高中数学解析几何复习题教师版
苏教版高中数学必修2配套练习参考答案解析几何全部
解析几何部分(共:1—17课时及每章评价)参考答案:第1课时 直线的斜率(1)1.D 2.C 3.D 4.4- 5.1k ≤ 6.可以是(2,4),不惟一. 7.由题意,()132212a -=++,∴2a =-.8.当1m =时,直线l 与x 轴垂直,此时直线斜率不存在; 当1m ≠时,直线斜率34111k m m-==--. 9.在直线斜率为0,OC 边所在直线斜率不存在,BC 边所在直线斜率为43-.10.由AB AC k k ≠,可得1112383k --≠---, ∴1k ≠.第2课时 直线的斜率(2)1.C 2.B 3.D 4.60o. 5.6 6. (0,2)7. 045α≤<o o 或135180α<<o o.8.倾斜角为45o时斜率为1,倾斜角为135o时斜率为1-.9.直线l 上任一点(,)M m n 经平移后得(3,1)N m n -+在l 上,由两点的斜率公式得(1)1(3)3l n n k m m +-==---.10.直线2l 的倾斜角为180(6015)135α=--=oooo, ∴2tan135tan 451k ==-=-oo.第3课时 直线的方程(1)1.C 2.D 3.A 4.D 5.(1)4y =-;(2)23y x =-- 6.1y +6y x =-+7.由直线1l 的方程2y =+可得1l 的倾斜角为60o ,∴直线l 的倾斜角为30o,斜率为tan 303=o,所以,直线l 的方程为12)y x -=-,即1y x =-+.8. 1:1:(2)-9.由直线1l的方程20x y -+=可求得1l 的斜率为1, ∴倾斜角为145α=o,由图可得2l 的倾斜角2115αα=+o∴直线2l 的斜率为tan 60=o, ∴直线2l 的方程为2)y x -=-0y -=.10.设直线方程为34y x b =+, 令0x =,得y b =;令0y =,得43x b =-, 由题意,14||||623b b ⨯-⨯=,29b =,∴3b =±, 所以,直线l 的方程为334y x =±.第4课时 直线的方程(2)1.D 2.D 3.B 4. 2y x =或1y x =+ 5.3 6. 10x y +-=或32120x y -+=7.设矩形的第四个顶点为C ,由图可得(8,5)C , ∴对角线OC 所在直线方程为005080y x --=--,即580x y -=,AB 所在直线方程为185x y+=,即58400x y +-=. 8.当截距都为0时,直线经过原点,直线斜率为43-,方程为43y x =-;当截距都不为0时,设直线方程为1x ya a +=, 将点(3,4)-代入直线方程得341a a-+=,解得1a =-, 所以,直线方程为430x y +=或10x y ++=.9.当0t =时,20Q =;当50t =时,0Q =,故直线方程是15020t Q +=.图略. 10.直线AB 的方程为3x =,直线AC 的方程为123x y+=,直线x a =与,AB AC 的交点分别为(,3)a 、63(,)2a a -,又∵92ABC S ∆=,∴1639(3)224a a -⋅⋅-=,∴a =(舍负).第5课时 直线的方程(3)1.B 2.D 3.B 4.D 5. 350x y -+= 6.24- 7.当2a =时,直线方程为2x =不过第二象限,满足题意;当20a -≠即2a ≠时,直线方程可化为1(4)2y x a a =+--, 由题意得2010240a a a -≠⎧⎪⎪>⎨-⎪-≤⎪⎩,解得24a <≤,综上可得,实数a 的取值范围是24a ≤≤. 8.(1)由题意得:22(23)(21)m m m m ---=+-, 即2340m m --=,解得43m =或1-(舍) (2)由题意得:22(23)(21)260m m m m m ----+--+=,即23100m m +-=,解得2m =-或53. 9.方法1:取1m =,得直线方程为4y =-, 取12m =,得直线方程为9x =, 显然,两直线交点坐标为(9,4)P -,将P 点坐标分别代入原方程得(1)9(21)(4)5m m m -⨯+-⨯-=-恒成立,所以,不论m 取什么实数,直线(1)m x -+(21)5m y m -=-总经过点(9,4)P -.方法2:原方程可整理得(21)(5)0x y m x y +--+-=,当21050x y x y +-=⎧⎨+-=⎩成立,即94x y =⎧⎨=-⎩时,原方程对任意实数m 都成立,∴不论m 取什么实数,直线过定点(9,4)-.10.方程0x y k +-=可变形为23)9k =-, 当90k -=即9k =时,方程表示一条直线90x y +-=; 当90k -<即9k >时,方程不能表示直线;当90k ->即9k <3= ∵方程仅表示一条直线,∴30+>且30-<,即0k <.综上可得,实数k 的取值范围为9k =或0k <.第6课 两直线的交点1.D 2.D 3.B 4.B 5.-3 6.6或-6 7.10,-12,-2 8.32190x y -+=9.4m =,或1m =-,或1m =.(提示:如果三条直线不能围成三角形,则有两种情形,一是其中有平行的直线,二是三条直线交于一点.) 10.(1)表示的图形是经过两直线210x y -+=和2390x y ++=的交点(3,1)--的直线(不包括直线2390x y ++=).(2)30x y -=或40x y ++=.(提示:可设所求直线方程为21(239)0x y x y λ-++++=,即(21)(32)910x y λλλ++-++=.若截距为0,则910λ+=,即19λ=-,此时直线方程为30x y -=;若截距不为0,则21132λλ+-=--,即3λ=,此时直线方程为40x y ++=.) 11.直线l 的方程为60x y += 12.22b -≤≤(数形结合)第7课 两直线的平行与垂直(1) 1.D 2.B 3.C 4.平行, 不平行5.平行或重合 6.-2 , 0或10 7.四边形ABCD 是平行四边形. 8.32A C =≠-且9.2,2m n == 10.20x y += 11. 3440x y +-=12.860860x y x y -+=--=或(提示:Q 所求直线与已知直线l :8610x y -+=平行,∴设所求直线的方程为860x y λ-+=,与两坐标轴的交点为λ(-,0)8,λ(0,)6.又该直线与两坐标轴围成的三角形面积为8,∴1||||8286λλ⋅-⋅=,λ∴=±,故所求直线方程为860x y -+=或860x y --= 第8课 两直线的平行与垂直(2)1. B2. C3. C4. C5. B6. 垂直,不垂直7. 32y x =+8. 2,-2,09. 20x y -= 10. 310x y ++=和330x y -+= 11. 1a =-或92a =-12.270x y +-=,10x y -+=,250x y +-=(提示:由于点A 的坐标不满足所给的两条高所在的直线方程,所以所给的两条高线方程是过顶点B ,C 的,于是2AB k =-,1AC k =,即可求出边AB ,AC 所在的直线方程分别为270x y +-=,10x y -+=.再由直线AB 及过点B 的高,即可求出点B 的坐标(3,1),由直线AC 及过点C 的高,即可求出点C 的坐标(1,2).于是边BC 所在的直线方程为250x y +-=.)第9课 平面上两点间的距离1.C 2.C 3.C 4.A5.B 6.22y y =-=-或 7.47240x y +-= 8.23120x y +-=912|x x - 10.13410x x y =++=或 11.5150x y --=12.(1) (2,0)P -;(2) (13,0)P ,此时||PM PN -. 13.54x =(提示:y =数形结合,设(1,1),(2,3),(,0)A B P x ,则y PA PB =+)第10课时 点到直线的距离(1)1.()A 2.()C 3.()D 4.()A 5.()C 6.()A 7.58.2a =或4639.设所求直线方程为340x y m -+=,=解得:14m =或12m =-(舍),所以,所求的直线方程为:34140x y -+=.10.由题意第一、三象限角平分线的方程为y x =,设00(,)P x y ,则00x y =,即00(,)P x x .= 解得:01x =或09x =-,所以点P 的坐标为:(1,1)或(9,9)--.11.由题意:当直线l 在两坐标轴上的截距为0时, 设l 的方程为y kx =(截距为0且斜率不存在时不符合题意)=k = 122-±,所以直线l 的方程为:122y x -±=. 当直线l 在两坐标轴上的截距不为0时,设l 的方程为1x ya a+=,即0x y a +-=,=a =13或1a =, 所以直线l 的方程为:130x y +-=或10x y +-=.综上所述:直线l 的方程为:122y x -±=或130x y +-=或10x y +-=. 12.设(,1)M t t -,则M 到两平行线段的距离相等,∴43t =,即41(,)33M ∵直线l 过(1,1)P -,41(,)33M 两点,所以,l 的方程为2750x y +-=.第11课时 点到直线的距离(2)1.()B 2.()C 3.()A 4.18 5.(1,2)或(2,1)- 6.34210x y +-=7.3208.4310x y +-=9.设l :320x y C -+=则1d =2d =1221d d =,所以|1|2|13|1C C +=+,解得:25C =-或9-, 所以l 的方程为:32250x y --=或3290x y --=.10.证明:设(,)P a b ,则221a b -=P 到直线1l ,2l的距离分别为1d =,2d = ∴2212||122a b d d -==g. 11.设(,)M x y 为A ∠的平分线AD 上任意一点,由已知可求得,AC AB 边所在直线方程分别为5120x y -+=,5120x y --=,由角平分线的性质得:=∴512512x y x y -+=--或512(512)x y x y -+=---, 即6y x =-+或y x =,由图知:AC AD AB k k k <<,∴155AD k <<,∴6y x =-+不合题意,舍去,所以,A ∠的平分线AD 所在直线方程y x =. 12.设CD 所在直线方程为30x y m ++=,=,解得7m =或5m =-(舍).所以CD 所在直线方程为370x y ++=.因为AB BC ⊥所以设BC 所在直线方程为30x y n -+=,=,解得9n =或3n =-.经检验BC 所在直线方程为390x y -+=,AD 所在直线方程为330x y --=.综上所述,其它三边所在直线方程为370x y ++=,390x y -+=,330x y --=.第12课时 圆的方程(1)1.()B 2.()C 3.()B 4.()C 5.()C 6.()B 7.(1)0a =;(2)||b r =;(3)310a b +-=. 8.22(6)36x y -+=9.C e 的圆心为(3,2)C -,C 'e 的圆心与(3,2)C -关于10x y -+=对称, ∴设C 'e 的圆心为(,)C a b '则3210222113a b b a +-⎧-+=⎪⎪⎨+⎪=-⎪-⎩g ,解得:34a b =-⎧⎨=⎩,C 'e 的标准方程为:22(3)(4)36x y ++-=.10.由题意可设C e 的圆心为(,)C a b 半径为r ,则||2a =当2a =时,C e :222(2)()x y b r -+-= 因为C e 与直线20x y +-=相切于点(1,1)P , ∴222(12)(1)b r -+-= ①且1(1)112b--=--g ② 联立方程组,解得:2b =,r =所以C e 的方程为:22(2)(2)2x y -+-=同理,当2a =-时,C e 的方程为:22(2)(2)18x y +++=综上所述:C e 的方程为:22(2)(2)2x y -+-=或22(2)(2)18x y +++=11.由题意设C e 的方程为222()()x a y b r -+-=,由C e 经过点(2,1)-,得:222(2)(1)a b r -+--=①由C e 与直线10x y --=r =② 由圆心在直线2y x =-上,得:2b a =-③联立方程组,解得:918a b r ⎧=⎪=-⎨⎪=⎩,或12a b r ⎧=⎪=-⎨⎪=⎩所以,C e 的方程为:22(9)(18)338x y -++=或22(1)(2)2x y -++=.12.设⊙C 的方程为:222()()x a y b r -+-=,∵⊙C 与x 轴相切,所以22r b =①,又∵圆心(,)C a b 到直线0x y -=的距离为:d =∴222r +=,即 22()142a b r -+=②,又圆心在直线30x y -=上,所以30a b -=③联立方程组,解得133a b r =⎧⎪=⎨⎪=⎩或133a b r =-⎧⎪=-⎨⎪=⎩所以C e 的方程为:22(1)(3)9x y -+-=或22(1)(3)9x y +++=.第13课时 圆的方程(2)1.()C 2.()D 3.()B 4.12k <-5.2 6.2π7.5,5 8.2或23-9.圆方程为220x y Dx Ey F ++++=,将(0,0),(1,1)两点坐标代入方程分别得0F = ①20D E F +++= ②又∵圆心(,)22D E--在直线30x y --=上,∴60E D --= ③解由①②③组成的方程组得4,2,0D E F =-==,∴所求圆方程为22420x y x y +-+=,圆心(2,1)-10.证明:将034222=+--+y x y x 化为22(1)(2)2x y -+-= 则点与圆心之间的距离的平方为222(41)(2)17125m m m m -+-=-+ 又∵圆的半径的平方为2,∴2171252m m -+-217123m m =-+ 令2()17123f x m m =-+0∆<,即2()17123f x m m =-+恒大于0,即点与圆心之间的距离恒大于圆的半径,所以无论实数m 如何变化,点(4,)m m 都在圆034222=+--+y x y x 之外.11.设所求圆的方程为: 022=++++F Ey Dx y x令0y =,得20x Dx F ++=.