3 .. x — —)10写成]3 x +(— A): 10,从而凑成二项式定理的形式3x 3x【例5】求二项式(x 2+ 1 )10的展开式中的常数项.2丘说明:注意把 分析:展开式中第r+1项为C ;0(x 2)10—r ( 1)r ,要使得它是常数项,必须使2Jxx ”的指数为零,依据是X 0=1 , x M 0.解:设第r+1项为常数项,则 Eg 2)102053r 1 r人 52(一)r (r=0, 1,…,10),令 20 —r=0,2 2••• T9=C 80(1)8=45 256解:(1)设第r+1项系数最大,则有C 72r (C r 1?r 1 C 72r ( C r 1?r 1系数最大项为 T 6=C 7 25X 5=672X 5.(2)解:展开式中共有 8项,系数最大项必为正项,即在第一、三、五、七这四项中取得•又因(1 - 2x)7括号内的两项中后两项系数的绝对值大于前项系数的绝对值, 故系数最大值 必在中间或偏右,故只需比较C 4( 2)4C 3T 5和T 7两项系数的大小即可-C6( 2)6 =4C >1, 所以系数最大项为第五项,即 T 5=560X 4.说明:本例中(1)的解法是求系数最大项的一般解法, (2)的解法是通过对展开式多项分析,使解题过程得到简化,比较简洁 .【例7】(1+2x)n 的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大 的项和系数最大的项.分析:根据已知条件可求出n ,再根据n 的奇偶性确定二项式系数最大的项.解:T 6=C ;j (2x)5, T 7=C 6 (2X )6,依题意有。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

二项式定理一、求展开式中特定项1、在30的展开式中,x 的幂指数是整数的共有( )A .4项 B .5项 C .6项 D .7项【答案】C【解析】()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=,30......2,1,0=r ,若要是幂指数是整数,所以=r 0,6,12,18,24,30,所以共6项,故选C . 3、若2531()x x +展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令1x =,可得展示式中各项的系数的和为32,所以232n =,解得5n =,所以2531()x x +展开式的通项为10515r r r T C x -+=,当2r =时,常数项为2510C =,4、二项式82x的展开式中的常数项为 .【答案】112【解析】由二项式通项可得,3488838122rrr r rr r x C xx C --+-=-=)()()(T (r=0,1,,8),显然当2=r 时,1123=T ,故二项式展开式中的常数项为112.5、41(23)x x--的展开式中常数项等于________.【答案】14.【解析】因为41(2)(13)x x--中4(13)x -的展开式通项为4C (3)r r x -,当第一项取2时,04C 1=,此时的展开式中常数为2;当第一项取1x-时,14C (3)12x -=-,此时的展开式中常数为12;所以原式的展开式中常数项等于14,故应填14.6、设20sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰,则()622x ⎛-⋅+ ⎝的展开式中常数项是 .【答案】332=-332()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰,6(=6的展开式的通项为663166((1)2r r rr r r r r T C C x ---+==-⋅⋅,所以所求常数项为3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-.二、求特定项系数或系数和7、8()x -的展开式中62x y 项的系数是( )A .56B .56-C .28D .28-【答案】A【解析】由通式r r r y x C )2(88--,令2=r ,则展开式中62x y 项的系数是56)2(228=-C .8、在x (1+x )6的展开式中,含x 3项的系数是 .【答案】15【解】()61x +的通项16r rr T C x +=,令2r =可得2615C =.则()61x x +中3x 的系数为15.9、在6(1)(2)x x -⋅-的展开式中含3x 的项的系数是 .【解析】6(1)(2)x x -⋅-的展开式中3x 项由336)(2x C -和226)(x -x C -⋅)(两部分组成,所以3x 的项的系数为552-2636-=-C C .10、已知dx x n 16e 1⎰=,那么nxx (3-展开式中含2x 项的系数为 .【答案】135【解析】根据题意,66e111ln |6e n dx x x=⎰==,则n x x )(3-中,由二项式定理的通项公式1r n r rr n T C a b -+=,可设含2x 项的项是616(3)r r r r T C x -+=-,可知2r =,所以系数为269135C ⨯=.11、已知()()()()10210012101111x a a x a x a x +=+-+-++-L ,则8a 等于( )A .-5B .5C .90D .180【答案】D 因为1010(1)(21)x x +=-+-,所以8a 等于8210(2)454180.C -=⨯=选D.12、在二项式1)2nx -的展开式中,只有第5项的二项式系数最大,则=n ________;展开式中的第4项=_______.【答案】8,1937x -.【解析】由二项式定理展开通项公式21()(2)33111()()22n r n r r r r r rr nn T C x x C x -++=-⋅=-,由题意得,当且仅当4n =时,rn C 取最大值,∴8n =,第4项为1193)333381()72C x x +-=-.13、如果7270127(12)x a a x a x a x -=++++ ,那么017a a a +++ 的值等于( )(A )-1 (B )-2 (C )0 (D )2【解析】令1x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70127(12)1a a a a -=++++=- ,令0x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70(10)1a -==,所以12711a a a ++++=- ,即1272a a a +++=- ,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1,15、(x﹣2)(x﹣1)5的展开式中所有项的系数和等于 【答案】0解:在(x﹣2)(x﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0.16、在*3)()n n N ∈的展开式中,所有项的系数和为32-,则1x 的系数等于.【答案】270-【解析】当1=x 时,()322--=n,解得5=n ,那么含x1的项就是()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯,所以系数是-270.17、设0(sin cos )k x x dx π=-⎰,若8822108)1(x a x a x a a kx ++++=- ,则1238a a a a +++⋅⋅⋅+= .【答案】0.【解析】由0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰(cos sin )(cos 0sin 0)2ππ=-----=,令1x =得:80128(121)a a a a -⨯=++++ ,即01281a a a a ++++= 再令0x =得:80128(120)000a a a a -⨯=+⨯+⨯++⨯ ,即01a =所以12380a a a a +++⋅⋅⋅+=18、设(5x﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M﹣N=240,则展开式中x 的系数为 .【答案】150解:由于(5x﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0.解得 2n =16,或 2n =﹣15(舍去),∴n=4.(5x﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r?54﹣r =1×6×25=150,19、设8877108)1(x a x a x a a x ++++=- ,则178a a a +++= .【答案】255【解析】178a a a +++= 87654321a a a a a a a a +-+-+-+-,所以令1-=x ,得到=82876543210a a a a a a a a a +-+-+-+-,所以2551256-20887654321=-==+-+-+-+-a a a a a a a a a 三、求参数问题20、若n的展开式中第四项为常数项,则n =( )A .4B .5C .6D .7【答案】B【解析】根据二项式展开公式有第四项为2533333342)21()(---==n nn nxC xx C T ,第四项为常数,则必有025=-n ,即5=n ,所以正确选项为B.21、二项式)()1(*N n x n ∈+的展开式中2x 的系数为15,则=n ( )A 、5 B 、 6 C 、8 D 、10【答案】B【解析】二项式)()1(*N n x n ∈+的展开式中的通项为k n kn k x C T -+⋅=1,令2=-k n ,得2-=n k ,所以2x 的系数为152)1(22=-==-n n C C n n n ,解得6=n ;故选B .22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵4r+14T =C r r r a x -,∴当43r -=,即1r =时,133324T =C 48,2ax ax x a ==∴=.23、若()()411x ax ++的展开式中2x 的系数为10,则实数a =( )A1 B .53-或1 C .2或53- D. 【答案】B.【解析】由题意得4(1)ax +的一次性与二次项系数之和为14,其二项展开通项公式14r r rr T C a x +=,∴22144101C a C a a +=⇒=或53-,故选B .24、设23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+,当012254n a a a a +++⋅⋅⋅+=时,n 等于( )A .5B .6C .7D .8【答案】C. 【解析】令1x =,则可得2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-,故选C .四、其他相关问题25、20152015除以8的余数为( )【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,。

二项式定理测试题及答案

二项式定理测试题及答案

二项式定理测试题及答案二项式定理测试题一、选择题1.(x-1)的10次方的展开式的第6项的系数是().A。

C10B。

-C10C。

C10D。

-C102.(2x+x)的展开式中x的3次方的系数是().A。

6B。

12C。

24D。

483.(1-x的3次方)(1+x)的10次方的展开式中x的5次方的系数是().A。

-297B。

-252C。

297D。

2074.(Ax+B)的展开式中,各项都含有x的奇次幂,则n().A。

必为偶数B。

必为奇数C。

奇偶数均可D。

不存在这样的正整数5.二项式的展开式中二项式系数最大的项为().A。

第6项B。

第5、6项C。

第7项D。

第6、7项6.设(2+x) = a + a1/x + a2/x的10次方 + a10/x的10次方,则(a+a2+a4+…+a10)2-(a1+a3+…+a9)2的值是()A。

