金属薄板成形性能与试验方法 成形极限图(FLD)试验

金属薄板成形性能与试验方法 成形极限图(FLD)试验
金属薄板成形性能与试验方法 成形极限图(FLD)试验

最新金属的力学性能测试题及答案

第一章金属的力学性能 一、填空题 1、金属工艺学是研究工程上常用材料性能和___________的一门综合性的技术基础课。 2、金属材料的性能可分为两大类:一类叫_____________,反映材料在使用过程中表现出来的特性, 另一类叫__________,反映材料在加工过程中表现出来的特性。 3、金属在力作用下所显示与弹性和非弹性反应相关或涉及力—应变关系的性能,叫做金属________。 4、金属抵抗永久变形和断裂的能力称为强度,常用的强度判断依据是__________、___________等。 5、断裂前金属发生不可逆永久变形的能力成为塑性,常用的塑性判断依据是________和_________。 6、常用的硬度表示方法有__________、___________和维氏硬度。 二、单项选择题 7、下列不是金属力学性能的是() A、强度 B、硬度 C、韧性 D、压力加工性能 8、根据拉伸实验过程中拉伸实验力和伸长量关系,画出的力——伸长曲线(拉伸图)可以确定出金 属的() A、强度和硬度 B、强度和塑性 C、强度和韧性 D、塑性和韧性 9、试样拉断前所承受的最大标称拉应力为() A、抗压强度 B、屈服强度 C、疲劳强度 D、抗拉强度 10、拉伸实验中,试样所受的力为() A、冲击 B、多次冲击 C、交变载荷 D、静态力 11、属于材料物理性能的是() A、强度 B、硬度 C、热膨胀性 D、耐腐蚀性 12、常用的塑性判断依据是() A、断后伸长率和断面收缩率 B、塑性和韧性 C、断面收缩率和塑性 D、断后伸长率和塑性 13、工程上所用的材料,一般要求其屈强比() A、越大越好 B、越小越好 C、大些,但不可过大 D、小些,但不可过小 14、工程上一般规定,塑性材料的δ为() A、≥1% B、≥5% C、≥10% D、≥15% 15、适于测试硬质合金、表面淬火刚及薄片金属的硬度的测试方法是() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都可以 16、不宜用于成品与表面薄层硬度测试方法() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都不宜 17、用金刚石圆锥体作为压头可以用来测试() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上都可以 18、金属的韧性通常随加载速度提高、温度降低、应力集中程度加剧而() A、变好 B、变差 C、无影响 D、难以判断 19、判断韧性的依据是() A、强度和塑性 B、冲击韧度和塑性 C、冲击韧度和多冲抗力 D、冲击韧度和强度 20、金属疲劳的判断依据是() A、强度 B、塑性 C、抗拉强度 D、疲劳强度 21、材料的冲击韧度越大,其韧性就() A、越好 B、越差 C、无影响 D、难以确定 三、简答题 22、什么叫金属的力学性能?常用的金属力学性能有哪些?

409c不锈钢性能

牌号:409钢种 一般介绍及应用(General description and applications) 409(UNS S40900)钢种是耐热铁素体不锈钢,用以保证汽车排气部件具有良好的耐氧化和腐蚀性。1961年开发出这种合金用作汽车的消音器,从那以后这种通用的不锈钢被用于汽车的管道歧管、排气管、催化转换器、消音器和尾管。409钢种突出的可成形性、可焊性和耐腐蚀性已使其在其他许多地方得到广泛的应用,例如涵洞、家用加热炉、汽车恒温器、燃料过滤器变压器外壳和农场装备。 409(UNS S40900)铁素体不锈钢在大多地方使用良好,但在有些工业应用场合的焊接热影响区会产生晶间腐蚀。该合金Ti和Nb含量的配比十分仔细,能抗可能在焊接热影响区或母体金属在其他受热情况下发生的敏感性和晶间腐蚀。氮化钛表面缺陷少是该合金的另一特点。稳定元素配比平衡可以达到最佳的可焊接性而在焊接后不用以退火来恢复延性。其可成形性和韧性也有所提高。 409HP(USN S40930)合金是一种有专利权的不锈钢化学成分。和其他409合金一样, 11 %的Cr含量使其耐蚀性比碳钢大大加强。该合金有足够的抗氧化性和耐蚀性,是汽车排放系统应用方面的极佳选择。而热端排放可能要用Cr含量为18 %的合金。409HP合金良好的可加工性,也有利于在汽车以外方面的应用。 化学成分 (Composition) 物理性能(Physical properties) 409HP合金的特点是在正常的加工温度下为单相铁素体微型结构,其中沉积了散射的Ti和Nb碳氮化物。对其化学成分的配比很仔细,避免在退火温度中或在焊接的热影响区形成奥氏体和随之形成马氏体。许多铁素体长期置于700-1100℉(370-590℃)温度范围后会脆化。在温度约为885℉(475℃)时这种脆化速度最快,经常称之为“885℉(475℃)脆化”。这是由称作α’马氏体的富Cr 第二相的沉积引起的。885℉(475℃)脆化的速率极大程度取决于合金的Cr含量。Cr含量小于12 %,很少出现885℉(475℃)脆化。