由韦达定理,得12x x D +=-,12x x F =由12||x x -=6=,∴2436D F -=. 将(1,2)A ,(3,4)B 分别代入022=++++F Ey Dx y x ,得25D E F ++=-,3425D E F ++=-.联立方程组,解得12D =,22E =-,27F =或8D =-,2E =-,7F =所以所求的圆的方程为221222270x y x y ++-+=或228270x y x y +--+=12.证明:由题意22210250x y ax ay a ++---=,∴2225()()102524a a x a y a ++-=++ 令25()10254a f a a =++,则0∆<, ∴()0f a >即22(25)(210)0x y a x y +-+--=,表示圆心为(,)2a a -若22(25)(210)0x y a x y +-+--=对任意a 成立,则222502100x y x y ⎧+-=⎨--=⎩,解得34x y =⎧⎨=-⎩或5x y =⎧⎨=⎩,即圆恒过定点(3,4)-,(5,0).第14课时 直线与圆的位置关系1.C 2.C 3.D 4.B 5.34250x y +-= 6.40x y +±=7 8. 247200x y --=和2x =;7 9.22(3)(1)9x y -+-=或22(3)(1)9x y +++=. 10.16m =-.11. 4330x y ++=或3430x y +-=.第15课时 圆与圆的位置关系 ⒈B ⒉B 3.D 4.A5.20x y -+= 6.260x y -+= ,6 7.(1,1) 8.22(3)(1)5x y -+-= 9.224(1)(2)5x y ++-=10.(1)240x y -+=; (2)22(2)(1)5x y ++-=; (3)22(3)(3)10x y ++-=. 11. 3r =±.第16课时 空间直角坐标系1.B ⒉C 3.C 4.D5.(2,0,0)、(0,3,0)- 6.(0,4,2)7.442110x y z ++-=8.略 9.略10.提示(1)只要写出的三点的纵坐标和竖坐标分别相等即可;(2)只要写出的三点的竖坐标相等即可.11.111212121x x y y z z x x y y z z ---==---21(x x ≠且21y y ≠且21)z z ≠.第17课时 空间两点间的距离1.D 2.D 3.A 4.A 5.(0,2,0) 6.222(1)(2)(4)9x y z -+++-=7.7 8.(1,0,0)P ± 9.[提示]建立空间直角坐标系,由中点坐标公式求出,P Q 两点坐标,用两点间距离公式即可求得线段PQ2.10.(1)(1,2,1)[提示]设重心G 的坐标为(,,)x y z ,则222GA GB GC ++2233x y =+22236126643(1)3(2)z x y z x y +---+=-+-23(1)46z +-+.当1,2,1x y z ===时,点G 到,,A B C 三点的距离的平方和最小,所以重心的坐标为(1,2,1).(2)1,8,9x y z ===.第二章《解析几何初步》评价与检测参考答案:1.C 2.D 3.B 4.B 526.0d ≤≤ 7.4个 8.60 9.67250x y +-= 10.2750x y +-= 11.22(2)(2)25x y -++= 12.(1,0)A -,C (5,6)- 13.B14.C 15.A 16.D 17.11(,)102- 18.4a =±19.20,x y y x ++==,y x = 20.10 21.解:设与51270x y ++=平行的边所在直线方程为5120x y m ++=(7)m ≠,则=解得19m =-, ∴直线方程为512190x y +-=,又可设与51270x y ++=垂直的边所在直线方程为1250x y n -+=()n R ∈,则=解得100n=或74,∴另两边所在直线方程为1251000x y-+=,125740x y-+=22.解:设()2,1B-,()4,2C,()2,3D第四个顶点的坐标为(),A m n.则有BC所在直线的斜率为32BCk=;CD所在直线的斜率为12CDk=-;BD所在直线的斜率不存在.①若BD∥AC,BC∥AD,则AC所在直线的斜率不存在.4m∴=.又BC ADk k=,即33242n-=-,6n∴=.∴平行四边形第四个顶点的坐标为()4,6.②若BD∥AC,CD∥BA,则AC所在直线的斜率不存在.4m∴=.又CD BAk k=,即()11242n---=-,2n∴=-.∴平行四边形第四个顶点的坐标为()4,2-.③若CD∥BA,BC∥AD,则,CD BABC ADk kk k=⎧⎨=⎩()11223322nmmnnm--⎧-=⎪=⎧⎪-⇒⇒⎨⎨=-⎩⎪=⎪-⎩∴平行四边形第四个顶点的坐标为()0,0.综上所述,平行四边形第四个顶点的坐标可为()4,6或()4,2-或()0,0.23.解:设1122(,),(,)P x y Q x y,由2223060x yx y x y c+-=⎧⎨++-+=⎩消去x得2520120y y c-++=,∴由韦达定理知:12124125y y c y y +=⎧⎪⎨+=⎪⎩Q OP OQ ⊥,12121y y x x ∴⋅=-, 即12120x x y y +=,又12121212(32)(32)96()4x x y y y y y y =--=-++∴121296()50y y y y -++=, 也就是12964505c +-⨯+⨯=解之,得3c =. 从而所求圆的方程为22630x y x y ++-+=24.解:设1122(,),(,)P x y Q x y ,则1|OP x ==,2|OQ x ==.,P Q Q 为直线与圆的交点,∴ 12,x x 是方程22(1)(86)210x m m x ++-+=的两根, ∴12221,1x x m=+ ∴ 2221(1)211OP OQ m m ⋅=+=+。
高三数学复习 解析几何(含答案)
苏州市高三数学 解析几何一.填空题【考点一】:直线方程及直线与直线的位置关系例1.若直线ax +(2a -1)y +1=0和直线3x +ay +3=0垂直,则a 的值为_________. 【答案】a =0或a =-1.【解析】由两直线垂直得3a +(2a -1)a =0,解得a =0或a =-1.例2.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的范围是_________. 【答案】⎝⎛⎭⎫π6,π2.【解析】方法一:由⎩⎨⎧y =kx -3,2x +3y -6=0,解得:⎩⎪⎨⎪⎧x =6+332+3k ,y =6k -232+3k .因为交点在第一象限,所以⎩⎪⎨⎪⎧6+332+3k >0,6k -232+3k >0,解得:k >33. 所以,直线l 的倾斜角的范围是⎝⎛⎭⎫π6,π2.方法二:因为直线l :y =kx -3恒过定点(0,-3),直线2x +3y -6=0与x 轴,y 轴交点的坐标分别为(3,0),(0,2) .又点(0,-3)与点(3,0)连线的斜率为0+33-0=33,点(0,-3)与点(0,2)连线的斜率不存在,所以要使直线l 与直线2x +3y -6=0的交点位于第一象限,则k >33,所以直线l 的倾斜角的范围是⎝⎛⎭⎫π6,π2.例3.已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是 . 【答案】⎝⎛⎭⎫1-22,12.【解析】由⎩⎪⎨⎪⎧x +y =1,y =ax +b 消去x ,得y =a +ba +1,当a >0时,直线y =ax +b 与x 轴交于点⎝⎛⎭⎫-b a ,0,结合图形知12×a +b a +1×⎝⎛⎭⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b.∵a >0,∴b 21-2b >0,解得b <12.考虑极限位置,即a =0,此时易得b =1-22,故答案为⎝⎛⎭⎫1-22,12. 例4.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则P A ·PB 的最大值是 . 【答案】5.【解析】因为直线x +my =0与mx -y -m +3=0分别过定点A ,B ,所以A (0,0),B (1,3). 当点P 与点A (或B )重合时,P A ·PB 为零; 当点P 与点A ,B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知此两直线垂直, 所以△APB 为直角三角形,所以AP 2+BP 2=AB 2=10,所以P A ·PB ≤P A 2+PB 22=102=5,当且仅当P A =PB 时,上式等号成立.【考点二】: 圆方程及直线与圆的位置关系例5.圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2),则该圆的标准方程是 . 【答案】(x -1)2+(y +4)2=8.【解析】方法一: 如图,设圆心(x 0,-4x 0),依题意得4x 0-23-x 0=1,∴x 0=1,即圆心坐标为(1,-4),半径r =22, 故圆的方程为(x -1)2+(y +4)2=8.方法二:设所求方程为(x -x 0)2+(y -y 0)2=r 2,根据已知条件得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+=--+--=r y x r y x x y 2|1|)2()3(4002202000,解得⎪⎩⎪⎨⎧=-==224100r y x ,因此所求圆的方程为(x -1)2+(y +4)2=8.例6.已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为________. 【答案】6【解析】如图所示,则圆心C 的坐标为(3,4),半径r =1,且AB =2m .因为∠APB =90°,连接OP ,易知OP =12AB =m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为OC =32+42=5, 所以OP max =OC +r =6, 即m 的最大值为6.例7.在平面直角坐标系xOy 中,(2,0)A ,O 是坐标原点,若在直线0x y m ++=上总存在点P,使得PA ,则实数m 的取值范围是 .【答案】11m +≤.【解析】设P (x ,y ),由PA =得,化简得22(1)3x y ++=,所以点P 是直线0x y m ++=与圆22(1)3x y ++=,的公共点,即直线与圆,解得11m -≤.例8.已知圆C :22(1)5x y +-=,A 为圆C 与x 负半轴的交点,过点A 作圆的弦AB ,记线段AB 的中点为M .若OA OM =,则直线AB 的斜率 . 【答案】2k =.【解析】设直线AB :(2)y k x =+. 因为CM AB ⊥,直线CM :11y x k=-+. 将它与直线AB 的方程联立得222(12)2(,)11k k k kM k k -+++.因为2OA OM ==2=,2k =±. 当2k =-不符合,故2k =.例9.已知直线3y ax =+与圆22280x y x ++-=相交于,A B 两点,点00(,)P x y 在直线2y x =上,且PB PA =,则0x 的取值范围为 .【答案】(1,0)(0,2)-.【解析】先从第一个条件出发,确定参数a 的取值范围.因为P 在线段AB 的中垂线上,从而用a 的代数式表示直线PC 的斜率后得到00211x x a=-+, 3,04a a <->解得:0x 的取值范围为(1,0)(0,2)-.例10.设P 为直线3x +4y +3=0上的动点,过点P 作圆C :x 2+y 2-2x -2y +1=0的两条切线,切点分别为A ,B ,则四边形P ACB 的面积的最小值为________. 【答案】3.【解析】圆C :(x -1)2+(y -1)2=1的圆心是点C (1,1),半径是1, 易知PC 的最小值等于圆心C (1,1)到直线3x +4y +3=0的距离,即105=2,而四边形P ACB 的面积等于2S △P AC =2×(12P A ·AC )=P A ·AC =P A =PC 2-1=22-1=3,因此四边形P ACB 的面积的最小值是3.例11.在平面直角坐标系xOy 中,已知圆()41:22=-+y x C .若等边PAB ∆的一边AB为圆C 一条弦,则PC 的最大值为 . 【答案】4.【解析】由PAB ∆为等腰三角形,PAB ∆为等边三角形,故PC 与AB 垂直,设PC 与AB 交于点H ,记,,AH BH x PH y PC t ====,则CH =,满足()224,0x y x y t y ⎧+=>⎪⎨=+⎪⎩求PC的最小值.记直线:l y t =+,利用线性规划作图,可知当直线l 与圆弧()224,0x y x y +=>相切时,则t 取最大值,求得max 4t =,即PC 的最大值为4.例12.已知圆C 的方程为22(1)(1)9x y -+-=,直线:3l y kx =+与圆C 交于,A B 两点,M 为弦AB 上一动点,以M 为圆心,2为半径的圆与圆C 总有公共点,则实数k 的范围________. 【答案】k ≥34-. 【解析】因为5MC <,只要MC ≥1对于任意的点M 恒成立, 只需点位于的中点时存在公共点即可. 点(1,1)到直线的距离d =≥1,解得:k ≥34-. 【考点三】: 圆锥曲线方程与性质例13.若椭圆2215x y m+=的离心率e =,则m 的值是________.【答案】3或253. 【解析】当焦点在x轴上时,e ==3m =; 当焦点在y轴上时,e ==253m =. 例14.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上的一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为________. 【答案】34.【解析】∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== .例15.