1B。

-1C。

0D。

(2-1)7.把(x-1)的9次方按x降幂排列,系数最大的项是()A。

第四项和第五项B。

第五项C。

第五项和第六项D。

第六项8.若(3x-4)的展开式中各项系数之和为64,则展开式的常数项为()A。

-540B。

-162C。

162D。

540二、填空题9.9192被100除所得的余数为92.+3Cn+5Cn+n+(2n+1)Cn=2n+3Cn。

11.在(x2+x-1)的7次方(2x+1)的4次方的展开式中,奇数项的系数的和为0.12.(x+4)的展开式中系数最大的项为C4.三、解答题13.(3x+4)的展开式为:81x的4次方+108x的3次方+54x 的2次方+12x+1.14.已知二项式(3x-1/3):1) 展开式第四项的二项式系数为35.2) 展开式第四项的系数为-80/27.15.在(5x-2y)的20次方的展开式中,系数最大的项是C10*(5x)的10次方*(-2y)的10次方,系数最小的项是C20*(-2y)的20次方。

2.由题意可得,4-r+r=3,解得r=2.因此,223x的系数为C4-2=6,乘以2得到答案为12.3.展开(1-x)(1+x),得到1-x^2.展开式中含x项的系数为-1,因此,1-x^2中含x项的系数为0.而1-x^2=(1+x)-(x^2),因此,含x项的系数为1,含x^2项的系数为-1.因此,x项系数为-C10=-207.4.展开式中的一般项为Tr+1=C(Ax)^r+1,其中A=5,x=-1.要使展开式中含有x^10,必须使n为奇数。

二项式定理高考题(带答案)精选全文

二项式定理高考题(带答案)精选全文

可编辑修改精选全文完整版1.2018年全国卷Ⅲ理】的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】分析:写出,然后可得结果详解:由题可得,令,则,所以故选C.2.【2018年浙江卷】二项式的展开式的常数项是___________.【答案】7【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果.详解:二项式的展开式的通项公式为,令得,故所求的常数项为3.【2018年理数天津卷】在的展开式中,的系数为____________.【答案】决问题的关键.4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为()A. 2B.C.D.【答案】B5.【安徽省宿州市2018届三模】的展开式中项的系数为__________.【答案】-132【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果.详解:的展开式为:,当,时,,当,时,,据此可得:展开式中项的系数为.6.【2017课标1,理6】621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为44262115C x x x⋅=,故2x 前系数为151530+=,选C.情况,尤其是两个二项式展开式中的r 不同.7.【2017课标3,理4】()()52x y x y +-的展开式中x 3y 3的系数为A .80-B .40-C .40D .80【答案】C 【解析】8.【2017浙江,13】已知多项式()1x +3()2x +2=5432112345x a x a x a x a x a +++++,则4a =________,5a =________. 【答案计数.9.【2017山东,理11】已知()13nx +的展开式中含有2x 项的系数是54,则n = .【答案】4【解析】试题分析:由二项式定理的通项公式()1C 3C 3rr r r rr n n x x +T ==⋅⋅,令2r =得:22C 354n ⋅=,解得4n =. 【考点】二项式定理10.【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C r rr n x +T =,令2r =得2x 的系数是2C n ,因为2x 的系数为15,所以2C 15n =,即2300n n --=,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C . 【考点定位】二项式定理.【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C k n k k k n ab -+T =. 11.【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C12.【2015高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为( )A.122 B .112 C .102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n ,所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯.13.【2015高考重庆,理12】53x ⎛+ ⎝的展开式中8x 的系数是________(用数字作答).【答案】52【解析】二项展开式通项为7153521551()()2k k kkk k k T C x C x --+==,令71582k-=,解得2k =,因此8x 的系数为22515()22C =.14.【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 . 【答案】6.【解析】由题可知()()44214411r rrrrr r T CC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.15.【2015高考天津,理12】在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .【答案】1516【解析】614x x ⎛⎫- ⎪⎝⎭展开式的通项为6621661144rrr r r r r T C x C x x --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由622r -=得2r =,所以222236115416T C x x ⎛⎫=-= ⎪⎝⎭,所以该项系数为1516.16.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.【考点定位】二项式定理.17.【2015高考湖南,理6】已知5-的展开式中含32x 的项的系数为30,则a =( )B. C.6 D-6 【答案】D.18.【2015高考上海,理11】在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为(结果用数值表示). 【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C = 19.(2016年北京高考)在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答) 【答案】60.20.(2016年山东高考)若(a x 2)5的展开式中x 5的系数是—80,则实数a =_______. 【答案】-221.(2016年上海高考)在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________ 【答案】11222.(2016年四川高考)设i 为虚数单位,则6(i)x +的展开式中含x 4的项为(A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 4【答案】A23.(2016年天津高考)281()x x-的展开式中x 2的系数为__________.(用数字作答)【答案】56-24.(2016年全国I 高考)5(2x 的展开式中,x 3的系数是 .(用数字填写答案) 【答案】10。

二项式定理练习题-含解析

二项式定理练习题-含解析

二项式定理练习题一、单选题
A.252B.426
二、多选题
5.“杨辉三角”是二项式系数在三角形中的一种几何排列,中国南宋数学家杨辉在1261年所著的《详解九章算法》一书中就有出现,比欧洲早393年发现.如图所示,在“杨辉三角”中,除每行两边的数都是1外,其余每个数都是其“肩上”的两个数之和,例如第4行的6为第3行中两个3的和.则下列命题中正确的是()
A .由“在相邻两行中,除1以外的每个数都等于它肩上的两个数字之和”猜想
11C C C r r r n n n
-+=+B .由“第n 行所有数之和为2n ”猜想:012C C C C 2
n n n n n n +++⋅⋅⋅+=C .第20行中,第10个数最大
D .第15行中,第7个数与第8个数的比为7:9。

高考数学精品试题:二项式定理

高考数学精品试题:二项式定理

专题内容:二项式定理一、典型例题例1、已知()()511ax x ++的展开式中3x 的系数为15,则a 的值为( ) A .34 B .13 C .12 D .1 例2、已知二项式()*12N n x n x ⎛⎫-∈ ⎪⎝⎭的展开式中第2项与第3项的二项式系数之比是2:5,则展开式的常数项为( )A .14B .240C .60D .240- 例3、设()5234512345612x a a x a x a x a x a x +=+++++,则5a = ;123a a a ++= 。

二、课堂练习1、91x ⎫⎪⎭展开式中的常数项为( ) A .84 B .84- C .28D .28- 2、在()n x y -的展开式中,第3项与第8项的二项式系数相等,则展开式中系数最大的项是( )A .第6项B .第5项C .第5,6项D .第4,5项 3、若312n x x ⎛⎫+ ⎪⎝⎭的展开式中所有项系数和为81,则该展开式的常数项为( ) A .10 B .8 C .6 D .44、()25y x x x y ⎛⎫ ⎪⎭+⎝+的展开式中33x y 的系数为( ) A.5 B.10 C.15 D.205、若多项式()()()910210019101...11x x a a x a x a x +=+++++++,则9a = ( )A. 9B. 10C. -9D. -10【布置作业】1、的展开式中的中间项为( ) A . B . C . D .2、的展开式中各项的二项式系数之和为32,且各项系数和为243,则展开式中的系数为( ) A .20B .30C .40D .80 3、使()的展开式中含有常数项的最小的( ) A .4B .5C .6D .7 4、二项式的展开式中有理项的个数为( ) A .5 B .6C .7D .8 5、已知,设,则( )A .1023B .1024C .1025D .1026 6、在的展开式中,只有第7项的二项式系数最大,则展开式常数项是( ) A . B . C . D .287、的展开式中的常数项是__________. 8、的展开式中第四项的系数为120,所有奇数项的二项式系数之和为512,则实数a 的值为______.9、的展开式中项的系数为___________(用数字表示).10、已知的展开式中,的系数是240,则实数的值为______. 11、的展开式中所有二项式系数的最大值是_____(用数字作答). 12、已知的展开式中第4项与第8项的二项式系数相等,且展开式的各项系数之和为1024,则该展开式中系数最大的项为_________. 13、若的展开式中第3项与第8项的系数相等,则展开式中二项式系数最大的项为第_______项 14、若二项式的展开式中第项与第项的系数相同,则其常数项是___________. 8312x x ⎛⎫- ⎪⎝⎭35883358x -7-437x --3()n a x x+3x 13n x x x -⎛⎫+ ⎪⎝⎭n +∈N n 102x x ⎛⎫+ ⎪⎝⎭46n n C C =()()()()201234111n n n x a a x a x a x -=+-+-++-12n a a a +++=31()2n x x -552552-28-()51212x x ⎛⎫+- ⎪⎝⎭4n a x x ⎛⎫+ ⎪⎝⎭25(1()2)x x +-4x ()61ax -2x a ()61x +21(0)nax a x ⎛⎫-< ⎪⎝⎭1()n x x +1n x x ⎛⎫+ ⎪⎝⎭()*n ∈N 5615、设a∈Z,且0≤a≤16,若42021+a能被17整除,则a的值为_____.。