成形极限图试验

成形极限图试验 成形极限图(FLD)或成形极限曲线(FLC)是板料冲压成形性能发展过程中的较新成果。 成形极限图的试验方法如下所述: 1)在试验用坯料上制备好坐标网格; 2)以一定的加载方式使坯料产生胀形变形,测出试件破裂或失稳时的应变ε 1 、ε2(长、短轴方向); 3)改变坯料尺寸或加载条件,重复2)项试验,测得另一状态下的ε 1、ε 2 ; 4)取得一定量的数值后,在平面坐标图上描绘出各试验点,然后圆滑连线,作出FLD。成形极限曲线将整个图形分成如1所示的三部分:安全区、破裂区及临界区。 图1 成形极限图及其用法 于大型复杂薄板冲压件成形时,凹模内毛坯产生破裂的情况较多。这一部分毛坯一般是在拉应力作用下成形的,变形区内产生的断裂是延性断裂。掌握板材拉伸失稳理论,利用成形极限图,可以对这种破坏问题较快地作出判断,找出原因,提出相应的解决办法。拉伸失稳理论是计算建立成形极限图的基础。拉伸失稳是指在拉应力作用下,材料在板平面方向内失去了塑性变形稳定性而产生缩颈,并随这发生破裂。拉伸失稳可分为分散失稳和集中失稳两种。分散性失稳是指板料的塑性变形达到一定程度后,变形开始出现在材料内某些性能不均匀或厚度不均匀的部位,载荷开始随变形程度增大而减小,由于应变硬化,这些缩颈能在一定的尺寸范围内转移,使材料在这个范围内产生一种亚稳定的塑性流动,故载荷下降比较缓慢。但由于材料的硬化增强,变形抗力又有所提高,最后,最薄弱的环节逐渐显示出来,缩颈就逐步集中到某一狭窄区段,这样就逐渐形成了集中失稳。

产生集中失稳时,缩颈点也不能再转移出去,此时金属产生不稳定流动,由于这时承载面急剧减小,变形;力也就急剧下降,很快就异致破坏。成形极限是指材料不发生塑性失稳破坏时的极限应变值。但由于目前失稳理论的计算值还不能准确反映实际冲压成形中毛坯的变形极限,在实际生产中普遍应用由实验得到的成形极限图。成形极限图(FLD),也称成形极限线(FLC)是对板材成形性能的一种定量描述,同时也是对冲压工艺成败性的一种判断曲线。它比用总体成形极限参数,如胀形系数、翻边系数等来判断是否能成形更为方便而准确。成形极限图(FLD)是板材在不同应变路径下的局部失稳极限应变和(相对应变)或和(真实应变)构成的条带形区域或曲线(图1-14)。它全面反映了板材在单向和双向拉应力作用下的局部成形极限。在板材成形中,板平面内的两主应变的任意组合,只要落在成形极限图中的成形极限曲线上,板材变形时就会产生破裂;反之则是安全。图1-14中的条带形区域称为界区,变形如位于临界区,表明此处板材有濒临于破裂的危险。由此可见,FLD是判断和评定板材成形性能的最为简便和直观的方法,是解决板材冲压成形问题的一个非常有效的工具。图 1-14 成形极限图(FLD)一、成形极限图(FLD)的制作目前,试验确定板材成形极限图的方法是:在毛坯(试样)表面预先作出一定形状的风格。冲压成形后,观察、测定网格尺寸的变化量,经过计算,即可得到网格所在位置的应变。对变形区内各点网格尺寸的变化进行测量与计算,可得到应变的分布。网格图形如图1-15所示。图1-16是采用圆形网格,在变形网格变成椭圆形状,椭圆的长、短轴方向就是主轴方向,主应变数值为相应应变:长轴应变:短轴应变:真实应变:长轴应变:短轴应变:图1-15 常用网络形式a) 圆形网 络b) 组合网络c) 叠加网络图1-16 网络的变形二、FLD在生产中的应用 成形极限图与应变分析网格法结合在一起。可以分析解决许多生产实际问题。这种方法用于分析解决问题的原理是:首先通过试验方法获得研究零件所用板材的成形极限图。再将网格系统制作在研究零件的毛坯表面划变形危险区,坯料成形为零件后,测定其网格的变化量,计算出应变值。将应变值标注在所用材料的成形极限图上。这时零件的变形危险区域便可准确加以判断。成形极限图的应用大致有以下几方面:1)解决冲模调试中的破裂问题:2)判断所设计工艺过程的安全裕度,选用合适的冲压材料;3)可用于冲压成形过程的监视和寻找故

金属材料-力学性能试验相关术语

金属材料力学性能试验相关术语 编制: 审核: 批准: 生效日期: 受控(1) 受控标识处: 分发号: 发布日期:2016年9月27日实施日期:2016年9月27日