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若AB =10,BF =8,cos ∠ABF =45,则C 的离心率为________.【答案】35.【解析】如图,设AF =x ,则cos ∠ABF =82+102-x 22×8×10=45. 解得x =6,∴∠AFB =90°,由椭圆及直线关于原点对称可知AF 1=8,∠F AF 1=∠F AB +∠FBA =90°,△F AF 1是直角三角形,所以F 1F =10,故2a =8+6=14,2c =10,∴c a =57.例16.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP 的最大值为 . 【答案】6.【解析】由题意,F (-1,0),设点P 00(,)x y ,则有2200143x y +=,解得22003(1)4x y =-, 因为00(1,)FP x y =+,00(,)OP x y =,所以2000(1)OP FP x x y ⋅=++=00(1)OP FP x x ⋅=++203(1)4x -=20034x x ++,此二次函数对应的抛物线的对称轴为02x =-,因为022x -≤≤,所以当02x =时,OP FP ⋅取得最大值222364++=.例17.设P 是有公共焦点F 1,F 2的椭圆C 1与双曲线C 2的一个交点,且PF 1⊥PF 2,椭圆C 1的离心率为e 1,双曲线C 2的离心率为e 2.若e 2=3e 1,则e 1=________.【答案】53. 【解析】设椭圆C 1的长半轴长为a 1,短半轴长为b 1,双曲线C 2的实半轴长为a 2,虚半轴长为b 2.∵ PF 1⊥PF 2,根据椭圆的性质可得S △PF 1F 2=b 21,又e 1=c a 1,∴ a 1=c e 1,∴ b 21=a 21-c 2=c 2⎝⎛⎭⎫1e 21-1.根据双曲线的性质可得S △PF 1F 2=b 22,∵ e 2=c a 2,a 2=c e 22,∴ b 22=c 2-a 22=c 2⎝⎛⎭⎫1-1e 22,∴ c 2⎝⎛⎭⎫1e 21-1=c 2⎝⎛⎭⎫1-1e 22,即1e 21+1e 22=2.∵ 3e 1=e 2,∴ e 1=53. 例18.已知直线:20l x y m -+=上存在点M 满足与两点(2,0)A -,(2,0)B 连线的斜率34MA MB K K =-,则实数m 的值是___________.【答案】[]4,4-.【解析】点M 的轨迹为221(2)43x y x +=≠. 把直线:2l x y m =-代入椭圆方程得,221612(312)0y my m -+-=. 根据条件,上面方程有非零解,得△≥0,解得-4≤m ≤4.例19.已知椭圆2222:1(0)x y C a b a b+=>>.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为 .【答案】152022=+y x . 【解析】因为椭圆的离心率为23, 所以23==a c e ,2243a c =,222243b a ac -==,所以2241a b =,即224b a =. 双曲线的渐近线为x y ±=,代入椭圆得12222=+bx a x ,即1454222222==+b x b x b x . 所以b x b x 52,5422±==,2254b y =,b y 52±=, 则第一象限的交点坐标为)52,52(b b .四边形的面积为16516525242==⨯⨯b b b ,故52=b .因此,椭圆方程为152022=+y x . 例20.已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为12F F ,,以12F F 为直径的圆与双曲线在第一象限的交点为P .若1230PF F ∠=︒,则该双曲线的离心率为 .1.【解析】由双曲线定义易得,12122,PF PF a PF -==,1212212F F ce a PF PF ===-. 例21.已知圆O :224x y +=与x 轴负半轴的交点为A ,点P 在直线l0y a +-=上,过点P 作圆O 的切线,切点为T .(1)若a =8,切点1)T -,求直线AP 的方程; (2)若P A =2PT ,求实数a 的取值范围.【解析】由题意,直线PT 切于点T ,则OT ⊥PT ,又切点T 的坐标为(4,3)-,所以OT k =,1PT OT k k =-=,故直线PT的方程为1y x +-40y --=. 联立直线l 和PT,40,80,y y --=+-=解得2,x y ⎧=⎪⎨=⎪⎩即2)P ,所以直线AP的斜率为k ===,故直线AP的方程为2)y x =+,即1)21)0x y -+=,即1)20x y -+=.(2)设(,)Pxy ,由P A =2PT ,可得2222(2)4(4)x y x y ++=+-,即22334200x y x ++-=,即满足P A =2PT 的点P 的轨迹是一个圆22264()39x y -+=,所以问题可转化为直线0y a +-=与圆22264()39x y -+=有公共点,所以83d =,即16|3a -≤a . 例22.已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0. (1)求证:对m ∈R ,直线l 与圆C 总有两个交点;(2)设直线l 与圆C 交于点A ,B ,若AB =17,求直线l 的倾斜角;(3)设直线l 与圆C 交于A ,B ,若定点P (1,1)满足2AP →=PB →,求此时直线l 的方程. 【解析】(1)证明 直线l 恒过定点P (1,1),由12+(1-1)2<5知点P 在圆C 内, 所以直线l 与圆C 总有两个交点.(2)圆心到直线的距离d =222⎪⎭⎫ ⎝⎛-AB r =32,又d =|0-1+1-m |m 2+1,所以32=|0-1+1-m |m 2+1,解得m =±3,所以,l 的倾斜角为π3或2π3.(3)方法一:设A (x 1,y 1),B (x 2,y 2).由2AP →=PB →得:2(1-x 1,1-y 1)=(x 2-1,y 2-1), 所以x 2+2x 1=3,①直线l 的斜率存在,设其方程为y -1=k (x -1),⎩⎨⎧=-+-=-5)1()1(122y x x k y ⇒(k 2+1)x 2-2k 2x +k 2-5=0, 所以⎪⎪⎩⎪⎪⎨⎧+-=+=+③②,15,1222212221k k x x k k x x由①②③消去x 1,x 2解得k =±1,故所求直线l 的方程为x -y =0或x +y -2=0.方法二:如图,过点C 作CD ⊥AB 于D ,设AP =t ,则PB =2t ,AD =1.5t ,PD =0.5t .在Rt △CDP 中,有CP 2=CD 2+PD 2,得CD 2=1-(0.5t )2,在Rt △CDA 中,CD 2=5-()1.5t 2,所以t =2, 从而,CD =22,又直线AB 的方程为mx -y +1-m =0,d =|m |m 2+1=22, 解得m =±1,故所求直线l 的方程为x -y =0或x +y -2=0.例23.如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上一点(在x 轴上方),连结PF 1并延长交椭圆于另一点Q ,设PF 1→=λF 1Q →.(1) 若点P 的坐标为⎝⎛⎭⎫1,32,且△PQF 2的周长为8,求椭圆C 的方程; (2) 若PF 2垂直于x 轴,且椭圆C 的离心率e ∈⎣⎡⎦⎤12,22,求实数λ的取值范围.【解析】 (1) 因为F 1,F 2为椭圆C 的两焦点,且P ,Q 为椭圆上的点,所以PF 1+PF 2=QF 1+QF 2=2a , 从而△PQF 2的周长为4a .由题意,得4a =8,解得a =2.因为点P 的坐标为⎝⎛⎭⎫1,32, 所以1a 2+94b2=1,解得b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2) (法1)因为PF 2⊥x 轴,且P 在x 轴上方,故设P (c ,y 0),y 0>0.设Q (x 1,y 1). 因为P 在椭圆上,所以c 2a 2+y 20b 2=1,解得y 0=b 2a ,即P ⎝⎛⎭⎫c ,b 2a .因为F 1(-c ,0),所以PF 1→=⎝⎛⎭⎫-2c ,-b 2a ,F 1Q →=(x 1+c ,y 1).由PF 1→=λF 1Q →,得-2c =λ(x 1+c ),-b 2a=λy 1,解得x 1=-λ+2λc ,y 1=-b2λa ,所以Q ⎝⎛⎭⎪⎫-λ+2λc ,-b 2λa .因为点Q 在椭圆上,所以⎝⎛⎭⎫λ+2λ2e 2+b2λ2a2=1,即(λ+2)2e 2+(1-e 2)=λ2,(λ2+4λ+3)e 2=λ2-1.因为λ+1≠0,所以(λ+3)e 2=λ-1,从而λ=3e 2+11-e 2=41-e 2-3. 因为e ∈⎣⎡⎦⎤12,22,所以14≤e 2≤12,即73≤λ≤5.所以λ的取值范围是⎣⎡⎦⎤73,5.(法2)因为PF 2⊥x 轴,且P 在x 轴上方, 故设P (c ,y 0),y 0>0.因为P 在椭圆上,所以c 2a 2+y 20b 2=1,解得y 0=b 2a,即P ⎝⎛⎭⎫c ,b 2a . 因为F 1(-c ,0),故直线PF 1的方程为y =b 22ac(x +c ).由⎩⎨⎧y =b22ac(x +c ),x 2a 2+y2b 2=1,得(4c 2+b 2)x 2+2b 2cx +c 2(b 2-4a 2)=0.因为直线PF 1与椭圆有一个交点为P ⎝⎛⎭⎫c ,b 2a ,设Q (x 1,y 1),则x 1+c =-2b 2c 4c 2+b 2,即-c -x 1=2b 2c4c 2+b 2.因为PF 1→=λF 1Q →所以λ=2c -c -x 1=4c 2+b 2b 2=3c 2+a 2a 2-c 2=3e 2+11-e 2=41-e 2-3. 因为e ∈⎣⎡⎦⎤12,22,所以14≤e 2≤12,即73≤λ≤5.所以λ的取值范围是⎣⎡⎦⎤73,5.例24.如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P (1,32),离心率e =12,直线l 的方程为x=4.(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记P A ,PB ,PM 的斜率分别为k 1,k 2,k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由.【解析】(1)由P ⎝⎛⎭⎫1,32在椭圆上得,1a 2+94b 2=1.① 依题设知a =2c ,则b 2=3c 2.② ②代入①解得c 2=1,a 2=4,b 2=3. 故椭圆C 的方程为x 24+y 23=1.(2)法一:由题意可设直线AB 的斜率为k , 则直线AB 的方程为y =k (x -1).③代入椭圆方程3x 2+4y 2=12并整理,得(4k 2+3)x 2-8k 2x +4(k 2-3)=0. 设A (x 1,y 1),B (x 2,y 2),则有 x 1+x 2=8k 24k 2+3,x 1x 2=4(k 2-3)4k 2+3.④在方程③中令x =4得,M 的坐标为(4,3k ). 从而k 1=y 1-32x 1-1,k 2=y 2-32x 2-1,k 3=3k -324-1=k -12.由于A ,F ,B 三点共线,则有k =k AF =k BF ,即有y 1x 1-1=y 2x 2-1=k . 所以k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=y 1x 1-1+y 2x 2-1-32⎝⎛⎭⎫1x 1-1+1x 2-1=2k -32·x 1+x 2-2x 1x 2-(x 1+x 2)+1.⑤④代入⑤得k 1+k 2=2k -32·8k 24k 2+3-24(k 2-3)4k 2+3-8k 24k 2+3+1=2k -1,又k 3=k -12,所以k 1+k 2=2k 3.故存在常数λ=2符合题意.法二:设B (x 0,y 0)(x 0≠1),则直线FB 的方程为y =y 0x 0-1(x -1),令x =4,求得M ⎝⎛⎭⎫4,3y 0x 0-1,从而直线PM 的斜率为k 3=2y 0-x 0+12(x 0-1),联立⎩⎨⎧y =y 0x 0-1(x -1),x 24+y23=1,得A ⎝⎛⎭⎪⎫5x 0-82x 0-5,3y 02x 0-5,则直线P A 的斜率为k 1=2y 0-2x 0+52(x 0-1),直线PB 的斜率为k 2=2y 0-32(x 0-1),所以k 1+k 2=2y 0-2x 0+52(x 0-1)+2y 0-32(x 0-1)=2y 0-x 0+1x 0-1=2k 3,故存在常数λ=2符合题意.例25.如图6,已知椭圆22:1124x y C +=,点B 是其下顶点,过点B 的直线交椭圆C 于另一点A (A 点在x 轴下方),且线段AB 的中点E 在直线y x =上. (1)求直线AB 的方程;(2)若点P 为椭圆C 上异于,A B 的动点,且直线,AP BP 分别交直线y x =于点,M N ,证明:OM ON ⋅为定值.【解析】(1)设点E (m ,m ),由B (0,-2)得A (2m ,2m +2). 代入椭圆方程得224(22)1124m m ++=,即22(1)13m m ++=, 解得32m =-或0m =(舍). 所以A (3-,1-).故直线AB 的方程为360x y ++=.(2)设00(,)P x y ,则22001124x y +=,即220043x y =-. 设),(M M y x M ,由M P A ,,三点共线, ∴)3)(1()1)(3(00++=++M M x y y x . 又点M 在直线x y =上,图6解得M 点的横坐标000032M y x x x y -=-+.设),(N N y x N ,由N P B ,,三点共线, ∴00(2)(2)N N x y y x +=+.点N 在直线y x =上,解得N 点的横坐标00022N x x x y -=--.