二项式定理相关练习题

二项式定理相关练习题

二项式定理相关练习题一、基础题1. 已知 $(x + y)^5$ 的展开式中,$x^2y^3$ 的系数是多少?2. 求 $(a 2b)^4$ 的展开式中,$a^3b$ 的系数。

3. 已知 $(x \frac{1}{x})^6$ 的展开式,求其中 $x^3$ 的系数。

4. 计算 $(3x 4y + 5z)^2$ 的展开式中,$x^2$ 的系数。

5. 已知 $(2x + 3y 4z)^5$ 的展开式,求其中 $y^3z^2$ 的系数。

二、提高题1. 在 $(x + \frac{1}{x})^8$ 的展开式中,求常数项和$x^4$ 的系数。

2. 已知 $(a + b + c)^3$ 的展开式,求其中 $a^2b^2$ 的系数。

3. 计算 $(x^2 + \frac{1}{x})^5$ 的展开式中,$x^3$ 的系数。

4. 在 $(2x 3y + 4z)^4$ 的展开式中,求 $x^2y^2$ 的系数。

5. 已知 $(3a 4b + 5c)^6$ 的展开式,求其中 $a^3b^3c^3$ 的系数。

三、应用题1. 设 $(x + \frac{1}{x})^n$ 的展开式中,常数项为 40,求$n$ 的值。

2. 已知 $(a + b)^n$ 的展开式中,$a^3b^2$ 的系数为 60,求$n$ 的值。

3. 在 $(2x 5y)^7$ 的展开式中,求 $x^5y^2$ 的系数,并判断该系数是奇数还是偶数。

4. 计算 $(x^2 \frac{1}{x})^6$ 的展开式中,$x^4$ 的系数,并说明该系数的正负性。

5. 已知 $(3a + 4b)^n$ 的展开式中,$a^2b^3$ 的系数为 144,求 $n$ 的值。

四、综合题1. 若 $(x \frac{1}{2x})^8$ 的展开式中,$x^4$ 的系数为$70$,求 $x^6$ 的系数。

2. 在 $(a + b)^{10}$ 的展开式中,找出系数最大的项。

二项式定理基础题精选全文

二项式定理基础题精选全文

精选全文完整版(可编辑修改)
二项式定理典型习题
【例4】已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,求:
(1)a 1+a 2+…+a 7;
(2)a 1+a 3+a 5+a 7;
(3)a 0+a 2+a 4+a 6;
(4)|a 0|+|a 1|+|a 2|+…+|a 7|.
()()()n n x 216123【例】已知在的展开式中,第项为常数项.求;求含的项的系数;
求展开式中所有的有理项.
n 若展开式中前三项系数成等
差数列.求:182【例】求
展开式中的常数项.)
21().()()()n n x
x n x x 22331992212【例】已知的展开式的二项式系数和比-的展开式的二项式系数和大求-的展开式中:二项式系数最大的项;
系数的绝对值最大的项.
1227272727()(*)()n n S ⋯∈⋯251511222N 312C C C 9-【例】求证:++++能被整除;求=+++除以的余数.
在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。

金无足赤,人无完人,在教学工作中难免有缺陷,例如,课堂语言平缓,语言不够生动,理论知识不够,教学经验不足,组织教学能力还有待提高。

在今后的工
作中,我将更严格要求自己,努力工作,发扬优点,改正缺点。

高考数学《二项式定理》真题含答案

高考数学《二项式定理》真题含答案

高考数学《二项式定理》真题含答案一、选择题1.(x +1)6的展开式中的第二项为( )A .6xB .15x 2C .6x 5D .15x 4答案:C2.⎝⎛⎭⎫x 2-2x 3 5 的展开式中的常数项为( ) A .80 B .-80C .40D .-40答案:C解析:由二项展开式通项知T k +1=(-2)k C k 5 ·(x 2)5-k ⎝⎛⎭⎫1x 3 k=(-2)k C k 5 x 10-5k ,令10-5k =0,得k =2.∴常数项为T 3=(-2)2C 25 =40.3.(多选)已知(a +2b )n 的展开式中第6项的二项式系数最大,则n 的值可能为( )A .8B .9C .10D .11答案:BCD4.若(x +2)⎝⎛⎭⎫a x -x 5 展开式中的常数项为80,则a =( )A .-2B .2C .±2D .4答案:B解析:⎝⎛⎭⎫a x -x 5 的展开式的通项公式为T k +1=C k 5 ·(-1)k ·a 5-k ·x 2k -5,显然,2k -5为奇数,故(x +2)⎝⎛⎭⎫a x -x 5 展开式中的常数项为C 25 ·a 3=80,所以a =2. 5.若(x -2y )6的展开式中的二项式系数和为S ,x 2y 4的系数为P ,则P S为( ) A .152 B .154C .120D .240答案:B解析:由题意得S =26=64,P =C 46 (-2)4=15×16=240,∴P S =24064 =154. 6.在二项式⎝⎛⎭⎫x +3x n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则展开式中常数项的值为( )A .6B .9C .12D .18答案:B解析:在⎝⎛⎭⎫x +3x n的展开式中令x =1,得A =4n ,各项二项式系数之和为B =2n ,由 4n +2n =72,得n =3,∴⎝⎛⎭⎫x +3x n =⎝⎛⎭⎫x +3x 3 ,其通项为T k +1=C k 3 (x )3-k ⎝⎛⎭⎫3x k =3k C k 3 x 3-3k 2,令3-3k 2=0,得k =1,故展开式的常数项为T 2=3C 13 =9. 7.⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为( ) A .5 B .10C .15D .20答案:C解析:要求⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数,只要分别求出(x +y )5的展开式中x 2y 3和x 4y 的系数再相加即可,由二项式定理可得(x +y )5的展开式中x 2y 3的系数为C 35 =10,x 4y 的系数为C 15 =5,故⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为10+5=15.故选C. 8.设S =(x -1)4+4(x -1)3+6(x -1)2+4(x -1)+1,则S =( )A .(x -2)4B .(x -1)4C .x 4D .(x +1)4答案:C解析:S =C 04 (x -1)4+C 14 (x -1)3+C 24 (x -1)2+C 34 (x -1)1+C 44 (x -1)0=(x -1+1)4=x 4.9.(多选)已知(2+x )(1-2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则( )A .a 0的值为2B .a 5的值为16C .a 1+a 2+a 3+a 4+a 5+a 6的值为-5D .a 1+a 3+a 5的值为120答案:ABC解析:对于A ,令x =0,得a 0=2×1=2,故A 正确;对于B ,(1-2x )5的展开式的通项T k +1=C k 5 (-2x )k =(-2)k C k 5 x k ,所以a 5=2×(-2)5C 55 +1×(-2)4C 45 =-64+80=16,故B 正确;对于C ,令x =1,得(2+1)(1-2×1)5=a 0+a 1+a 2+a 3+a 4+a 5+a 6 ①,即a 1+a 2+a 3+a 4+a 5+a 6=-3-a 0=-3-2=-5,故C 正确;对于D ,令x =-1,得(2-1)[1-2×(-1)]5=a 0-a 1+a 2-a 3+a 4-a 5+a 6 ②,由①②解得a 1+a 3+a 5=-123,故D 不正确.综上所述,选ABC.二、填空题10.[2024·全国甲卷(理)](13+x )10的展开式中,各项系数中的最大值为______. 答案:5解析:方法一 二项式(13 +x )10的展开式的通项为T k +1=C k 10 (13)10-k x k . 由⎩⎨⎧Ck 10 (13)10-k >C k -110 (13)11-k ,C k 10 (13)10-k >C k +110 (13)9-k ,解得294 <k <334. 又k ∈N *,所以k =8.所以所求系数的最大值为C 810 (13 )2=5.方法二 展开式中系数最大的项一定在下面的5项中:C 510 (13 )5x 5,C 610 (13)4x 6,C 710 (13 )3x 7,C 810 (13 )2x 8,C 910 (13 )1x 9,计算可得,所求系数的最大值为C 810 (13)2=5. 11.在二项式(2 +x )9的展开式中,常数项是________,系数为有理数的项的个数是______________.答案:162 5解析:该二项展开式的第k +1项为T k +1=C k 9 (2 )9-k x k ,当k =0时,第1项为常数项,所以常数项为(2 )9=162 ;当k =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.12.在(x -1x)7的展开式中,系数最大的是第________项. 答案:5解析:二项式⎝⎛⎭⎫x -1x 7的展开式的通项为T k +1=C k 7 ·x 7-k ·(-1)k x -k =(-1)k C k 7 x 7-2k ,故第k +1项的系数为(-1)k C k 7 ,当k =0,2,4,6时,系数为正,因为C 07 <C 67 <C 27 <C 47 ,所以当k =4时,系数最大,是第5项.。