制/修订记录

1.0 目的和范围 本文件定义了金属材料力学性能试验中使用的术语,并为本文件和一般使用时形成共同的称谓。 2.0 规范性应用文件 下列文件对于本文件的作用是必不可少的。凡是注日期的应用文件,仅注日期的版本适用于本文件。凡是不注日期的应用文件,其最新版本(包括所有的修改单)适用于本文件。 2.1 GB/T 228.1 金属材料 拉伸试验 第1部分:室温试验方法 2.2 GB/T 10623 金属材料 力学性能试验术语 3.0 一般术语 3.1 与试样有关的术语 3.1.1 试件/试样test piece/specimen 通常按照一定形状和尺寸加工制备的用于试验的材料或部分材料。 3.1.2标距gauge length 用于测量试样尺寸变化部分的长度。 3.1.3原始标距original gauge length 在施加试验力之前的标距长度。 3.1.4 断后标距final gauge length after fracture 试样断裂后的标距长度。 3.1.5参考长度reference length 用以计算伸长的基础长度。 3.1.6平行长度parallel length 试样两头部或加持部分(不带头试样)之间平行部分的长度。 3.1.7伸长elongation 在试验期间任一时刻的原始标距Lo 或参考长度Lr 的增量。 3.1.8伸长率percentage elongation 原始标距Lo (或参考长度Lr )的伸长与原始标距(或参考长度Lr )之比百分率。 3.1.9 断后伸长率 percentage elongation after fracture A 断后标距的残余伸长(Lu-Lo )与原始标距之比的百分率。 注:对于比例试样,若原始标距不为(So 为平行长度的原始横截面积),符号A 应附以下脚注说明所使用的比例系数,例如A 11.3表示原始标距为 对于非比例试样,符号A 应附以下脚注说明所使用的原始标距,以毫米(mm )表示。例如,A 80mm 表示原始标距为80mm 的断后伸长率。 3.1.10断面收缩率percentage reduction of area 断裂后试样横截面积的最大缩减量(S 0-S u )与原始横截面积(S 0)之比的百分率。 0U 00 S -S = 100%Z X S

力学性能试验(重点明确)

力学性能试验 第二章力学性能试验取样基本知识(P18) 第一节试样类型及取样原则(P18) 一、取样依据:GB/T 2975-1998《钢及钢产品力学性能试验取样位 置及试验制备》 二、取样原则: 1、取样对力学性能试验结果的影响; 三要素: 取样部位: 1)加工过程中变形量各处不均匀 2)材料内部各种缺陷分布和金属组织不均匀 取样方向: 材料在加工过程中金属是沿晶粒主加工变形方向流动,晶粒被拉长并排成行,夹杂也沿主加工变形方向排列,因此材料性能各向异性。 例如:纵向试样(试样纵向轴线与主加工方向平行)和横向试样

(试样纵向轴线与主加工方向垂直)有较大差异:薄板材纵向试样抗拉强度,下屈服强度都高于横向试样,断面收缩率更是远远大于横向试样。 取样数量: 1)某些力学性能指标对试验条件和材料本身的特性十分敏感,单个试样结果不足以为信,应采用最小的取样数量; 2)试验结果的分散性及经济因素 2、样品的代表性; 一般性规定:GB/T 2975-1998 专门的规定: 产品材料标准和协议:①材料的平均性能;②取样方便; 一般取其最危险、最薄弱的部位,因为最薄弱、最危险处的力学性能决定了产品的性能;此外受力状态与零部件的受力状态相一致; 三、力学性能试验的试样类型: 1、从原材料上直接取样:

2、从产品(结构或零部件)的一定部位上取样; 3、把实物作为样品。 四、样坯切取方法:无论用什麽方法都应遵循以下原则: (1)应在外观及尺寸合格的材料上取样,试料应有足够的尺寸,以保证机加工出足够的试样进行规定的试验及复验; (2)取样时,应对样坯和试样做出不影响其性能的标记,以保证始终能识别取样的位置和方向; (3)取样的方向应按材料标准规定或双方协议执行; (4)切取样坯时,应防止因过热、过冷、加工硬化而影响其力学性能及工艺性能。 如果过热了怎么办?比如,采用火焰切割法取样时,由于材料是在火焰喷嘴下熔化而使样坯从整体上分离出来,在熔化区域附近,材料承受了一个从熔化到相变点(723℃)以下温度变化区域,这一局部的高温将会引起材料性能的很大变化,所以切割样坯(样坯切割线至试样边缘)必须留有足够的切割余量。这一余量的规定为:一般应不

金属材料的力学性能及其测试方法

目录 摘要1 1引言2 2金属材料的力学性能简介2 2.1 强度3 2.2 塑性3 2.3 硬度3 2.4 冲击韧性4 2.5 疲劳强度4 3金属材料力学性能测试方法4 3.1拉伸试验5 3.2压缩试验8 3.3扭转试验11 3.4硬度试验15 3.5冲击韧度试验22 3.6疲劳试验27 4常用的仪器设备简介29 4.1万能试验机29 4.2扭转试验机34 4.3摆锤式冲击试验机40 5金属材料力学性能测试方法的发展趋势42 参考文献42

金属材料的力学性能及其测试方法 摘要:金属的力学性能反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力,它与材料的失效形式息息相关。本文主要解释了金属材料各项力学性能的概念,介绍了几个常见的测试金属材料力学性能的试验以及相关的仪器设备,最后阐述了金属材料力学性能测试方法的发展趋势。 关键词:金属材料,力学性能,测试方法,仪器设备,发展趋势 Test Methods for The Mechanical Properties of Metal Material Abstract:The mechanical properties of metal material which reflect some abilities of deformation and fracture resistance under various external forces are closely linked with failure forms. This paper mainly introduces some concepts of mechanical properties of metal material, mon experiments testing mechanical properties of metal material and apparatuses used. The trend of development of test methods for mechanical properties of metal material is also discussed. Keywords:metal material,mechanical properties,test methods,apparatuses,development trend