所以OM ON ⋅0|0|M N x x --=2||||M N x x ⋅=200003||2y x x y --+0002||2x x y -⋅--=2000200262||()4x x y x y ---=2000220000262||23x x y x x x y ---=2000200032||3x x y x x y --=6. 例26.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-1,0),左准线方程为x =-2.(1) 求椭圆C 的标准方程;(2) 已知直线l 交椭圆C 于A ,B 两点.① 若直线l 经过椭圆C 的左焦点F ,交y 轴于点P ,且满足P A →=λAF →,PB →=μBF →.求证:λ+μ为定值;② 若OA ⊥OB (O 为原点),求△AOB 面积的取值范围.【解析】(1)由题设知c =1,a 2c=2,a 2=2c ,∴ a 2=2,b 2=a 2-c 2=1,∴ 椭圆C :x 22+y 2=1.(2) ① 证明:由题设知直线l 的斜率存在,设直线l 的方程为y =k (x +1),则P (0,k ).设A (x 1,y 1),B (x 2,y 2),直线l 方程代入椭圆方程,得x 2+2k 2(x +1)2=2,整理得(1+2k 2)x 2+4k 2x +2k 2-2=0,∴ x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.由P A →=λAF →,PB →=μBF →知,λ=-x 11+x 1,μ=-x 21+x 2,∴ λ+μ=-x 1+x 2+2x 1x 21+x 1+x 2+x 1x 2=--4k 21+2k 2+4k 2-41+2k 21+-4k 21+2k 2+2k 2-21+2k2=--4-1=-4(定值). ②当直线OA ,OB 分别与坐标轴重合时,易知△AOB 的面积S =22.当直线OA ,OB 的斜率均存在且不为零时,设OA :y =kx ,OB :y =-1kx .设A (x 1,y 1),B (x 2,y 2),将y =kx 代入椭圆C 方程,得x 2+2k 2x 2=2,∴ x 21=22k 2+1,y 21=2k 22k 2+1,同理可得x 22=2k 22+k 2,y 22=22+k 2, △AOB 的面积S =OA ·OB 2=(k 2+1)2(2k 2+1)(k 2+2).令t =k 2+1∈[1,+∞),则S =t 2(2t -1)(t +1)=12+1t -1t2;令u =1t∈(0,1),则S =1-u 2+u +2=1-⎝⎛⎭⎫u -122+94∈⎣⎡⎭⎫23,22. 综上所述,S ∈⎣⎡⎦⎤23,22,即△AOB 面积的取值范围是⎣⎡⎦⎤23,22.三.课本改编题1.课本原题(必修2第112页习题2.2第12题):已知点(,)M x y 与两个定点(0,0),(3,0)O A 的距离之比为12,那么点M 的坐标应满足什么关系?画出满足条件的点M 所构成的曲线.改编1:(2008高考江苏卷第13题)满足条件2,AB AC ==的三角形ABC 的面积的最大值为 .改编2:(2013高考江苏卷第18题)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y=2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.[说明]:利用阿波罗尼斯圆进行命题的经典考题很多,最著名的当属高考中出现的这两题.课本上虽未出现阿波罗尼斯圆的字眼,但是必修2教材上的这道习题已经体现了这类问题的本质.如果我们平时能钻研教材,对这道习题有所研究,那么我们的数学意识就会有所增强,再碰到此类问题时就会得心应手.2.课本原题(1)(选修2-1第42页习题第5题)在ABC D 中,(6,0),(6,0)B C -,直线AB 、AC 的斜率乘积为94,求顶点A 的轨迹.原题(2)(选修2-2第105页复习题第14题):已知椭圆具有如下性质:设M 、N 是椭圆22221(0)x y a b a b+=>>上关于原点对称的两点,点P 是椭圆上的任意一点.若直线PM 、PN 的斜率都存在并分别记为,PM PN k k ,则P M P N k k ×是与点P 的位置无关的定值.试类比椭圆,写出双曲线22221(0,0)x y a b a b-=>>的一个类似性质,并加以证明.改编1:(2012年南通市高三数学第二次模拟考试第13题)在平面直角坐标系xOy 中,F 1,F 2分别为椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,B 、C 分别为椭圆的上、下顶点,直线BF 2与椭圆的另一交点为D .若cos ∠F 1BF 2=725,则直线CD 的斜率为____.改编2:(2013苏北四市期末18题第2、3问)如图,在平面直角坐标系xOy 中,椭圆E的方程为22143x y +=.若点A ,B 分别是椭圆E 的左、右顶点,直线l 经过点B 且垂直于x 轴,点P 是椭圆 上异于A ,B 的任意一点,直线AP 交l 于点.M(1)设直线OM 的斜率为,1k 直线BP 的斜率为2k ,求证:21k k 为定值;(2)设过点M 垂直于PB 的直线为m .求证:直线m 过定点,并求出定点的坐标.改编3:(2011年高考江苏卷第18题)如图,在平面直角坐标系xOy中,M、N分别是椭圆22142x y+=的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线P A的斜率为k.(1)当直线P A平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:P A⊥PB.[说明]原题是推理与证明中的复习题,教学中可以把握教材前后的联系,在椭圆的学习中就可以对该结论进行探究.利用该结论进行命题的经典考题非常多,以上几例利用这个结论会大大降低运算的难度.平时我们要多留意课本上的常见结论,加强知识储备,这对提高我们的解题能力大有帮助.3.课本原题(必修2 P88思考运用13):已知直线l 过点(2,3),与两坐标轴在第一象限围成的三角形面积为16,求该直线l 的方程改编1:过点(-5,-4)且与两坐标轴围成的三角形面积为5的直线方程是 . [解析]设所求直线方程为)5(4+=+x k y .依题意有5)45)(54(21=--k k. ∴01630252=+-k k (无解)或01650252=+-k k ,解得52=k ,或58=k . ∴直线的方程是01052=--y x ,或02058=+-y x .改编2:(2006年上海春季卷)已知直线l 过点)1,2(P ,且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,则△OAB 面积的最小值为 . [解析]设直线AB 的方程为)0()2(1<-=-k x k y ,则1111111(2)(12)44[4(4)()][442222OAB S k k k k k k ∆=--=--=+-+-+=≥,当且仅当k k 14-=-即21-=k 时取等号, ∴当21-=k 时,OAB S ∆有最小值4. 改编3:已知射线)0(4:>=x x y l 和点)4,6(M ,在射线l 上求一点N ,使直线MN 与l 及x 轴围成的三角形面积S 最小. [解析]设)1)(4,(000>x x x N ,则直线MN 的方程为0)4)(6()6)(44(00=-----y x x x .令0=y 得1500-=x x x , ∴]211)1[(101]1)1[(101104)15(2100020020000+-+-=-+-=-=⋅-=x x x x x x x x x S2]40=≥, 当且仅当11100-=-x x 即20=x 时取等号. ∴当N 为(2,8)时,三角形面积S 最小.[说明]原题的本质是建立三角形的面积与斜率之间的方程关系,通过解方程求出未知量,而变体题则是建立这两者之间的函数关系,利用求函数最值的知识解决问题。
高三数学总复习专题10 解析几何(答案及解析)
高三数学总复习专题10 解析几何方法点拨1.圆锥曲线中的最值 (1)椭圆中的最值12,F F 为椭圆()222210+=>>x y a b a b的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有: ①[],∈OP b a ; ②[]1,∈-+PF a c a c ;③2212,⎡⎤⋅∈⎣⎦PF PF b a ;④1212∠≤∠F PF F BF . (2)双曲线中的最值12,F F 为双曲线()222210,0-=>>x y a b a b的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有:①≥OP a ;②1≥-PF c a . (3)抛物线中的最值点P 为抛物线()220=>y px p 上的任一点,F 为焦点,则有: ①2≥pPF ;②(),A m n 为一定点,则+PA PF 有最小值. 2.定点、定值问题(1)由直线方程确定定点,若得到了直线方程的点斜式:()00-=-y y k x x ,则直线必过定点()00,x y ;若得到了直线方程的斜截式:=+y kx m ,则直线必过定点()0,m . (2)解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值. 3.圆锥曲线中范围、最值的求解策略(1)数形结合法:利用待求量的几何意义,确定出临界位置后数形结合求解. (2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域. 4.定点问题的l 过定点问题的解法:设动直线方程(斜率存在)为=+y kx t 由题设条件将t 用k 表示为=t mk ,得()=+y k x m ,故动直线过定点(),0-m .(2)动曲线C 过定点问题的解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.(3)从特殊位置入手,找出定点,再证明该点符合题意. 5.求解定值问题的两大途径(1)首先由特例得出一个值(此值一般就是定值)然后证明定值:即将问题转化为证明待证式与参数(某些变量)无关.(2)先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值. 6.解决探索创新问题的策略存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.经典试题汇编一、选择题.1.(陕西省渭南市临渭区2021届高三一模)若直线:3=-l y kx 与直线2360+-=x y 的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A .ππ,43⎡⎫⎪⎢⎣⎭B .ππ,32⎡⎫⎪⎢⎣⎭C .ππ,42⎛⎫⎪⎝⎭ D .ππ,32⎛⎫⎪⎝⎭2.(安徽省淮北市2020-2021学年高三一模)过圆2216+=x y 上的动点作圆22:4+=C x y 的两条切线,两个切点之间的线段称为切点弦,则圆C 内不在任何切点弦上的点形成的区域的面积为( ) A .πB .32πC .2πD .3π3.(山西省大同市天镇县实验中学2021-2022学年高三一模)圆222440+-+-=x y x y 与直线2140()---=∈R tx y t t 的位置关系为( ) A .相离B .相切C .相交D .以上都有可能4.(吉林省长春市2022届高三一模)已知圆22:(2)(3)2-+-=C x y ,直线l 过点(3,4)A 且与圆C 相切,若直线l 与两坐标轴交点分别为,M N ,则MN =( )A .B .6C .D .85.(河南省联考2021-2022学年高三一模)若点()2,1--P 为圆229+=x y 的弦AB 的中点,则弦AB 所在直线的方程为( )A .250++=x yB .250+-=x yC .250-+=x yD .250--=x y6.(四川省南充市2021-2022学年高三一模)若A ,B 是O :224+=x y 上两个动点,且2⋅=-OA OB ,A ,B 到直线l 40+-=y 的距离分别为1d ,2d ,则12+d d 的最大值是( ) A .3B .4C .5D .67.(湖南省长沙市雅礼中学2021届高三一模)过双曲线2214-=y x 的左焦点1F 作一条直线l 交双曲线左支于P ,Q 两点,若4=PQ ,2F 是双曲线的右焦点,则2△PF Q 的周长是( ) A .6B .8C .10D .128.(四川省成都市2020-2021学年高三一模)已知抛物线24=x y 的焦点为F ,过F的直线l 与抛物线相交于A ,B 两点,70,2⎛⎫⎪⎝-⎭P .若⊥PB AB ,则=AF ( )A .32B .2C .52D .39.(湖南省湘潭市2021-2022学年高三上学期一模)已知抛物2:2C y px =(0>p )的焦点为F ,点T 在C 上,且52=FT ,若点M 的坐标为()0,1,且⊥MF MT ,则C 的方程为( ) A .22=y x 或28=y x B .2=y x 或28=y x C .22=y x 或24=y xD .2=y x 或24=y x10.(河南省联考2021-2022学年高三一模)点F 为抛物线22=y px ()0>p 的焦点,l 为其准线,过F 的一条直线与抛物线交于A ,B 两点,与l 交于点C .已知点B 在线段CF 上,若BF ,AF ,BC 按照某种排序可以组成一个等差数列,则AFBF的值为( ) A .32或3B .2或4C .32或4D .2或311.(贵州省遵义市2021届高三一模)双曲线221927-=x y 上一点P 到右焦点2F 距离为6,1F 为左焦点,则12∠F PF 的角平分线与x 轴交点坐标为( )A .()1,0-B .()0,0C .()1,0D .()2,012.(吉林省长春市2022届高三一模)已知P 是抛物线24=y x 上的一动点,F 是抛物线的焦点,点(3,1)A ,则||||+PA PF 的最小值为( )A .3B .C .4D .13.