二项式定理十大典型例题配套练习

二项式定理十大典型例题配套练习

1 n 2 2n 1 2
n
④二项式系数的最大项:如果二项式的幂指数 n 是偶数时,则中间一项的二项式系数 Cn2 取得最大值。
n 1 n 1
如果二项式的幂指数 n 是奇数时,则中间两项的二项式系数 Cn 2 , Cn 2 同时取得最大值。
⑤系数的最大项:求 ( a bx) 展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别
练:在 ( a b) 2 n 的展开式中,二项式系数最大的项是多少? 解:二项式的幂指数是偶数 2n ,则中间一项的二项式系数最大,即 T2 n
2 1
Tn 1 ,也就是第 n 1 项。
练:在 (
x 2
1 n ) 的展开式中,只有第 5 项的二项式最大,则展开式中的常数项是多少? 3 x
2 10 r 2 r 4 3
n2
r r Tr 1 C10 ( x 4 )10 r ( x 3 ) r C10 x

1

,由题意
10 r 2 r 3, 解得r 6 , 4 3
6 3 则含有 x 3 的项是第 7 项 T6 1 C10 x 210 x 3 ,系数为 210 。
数最大的项为 T11 ,有 T11 ( ) C12 4 x
12 10 10
1 2
10
16896 x10
练:在 (1 2 x)10 的展开式中系数最大的项是多少? 解:假设 Tr 1 项最大, Tr 1 C10 2 x
r r r
r r 1 r 1 C10 2r C10 2 Ar 1 Ar 2(11 r ) r ,化简得到 6.3 k 7.3 ,又 0 r 10 r r 解得 r 1 r 1 r 1 2(10 r ) Ar 1 Ar 2 C10 2 C10 2 ,

高中试卷-专题28 二项式定理(含答案)

高中试卷-专题28 二项式定理(含答案)

专题28 二项式定理一、单选题1.(2020·北京高三一模)在的展开式中,常数项是( )A .B .C .20D .160【答案】A 【解析】展开式的通项公式为,令,可得,故展开式的常数项为,故选:A.2.(2020·江苏省邗江中学高二期中)在的二项展开式中,含的项的系数是( )A .10B .15C .20D .25【答案】B 【解析】的二项展开式的通项为.令,解得.含的项的系数是.故选:B3.(2020·北京大峪中学高二期中)的展开式的常数项是( )A .B .C .3D .4【答案】D 【解析】612x x æö-ç÷èø160-20-612x x æö-ç÷èø()()()66621662112r r r r rr r r r T C x x C x ----+=××-×=-×××620r -=3r =612x x æö-ç÷èø368160C -×=-10212x x æö+ç÷èø11x 10212x x æö+ç÷èø2102031101011()22r rr r r r r T C x C x x --+æöæö==ç÷ç÷èøèø20311r -=3r =11x 33101152C æö=ç÷èø()522111x x æö+-ç÷èø3-4-展开式中的第项为,当,即时,此时;当,即时,此时.则.故选:D.4.(2020·江苏省邗江中学高二期中)已知,则( )A .B .C .D .【答案】A 【解析】当取 时, 取8个,则,当 取时, 取7个,则,所以 .故选:A5.(2020·北京市鲁迅中学高二月考)的展开式中系数最大的项为( )A .第项B .第项C .第项D .第项【答案】B 【解析】的展开式的通项公式为:,要使系数最大,则r 为偶数,且r 只可能从2,4,6中选,故,且,所以,且,所以,且,经验证:当时,符合,所以的展开式中系数最大的项为第五项,5211x æö-ç÷èø1k +()()52101552111kkkk k k k T C C x x --+æö=-=-ç÷èø2102k -=-4k =()44515C -=2100k -=5k =()55511C -=-514-=()()92100121011...x x a a x a x a x --=++++8a =45-2727-45()1x -1()91-x x 1891a C =-´()1x -x -()91-x x ()278911a C =-´´-()27189911145a C C =-´´--´=-()712x -4578()712x -()()17722+=-=-r rrr r r T C x C x ()()227722---³-rr rr C C ()()227722++-³-rr rr C C ()()()7!7!4!7!2!9!r r r r ´³×--×-()()()7!7!4!7!2!5!r r r r ³´×-+×-()()()41198³---r r r r ()()()()147621³--++r r r r 4r =()712x -6.(2020·阳江市第三中学高二期中)的展开式中,系数最小的项为( )A .第6项B .第7项C .第8项D .第9项【答案】C 【解析】由题设可知展开式中的通项公式为,其系数为,当为奇数时展开式中项的系数最小,则,即第8项的系数最小,应选答案C.7.(2020·辽宁省高三其他(理))已知二项式的展开式中,二项式系数之和等于64,则展开式中常数项等于( )A .240B .120C .48D .36【答案】A 【解析】由题意,解得,则,则二项式的展开式的通项公式为,令即,则.故选:A.8.(2020·扬州市江都区大桥高级中学高二期中)在的展开式中第4项与第8项的系数相等,则展开式中系数最大的项是( )A .第6项B .第5项C .第5、6项D .第6、7项【答案】A 【解析】因为的展开式中每一项的系数和二项式系数相等,第4项与第8项的系数相等所以,所以所以展开式里系数最大的项是第6项()131x -11313()(1)r r r r r r T C x C x +=-=-13(1)r rC -r 13(1)r rC -7r =121(2)n x x+264n=6n =1162211(2(2)n x x x x+=+1621(2)x x +6133622166122rrr r rr T C x C x x ---+æöæö=××=××ç÷ç÷èøèø3302r -=2r =6426622240r r C C -×=×=()nx y +()nx y +37n n C C =10n =二、多选题9.(2020·江苏省扬州中学高二期中)已知的展开式中第5项的二项式系数最大,则n 的值可以为( )A .7B .8C .9D .10【答案】ABC 【解析】∵已知的展开式中第5项的二项式系数最大,则或n =8或n =9故选:ABC .10.(2020·南京市江宁高级中学高二期中)若的展开式中第3项与第8项的系数相等,则展开式中二项式系数最大的项为( )A .第3项B .第4项C .第5项D .第6项【答案】CD 【解析】由题可知,该二项展开式中的项的系数于二项式系数相等,且展开式中第3项与第8项的系数为,又因为其相等,则所以该展开式中二项式系数最大的项为与项即为第5项;第6项.故选:CD11.(2020·福建省南安市侨光中学高二月考)关于的展开式,下列结论正确的是( )A .所有项的二项式系数和为32B .所有项的系数和为0C .常数项为D .二项式系数最大的项为第3项【答案】BC 【解析】解:二项式展开式的通项为()na b +()na b +4n C 7n =1(nx x+27,n n C C 9n =91152-+=91162++=61x x æö-ç÷èø20-61x x æö-ç÷èø()66216611rr r r r r r T C x C x x --+æö=-=-ç÷èø令,解得,则常数项为,故C 正确;且二项式系数最大的项为第4项,故D 错误;二项式系数和;令,得所有项的系数和为0,故A 错误,B 正确;故选:BC12.(2020·江苏省高二期中)下列组合数公式中恒成立的有( )A .B .C .D .【答案】ABD 【解析】对于,因为,,所以,即正确;对于,,故正确;对于,当时,左边,右边,等式不成立,故不正确;对于,因为,等式左边的系数为:,等式右边的系数为:,所以,故正确.故选:ABD620r -=3r =()3346120T C =-=-012345666666666264C C C C C C C ++++++==1x =mn mn nC C -=11m m n n mC nC --=111m mmn n n C C C +++=+()()()()22220122nn nn nn nC C C C C +++×××+=A !!()!mn n C m n m =-!!()![()]!!()!n m n n n C n m n n m m n m -==----m n mn n C C -=AB !(1)!!()!(1)!()!mn n n n mC m m m n m m m n m ×-=×=×-×-×-(1)!(1)![(1)(1)]!n n m n m -=×-×---11m n nC --=BC 1m n ==221C ==1112123C C =+=+=C D 2(1)(1)(1)n n n x x x +×+=+n x 011220nn n n n n n nn n n nC C C C C C C C --×+×+×++×L 001122n n n n n n n n n n C C C C C C C C =×+×+×++×L =0212222()()()()n n n n n C C C C ++++L n x 2nn C ()()()()2222122n n nn n n n C C C C C +++×××+=D三、填空题13.(2020·上海复旦附中高二期中)若,则=__________.【答案】64【解析】在中,令可得,.所以故答案为:64.14.(2020·上海交大附中高三期中)计算:_____.【答案】【解析】由题得原式=.故答案为:15.(2020·山东省高二期中)二项式的展开式中的系数是 【答案】40【解析】依题意,二项式展开式的通项公式为,当,故的系数是.16.(2020·浙江省高三三模)二项式的展开式中,所有二项式系数的和是__________,含x 的项的系数是__________.【答案】128 84 【解析】由题意所有二项式系数的和为,题中二项式展开式通项公式为,令,,6226016(1)x a a x a x a x +=+++×××+0126a a a a +++×××+=6226016(1)x a a x a x a x +=+++×××+1x =()6012611a a a a +=+++×××+60126264a a a a +++×××+==012393n nn n n n C C C C ++++=L 4n 0011223333(13)4n n n nn n n n C C C C ++++=+=L 4n252(x x-4x ()()()52110315522rrrrr r r T C x x C x ---+=×-=-××1034,2r r -==4x ()225240C -×=722x x æö+ç÷èø72128=77317722(2r rrr r r r T C xC x x--+==731r -=2r =所以含x 的项的系数是.故答案为:128;84.四、解答题17.(2020·延安市第一中学高二期中(理))已知,求(1)的值; (2)的值.【答案】(1);(2)1093【解析】(1)令,则;(2)令,则①令,则②由①②得,即18.(2020·北京大峪中学高二期中)已知展开式中的第三项的系数为,求:(1)含的项;(2)二项式系数最大的项.【答案】(1);(2).【解析】(1)展开式的通项为,由于展开式中第三项的系数为,即,即,整理得,,解得,则展开式通项为,227284C =7270127(12)x a a x a x a x -=++++L 017a a a ++¼+0246a a a a +++1-1x =()7017121a a a ++¼=--=1x =-0123672187a a a a a a -+-+¼+-=0x =01a =12372a a a a \+++¼=-+()02462218722185a a a a +++=-=2461092a a a =++0246110921093a a a a \+++=+=1nx x æö+ç÷èø454x 4120x 2521n x x æö+ç÷èø211n rr r rr n r nn T C x C x x --+æö=×=×ç÷èø45245n C =()1452n n -=2900n n --=n N *ÎQ 10n =210110rr r T C x-+=×令,解得,因此,展开式中含的项为;(2)由二项式系数的对称性可知,二项式系数最大的项为.19.(2020·湖北省高二期中)已知的展开式中第4项与第5项的二项式系数相等.(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.【答案】(1),;(2).【解析】(1)由题意知,又展开式的通项为:展开式中共有8项,其中二项式系数最大的项为第4,第5项所以,(2)展开式中系数最大的项必须在正的系数项中产生,即在,,,时,也即在,,,中产生,而,, ,故系数最大的项为第5项20.(2020·怀仁市第一中学校高二月考(理))已知(xn 的展开式中的第二项和第三项的系数相等.(1)求n 的值;(2)求展开式中所有的有理项.【答案】(1);(2),,.【解析】2104r -=7r =4x 744810120T C x x =×=5610252T C ==2nx ö-÷ø14280T x -=-525560T x-=525560T x-=34n n C C =7n \=72x ö÷ø()()773221777222rr rrr r r rr r r T C C xC x x ---+æö=-=-=-ç÷èø()793312472280T C xx--=-=-()71254422572560T C xx--=-=0r =2461T 3T 5T 7T 721T x =12384T x =525560T x -=1127448T x -=525560T x-=5n =51T x =2352T x =5516T x=二项式展开式的通项公式为,;(1)根据展开式中的第二项和第三项的系数相等,得,即,解得;(2)二项式展开式的通项公式为,;当时,对应项是有理项,所以展开式中所有的有理项为,,.21.(2020·江西省上高二中高二月考(理))在二项式的展开式中,前三项的系数依次成等差数列.(1)求展开式中的所有有理项;(2)求系数最大的项.【答案】(1),,(2)和【解析】(nx 32112rrn r n rr r nn T C x C x--+æö=××=××ç÷èø()0,1,2r n =×××2121122nn C C æö×=×ç÷èø()111242n n n -=×5n =3521512rrr r T C x -+æö=××ç÷èø()0,1,2r n =×××0,2,4r =00551512T C x x æö=××=ç÷èø22532351522T C x x -æö=××=ç÷èø44565515216T C x x -æö=×=ç÷èøn +(1)∵由题设可知解得n=8或n=1(舍去)当n=8时,通项据题意,必为整数,从而可知r 必为4的倍数,而0≤r≤8∴ r=0,4,8,故x 的有理项为,,(2)设第r+1项的系数t r+1最大,显然t r+1>0,故有≥1且≤1∵, 由≥1得r≤3又∵,由≤1得:r≥2∴ r=2或r=3所求项为和22.(2020·广西壮族自治区钦州一中高二月考(理))已知展开式前三项的二项式系数和为22.(1)求的值;(2)求展开式中的常数项;(3)求展开式中二项式系数最大的项.【答案】(1);(2);(3).【解析】由题意,展开式前三项的二项式系数和为22.1二项式定理展开:前三项二项式系数为:,解得:或舍去.即n 的值为6.2nx æçèn 66032160x (2nx ()()01211222n n n n n C C C n -++=++=6n =7(n =-)2由通项公式,令,可得:.展开式中的常数项为;是偶数,展开式共有7项则第四项最大展开式中二项式系数最大的项为.()36662166(2)2k k k k k k k T C x C x ---+==3602k -=4k =\1264642416260T C x --+==()3n Q .\936363223162160T C x x --+==。