19.Abaqus累积损伤与失效

总结 本章主要讲解累积损伤与失效的概论、塑性金属材料的累积损伤与失效和纤维增强复合材料的累积损伤与失效。其中重点内容有: ●塑性金属材料损伤萌生准则,包括有:塑性准则、Johnson-Cook准则、剪切 准则、成形极限图准则、成形极限应力图准则、M-K准则和M-S成形极限图准则,其中M-K准则较难理解。 ●塑性金属材料的演化规律,包括有:基于有效塑性位移的损伤演化规律和基 于能量耗散理论的损伤演化规律。 ●塑性金属材料失效后网格中单元的移除,其中壳单元的移除较难理解。 ●纤维增强复合材料损伤萌生准则,包括有:纤维拉伸断裂、纤维压缩屈曲和 扭结、基体拉伸断裂和基体压缩破碎。 ●纤维增强复合材料损伤的演化,四种失效模式(纤维拉伸失效、纤维压缩失 效、基体拉伸断裂失效和基体压缩破碎失效)均基于能量耗散理论,并对应不同的损伤变量,其中损伤变量的求解比较繁琐。

目录 19 累积损伤与失效分析 (3) 19.1累积损伤与失效概述 (3) 19.1.1 累积损伤与失效 (3) 19.2 金属塑性材料的损伤与失效 (6) 19.2.1 金属塑性材料损伤与失效概论 (6) 19.2.2 金属塑性材料损伤初始阶段 (8) 19.2.3 塑性金属材料的损伤演化与单元的移除 (24) 19.3 纤维增强复合材料的损伤与失效 (35) 19.3.1纤维增强复合材料的损伤与失效:概论 (35) 19.3.2 纤维增强复合材料的损伤初始产生 (38) 19.3.3 损伤演化与纤维增强复合材料的单元去除 (41)

19 累积损伤与失效分析 19.1累积损伤与失效概述 19.1.1 累积损伤与失效 Abaqus提供了以下材料模型来预测累积损伤与失效: 1)塑性金属材料的累积损伤与失效:Abaqus/Explicit拥有建立塑性金属材料的累积损伤与失效模型的功能。此功能可以与the Mises, Johnson-Cook, Hill, 和Drucker-Prager等塑性材料本构模型一起使用(塑性材料的损伤与失效概论,19.2.1节)。模型中提供多个损伤萌生的参数标准,其中包括塑性准则、剪切准则、成形极限图(FLD)、成形极限压力图(FLSD),MSFLD和M-K等标准。根据以往的损伤规律可知,损伤开始形成后,材料的强度会越来越弱。累积损伤模型对于材料刚度的平滑减弱是允许的,这在准静态和动态环境中都允许,这也是优于动态失效模型的有利条件(动态失效建模,18.2.8节)。 2)纤维增强材料的累积损伤与失效:Abaqus拥有纤维增强材料的各向异性损伤的建模功能(纤维增强材料的损伤与失效概论,19.3.1节)。假设未损伤材料为线弹性材料。因为该材料在损伤的初始阶段没有大量的塑性变形,所以用来预测纤维增强材料的损伤行为。Hashin标准最开始用来预测损伤的产生,而损伤演化规律基于损伤过程和线性材料软化过程中的能量耗散理论。 另外,Abaqus也提供混凝土损伤模型,动态失效模型和在粘着单元以及连接单元中进行损伤与失效建模的专业功能。 本章节给出了累积损伤与失效的概论和损伤产生与演变规律的概念简介,并且仅限于塑性金属材料和纤维增强材料的损伤模型。 损伤与失效模型的通用框架 Abaqus提供材料失效模型的通用建模框架,其中允许同一种的材料应用多种失效机制。材料失效就是由材料刚度的逐渐减弱而引起的材料承担载荷的能力完全丧失。刚度逐渐减弱的过程采用损伤力学建模。 为了更好的了解Abaqus中失效建模的功能,考虑简单拉伸测试中的典型金

金属材料的力学性能及其测试方法

目录 摘要 (1) 1引言 (1) 2金属材料的力学性能简介 (2) 2.1 强度 (2) 2.2 塑性 (2) 2.3 硬度 (2) 2.4 冲击韧性 (3) 2.5 疲劳强度 (3) 3金属材料力学性能测试方法 (3) 3.1拉伸试验 (3) 3.2压缩试验 (6) 3.3扭转试验 (8) 3.4硬度试验 (11) 3.5冲击韧度试验 (16) 3.6疲劳试验 (19) 4常用的仪器设备简介 (20) 4.1万能试验机 (20) 4.2扭转试验机 (23) 4.3摆锤式冲击试验机 (28) 5金属材料力学性能测试方法的发展趋势 (30) 参考文献 (30)

金属材料的力学性能及其测试方法 摘要:金属的力学性能反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力,它与材料的失效形式息息相关。本文主要解释了金属材料各项力学性能的概念,介绍了几个常见的测试金属材料力学性能的试验以及相关的仪器设备,最后阐述了金属材料力学性能测试方法的发展趋势。 关键词:金属材料,力学性能,测试方法,仪器设备,发展趋势 Test Methods for The Mechanical Properties of Metal Material Abstract:The mechanical properties of metal material which reflect some abilities of deformation and fracture resistance under various external forces are closely linked with failure forms. This paper mainly introduces some concepts of mechanical properties of metal material, common experiments testing mechanical properties of metal material and apparatuses used. The trend of development of test methods for mechanical properties of metal material is also discussed. Keywords:metal material,mechanical properties,test methods,apparatuses,development trend 1引言 材料作为有用的物质,就在于它本身所具有的某种性能,所有零部件在运行过程中以及产品在使用过程中,都在某种程度上承受着力或能量、温度以及接触介质等的作用,选用材料的主要依据是它的使用性能、工艺性能和经济性,其中使用性能是首先需要满足的,特别是针对性的材料力学性能往往是材料设计和使用所追求的主要目标。材料性能测试与组织表征的目的就是要了解和获知材料的成分、组织结构、性能以及它们之间的关系。而人们要有效地使用材料,首先必须要了解材料的力学性能以及影响材料力学性能的各种因素。因此,材料力学性能的测试是所有测试项目中最重要和最主要的内容之一。 在人类发展的历史长河过程中,人们已经建立了许多反映材料表面的和内在的各种关于力学、物理等相关材料性能的测试和分析技术,近现代科学的发展已使材料性能测试分析从经验发展并建立在现代物理理论和试验的基础之上,并且