(多选)(湖南省湘潭市2021-2022学年高三一模)已知双曲线2222:1-=x y C a b(0>a ,0>b )的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若=a b ,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12△PF F 的内切圆圆心的横坐标=x aD .若M 为直线2=a x c(=c 0的一点,则当M 的纵坐标为时,2MAF 外接圆的面积最小 14.(江西省赣州市2021届高三3月一模)已知M 、N 是双曲线()2222:10,0-=>>x y C a b a b上关于原点对称的两点,P 是C 上异于M 、N 的动点,设直线PM 、PN 的斜率分别为1k 、2k .若直线12=y x 与曲线C 没有公共点,当双曲线C 的离心率取得最大值时,且123≤≤k ,则2k 的取值范围是( ) A .11,128⎡⎤⎢⎥⎣⎦B .11,812⎡⎤--⎢⎥⎣⎦ C .11,32⎡⎤⎢⎥⎣⎦D .11,23⎡⎤--⎢⎥⎣⎦15.(四川省成都市2021-2022学年高三一模)已知双曲线()222210,0-=>>x y a b a b的一条渐近线方程为=y ,则该双曲线的离心率为( )A B C .2D .316.(四川省成都市2020-2021学年高三一模)已知平行于x 轴的一条直线与双曲线()222210,0-=>>x y a b a b 相交于P ,Q 两点,4=PQ a ,π3∠=PQO (O 为坐标原点),则该双曲线的离心率为( )A B C D17.(甘肃省嘉谷关市第一中学2020-2021学年高三一模)已知双曲线22221(0,0)-=>>y x a b a b与抛物线2=x 共焦点F ,过点F 作一条渐近线的垂线,垂足为M ,若三角形OMF 的面积为2,则双曲线的离心率为( )AB .16C D .4或4318.(四川省乐山市高中2022届一模)已知双曲线()222210,0-=>>x y a b a b,过原点的直线与双曲线交于A ,B 两点,以线段AB 为直径的圆恰好过双曲线的右焦点F ,若ABF 的面积为22a ,则双曲线的离心率为( )AB C D .219.(四川省达州市2021-2022学年高三一模)双曲线()222210,0-=>>x y a b a b的左顶点为A ,右焦点(),0F c ,若直线=x c 与该双曲线交于B 、C 两点,ABC 为等腰直角三角形,则该双曲线离心率为( )A .2BCD .320.(陕西省汉中市2022届高三一模)已知F 是椭圆2222:1(0)+=>>x y C a b a b 的右焦点,点P 在椭圆C 上,线段PF 与圆22239⎛⎫-+= ⎪⎝⎭c b x y 相切于点Q ,且2=PQ QF ,则椭圆C 的离心率等于( )A B .23C .2D .1221.(广西柳州市2022届高三一模)已知1F ,2F 分别为双曲线C :22221-=x y a b()0,0>>a b 的左,右焦点,以12F F 为直径的圆与双曲线C 的右支在第一象限交于A 点,直线2AF 与双曲线C 的右支交于B 点,点2F 恰好为线段AB 的三等分点(靠近点A ),则双曲线C 的离心率等于( )A B C .3D .12+ 二、填空题.22.(贵州省遵义市2021届高三一模)直线1=-+y kx k 与圆224+=x y 交于,A B 两点,则AB 最小值为________.23.(湖南省长沙市雅礼中学2021届高三一模)若抛物线22=y px 上一点()02,P y 到其准线的距离为4,则抛物线的标准方程为___________.24.(四川省成都市第七中学2021-2022学年高三一模)已知12,F F 为双曲线22:1169-=x y C 的两个焦点,,P Q 为C 上关于坐标原点对称的两点,且12=PQ F F ,则四边形12PF QF 的面积为________.25.(四川省达州市2021-2022学年高三一模)设直线()y kx k =∈R 交椭圆221164+=x y 于A ,B 两点,将x 轴下方半平面沿着x 轴翻折与x 轴上方半平面成直二面角,则AB 的取值范围是___________.26.(四川省成都市2021-2022学年高三一模)已知斜率为13-且不经过坐标原点O的直线与椭圆22+197x y =相交于A ,B 两点,M 为线段AB 的中点,则直线OM 的斜率为________. 三、解答题.27.(四川省成都市第七中学2021-2022学年高三一模)已知两圆221:(2)54C x y -+=,222:(2)6C x y ++=,动圆M 在圆1C 内部且和圆1C 内切,和圆2C 外切.(1)求动圆圆心M 的轨迹C 的方程;(2)过点()3,0A 的直线与曲线C 交于,P Q 两点,P 关于x 轴的对称点为R ,求ARQ 面积的最大值.28.(四川省成都市2020-2021学年高三一模)已知椭圆()2222:10+=>>x y C a b a b的离心率为2,且直线1+=x ya b与圆222+=x y 相切. (1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于不同的两点A ﹐B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆C 相交于点P ,且O 点在以AB 为直径的圆上.记AOM ,△BOP的面积分别为1S ,2S ,求12S S 的取值范围. 29.(陕西省汉中市2022届高三一模)已知椭圆2222:1(0)+=>>x y C a b a b 的离心率为12,左、右焦点分别为12,F F ,O 为坐标原点,点P 在椭圆C 上,且满足2122,3π=∠=PF F PF .(1)求椭圆C 的方程;(2)已知过点(1,0)且不与坐标轴垂直的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点Q ,使得∠=∠MQO NQO ,若存在,求出点Q 的坐标;若不存在,说明理由.30.(四川省南充市2021-2022学年高三一模)已知椭圆()2222:10+=>>x y C a b a b的离心率为2,椭圆C 的下顶点和上顶点分别为1B ,2B ,且122=B B ,过点()0,2P 且斜率为k 的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的标准方程; (2)当1=k 时,求OMN 的面积;(3)求证:直线1B M 与直线2B N 的交点T 的纵坐标为定值.31.(江西省赣州市2021届高三3月一模)设离心率为12的椭圆2222:1(0)+=>>x y E a b a b 的左,右焦点分别为1F ,2F ,点P 在E 上,且满足1260∠=︒F PF ,12△PF F(1)求a ,b 的值;(2)设直线:2(0)=+>l y kx k 与E 交于M ,N 两点,点A 在x轴上,且满足0⋅+⋅=AM MN AN MN ,求点A 横坐标的取值范围.32.(广西柳州市2022届高三一模)已知椭圆C :22221+=x y a b()0>>a b 的左右焦点分别为1F ,2F ,过2F 且与x 轴垂直的直线与椭圆C 交于A ,B 两点,AOB 的面积为﹐点P 为椭圆C 的下顶点,2=PF . (1)求椭圆C 的标准方程;(2)椭圆C 上有两点M ,N (异于椭圆顶点且MN 与x 轴不垂直).当OMN 的面积最大时,直线OM 与ON 的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由. 33.(湖南省湘潭市2021-2022学年高三一模)已知圆锥曲线E 上的点M 的坐标(),x y=.(1)说明E 是什么图形,并写出其标准方程;(2)若斜率为1的直线l 与E 交于y 轴右侧不同的两点A ,B ,点P 为()2,1. ①求直线l 在y 轴上的截距的取值范围; ②求证:∠APB 的平分线总垂直于x 轴.34.(四川省乐山市高中2022届一模)如图,从椭圆22221(0)+=>>x y a b a b上一点P 向x轴作垂线,垂足恰为左焦点1F .又点A 是椭圆与x 轴正半轴的交点,点B 是椭圆与y轴正半轴的交点,且=OP AB k ,13=F A . (1)求椭圆的方程;(2)直线l 交椭圆于M 、Q 两点,判断是否存在直线l ,使点2F 恰为MQB △的重心?若存在,求出直线l 的方程;若不存在,请说明理由.35.(安徽省淮北市2020-2021学年高三一模)已知椭圆2222:1(0)+=>>x y C a b a b的离心率为12,左顶点为A ,右焦点F ,3=AF .过F 且斜率存在的直线交椭圆于P ,N 两点,P 关于原点的对称点为M . (1)求椭圆C 的方程;(2)设直线AM ,AN 的斜率分别为1k ,2k ,是否存在常数λ,使得12λ=k k 恒成立?若存在,请求出λ的值;若不存在,请说明理由.36.(湖南省长沙市雅礼中学2021届高三一模)已知椭圆()222210:x y a b a bC +=>>,连接椭圆上任意两点的线段叫作椭圆的弦,过椭圆中心的弦叫做椭圆的直径.若椭圆的两直径的斜率之积为22-b a,则称这两直径为椭圆的共轭直径.特别地,若一条直径所在的斜率为0,另一条直径的斜率不存在时,也称这两直径为共轭直径.现已知椭圆22:143x y E +=.(1)已知点31,2⎛⎫ ⎪⎝⎭A ,31,2⎛⎫-- ⎪⎝⎭B 为椭圆E 上两定点,求AB 的共轭直径的端点坐标;(2)过点()作直线l 与椭圆E 交于1A 、1B 两点,直线1A O 与椭圆E 的另一个交点为2A ,直线1B O 与椭圆E 的另一个交点为2B .当11A OB 的面积最大时,直径12A A 与直径12B B 是否共轭,请说明理由;(3)设CD 和MN 为椭圆E 的一对共轭直径,且线段CM 的中点为T .已知点P 满足:λ=OP OT ,若点P 在椭圆E 的外部,求λ的取值范围.参考答案一、选择题. 1CACCADDDADDC 13.【答案】ABD【解析】对于A 中,因为=a b ,所以222=a c ,故C的离心率==ce a所以A 正确; 对于B 中,因为()1,0-F c 到渐近线0-=bx ay的距离为==d b ,所以B 正确;对于C 中,设内切圆与12△PF F 的边1221,,F F F P F P 分别切于点1,,A B C , 设切点1A (,0)x ,当点P 在双曲线的右支上时,可得121212-=+--=-PF PF PC CF PB BF CF BF1112=-A F A F ()()22=+--==c x c x x a ,解得=x a ,当点P 在双曲线的左支上时,可得=-x a ,所以12△PF F 的内切圆圆心的横坐标=±x a ,所以C 不正确; 对于D 中,由正弦定理,可知2MAF 外接圆的半径为222sin =∠AF R AMF ,所以当2sin ∠AMF 最大时,R 最小,因为2<a a c,所以2∠AMF 为锐角,故2sin ∠AMF 最大,只需2tan ∠AMF 最大,由对称性,不妨设2,⎛⎫ ⎪⎝⎭a M t c (0>t ),设直线2=a x c 与x 轴的交点为N ,在直角2△NMF 中,可得222tan ==∠-a c NF NM NMF ct , 在直角△NMA 中,可得2tan =-=∠a a NA A NM NM c t,又由2222tan tan tan tan()1tan tan NMF NMAAMF NMF NMA NMF NMA∠-∠∠=∠-∠=∠⋅+∠222222()1c c a ab c a a a a c ct t a a c t a c c t tc t -==≤+-----⨯-+, 当且仅当()22-=ab c a t c t ,即=t 2tan ∠AMF 取最大值, 由双曲线的对称性可知,当=t 2tan ∠AMF 也取得最大值,所以D 正确,故选ABD . 14.【答案】A【解析】因为直线12=y x 与双曲线()2222:10,0-=>>x y C a b a b 没有公共点,所以双曲线C 的渐近线的斜率12=≤bk a ,而双曲线C的离心率====c e a 当双曲线C 的离心率取最大值时,b a 取得最大值12,即12=b a ,即2=a b ,则双曲线C 的方程为222214-=x y b b,设()11,M x y 、()11,--N x y 、()00,P x y ,则2211222200221414⎧-=⎪⎪⎨⎪-=⎪⎩x y b b x y b b , 两式相减得()()()()10101010224+-+-=x x x x y y y y b b ,即1010101014-+⋅=-+y y y y x x x x , 即1214⋅=k k , 又123≤≤k ,211,128⎡⎤∈⎢⎥⎣⎦k ,故选A . 15.【答案】B【解析】双曲线22221-=x y a b 的渐近线方程为=±by x a,因为渐近线方程为=y ,所以=ba故可得====e B . 16.【答案】D【解析】如图,由题可知,△POQ 是等边三角形,4=PQ a ,()2,∴P a ,将点P 代入双曲线可得22224121-=a a a b ,可得224=b a,∴离心率===c e a D .17.【答案】C【解析】抛物线2=x 的交点坐标为(F ,又双曲线22221(0,0)-=>>y x a b a b与抛物线2=x 共焦点,∴双曲线的半焦距=c ,三角形OMF 的面积为2,且=OM a ,=MF b ,∴122=⋅ab ,即4=ab , 有22217+==a b c ,∴1=a 或4=a ,∴双曲线的离心率为=e ,故选C .18.【答案】B【解析】设双曲线的左焦点为'F ,连接'AF ,'BF , 因为以AB 为直径的圆恰好经过双曲线的右焦点(),0F c , 所以⊥AF BF ,圆心为()0,0O ,半径为c , 根据双曲线的对称性可得四边形'AFBF 是矩形,设=AF m ,=BF n ,则222224122⎧⎪-=⎪+=⎨⎪⎪=⎩n m a n m c mn a ,由()2222-=+-n m m n mn ,可得222484-=c a a ,所以223=c a ,所以2223==c e a,所以=e ,故选B .19.