(完整版)二项式定理典型例题

(完整版)二项式定理典型例题

(完整版)二项式定理典型例题1. 在二项式nx x ??? ?+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项.分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.解:二项式的展开式的通项公式为:4324121C 21)(C rn r r n r r n r n r x x x T --+=??=前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,123121-=====n n t n t t n n ,由已知:)1(8112312-+=+=n n n t t t ,∴8=n通项公式为1431681,82,1,021C +-+==r rr r r T r x T Λ为有理项,故r 316-是4的倍数,∴.8,4,0=r依次得到有理项为228889448541256121C ,83521C ,x x T x x T x T =====-.说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有系数和为n 3.2.(1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++xx 展开式中的常数项.分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.解:(1)103)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;用3)1(x -中的2x 乘以10)1(x +展开式中的3x 可得到531033102C 3C 3x x x =?;用 3)1(x -中的3x 项乘以10)1(x +展开式中的2x 项可得到521022103C C 3x x x -=?-,合并同类项得5x 项为: 5521031041051063)C C 3C C (x x -=-+-.(2)2121???? ??+=++x x x x 1251)21(???? ?+=++x x x x .由121?+x x 展开式的通项公式rr rr r r x x T --+=??? ??=61212121C 1)2(C ,可得展开式的常数项为924C 612=.说明:问题(2)中将非二项式通过因式分解转化为二项式解决.这时我们还可以通过合并项转化为二项式展开的问题来解决.3. 求62)1(x x -+展开式中5x 的系数.分析:62)1(x x -+不是二项式,我们可以通过22)1(1x x x x -+=-+或)(12x x -+把它看成二项式展开.解:方法一:[]6262)1()1(x x x x -+=-+Λ-+++-+=44256)1(15)1(6)1(x x x x x其中含5x 的项为55145355566C 15C 6C x x x x =+-.含5x 项的系数为6.方法二:[]6262)(1)1(x x x x -+=-+62524232222)()(6)(15)(20)(15)(61x x x x x x x x x x x x -+-+-+-+-+-+=其中含5x 的项为555566)4(15)3(20x x x x =+-+-.∴5x 项的系数为6.方法3:本题还可通过把62)1(x x -+看成6个21x x -+相乘,每个因式各取一项相乘可得到乘积的一项,5x 项可由下列几种可能得到.5个因式中取x ,一个取1得到556C x .3个因式中取x ,一个取2x -,两个取1得到)(C C 231336x x -??. 1个因式中取x ,两个取2x -,三个取1得到2 22516)(C C x x -??.合并同类项为5525161336566)C C C C (C x x =+-,5x 项的系数为6. 4.求证:(1)1212C C 2C -?=+++n n n n n n n Λ;(2))12(11C 11C 31C 21C 1210-+=++++++n n n n n n n n Λ.分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质nn n n n n 2C C C C 210=++++Λ.解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--?=--=-?=k n kn n k n k n n k n k n k n k n k k Θ∴左边111101C C C ----+++=n n n n n n n Λ=?=+++=-----11111012)C C C (n n n n n n n Λ右边.(2))!()!1(!)!(!!11C 11k n k n k n k n k k k n--=-?+=+ 11C 11)!()!1()!1(11+++=-++?+=k n n k n k n n .∴左边112111C 11C 11C 11++++++++++=n n n n n n n Λ =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n Λ右边.说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质求解.此外,有些组合数的式子可以直接作为某个二项式的展开式,但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:求10C 2C 2C 2C 22108107910810109+++++Λ的结果.仔细观察可以发现该组合数的式与10)21(+的展开式接近,但要注意:10101099102210110010102C 2C 2C 2C C )21(?+?++?+?+=+Λ 10101091092102C 2C 2C 21021++++?+=Λ )C 2C 2C 210(2110 1099108210+++++=Λ从而可以得到:)13(21C 2C 2C 21010101099108210-=++++Λ. 5.利用二项式定理证明:98322--+n n 是64的倍数.分析:64是8的平方,问题相当于证明98322--+n n 是28的倍数,为了使问题向二项式定理贴近,变形1122)18(93++++==n n n ,将其展开后各项含有k 8,与28的倍数联系起来.解:∵98322--+n n98)18(98911--+=--=++n n n n9818C 8C 8C 81211111--+?+?++?+=+-+++n nn n n n n n Λ 981)1(88C 8C 8211111--+++?++?+=-+++n n n n n n n Λ 2111118C 8C 8?++?+=-+++n n n n n Λ64)C 8C 8(112111?++?+=-+-++n n n n n Λ是64的倍数.说明:利用本题的方法和技巧不仅可以用来证明整除问题,而且可以用此方程求一些复杂的指数式除以一个数的余数.8.若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为().A .11B .33C .55D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开.解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即∑=-?+=++=++10010101010)(])[()(k k k kz y x C z y x z y x .这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式ky x -+10)(展开,不同的乘积k kk z y x C ?+-1010)((10,,1,0Λ=k )展开后,都不会出现同类项.下面,再分别考虑每一个乘积k kk z y x C ?+-1010)((10,,1,0Λ=k ).其中每一个乘积展开后的项数由ky x -+10)(决定,而且各项中x 和y 的指数都不相同,也不会出现同类项.故原式展开后的总项数为66191011=++++Λ,∴应选D .9.若nx x ??-+21的展开式的常数项为20-,求n .分析:题中0≠x ,当0>x 时,把三项式nx x ?-+21转化为nnx x x x 2121??? ??-=??? ??-+;当0<="">n nx x x x 21)1(21??? ?----= ??-+.然后写出通项,令含x 的幂指数为零,进而解出n .解:当0>x 时nnx x x x 2121??? ?-=??? ??-+,其通项为rn r n r r rn r n r x C xx C T 222221)()1()1()(--+-=-=,令022=-r n ,得r n =,∴展开式的常数项为nn n C 2)1(-;当0<="">n n x x x x 21)1(21??? ?----=??? ??-+,同理可得,展开式的常数项为nn n C 2)1(-.无论哪一种情况,常数项均为nn n C 2)1(-.令20)1(2-=-nn n C ,以Λ,3,2,1=n ,逐个代入,得3=n .10.1031??+x x 的展开式的第3项小于第4项,则x 的取值范围是______________.分析:首先运用通项公式写出展开式的第3项和第4项,再根据题设列出不等式即可.解:使1031??? ?+x x 有意义,必须0>x ;依题意,有43T T <,即3373102382101)(1)(??31123891012910xx x ).解得5648980<<="">∴x 的取值范围是?<<5648980x x .∴应填:5648980<<="" .="">x)1(2log +的展开式中有连续三项的系数之比为321∶∶,这三项是第几项?若展开式的倒数第二项为112,求x 的值.解:设连续三项是第k 、1+k 、2+k 项(+∈N k 且1>k ),则有32111∶∶∶∶=+-k n k n k n C C C ,即321!)1)(1(!!)()1)(1(!∶∶∶∶=--+-+--k n k n k n k n k n k n .∴321)1(1)(1)1)((1∶∶∶∶=+-+--k k k n k k n k n .∴=-+=+-=-+=+---32)()1(21132)()1(21)1)(()(k n k k n k k n k k k k n k n k n k 14=?n ,5=k 所求连续三项为第5、6、7三项.又由已知,1122log 1314=xxC .即82log =x x .两边取以2为底的对数,3)(log 22=x ,3log 2±=x ,∴32=x ,或32-=x .说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项,根据已知条件列出某些等式或不等式进行求解.12.nx )21(+的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.分析:根据已知条件可求出n ,再根据n 的奇偶性;确定二项式系数最大的项.解:556)2(x C T n =,667)2(x C T n =,依题意有 8226655=?=n C C n n .∴8)21(x +的展开式中,二项式系数最大的项为444851120)2(x x C T ==.设第1+r 项系数最大,则有65222211881188≤≤≥??≥?++--r C C C C r r r r r r r r .∴5=r 或6=r (∵{}8,,2,1,0Λ∈r ).∴系娄最大的项为:561792x T =,671792x T =.