冲压模具设计-带凸缘圆筒件

带凸缘圆筒拉深模设计 班级: 姓名: 学号: 日期:

前言 冷冲压模具的设计与制造一材料的塑性变形理论为基础,综合了塑性力学、机械力学、机械原理与设计、机械设计制造工艺等多学科的应用,是一门理论性和应用性很强的课程。围绕冷冲模设计,前向有冲压工艺,后有制造工艺,在数字化技术应用高度发展的今天,冷冲模开发的三个层面已经高度集成,紧密融合在一起。通过冷冲压的理论学习,然后再将理论知识用于实际中,不仅有助于理论知识的消化吸收,也可以提高自身的工程能力。为此,进行必要的冷冲模的课程设计很有必要。 结合所学到的理论知识和自身掌握的情况,特以带凸缘的圆筒件来设计冷冲压模具。此制件结构简单,容易上手学习,并且涵盖了所学的知识点,是一个很好的设计素材。 本设计大致分为三个部分,一是制件及模具的参数确定,一是模具的结构设计,一是制件的成形分析。

目录 前言.......................................................................................................................... I 一制件工艺分析 (1) 1.1 制件分析 (1) 1.2坯料直径确定 (1) 1.3 拉深成型次数计算 (2) 1.4 凸凹模圆角半径计算 (3) 1.5 拉深深度计算 (4) 1.6 拉深力的计算 (4) 1.7 凸凹模间隙计算 (5) 1.8 凸凹模工件尺寸计算 (5) 1.8.1 凸凹模计算公式 (5) 1.8.2 公差确定 (6) 1.9 凸模通气尺寸 (6) 二拉深模结构设计 (8) 2.1 拉深凸凹模结构 (8) 2.2 模具总体结构的设计 (8) 三 Dynaform软件仿真分析 (10) 3.1网格划分 (10) 3.2 毛坯轮廓线计算 (11) 3.3 制件厚度分析 (11) 3.4 主应力分布 (12) 3.5 制件成形情况 (14) 总结 (15) 参考文献 (17) 附表 (18)

金属力学性能测试及复习答案

金属力学性能复习 一、填空题 1.静载荷下边的力学性能试验方法主要有拉伸试验、弯曲试验、扭转试验和压缩试验等。 2. 一般的拉伸曲线可以分为四个阶段:弹性变形阶段、屈服阶段、均匀塑性变形阶段和非均匀塑性变形阶段。 3. 屈服现象标志着金属材料屈服阶段的开始,屈服强度则标志着金属材料对开始塑性变形或小量塑性变形能力的抵抗。 4. 屈强比:是指屈服强度和抗拉强度的比值,提高屈强比可提高金属材料抵抗开始塑性变形的能力,有利于减轻机件和重量,但是屈强比过高又极易导致脆性断裂。 5. 一般常用的的塑性指标有屈服点延伸率、最大力下的总延伸率、最大力下的非比例延伸率、断后伸长率、断面收缩率等,其中最为常用的是断后伸长率和断面收缩率 。 6. 金属材料在断裂前吸收塑性变形功和断裂功的能力称为金属材料的韧性。一般来说,韧性包括静力韧性、冲击韧性和断裂韧性。 7. 硬度测试的方法很多,最常用的有三种方法:布氏硬度测试方法、络氏硬度的试验方法和维氏硬度实验法。 8. 金属材料制成机件后,机件对弹性变形的抗力称为刚度。它的大小和机件的截面积及其弹性模量成正比,机件刚度=E 〃S. 9. 金属强化的方式主要有:单晶体强化、晶界强化、固溶强化、以及有序强化、位错强化、分散强化等(写出任意3种强化方式即可)。 10. 于光滑的圆柱试样,在静拉伸下的韧性端口的典型断口,它由三个区域组成:纤维区、放射区、剪切唇区。 11. 变形速率可以分为位移速度和应变速度。 二、判断题 1.在弹性变形阶段,拉力F 与绝对变形量之间成正比例线性关系;(√) 若不成比例原因,写虎克定律。 2.在有屈服现象的金属材料中,其试样在拉伸试验过程中力不断增加(保持恒定)仍能继续伸长的应力,也称为抗服强度。(×) 不增加,称为屈服强度。 3.一般来讲,随着温度升高,强度降低,塑性减小。(×) 金属内部原子间结合力减小,所以强度降低塑性增大。 4.络氏硬度试验采用金刚石圆锥体或淬火钢球压头,压入金属表面后,经规定保持时间后卸除主实验力,以测量压痕的深度来计算络氏硬度。压入深度越深,硬度越大,反之,硬度越小。(×) 络氏硬度公式 5.金属抗拉强度b σ与布氏硬度HB 之间有以下关系式:b σ=K ?HB ,这说明布氏硬度越大,其抗拉强度也越大。(√) 6.弹性模量E 是一个比例常数,对于某种金属来说,它是一种固有的特性。(√) 7.使用含碳量高(含碳量为0.5-0.7%)的钢,不能提高机件吸收弹性变形功。(×) 8.脆性断裂前不产生明显的塑性变形,即断裂产生在弹性变形阶段,吸收的能量很小,这种断裂是可预见的。(×)