【答案】A【解析】联立22222221=⎧⎪⎪-=⎨⎪=+⎪⎩x cxy a b c a b,可得2=±b y a ,则22=b BC a ,易知点B 、C 关于x 轴对称,且F 为线段BC 的中点,则=AB AC ,又因为ABC 为等腰直角三角形,所以2=BC AF ,即()222=+b c a a, 即()222+==-a c a b c a ,所以=-a c a ,可得2=c a , 因此,该双曲线的离心率为2==ce a,故选A . 20.【答案】A【解析】圆22239⎛⎫-+= ⎪⎝⎭c b x y 的圆心为,03⎛⎫ ⎪⎝⎭c A ,半径为3=b r . 设左焦点为1F ,连接1PF ,由于124,33==AF c AF c , 所以12==AF PQAF QF,所以1//AQ PF ,所以12,2==-PF b PF a b , 由于⊥AQ PF ,所以1⊥PF PF , 所以()()()22222224+-==-b a b c a b ,2320,3-==b b a a ,===c e a ,故选A .21.【答案】C【解析】设2=AF x ,则22=BF x ,由双曲线的定义可得1222=+=+AF AF a a x ,12222=+=+BF BF a a x , 因为点A 在以12F F 为直径的圆上,所以190∠=F AB ,所以22211+=AF AB BF ,即()()()2222322++=+a x x a x ,解得23=x a , 在12△AF F 中,1823=+=AF a x a ,223=AF a ,122=F F c , 由2221212+=AF AF F F 可得()22282233⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭a a c ,即22179=a c ,所以双曲线离心率为3===e ,故选C .二、填空题. 22.【答案】【解析】直线1=-+y kx k 过定点过()1,1M , 因为点()1,1M在圆的内部,且OM == 由圆中弦的性质知当直线与OM 垂直时,弦长最短, 此时结合垂径定理可得AB ==故答案为 23.【答案】28=y x【解析】抛物线的准线方程为2=-p x ,点()02,P y 到其准线的距离为22+p , 由题意可得242+=p,解得4=p , 故抛物线的标准方程为28=y x ,故答案为28=y x . 24.【答案】18【解析】由双曲线的对称性以及12=PQ F F 可知,四边形12PF QF 为矩形,所以1222212284100⎧-==⎪⎨+==⎪⎩PF PF a PF PF c ,解得1218=PF PF , 所以四边形12PF QF 的面积为1218=PFPF , 故答案为18.25.【答案】(⎤⎦【解析】设1122(,),(,)A x y B x y ,联立方程组221164=⎧⎪⎨+=⎪⎩y kx x y ,可得22(14)160+-=k x , 可得1212216,014=-+=+x x x x k ,所以221221614==+x x k , 将椭圆x 轴下方半平面沿着x 轴翻折与x 轴上方半平面成直二面角, 分别作,⊥⊥BC x AD x 于点,C D ,如图所示, 则2222=++AB BC CD AD ,又由222222222211,====BC y k x AD y k x ,2222212*********64()2()414=-=+-=+-=+CD x x x x x x x x x x k, 所以222222221226414=++=+++AB BC CD AD k x k x k 2222232648(417)78(1)141414+⋅++===⋅++++k k k k k , 因为∈R k ,所以20≥k ,所以2411+≥k ,所以270741<≤+k ,所以2788(1)6414<⋅+≤+k ,即2864<≤AB,所以8<≤AB ,所以AB的取值范围是(⎤⎦,故答案为(⎤⎦.26.【答案】73【解析】设直线AB 的方程为13=-+y x b ,联立2213197⎧=-+⎪⎪⎨⎪+=⎪⎩y x b x y ,得221()3197-++=x b x ,即22869630-+-=x bx b ,由223632(963)0b b ∆=-->,得-<<b 设11(,)A x y ,22(,)B x y ,00(,)M x y ,则120328+==x x b x ,0011373388=-+=-⨯+=b by x b b , 即37(,)88b bM ,则直线OM 的斜率为0073==y k x ,故答案为73.三、解答题.27.【答案】(1)2212420+=x y ;(2.【解析】(1)依题意,圆1C 的圆心()12,0C,半径1=r 圆2C 的圆心()22,0-C,半径2=r设圆M 的半径为r ,则有11=-MC r r ,22=+MC r r ,因此,1212124+=+=>=MC MC r r C C ,于是得点M 的轨迹是以12,C C为焦点,长轴长2=a 此时,焦距24=c ,短半轴长b 有22220=-=b a c ,所以动圆圆心M 的轨迹C 的方程为2212420+=x y .(2)显然直线PQ 不垂直于坐标轴,设直线PQ 的方程为3(0)=+≠x my m ,1122(,),(,)P x y Q x y ,由22356120=+⎧⎨+=⎩x my x y ,消去x 得22(56)30750++-=m x my , 则1226350+=-+m y y m ,1227556=-+y y m , 点P 关于x 轴的对称点11(,)-R x y ,1211|2|||2=⋅⋅-PQRSy x x ,111232=⋅⋅-APRS y x ,如图,显然1x 与2x 在3的两侧,即21-x x 与13-x 同号, 于是得()()()1211121133=-=---=⋅---AQRPQRAPRSSSy x x x y x x x121212275|||75|||3|||||||6565|||==⋅-==⋅==++≤m y x y my my y m m m , 当且仅当65||||=m m ,即=m 时取“=”,因此,当=m 时,max ()=AQR S,所以ARQ 面积的最大值4. 28.【答案】(1)22163+=x y;(2)⎣⎦.【解析】(1)∵椭圆的离心率为2,∴2=c a (c 为半焦距), ∵直线1+=xy ab与圆222+=x y=,又∵222+=c b a ,∴26=a ,23=b ,∴椭圆C 的方程为22163+=x y .(2)∵M 为线段AB 的中点,∴12==AOM BOP OMS S S S OP△△. (ⅰ)当直线l 的斜率不存在时,由⊥OA OB 及椭圆的对称性,不妨设OA 所在直线的方程为=y x ,得22=Ax .则22=Mx ,26=P x,∴123==OM S S OP ; (ⅱ)当直线l 的斜率存在时,设直线():0=+≠l y kx m m ,()11,A x y ,()22,B x y ,由22163=+⎧⎪⎨+=⎪⎩y kx mx y ,消去y ,得()222214260++-=+k x kmx m , ∴()()()2222221682138630k m k m k m ∆=-+-=-+>,即22630-+>k m .∴122421+=-+kmx x k ,21222621-=+m x x k .∵点O 在以AB 为直径的圆上,∴0⋅=OA OB ,即12120+=x x y y , ∴()()221212121210+=++++=x x y y k x x km x x m ,∴()22222264102121-⎛⎫++-+= ⎪++⎝⎭m km k km m k k . 化简,得2222=+m k ,经检验满足0∆>成立, ∴线段AB 的中点222,2121⎛⎫-⎪++⎝⎭km m M k k , 当0=k 时,22=m,此时123==S S ; 当0≠k 时,射线OM 所在的直线方程为12=-y x k, 由2212163⎧=-⎪⎪⎨⎪+=⎪⎩y x k x y ,消去y ,得2221221=+P k x k ,22321=+P y k , ∴==M P OM y OP y ∴12==S S12,33⎛∈ ⎝⎭S S , 综上,12S S的取值范围为⎣⎦.29.【答案】(1)22143+=x y ;(2)存在,()4,0.【解析】(1)在12△PF F 中,1122,2=-=cPF a a ,所以,由余弦定理()224(22)4222=-+--c a a,解得2,==a b ,所以,椭圆方程为22143+=x y .(2)假设存在点(),0Q m 满足条件,设直线l 的方程为()10=+≠x ty t ,设()()1122,,,M x y N x y ,联立()22221,34690143=+⎧⎪++-=⎨+=⎪⎩x ty t y ty x y , 121212221269,,3434--+==+=+++--MQ NQy y t y y y y k K t t x m x m, 又因为∠=∠MQO NQO ,所以0+=MQ NQ K K ,即1212=--y y x m m x , 即()()1211-=-y m x y m x ,将11221,1=+=+x ty x ty 代入化简得()()121212-+=m y y ty y , 即()2261183434---=++t m tt t ,计算得4=m ,所以存在()4,0点使得∠=∠MQO NQO .30.【答案】(1)2212+=x y ;(2)面积不存在;(3)证明见解析.【解析】(1)因为122=B B ,所以22=b ,即1=b ,因为离心率为2,所以2=c a ,设=c m,则=a ,0>m , 又222=-c a b ,即2222=-m m b ,解得1=m 或1-(舍去),所以=a 1=b ,1=c ,所以椭圆的标准方程为2212+=x y .(2)由22122⎧+=⎪⎨⎪=+⎩x y y x ,得()222220++-=x x ,23860++=x x ,284360∆=-⨯⨯<,所以直线与椭圆无交点,故OMN 的面积不存在.(3)由题意知,直线l 的方程为2=+y kx ,设()11,M x y ,()22,N x y ,则22212=+⎧⎪⎨+=⎪⎩y kx x y ,整理得()2221860+++=k x kx ,则()()22122122846120821621Δk k k x x k x x k ⎧=-⨯+>⎪⎪⎪+=-⎨+⎪⎪=⎪+⎩,因为直线和椭圆有两个交点,所以()()22824210k k ∆=-+>,则232>k ,设(),T m n ,因为1B ,T ,M 在同一条直线上,则111111313+++===+y kx n k m x x x , 因为2B ,T ,N 在同一条直线上,则222221111-+-===+y kx n k m x x x , 由于()21212283311213440621⎛⎫⋅- ⎪++-+⎝⎭+⋅=+=+=+k x x n n k k k m m x x k ,所以12=n , 则交点T 恒在一条直线12=y 上,故交点T 的纵坐标为定值12.31.【答案】(1)2=a,=b (2)6⎡⎫-⎪⎢⎪⎣⎭. 【解析】(1)设椭圆短轴的端点为B ,则21sin 2∠=OBF ,所以26π∠=OBF ,123π∠=F BF ,所以点P 即为点B,所以12122=⋅⋅==△PF F S c b bc ,又12=c a ,222=-a b c ,所以2=a,=b(2)设(,0)A m ,()11,M x y ,()22,N x y ,MN 的中点()00,H x y ,由2223412=+⎧⎨+=⎩y kx x y ,得()22431640+++=k x kx , 所以()()222(16)164348410k k k ∆=-+=->, 又0>k ,所以12>k ,所以1221643+=-+kx x k , 所以12028243+==-+x x k x k ,0026243=+=+y kx k ,即2286,4343⎛⎫- ⎪++⎝⎭k H k k , 因为()20⋅+⋅=+⋅=⋅=AM MN AN MN AM AN MN AH MN , 所以⊥AH MN ,所以226143843+=---+k k k mk ,得2223434=-=-++k m k k k , 因为12>k,所以34+≥k k,当且仅当=k =”号,所以⎡⎫∈⎪⎢⎪⎣⎭m , 故点A的横坐标的取值范围是6⎡⎫-⎪⎢⎪⎣⎭. 32.【答案】(1)22184+=x y ;(2)12-,理由见解析.【解析】(1)由题意可得:在2OPF Rt 中,22222+=OP OF PF ,即)222+=b c ,所以=b c ,椭圆C :22221+=x y a b 中,令=x c 可得2422221⎛⎫=-= ⎪⎝⎭c b y b a a,所以2=±b y a ,可得22=b AB a,所以22122=⋅⋅==AOBb bc Sc a a所以2=b c ,因为=b c ,222=+a b c,所以34====b b , 可得24=b ,所以2==c b ,2228=+=a b c ,所以椭圆C 的标准方程为22184+=x y .(2)设直线MN 的方程为=+y kx t ,()11,M x y ,()22,N x y ,由22184=+⎧⎪⎨+=⎪⎩y kx tx y ,可得()222214280+++-=k x ktx t , ()()222216421280k t k t ∆=-+->,即2284<+t k ,122412-+=+ktx x k,21222812-=+t x x k , 所以()()()2212121212=++=+++y y kx t kx t k x x kt x x t()()22222222222228124812121212-+-=-+=++++k t k t k t t k k k k k,12=-=MN x==, 点()0,0O 到直线=+y kx t的距离=d所以OMN的面积为1122⋅==MN d222284212+-+≤=+t k t k, 当且仅当22284=-+t k t 即2224-=t k 时等号成立,2222222122222128128241122828282-+--+⋅==⨯===-+---OM ONy y t k k t k t t k k x x k t t t , 所以当OMN 的面积最大时,直线OM 与ON 的斜率之积是12-.33.【答案】(1)E是以(),)为焦点,长轴长为22163+=x y ;(2)①(3,-;②证明见解析. 