说明:(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大,n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,解不等式的方法求得.13. 设nm x x x f )1()1()(+++=(+∈N n m ,),若其展开式中关于x 的一次项的系数和为11,问n m ,为何值时,含2x 项的系数取最小值?并求这个最小值.分析:根据已知条件得到2x 的系数关于n 的二次表达式,然后利用二次函数性质探讨最小值问题.解:1111=+=+m n C C n m .211)(21222-+=-+-=+n m n n m m C C nm499)211(55112211022+-=+-=-=n n n mn .∵+∈N n ,∴5=n 或6,6=m 或5时,2x 项系数最小,最小值为25.说明:二次函数499)211(2+-=x y 的对称轴方程为211=x ,即5.5=x ,由于5、6距5.5等距离,且对+∈N n ,5、6距5.5最近,所以499)211(2+-n 的最小值在5=n 或6=n 处取得.14.若0166777)13(a x a x a x a x ++++=-Λ,求(1) 721a a a +++Λ;(2) 7531a a a a +++;(3) 6420a a a a +++.解:(1)令0=x ,则10-=a ,令1=x ,则128270167==++++a a a a Λ.①∴129721=+++a a a Λ.(2)令1-=x ,则701234567)4(-=+-+-+-+-a a a a a a a a ②由2②①-得:8256]4128[2177531=--=+++)(a a a a (3)由2②①+得: 6420a a a a +++]10123456701234567)()(a a a a a a a a a a a a a a a a +-+-+-+-++++++++= 8128])4(128[217-=-+=.说明:(1)本解法根据问题恒等式特点来用“特殊值”法.这是一种重要的方法,它适用于恒等式.(2)一般地,对于多项式nn n x a x a x a a q px x g ++++=+=Λ2210)()(,)(x g 的各项的系数和为)1(g :)(x g 的奇数项的系数和为)]1()1([21-+g g .)(x g 的偶数项的系数和为)]1()1([21--g g .18.在52)23(++x x 的展开式中x 的系数为().A .160B .240C .360D .800分析:本题考查二项式定理的通项公式的运用.应想办法将三项式转化为二项式求解.解法1:由5252]2)3[()23(++=++x x x x ,得k kk k x x C T 2)3(5251?+=-+ k k k x x C -+??=525)3(2.再一次使用通项公式得,rk r r k k k r x C C T ---+=21055132,这里50≤≤k ,k r -≤≤50.令1210=--r k ,即92=+r k .所以1=r ,4=k ,由此得到x 的系数为24032445=??C .解法2:由5552)2()1()23(++=++x x x x ,知5)1(+x 的展开式中x 的系数为45C ,常数项为1,5)2(+x 的展开式中x 的系数为4452?C ,常数项为52.因此原式中x 的系数为24022445545=?+?C C .解法3:将52)23(++x x 看作5个三项式相乘,展开式中x 的系数就是从其中一个三项式中取x 3的系数3,从另外4个三项式中取常数项相乘所得的积,即2402344415=C C .∴应选B .19.已知92-x x a 的展开式中3x 的系数为49,常数a 的值为___________.分析:利用二项式的通项公式.解:在92-x x a 的展开式中,通项公式为=-??=-+rrr r x x a C T 299192329921)1(--???? ???-r r r r r x a C .根据题设,3923=-r ,所以8=r .代入通项公式,得39169ax T =.根据题意,49169=a ,所以4=a .∴应填:4.20.若+∈N n ,求证明:3724332+-+n n 能被64整除.分析:考虑先将323+n 拆成与8的倍数有关的和式,再用二项式定理展开.解:3724332+-+n n37243322+-?=+n n 3724931+-?=+n n 3724)18(31+-+?=+n n3724]8888[311112111101+-+?++?+?+??=+++-++++n C C C C C n n n n n n n n n n Λ 3724]18)1(888[3121111+-+?+++?+?+?=-+++n n C C n n n n n Λ 3724)]98(8888[3211121111+-++?++?+?+?=-+-+++n n C C C n n n n n n n Λ 3724)98(3]888[831132121112+-+?+++?+?+?=-+-+-+-n n C C C n n n n n n n Λ64]888[6433212111++?+?+?=-+-+-Λn n n n n C C ,∵18-n ,2118-+?n n C ,3218-+?n n C ,…均为自然数,∴上式各项均为64的整数倍.∴原式能被64整除.说明:用二项式定理证明整除问题,大体上就是这一模式,先将某项凑成与除数有关的和式,再展开证之.该类题也可用数学归纳法证明,但不如用二项式定理证明简捷.21. 已知nx x )3(232+的展开式各项系数和比它的二项式系数和大992.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.分析:先由条件列方程求出n .(1)需考虑二项式系数的性质;(2)需列不等式确定r .解:令1=x 得展开式的各项系数之和为n n 22)31(=+,而展开式的二项式系数的和为n n n n n n C C C C 2210=++++Λ,∴有992222=-n n.∴5=n .(1)∵5=n ,故展开式共有6,其中二项式系数最大的项为第三、第四两项.∴62233225390)3()(x x x C T =?=,32232232354270)3()(x x x C T =?=.(2)设展开式中第1+r 项的系数最大.341052532513)3()(r rr rrr r xC x x C T +-+??=??=,故有≥??≥?++--115511553333r r r r r r r r C C C C即+≥--≥.1351,613r r r r解得2927≤≤r .∵N r ∈,∴4=r ,即展开式中第5项的系数最大.32642132455405)3()(x x x C T =??=说明:展开式中二项式系数最大的项与系数最大的项是两个不同的概念,因此其求法亦不同.前者用二项式系数的性质直接得出,后者要列不等式组;解不等式组时可能会求出几个r ,这时还必须算出相应项的系数后再比较大小.22. 求二项式(a-2b)4的展开式.解:根据二项式定理得(a-2b)4=C04a4+C14a3(-2b)+C24a2(-2b)2+C34a(-2b)3+C4 4(-2b)4 =a4-8a3b+24a2b2-32ab3+16b4..。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项式定理及典型试题知识点一:二项式定理二项式定理:①公式右边的多项式叫做的二项展开式;②展开式中各项的系数叫做二项式系数;③式中的第r+1项叫做二项展开式的通项,用表示;二项展开式的通项公式为.知识点二:二项展开式的特性①项数:有n+1项;②次数:每一项的次数都是n 次,即二项展开式为齐次式;③各项组成:从左到右,字母a 降幂排列,从n 到0;字母b 升幂排列,从0到n ; ④系数:依次为.知识点三:二项式系数的性质①对称性:二项展开式中,与首末两端“等距离”的两项的二项式系数相等 ②单调性:二项式系数在前半部分逐渐增大,在后半部分逐渐减小,在中间取得最大值.其中,当n 为偶数时,二项展开式中间一项的二项式系数最大;当n 为奇数时,二项展开式中间两项的二项式系数,相等,且最大.③二项式系数之和为,即其中,二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和, 即经典例题1、“n b a )(+展开式例1.求4)13(xx +的展开式;解:原式=4)13(xx +=24)13(x x +=])3()3()3()3([14434224314442C CCCCx x x x x ++++=54112848122++++x x x x 【练习1】求4)13(xx -的展开式2.求展开式中的项例2.已知在33(2n x x的展开式中,第6项为常数项.(1) 求n ; (2)求含2x 的项的系数;(3)求展开式中所有的有理项. 解:(1)通项为2333111()()22n r rn r rr r r r nn T C xx C x ---+=-=- 因为第6项为常数项,所以r=5时,有23n r-=0,即n=10. (2)令1023r -=2,得2r =所以所求的系数为2210145()24C -=.(3)根据通项公式,由题意1023010,rZ r r Z-⎧∈⎪⎨⎪≤≤∈⎩ 令102()3rk k Z -=∈,则352k r =-,故k 可以取2,0,2-,即r 可以取2,5,8. 所以第3项,第6项,第9项为有理项,它们分别为22255882101010111(),(),()222C x C C x ----.【练习2】若n 展开式中前三项系数成等差数列.求:(1)展开式中含x 的一次幂的项;(2)展开式中所有x 的有理项.3.二项展开式中的系数例3.已知22)n x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992,求21(2)nx x-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项(先看例9). 解:由题意知,222992nn -=,所以232n =,解得n=5.(1) (1)由二项式系数性质,101(2)x x-的展开式中第6项的二项式系数最大.5556101(2)()8064T C x x=-=-.(2) 设第1r +项的系数的绝对值最大,110r r T C +=Q 10(2)r x -10102101()(1)2r r r r rC x x---=-101111010101910102222r r r r r r r r C C C C ----+-⎧≥∴⎨≥⎩得110101101022r r r r C C C C -+⎧≥∴⎨≥⎩,即1122(1)10r r r r -≥⎧⎨+≥-⎩,解得81133r ≤≤.,3r Z r ∈∴=Q ,故系数的绝对值最大的项是第4项,3744410215360T C x x =-=-.[练习3]已知*22)()n n N x∈的展开式中的第五项的系数与第三项的系数之比是10:1.(1)求展开式中含32x 的项;(2)求展开式中系数最大的项和二项式系数最大的项.4、求两个二项式乘积的展开式指定幂的系数例4.72)2)(1-+x x (的展开式中,3x 项的系数是 ; 解:在展开式中,3x 的来源有:① 第一个因式中取出2x ,则第二个因式必出x ,其系数为667)2(-C ;② 第一个因式中取出1,则第二个因式中必出3x ,其系数为447)2(-C3x ∴的系数应为:∴=-+-,1008)2()2(447667C C 填1008。