金属板材不同变形方式下冲压成形极限减薄率测试及评价方法

金属板材不同变形方式下冲压成形极限减薄率测试及评价方法 1适用范围 本规范规定了金属板材不同变形方式下成形极限减薄率测试的相关术语和定义、试验原理、参数定义、符号和说明、试验方法、试验环境、试验装备、试验过程、数据处理和试验报告要求等。适用于金属板材,包括金属钢板、铝合金、镁合金等冲压用板材的成形极限减薄率评价,适用金属板材厚度区间0.35-3.0mm。 2规范性引用文件 下列文件对于本技术规范的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有修改单)适用于本文件。 1)GB/T 1.1 规范化工作导则第1部分:规范的结构和编写; 2)GBT 15825.1-2008 金属薄板成形性能与试验方法第1部分:成形性能和指标; 3)GBT 15825.2-2008 金属薄板成形性能与试验方法第2部分:通用试验规程; 4)GBT 15825.3-2008 金属薄板成形性能与试验方法第3部分:拉深与拉深载荷试验; 5)GBT 24524-2009 金属材料薄板和薄带扩孔试验方法; 6)GBT 232-2010 金属材料弯曲试验方法(2011-6-1实施); 7)GBT 24171.1-2009 金属材料薄板和薄带成形极限曲线的测定第1部分:冲压车间成形极限图的测量及应用; 8)GBT 24171.2-2009 金属材料薄板和薄带成形极限曲线的测定第2部分:实验室成形极限曲线的测定; 9)GBT 228-2008 金属材料拉伸试验方法; 注:执行引用标准的最新版本,当引用标准与本标准发生不一致值,需要对本标准进行更新。

金属薄板成形性能试验

金属薄板成形性能试验 1. 简介 成形性能是指薄板对各种冲压成形的适应能力,即薄板在指定加工过程中产生塑性变形而不失效的能力。成形性能研究的重点是成形极限的大小,也就是薄板发生破裂前能够获得的最大变形程度。 1.1 模拟成形性能指标 选择或评定金属薄板冲压成形品级时,可对模拟成形性能指标提出要求。设计或分析冲压成形工艺过程,以及设计冲压成形模具时,经常需要参考模拟成形性能指标的数据。薄板常用模拟成形性能指标有: 1、胀形性能指标:杯突值IE; 2、拉深性能指标:极限拉深比LDR或载荷极限拉深比LDR(T); 3、扩孔(内孔外翻)性能指标:极限扩孔率(平均极限扩孔率)λ(λ); 4、弯曲性能指标:最小相对弯曲半径R min/t; 5、“拉深+胀形”复合成形性能指标:锥杯值CCV; 6、面内变形均匀性指标:凸耳率Z e; 7、贴模(抗皱)性指标:方板对角拉伸试验皱高; 8、定形性指标:张拉弯曲回弹值。 1.2 特定成形性能指标 选择或评定金属薄板冲压成形品级、协议金属薄板的订货供货、设计或分析冲压成形工艺过程时,可对金属薄板的材料特性指标或工艺性能指标提出要求,或参考它们的数据,它们统称为特定成形性能指标: 1、塑性应变比(r值)或平均塑性应变比(r); 2、应变硬化指数(n值); 3、塑性应变比平面各向异性度(r?)。 1.3 局部成形极限 评定、估测金属薄板的局部成形性能,或分析解决冲压成形破裂问题时,可使用金属薄板的成形极限图或成形极限曲线。 1.4 其他 以上所列举的各种成型性能试验方法均为我国冲压生产和冶金制造行业已经使用或比较熟悉的模拟成型性能试验方法,而且也属于国际上的主流成形性能

金属材料薄板和薄带摩擦系数试验方法

YB/T ×××××-200× 金属材料薄板和薄带 摩擦 系数试验方法 Metallic Materials Sheet and Strip Method for Coefficient of Friction 编 制 说 明 行业标准起草小组 2011年4月