【解析】(1)圆锥曲线E是以(),)为焦点,长轴长为的椭圆,其标准方程为22163+=x y .(2)①设直线l :=+y x m ,()11,A x y ,()22,B x y ,由22163⎧+=⎪⎨⎪=+⎩x y y x m ,消去y ,得2234260++-=x mx m , 由题意,有()()22122124432604032603m m mx x m x x ∆⎧=-⨯->⎪⎪⎪+=->⎨⎪⎪-=>⎪⎩,解得3-<<m , 所以直线l 在y轴上的截距的取值范围为(3,-.②因为点P 在椭圆上,若直线l 过点P ,即点A (或点B )与P 重合,则l 与E 的另一个交点为25,33⎛⎫--⎪⎝⎭,不合题意,所以点A (或点B )与P 不重合; 若AP 或BP 的斜率不存在,则直线l 过点()2,1-,此时,l 与E 只有一个交点, 所以AP 与BP 的斜率都存在,设直线AP 的斜率为1k ,直线BP 的斜率为2k , 因为A ,B 在轴的右侧,结合图象,可知,要证∠APB 的平分线总垂直于x 轴,只要证120=+k k , 因为11112-=-y k x ,22212-=-y k x ,也即证()()()()122112120--+--=y x y x ,而()()()()()()()()1221122112121212--+--=+--++--y x y x x m x x m x()()()2121241242344344033-⎛⎫=+-+-+=+---+= ⎪⎝⎭m m x x m x x m m m 成立, 故∠APB 的平分线总垂直于x 轴.34.【答案】(1)22143+=x y ;(2)存在,:80--=l y .【解析】(1)由题可知,(,0)A a ,(0,)B b ,2,⎛⎫- ⎪⎝⎭b P c a ,因为=OP AB k,则200--=---b b a c a,解得=b ,故有2223+=⎧⎪=⎨⎪+=⎩a cb bc a ,解得2=a,=b椭圆方程为22143+=x y .(2)法一:假设存在,易知直线l 的斜率存在, 设直线l 的方程为=+y kx m ,()11,M x y ,()22,Q x y ,联立22143=+⎧⎪⎨+=⎪⎩y kx mx y ,得()2223484120+++-=k x kmx m , 则122212283441234⎧+=-⎪⎪+⎨-⎪=⎪+⎩km x x k m x x k , 因为2F 为MQB △的重心,则121201303++⎧=⎪⎪⎨++⎪=⎪⎩x x y y,解得12123+=⎧⎪⎨+=⎪⎩x x y y则122128334⎧+=-=⎪+⎨⎪+++=⎩km x x k kx m kx m,化简得228334634⎧=-⎪⎪+⎨⎪=⎪+⎩km k m k,解得⎧=⎪⎪⎨⎪=⎪⎩k m ,所以直线:80--=l y .法二:设()11,M x y ,()22,Q x y ,因为2F 为MQB △的重心,则120130++⎧=⎪⎪=x x,解得12123+=⎧⎪⎨+=⎪⎩x x y y设MQ 的中点R,则3,2⎛ ⎝⎭R , 因为M ,Q 在椭圆22143+=x y 上,则22112222143143⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减得34⋅=-MQ OR k k,即=MQ k所以直线:80--=l y .35.【答案】(1)22143+=x y ,(2)3λ=.【解析】(1)因为离心率为12,所以12==c e a , 又3=AF ,所以3+=a c ,解得2=a ,1=c , 又222=-c a b ,所以23=b ,所以椭圆方程为22143+=x y .(2)由(1)知()1,0F ,()2,0-A ,设直线PN 的方程为1=+x my ,()11,P x y ,()22,N x y , 因为M 与P 关于原点对称,所以()11,--M x y , 所以1112=-y x k ,2222=+yk x , 若存在λ,使得12λ=k k 恒成立,所以121222λ=-+y yx x , 所以()()122122λ+=-y x y x ,两边同乘1y 得()()21221122λ+=-y x y y x ,又因为()11,P x y 在椭圆上,所以2211143+=x y ,所以()()2112113223144-+⎛⎫=-= ⎪⎝⎭x x x y ,所以()()()()112211322224λ-++=-x x x y y x ,当12≠x 时,则()()12213224λ-++=x x y y , 所以()21212136124λ--+-=x x x x y y ①; 当12=x 时,M 与A 重合,联立方程221143=+⎧⎪⎨+=⎪⎩x my x y ,消元得()2234690++-=m y my ,所以212212934634-⎧=⎪⎪+⎨-⎪+=⎪+⎩y y m m y y m ,所以()212128234+=++=+x x m y y m ,()222121212412134-=+++=+m x x m y y m y y m ,代入①得22221236489124343434λ-+--+-=+++m m m m , 整理得10836λ-=-,解得3λ=. 36.【答案】(1)2-⎭和2⎛ ⎝⎭;(2)直径12A A 与直径12B B 共轭,理由见解析;(3)λ>λ< 【解析】(1)由题设知32=AB k ,设所求直线方程为=y kx ,则34⋅=-AB k k ,则12=-k , 故共轭直径所在直线方程为12=-y x .联立椭圆与12=-y x ,即2212143⎧=-⎪⎪⎨⎪+=⎪⎩y x x y 可得23=x,=x故端点坐标为⎭和⎛ ⎝⎭.(2)由题设知,l 不与x 轴重合,故设l:=x my ()111,A x y 、()122,B x y ,联立方程()22223430143⎧=⎪⇒+--=⎨+=⎪⎩x my m y x y ,则12234+=+y y m ,122334-=+y y m ,2122121234-=+m x x m ,122223434=-=⋅=++S y mm 63=≤=,当且仅当2313+=m ,即223=m 时取等号, 此时121221222123312124-⋅===-=--A A B By y b k k x x m a,故直径12A A 与直径12B B 共轭. (3)设点()11,C x y ,()22,M x y ,当CD 不与坐标轴重合时,设CD l :=y kx ,则MN l :34=-y x k, 联立2222211221212,3434143=⎧⎪⇒==⎨+++=⎪⎩y kx k x y x y k k , 同理可得22221634=+k x k ,222934=+y k. 由椭圆的对称性,不妨设C 在第一象限,则M 必在第二象限或第四象限,则1=x1=y若M在第二象限,则2=x2=y ,从而 ⎪⎝⎭T ,则⎫⎪⎪⎪ ⎪⎝⎭P .又P在椭圆外,则223412⎫⎪⎪+>⎪ ⎪ ⎪⎝⎭⎝⎭, 化简可得22λ>,即λ>λ<若M 在第四象限,同理可得22λ>,即λ>λ<当CD 与x 轴垂直或重合时,由椭圆的对称性,不妨取()2,0C,(M ,则λ⎛⎫⎪ ⎪⎝⎭P . 又P 在椭圆外,则2223341224λλλ+⋅>⇒>,即λ>λ<综上:λ>λ<。
2021_2022学年新教材高中数学第二章平面解析几何2.7.2抛物线的几何性质课后练习含解析新人教
第二章平面解析几何2.7抛物线与其方程2.7.2抛物线的几何性质课后篇巩固提升必备知识根底练1.抛物线C:y2=8x上一点A到焦点F的距离等于6,如此直线AF的斜率为()A.2B.±2C.2√2D.±2√2,点F(2,0),因为|AF|=x A+2=6,可得x A=4,又因为点A在抛物线上,所以y A2=32,如此y A==±2√2.±4√2,所以点A(4,±4√2),如此k AF=±4√222.直线y=kx-k与抛物线y2=2px(p>0),如此()A.直线与抛物线有一个公共点B.直线与抛物线有两个公共点C.直线与抛物线有一个或两个公共点D.直线与抛物线可能没有公共点直线y=kx-k=k (x-1),∴直线过点(1,0),又点(1,0)在抛物线y 2=2px 的内部,∴当k=0时,直线与抛物线有一个公共点;当k ≠0时,直线与抛物线有两个公共点.3.假如抛物线y 2=2x 上有两点A ,B ,且AB 垂直于x 轴,假如|AB|=2√2,如此点A 到抛物线的准线的距离为()A.12B.32C.2D.52y 2=2x ,其准线方程为x=-12,∵AB 垂直于x 轴,|AB|=2√2,A 到y 轴的距离为√2,假设A 在y 轴上侧,即y=√2,代入抛物线y 2=2x ,求得x=1,点A 到抛物线的准线的距离d=1+12=32.4.P 为抛物线y 2=2px 的焦点弦AB 的中点,A ,B ,P 三点到抛物线准线的距离分别是|AA 1|,|BB 1|,|PP 1|,如此有()A.|PP 1|=|AA 1|+|BB 1|B.|PP 1|=12|AB|C.|PP 1|>12|AB|D.|PP 1|<12|AB|,根据题意,PP 1是梯形AA 1B 1B 的中位线,故|PP 1|=12(|AA 1|+|BB 1|)=12(|AF|+|BF|)=12|AB|.5.抛物线y 2=4x 的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当△FPM 为等边三角形时,其面积为()A.2√3B.4C.6D.4√3,△FPM 为等边三角形,|PF|=|PM|=|FM|,∴PM ⊥抛物线的准线.设P (m 24,m),如此M (-1,m ),等边三角形边长为1+m 24,又由F (1,0),|PM|=|FM|,得1+m 24=√(1+1)2+m 2,得m=±2√3,∴等边三角形的边长为4,其面积为4√3,应当选D .6.点(x ,y )在抛物线y 2=4x 上,如此z=x 2+12y 2+3的最小值是.(x ,y )在抛物线y 2=4x 上,所以x ≥0,因为z=x 2+12y 2+3=x 2+2x+3=(x+1)2+2,所以当x=0时,z 最小,其值为3.7.抛物线y 2=2x 的焦点为F ,点A ,B 在抛物线上,假如△FAB 为等边三角形,如此其边长为.±2√3|FA|=|FB|与抛物线的对称性知A ,B 关于x 轴对称,不妨设直线AF 的倾斜角为π6,F (12,0),如此直线AF 的方程为y=√33(x -12), 联立{y 2=2x,y =√33(x -12),解得x=7±4√32, 如此|AF|=x+p2=7±4√32+12=4±2√3. 所以该三角形边长为4±2√3.8.假如抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与y 轴的交点,A 为抛物线上一点,且|AM|=√17,|AF|=3,求此抛物线的标准方程.x 2=2py (p>0),设A(x0,y0),由题意知M(0,-p2),∵|AF|=3,∴y0+p2=3,∵|AM|=√17,∴x02+(y0+p2)2=17,∴x02=8,代入方程x02=2py0得,8=2p(3-p2),解得p=2或p=4.∴所求抛物线的标准方程为x2=4y或x2=8y.9.抛物线y2=2px(p>0)的准线方程为x=-1.(1)求p的值;(2)直线l:y=x-1交抛物线于A,B两点,求弦长|AB|.由抛物线y2=2px(p>0)的准线方程为x=-1,得-p2=-1,所以p=2.(2)设A(x1,y1),B(x2,y2),由{y=x-1,y2=4x消去y,得x2-6x+1=0,如此x1+x2=6,x1x2=1, 所以|AB|=√(x1-x2)2+(y1-y2)2=√2·√(x1-x2)2=√2·√(x1+x2)2-4x1x2=√2×√32=8.关键能力提升练10.抛物线C :y 2=4x 的焦点F 和准线l ,过点F 的直线交l 于点A ,与抛物线的一个交点为B ,且FA⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,如此|AB|=() A.23B.43C.83D.163C :y 2=4x 的焦点F (1,0)和准线l :x=-1,设A (-1,a ),B (m ,n ),∵FA⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,∴m+12=23,∴m+1=43,AB=83.11.抛物线y 2=2x 的焦点为F ,如此经过点F 与点M (2,2)且与抛物线的准线l 相切的圆有()A.1个B.2个C.0个D.无数个M (2,2)在抛物线y 2=2x 上,又焦点F (12,0),由抛物线的定义知,过点F ,M 且与l 相切的圆的圆心即为线段FM 的垂直平分线与抛物线的交点,这样的交点共有2个,故过点F ,M 且与l 相切的圆有2个.12.抛物线y 2=2px 上三点A (2,2),B ,C ,直线AB ,AC 是圆(x-2)2+y 2=1的两条切线,如此直线BC 的方程为()A.x+2y+1=0B.3x+6y+4=0C.2x+6y+3=0D.x+3y+2=0A (2,2)在抛物线y 2=2px 上,故22=2p ×2,即p=1,所以抛物线方程为y 2=2x ,设过点A (2,2)与圆(x-2)2+y 2=1相切的直线的方程为y-2=k (x-2),即kx-y+2-2k=0,如此圆心(2,0)到切线的距离d=√k 2+1=1,解得k=±√3,如图,直线AB :y-2=√3(x-2),直线AC :y-2=-√3(x-2).