5、求可化为二项式的三项展开式中指定幂的系数例5(04安徽改编)3)21(-+xx 的展开式中,常数项是 ; 解:36323)1(])1([)21(x x x x x x -=-=-+,该式展开后常数项只有一项33336)1(x x C-,即20-6、求中间项例6求(103)1xx -的展开式的中间项;解:,)1()(310101rrrr xx T C -=-+Θ∴展开式的中间项为535510)1()(xx C-即:65252x -。

当n 为奇数时,nb a )(+的展开式的中间项是212121-+-n n n n ba C和212121+-+n n n nba C;当n 为偶数时,nb a )(+的展开式的中间项是222n n n nb a C。

7、有理项例7 103)1(xx -的展开式中有理项共有 项;解:341010310101)1()1()(rr r r r rr x xr T CC--+-=-=Θ∴当9,6,3,0=r 时,所对应的项是有理项。

故展开式中有理项有4项。

① 当一个代数式各个字母的指数都是整数时,那么这个代数式是有理式; ② 当一个代数式中各个字母的指数不都是整数(或说是不可约分数)时,那么这个代数式是无理式。

8、求系数最大或最小项(1) 特殊的系数最大或最小问题例8(00上海)在二项式11)1(-x 的展开式中,系数最小的项的系数是 ; 解:r r rr x T C)1(11111-=-+Θ∴要使项的系数最小,则r 必为奇数,且使C r11为最大,由此得5=r ,从而可知最小项的系数为462)1(5511-=-C(2) 一般的系数最大或最小问题 例9求84)21(xx +展开式中系数最大的项;解:记第r 项系数为r T ,设第k 项系数最大,则有 ⎩⎨⎧≥≥+-11k k k k T T T T 又1182.+--=r r r C T ,那么有⎪⎩⎪⎨⎧≥≥-+--+--+--kkk k k k k k C C C C 2.2.2.2.8118228118即⎪⎪⎩⎪⎪⎨⎧-≥⨯--⨯--≥--)!8(!!82)!9)!.(1(!82)!10)!.(2(!8)!9)!.(1(!8K K K K K K K k⎪⎩⎪⎨⎧≥--≥-∴KK K K 1922211解得43≤≤k ,∴系数最大的项为第3项2537x T =和第4项2747x T =。

(3)系数绝对值最大的项例10在(7)y x -的展开式中,系数绝对值最大项是 ;解:求系数绝对最大问题都可以将“n b a )(-”型转化为")("nb a +型来处理,故此答案为第4项4347y x C ,和第5项5257y x C -。