金属材料薄板和薄带 摩擦系数试验方法 编 制 说 明 一、 任务来源 根据国家工业与信息化部2010年第一批行业标准修订项目计划,《金属材料薄板和薄带 摩擦系数试验方法》行业标准由武汉钢铁(集团)公司联合华中科技大学和冶金工业标准研究院共同起草。 二、 起草过程和征求意见情况 摩擦广泛存在于实际生产与生活中,是固体力学的研究重点之一。当两相互接触的物体之间有相对运动或相对运动趋势时,会在接触表面上产生阻碍相对运动的机械作用力,即为摩擦力,而相互摩擦的两物体称为摩擦副。按摩擦副的运动状态,摩擦可分为静摩擦和动摩擦,前者是指相互接触的两物体间有相对运动趋势并处于静止临界状态时的摩擦,后者是相互接触的两物体越过静止临界状态而发生相对运动时的摩擦。 摩擦系数则是指两接触表面间的摩擦力和作用在其一表面上的垂直力比值,摩擦系数通常和接触表面的粗糙度有关,而和接触面积的大小无关。依据运动的性质,可分为静摩擦系数和动摩擦系数。两接触表面在相对移动开始时的最大阻力为静摩擦力,与法向力的比值即为静摩擦系数。两接触表面以一定速度相对移动时的阻力,与法向力的比值即为动摩擦系数。需要强调的是,摩擦系数是与一组摩擦副相对应的,与组成摩擦副的两接触物体的材质和粗糙度相关,单纯讲某种材料的摩擦系数是没有意义的。 多数学者认为摩擦力的本质是由物体接触面上的分子间内聚力引起的。然而事实上,对于两个相互接触的物体来讲,只有在表面间的微观凸起才相互接触,而大多数地方是不接触的,因此实际接触面积远小于表观接触面积(即我们所测定的试样面积) 。摩擦阻力与实际接触面积成正比( 不是与表观接触面积成正比),一般实际接触面积又与表面上的正压力成正比,因此摩擦力与正压力成正比。不同材料间接触面上分子间的内聚引力不同,这将影响到物体间的摩擦力,因此不同材料间的摩擦系数也就不同。 摩擦在大部分场合都是起到负面作用,会造成产品和零件磨损,进而导致表面损坏、材料损耗和零件失效,不仅会消耗能源和花费材料、降低设备运转效率,而且会加速设备报废、导致部件更换频繁,造成极大的经济损失。在金属板料成形领域,摩擦条件也是影响板料成形性能的重要参数之一。在成形过程中,金属板料同模具共同组成了摩擦副,两者之间的摩擦状态会直接影响零件的成形极限、回弹和表面质量,过大的摩擦会导致板料在成形过

金属材料的力学性能测试题

一、填空题(60分) 1.金属材料的性能的性能包括和。 2.力学性能包括、、、、。 3.圆柱形拉伸试样分为和两种。 4.低碳钢拉伸试样从开始到断裂要经过、 、、四个阶段。 5.金属材料的强度指标主要有和。 6.金属材料的塑性指标主要有和。 7.硬度测定方法有、、。 8.夏比摆锤冲击试样有和两种。 9.载荷的形式一般有载荷、载荷和载荷三种。 10.钢铁材料的循环基数为,非铁金属循环基数为。 11.提高金属疲劳强度的方法有和 。 12.50HRC表示用“C”标尺测定的硬度值为。 13.150HRW10/1000/30表示用压头直径为的硬质合金球,在kgf试验力作用下,保持s时测得的布氏硬度值为。 14.金属材料的工艺性能包括、、

、、。 二、判断题(25分) 1.金属的工艺性能是指金属在各种加工中所表现出的性能。() 2.金属的力学性能是指在力作用下所显示的与弹性和非弹性反应相关或涉及应力-应变关系的性能。() 3.拉伸试验时,试样的伸长量与拉伸力总成正比。() 4.屈服现象是指拉伸过程中拉伸力达到Fs时,拉伸力不增加,变形量却继续增加的现象。() 5.拉伸试样上标距的伸长量与原始标距长度的百分比,称为断后伸长率,用符号A表示。() 6.现有标准圆形截面长试样A和短试样B,经拉伸试验测得δ10、δ5均为25%,表明试样A的塑性比试样B好。( ) 7.常用的硬度试验方法有布氏硬度、洛氏硬度和维氏硬度。() 8.做布氏硬度试验,当试验条件相同时,压痕直径越小,则材料的硬度越低。() 9.洛氏硬度值是根据压头压入被测材料的的深度来确定的。() 10.洛氏硬度HRC测量方便,能直接从刻度盘上读数,生产中常用于测量退火钢、铸铁和有色金属件。() 11.一般来说,硬度高的金属材料耐磨性也好。() 12.韧性是指金属在断裂前吸收变形能量的能力。() 13.金属的使用性能包括力学性能、物理性能和铸造性能。( )

金属材料 薄板和薄带 弯折性能试验方法(标准状态:现行)

I C S77.040.10 H22 中华人民共和国国家标准 G B/T38806 2020 金属材料薄板和薄带 弯折性能试验方法 M e t a l l i cm a t e r i a l s S h e e t a n d s t r i p T e s tm e t h o d f o r b e n d i n g a n d f o l d i n gp r o p e r t i e s 2020-06-02发布2020-12-01实施 国家市场监督管理总局

目 次 前言Ⅲ 1 范围1 2 规范性引用文件1 3 术语和定义1 4 符号和说明1 5 试验原理2 6 试样3 7 模具3 8 试验机4 9 试验程序5 10 试验结果评定6 11 试验报告6 附录A (规范性附录) 测定极限弯曲角度θm a x 的方法8

前言 本标准按照G B/T1.1 2009给出的规则起草三 本标准由中国钢铁工业协会提出三 本标准由全国钢标准化技术委员会(S A C/T C183)归口三 本标准起草单位:宝山钢铁股份有限公司二深圳万测试验设备有限公司二国家钢铁及制品质量监督检验中心二冶金工业信息标准研究院三 本标准主要起草人:方健二张建伟二董莉二黄星二朱兴江二侯慧宁三