9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和例11.若443322104)32(x a x a x a x a a x ++++=+, 则2312420)()(a a a a a +-++的值为 ;解: Θ443322104)32(x a x a x a x a a x ++++=+ 令1=x ,有432104)32(a a a a a ++++=+, 令1-=x ,有)()()32(314204a a a a a +-++=+-故原式=)]()).[((3142043210a a a a a a a a a a +-++++++=44)32.()32(+-+=1)1(4=-【练习1】若2004221020042004...)21(x x a x a a x ++++=-, 则=++++++)(...)()(200402010a a a a a a ; 解:Θ2004221020042004...)21(x x a x a a x ++++=-,令1=x ,有1...)21(20042102004=++++=-a a a a令=x ,有1)01(02004==-a 故原式=020*********)...(a a a a a +++++=200420031=+【练习2】设0155666...)12(a x a x a x a x ++++=-, 则=++++6210...a a a a ; 解:rr rr x T C )1()2(661-=-+Θ∴65432106210...a a a a a a a a a a a +-+-+-=++++ =)()(5316420a a a a a a a ++-+++ =110、利用二项式定理求近似值例15.求6998.0的近似值,使误差小于001.0;分析:因为6998.0=6)002.01(-,故可以用二项式定理展开计算。

解:6998.0=6)002.01(-=621)002.0(...)002.0.(15)002.0.(61-++-+-+001.000006.0)002.0(15)002.0.(22263<=-⨯=-=C T Θ,且第3项以后的绝对值都小于001.0,∴从第3项起,以后的项都可以忽略不计。

∴6998.0=6)002.01(-)002.0(61-⨯+≈=988.0012.01=- 小结:由nnn n n nx x x x C C C ++++=+...1)1(221,当x 的绝对值与1相比很小且n 很大时,n x x x ,....,32等项的绝对值都很小,因此在精确度允许的范围内可以忽略不计,因此可以用近似计算公式:nx x n+≈+1)1(,在使用这个公式时,要注意按问题对精确度的要求,来确定对展开式中各项的取舍,若精确度要求较高,则可以使用更精确的公式:22)1(1)1(x n n nx x n-++≈+。

[新课标人教版] 排列、组合与二项式定理(选修2-3)注意事项:1.本试题分为第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间为120分钟。

2.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上。

考试结束,试题和答题卡一并收回。

3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案。

第Ⅰ卷一、选择题:本大题共16小题,每小题5分,共80分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(08年上海卷12)组合数C rn (n >r ≥1,n 、r ∈Z )恒等于( )A .r +1n +1C r -1n -1B .(n +1)(r +1)C r -1n -1 C .nr C r -1n -1D .n r C r -1n -12. 一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是 ( ) A .40 B .74 C .84 D .200 3.以三棱柱的六个顶点中的四个顶点为顶点的三棱锥有 ( ) A .18个 B .15个 C .12个 D .9个4. 从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和弦,若有一个音键不同,则发出不同的和弦,则这样的不同的和弦种数是( ) A .512 B .968 C .1013 D .10245.如果(n x +的展开式中所有奇数项的系数和等于512,则展开式的中间项是( )A .6810C xB .510C xC .468C xD .611C x6. 用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是 ( ) A .36 B .32 C .24 D .20 7.现有一个碱基A ,2个碱基C ,3个碱基G ,由这6个碱基组成的不同的碱基序列有( ) A .20个B .60个C .120个D .90个8. 某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为 ( )A .504B .210C .336D .1209.在342005(1)(1)(1)x x x ++++⋯⋯++的展开式中,x 3的系数等于( )A .42005CB .42006CC .32005CD .32006C10.现有男女学生共8人,从男生中选2人,从女生中选1人,分别参加数理化三科竞赛,共有90种不同方案,则男、女生人数可能是( )A .2男6女B .3男5女C .5男3女D .6男2女11.若x ∈R ,n ∈N + ,定义nx M =x (x +1)(x +2)…(x +n -1),例如55M -=(-5)(-4)(-3)(-2)(-1)=-120,则函数199()x f x xM -=的奇偶性为( )A .是偶函数而不是奇函数B .是奇函数而不是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数12.已知集合A ={1,2,3},B ={4,5,6},从A 到B 的映射f (x ),B 中有且仅有2个元素有原象,则这样的映射个数为 ( ) A .8 B .9 C .24 D .2713.有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,而不同的站法有 ( ) A .24种 B .36种 C .60种 D .66种14.等腰三角形的三边均为正数,它们周长不大于10,这样不同形状的三角形的种数为( ) A .8 B .9 C .10 D .1115.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有 ( ) A .36种 B .42种 C .50种 D .72种16.若1021022012100210139),()()x a a x a x a x a a a a a a =+++⋯+++⋯+-++⋯+则的值为( )A .0B .2C .-1D .1第Ⅱ卷二、填空题:本大题共5小题,每小题4分,共20分.把答案填在横线上. 17.某电子器件的电路中,在A ,B 之间有C ,D ,E ,F 四个焊点(如图),如果焊点脱落,则可能导致电路不通.今发现A ,B 间电路不通,则焊点脱落的不同情况有 种. 18.正整数a 1a 2…a n …a 2n -2a 2n -1称为凹数,如果a 1>a 2>…a n ,且a 2n -1>a 2n -2>…>a n ,其中a i(i =1,2,3,…)∈{0,1,2,…,9},请回答三位凹数a 1a 2a 3(a 1≠a 3)共有 个(用数字作答). 19.(08年福建卷13)若(x -2)5= a 5x 5+ a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 1+a 2+a 3+a 4+a 5=__________.(用数字作答)20.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有 .21.已知(x +1)6(ax -1)2的展开式中,x 3的系数是56,则实数a 的值为 .三、解答题:本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤.22.(本小题满分10分)将7个相同的小球任意放入四个不同的盒子中,每个盒子都不空,共有多少种不同的方法?23.(本小题满分12分)已知(41x +3x 2)n 展开式中的倒数第三项的系数为45,求:(1)含x 3的项; (2)系数最大的项.24.(本小题满分14分)规定(1)(1),m x A x x x m =--+L 其中x R ∈,m 为正整数,且01,x A = 这是排列数(,mn A n m 是正整数,且)m n ≤的一种推广.(1)求315A -的值;(2)排列数的两个性质:①11m m n n A nA --=, ②11m m mn n n A mA A -++=.(其中m ,n 是正整数)是否都能推广到(,mx A x R m ∈是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;(3)确定函数3x A 的单调区间.25.(本题满分14分) 一个同心圆形花坛,分为两部分,中间小圆部分种植草坪和绿色灌木,周围的圆环分为),3(N n n n ∈≥等份,种植红、黄、蓝三色不同的花,要求相邻两部分种植不同颜色的花.(1)如图1,圆环分成的3等份为321,,a a a ,有多少不同的种植方法?如图2,圆环分成的4等份为4321,,,a a a a ,有多少不同的种植方法?(2)如图3,圆环分成的n 等份为321,,a a a ,……,a n ,有多少不同的种植方法?参考答案题号12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 答案 DBCBBDBABBADBCBD提示1.D 用公式验证,也可以用特殊值法.2.B 分三步:33425154545474.C C C C C C ++= 3.C 46312.C -=4.B 分8类:3451001210012101010101010101010101010()2(11045)968.C C C C C C C C C C C +++⋯+=+++⋯+-++=-++=5.B 12512,10,n n -=∴=中间项为5555761010().T C x x C x x ==6.D 按首位数字的奇偶性分两类:2332223322()20A A A A A +-= 7.B 分三步:12365360C C C =8.A 939966504,504.A A A ==或9.B 原式=10.B 设有男生x 人,则2138390,(1)(8)30x x C C A x x x -=--=即,检验知B 正确.11.A 2222()(9)(8)(9191)(1)(4)(81).f x x x x x x x x x =--⋯-+-=--⋯-12.D 223327.C =13.B 先排甲、乙外的3人,有33A 种排法,再插入甲、乙两人,有24A 种方法,又甲排乙的左边和甲排乙的右边各占12 ,故所求不同和站法有3234136().2A A =种 14.C 共有(1,1,1),(1,2,2),(1,3,3),(1,4,4),(2,2,2),(2,2,3),(2,3,3),(2,4,4),(3,3,3)(3,3,4)10种.15.B 每人值班2天的排法或减去甲值周一或乙值周六的排法,再加上甲值周一且乙值周六的排法,共有2212264544242().C C A C A -+=种16.D 设f (x )=(2-x )10,则(a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2=(a 0+a 1+…+a 10)(a 0-a 1+a 2-…-a 9+a 10)=f (1)f (-1)=(2+1)10(2-1)10=1。

相关文档
最新文档