金属材料薄板和薄带 弯折性能试验方法 1范围 本标准规定了金属薄板和薄带弯折性能试验方法的术语和定义二原理二试样二模具二试验机二试验程序二试验结果评定和试验报告三 本标准适用于厚度0.30mm~4.00mm的金属薄板和薄带的弯折性能试验三 2规范性引用文件 下列文件对于本文件的应用是必不可少的三凡是注日期的引用文件,仅注日期的版本适用于本文件三凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件三 G B/T15825.2金属薄板成形性能与试验方法第2部分:通用试验规程 G B/T15825.5金属薄板成形性能与试验方法第5部分:弯曲试验 3术语和定义 下列术语和定义适用于本文件三 3.1 弯曲失效b e n d i n g f a i l u r e 板材变形区外侧表面产生裂纹或显著凹陷三 3.2 弯折性能b e n d i n g a n d f o l d i n gp r o p e r t i e s 反映金属板材在三点弯曲加载条件下的冷加工塑性三 注1:弯折性能包括最小弯曲半径与极限弯曲角度两种指标三 注2:通常情况下,把小于180?弯曲失效的试验称为弯曲试验,测量板材的极限弯曲角度,把180?U形弯折称为弯折试验,测量板材的最小弯曲半径三 4符号和说明 本标准使用的符号和说明见表1三 表1符号和说明 符号说明单位 c试验前支辊中心轴所在水平面与弯曲压头中心轴所在水平面的间距mm f压头的移动位移mm L支辊间距mm p试验后支辊中心轴所在垂直面与弯曲压头中心轴所在垂直面的间距mm

金属物理力学性能试验方法.

混凝土用热轧钢筋拉伸、冷弯试验 一、钢筋拉伸试验 1. 混凝土用热轧光圆钢筋及带肋钢筋牌号及公称直径、横截面面积 (1)钢筋的牌号及其含义 类别牌号牌号构成英文字母含义 热轧光圆钢筋HPB235由HPB+屈服强度 特征值构成 HPB—热轧光圆钢筋的英文(Hot rolled Plain Bars)缩写。 HPB300 普通热轧带肋钢筋HRB335 由HRB+屈服强度 特征值构成 HRB—热轧带肋钢筋的英文(Hot rolled Ribbed Bars)缩写。 HRB400 HRB500 细晶粒热轧带肋钢 筋HRBF335 由HRBF+屈服强 度特征值构成 HRBF—热轧带肋钢筋的英文缩写后加“细的 英文”(Fine)首位字母。 HRBF400 HRBF500 (2)钢筋的公称直径、横截面面积 类别公称直径/mm公称横截面面积 /mm2公称直径/mm公称横截面面积 /mm2 热轧光圆钢筋5.523.7614153.9 6.533.1816201.1 850.2718254.5 1078.5420314.2 12113.1 热轧带肋钢筋 6 28.2 7 22 380.1 8 50.27 25 490. 9 10 78.54 28 615.8 12 113.1 32 804.2 14 153.9 36 1018 16 201.1 40 1257 18 254.5 50 1964 20 314.2 注:理论重量按密度为7.85 g/cm3计算。 2. 组批规则和取样方法 (1)组批规则 钢筋应按批进行检查和验收,每批由同一牌号、同一炉罐号、同一规格的钢筋组成。 每批重量通常不大于60t。超过60 t的部分,每增加40t(或不足40 t的余数),增加一个拉伸试验试样和一个弯曲试验试样。

金属薄板成形性能与试验方法 第4部分:扩孔试验(标准状态:现行)

犐犆犛77.040.10 犑32   中华人民共和国国家标准 犌犅/犜15825.4—2008 代替GB/T15825.4—1995 金属薄板成形性能与试验方法 第4部分:扩孔试验 犛犺犲犲狋犿犲狋犪犾犳狅狉犿犪犫犻犾犻狋狔犪狀犱狋犲狊狋犿犲狋犺狅犱狊— 犘犪狉狋4:犎狅犾犲犲狓狆犪狀犱犻狀犵狋犲狊狋 2008 12 23发布2009 06 01实施中华人民共和国国家质量监督检验检疫总局

目 次 前言Ⅲ 1 范围1 2 规范性引用文件1 3 术语和定义1 4 符号、名称和单位1 5 试验原理2 6 试验装置3 7 试样3 8 试验条件4 9 试验操作和步骤4 10 试验计算5 11 试验报告5附录A(规范性附录) 圆柱凸模扩孔试验6

前 言 G B/T15825《金属薄板成形性能与试验方法》分为8个部分:———第1部分: 成形性能和指标;———第2部分:通用试验规程;———第3部分:拉深与拉深载荷试验;———第4部分:扩孔试验;———第5部分:弯曲试验;———第6部分:锥杯试验;———第7部分:凸耳试验; ———第8部分:成形极限图(FLD)测定指南。本部分是GB/T15825的第4部分。 本部分代替GB/T15825.4—1995《金属薄板成形性能与试验方法 扩孔试验》。本部分参考ISO/TS16630:2003《金属材料 扩孔试验方法》(英文版)。本部分与GB/T15825.4—1995相比,主要变化如下:———增加了“前言”; ———将原标准技术规定作为本部分的附录A; ———在附录A中,将原标准中的符号犱f、犇0、犔0、犱fmax、犱fmin分别修改为犇h、犱s、犾s、犇hmax、犇hmin, 并对名称进行了适当的修改; ———相对于原标准,在附录A中增加了A.6.4。本部分的附录A为规范性附录。本部分由中国机械工业联合会提出。本部分由全国锻压标准化技术委员会归口。 本部分起草单位:郑州大学、武汉理工大学、东风汽车模具冲压有限公司、华中科技大学、北京航空航天大学、宝山钢铁股份有限公司。 本部分主要起草人:曹宏深、姜奎华、华林、黄尚宇、毛华杰、李建华、李志刚、李晓星、陈新平。本部分所代替标准的历次版本发布情况为:———GB/T15825.4—1995。

相关文档
最新文档