联立{y -2=√3(x -2),y 2=2x,得3x 2+(4√3-14)x+16-8√3=0,故x A x B =16-8√33,由x A =2得x B =8-4√33,故y B =2√3-63,联立{y -2=-√3(x -2),y 2=2x,得3x 2-(4√3+14)x+16+8√3=0,故x A x C =16+8√33,由x A =2得x C =8+4√33,故y C =-2√3-63,故y B +y C =2√3-63+-2√3-63=-4,又由B ,C 在抛物线上可知,直线BC 的斜率为k BC =y B -yC x B-x C=y B -y C 12y B 2-12y C2=2yB +y C=2-4=-12,故直线BC 的方程为y-2√3-63=-12(x -8-4√33),即3x+6y+4=0.13.M ,N 是过抛物线C :y 2=2px (p>0)的焦点F 的直线l 与抛物线C 的交点,O 是坐标原点,且满足MF⃗⃗⃗⃗⃗⃗ =3FN ⃗⃗⃗⃗⃗ ,S △OMN =√3|MN|,如此p 的值为.MN 的斜率k>0,过M ,N 作抛物线准线的垂线,垂足分别为G ,H ,过N 作NK ⊥MG 于K ,由MF⃗⃗⃗⃗⃗⃗ =3FN ⃗⃗⃗⃗⃗ ,得|MF|=3|FN|, ∴|MG|=3|NH|,∴|MK|=2|NH|=2|NF|=12|MN|,∴|NK|=√|MN|2-|MK|2=√32|MN|, 由S △OMN =S △OMF +S △ONF =12|OF|·|NK|=√38p|MN|,又S △OMN =√3|MN|,∴√38p|MN|=√3|MN|,得p=8.14.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.今有抛物线y 2=2px (p>0),如图,一平行x 轴的光线射向抛物线上的点P ,反射后又射向抛物线上的点Q ,再反射后又沿平行x 轴方向射出,且两平行光线间的最小距离为3,如此抛物线的方程为.2=3x,PQ必过抛物线的焦点F(p2,0).当直线PQ斜率不存在时,易得|PQ|=2p;当直线PQ斜率存在时,设PQ的方程为y=k(x-p2),P(x1,y1),Q(x2,y2),联立{y=k(x-p2 ),y2=2px,得k2(x2-px+p24)=2px,整理得4k2x2-(4k2p+8p)x+k2p2=0,所以x1+x2=p+2pk2,x1x2=p24.所以|PQ|=x1+x2+p=2p(1+1k2)>2p.综上,当直线PQ与x轴垂直时,弦长最短,又因为两平行光线间的最小距离为3,故2p=3,∴抛物线方程为y2=3x.15.(2021全国乙,理21)抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离的最小值为4.(1)求p;(2)假如点P在M上,PA,PB是C的两条切线,A,B是切点,求△PAB面积的最大值.点F(0,p2)到圆M上的点的距离的最小值为|FM|-1=p2+4-1=4,解得p=2.(2)由(1)知,抛物线的方程为x 2=4y ,即y=14x 2,如此y'=12x.设切点A (x 1,y 1),B (x 2,y 2),如此易得直线l PA :y=x 12x-x 124,直线l PB :y=x 22x-x 224,从而得到Px 1+x 22,x 1x 24,设直线l AB :y=kx+b ,联立抛物线方程,消去y 并整理可得x 2-4kx-4b=0,∴Δ=16k 2+16b>0,即k 2+b>0,且x 1+x 2=4k ,x 1x 2=-4b ,∴P (2k ,-b ).∵|AB|=√1+k 2·√(x 1+x 2)2-4x 1x 2=√1+k 2·√16k 2+16b ,点P 到直线AB 的距离d=2√k 2+1,∴S △PAB =12|AB|d=4(k 2+b )32,①又点P (2k ,-b )在圆M :x 2+(y+4)2=1上,故k 2=1-(b -4)24,代入①得,S △PAB =4(-b 2+12b -154)32,而y P =-b ∈[-5,-3],∴当b=5时,(S △PAB )max =20√5.16.如图,抛物线y 2=4x 的焦点为F ,过点P (2,0)的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,直线AF ,BF 分别与抛物线交于点M ,N.(1)求y 1y 2的值;(2)连接MN ,记直线MN 的斜率为k 1,直线AB 的斜率为k 2,证明:k1k 2为定值.,设AB 的方程为x=my+2,代入y 2=4x ,得y 2-4my-8=0,从而y 1y 2=-8.M (x 3,y 3),N (x 4,y 4),k 1k 2=y 3-y 4x 3-x 4×x 1-x 2y 1-y 2=y 3-y 4y 324-y 424×y 124-y 224y 1-y 2=y 1+y 2y 3+y 4,设直线AM 的方程为x=ny+1,代入y 2=4x ,消去x 得y 2-4ny-4=0,所以y 1y 3=-4,同理y 2y 4=-4,k 1k 2=y 1+y 2y 3+y 4=y 1+y 2-4y 1+-4y 2=y 1y 2-4,由(1)知y 1y 2=-8,所以k1k 2=2为定值.学科素养拔高练17.抛物线y 2=16x 的焦点为F ,过点F 作直线l 交抛物线于M ,N 两点,如此|NF|9−4|MF|的最小值为()A.23B.-23C.-13D.13y 2=16x的焦点为F ,如此F (4,0),当直线l 的斜率不存在时,直线l 为x=4,由{y 2=16x,x =4,可得M (4,8),N (4,-8),∴|MF|=|NF|=8,∴|NF|9−4|MF|=718.当直线l 的斜率存在时,设过点F 的直线l 的方程为y=k (x-4),不妨设M (x 1,y 1),N (x 2,y 2),由{y 2=16x,y =k(x -4),消y 可得k 2x-(16+8k 2)x+16k 2=0,∴x 1+x 2=8+16k 2,x 1x 2=16,∴|MF|=x 1+p 2=x 1+4,|NF|=x 2+p2=x 2+4, ∴1|MF|+1|NF|=x 1+x 2+84(x1+x 2)+x 1x 2+16=16+16k 232+64k2+16+16=14.∴|NF|9−4|MF|=|NF|9+4|NF|-1≥2√|NF|9·4|NF|-1=13,当且仅当|NF|=6时取等号.故|NF|9−4|MF|的最小值为13.18.(多项选择)抛物线C :y 2=4x 的焦点为F ,准线为l ,过点F 的直线与抛物线交于P (x 1,y 1),Q (x 2,y 2)两点,点P 在l 上的射影为P 1,如此如下结论中正确的答案是()A.假如x 1+x 2=6,如此|PQ|=8B.以PQ 为直径的圆与准线l 相切C.设M (0,1),如此|PM|+|PP 1|≥√2D.过点M (0,1)与抛物线C 有且只有一个公共点的直线至多有2条,设y=k (x-1),由{y =k(x -1),y 2=4x,得k 2x 2-(2k 2+4)x+k 2=0,x 1+x 2=2k 2+4k 2,x 1x 2=1.对于A,假如x 1+x 2=6,如此k 2=1,故k=1或-1,|PQ|=√1+1√(x 1+x 2)2-4x 1x 2=√2×4√2=8,故A 成立;对于B,取PQ 点中点N ,N 在l 上的投影为N',Q 在l 上的投影为Q',根据抛物线的定义,|PP 1|=|PF|,|QQ'|=|QF|,NN'为梯形的中位线,故|NN'|=12(|PP 1|+|QQ'|)=12|PQ|,故B 成立;对于C,M (0,1),|PM|+|PP 1|=|MP|+|PF|≥|MF|=√2,故C 成立;对于D,过M (0,1)且与抛物线相切的直线有2条,过M (0,1)且与x 轴平行的直线与抛物线相交且有一个交点,所以至多有三条,故D 不成立.。
【课堂新坐标】(教师用书)2021学年高中数学 第二章 解析几何初步综合检测 北师大版必修2(1)
第二章 解析几何初步(时刻90分钟,总分值120分)一、选择题(本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.(2021·惠州高一检测)过两点A (-2,m ),B (m,4)的直线倾斜角是45°,那么m 的值是( )A .-1B .3C .1D .-3【解析】 k AB =m -4-2-m=tan 45°=1,∴m =1. 【答案】 C2.假设两直线ax +2y =0和x +(a -1)y +(a 2-1)=0平行,那么a 的值是( )A .-1或2B .-1C .2D .23 【解析】 由a (a -1)-1×2=0得a =-1或2,经查验a =-1时,两直线重合.【答案】 C3.(2021·合肥高一检测)若是圆(x -a )2+(y -a )2=8上总存在两个点到原点的距离为2,那么实数a 的取值范围是( )A .(-3,-1)∪(1,3)B .(-3,3)C .[-1,1]D .(-3,-1]∪[1,3) 【解析】 数形结合∵(0,0)、(a 、a )所在直线是存在两点的垂直平分线,∴1<a <3或-3<a <-1.【答案】 A4.在空间直角坐标系O—xyz中,点M的坐标是(1,3,5),那么其关于x轴的对称点的坐标是( ) A.(-1,-3,-5) B.(-1,-3,5)C.(1,-3,-5) D.(1,3,-5)【解析】M(1,3,5)关于x轴对称的点,在x轴上的坐标不变,其他是其相反数,即为(1,-3,-5).【答案】C5.圆(x-3)2+(y+4)2=2关于直线y=0对称的圆的方程是( )A.(x+3)2+(y-4)2=2 B.(x-4)2+(y+3)2=2C.(x+4)2+(y-3)2=2 D.(x-3)2+(y-4)2=2【解析】圆心(3,-4)关于y=0对称的点为(3,4),∴圆的方程为(x-3)2+(y-4)2=2.【答案】D6.(2021·南宁高一检测)过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为( )A. 3 B.2C. 6 D.23【解析】由题意得直线方程为y=3x,圆的方程为x2+(y-2)2=4,圆心到直线的距离d=23+1=1,弦长|AB|=24-1=2 3.【答案】D7.(2021·潍坊高一检测)假设直线l1:ax+(1-a)y-3=0与直线l2:(a-1)x+(2a+3)y-2=0相互垂直,那么a的值是( )A.-3 B.1 C.-1 D.1或-3【解析】∵l1⊥l2,∴a(a-1)+(1-a)(2a+3)=0,解得a=1或-3.【答案】D8.假设点P(a,b,c)关于原点的对称点是P′,那么|PP′|=( )A.a 2+b 2+c 2 B .2a 2+b 2+c 2C .|a +3+c |D .2|a +b +c |【解析】 P ′(-a ,-b ,-c ).由两点间距离公式得|PP ′|=-a -a 2+-b -b 2+-c -c 2 =2a 2+b 2+c 2.【答案】 B9.不论a 为何数,直线(a -3)x +2ay +6=0恒过( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】 由(a -3)x +2ay +6=0,得(x +2y )a +(6-3x )=0. 令⎩⎪⎨⎪⎧ x +2y =0,6-3x =0,得⎩⎪⎨⎪⎧ x =2,y =-1,∴直线(a -3)x +2ay +6=0恒过定点(2,-1).从而该直线恒过第四象限.【答案】 D10.使得方程16-x 2-x -m =0有实数解,那么实数m 的取值范围是( ) A .-4≤m ≤42 B .-42≤m ≤42 C .-4≤m ≤4D .4≤m ≤42 【解析】 设f (x )=16-x 2,g (x )=x +m ,在同一坐标系中画出函数f (x )和g (x )的图形,如下图.那么m是直线y =x +m 在y 轴上的截距.由图可知-4≤m ≤42. 【答案】 A二、填空题(本大题共4小题,每题5分,共20分,将答案填在题中的横线上)11.在空间直角坐标系中,已知点A (1,0,2),B (1,-3,1),点M 在y 轴上,且M 到A 与B 的距离相等,那么M 的坐标是________.【解析】 ∵M 在y 轴上,设其坐标为(0,y,0),由空间两点间的距离公式得 1+y 2+4=1+y +32+1,得y =-1,∴M 的坐标为(0,-1,0).【答案】 (0,-1,0)12.已知点P 在直线3x +y -5=0上,且P 点到直线x -y -1=0的距离为2,那么P 点坐标为________.【解析】 点P 在直线3x +y -5=0上,设P (x 0,y 0),即P (x 0,5-3x 0).由点到直线的距离公式,得|x 0-5-3x 0-1|12+-12=2,解得x 0=2或x 0=1,因此点P 的坐标为(2,-1) 或(1,2). 【答案】 (2,-1) 或(1,2)13.两平行直线l 1:3x +4y -2=0,l 2:6x +ay -5=0的距离等于__________.【解析】 由3a -24=0,得a =8,∴l 2:3x +4y -52=0. ∴d =|-52--2|32+42=110. 【答案】 110 14.(2021·九江高一检测)已知方程x 2+y 2+2mx -2my -2=0表示的曲线恒过第三象限的一个定点A ,假设点A 又在直线l :mx +ny +1=0上,那么m +n =________.【解析】 已知方程即x 2+y 2-2+2m (x -y )=0,该曲线系恒通过圆x 2+y 2-2=0与直线x -y =0的交点,由⎩⎪⎨⎪⎧x 2+y 2-2=0x -y =0得所过定点为(-1,-1),(1,1),∵点A 为第三象限的点,∴A 点的坐标为(-1,-1),将其代入直线l 的方程得(-1)·m +(-1)·n +1=0,即m +n =1.【答案】 1三、解答题(本大题共4小题,共50分.解许诺写出文字说明,证明进程或演算步骤)15.(本小题12分)菱形ABCD 中,A (-4,7)、C (6,-5)、BC 边所在直线过点P (8,-1),求:(1)AD 边所在直线的方程;(2)对角线BD 所在直线的方程.【解】 (1)k BC =2,∵AD ∥BC ,∴k AD =2.∴直线AD 方程为y -7=2(x +4),即2x -y +15=0.(2)k AC =-65,∵菱形对角线相互垂直, ∴BD ⊥AC ,∴k BD =56, 而AC 中点(1,1),也是BD 的中点,∴直线BD 的方程为y -1=56(x -1),即5x -6y +1=0. 图116.(本小题12分)如图1所示,⊙O 的方程为x 2+y 2=9,点P 的坐标为(4,0),求:(1)以点P 为圆心且与⊙O 外切的圆的标准方程;(2)以点P 为圆心且与⊙O 内切的圆的标准方程.【解】 (1)知足条件的圆P 是以(4,0)为圆心,1为半径的圆.因此圆P 的标准方程为(x -4)2+y 2=1.(2)知足条件的圆P 是以(4,0)为圆心,7为半径的圆,因此圆P 的标准方程为(x -4)2+y 2=49.17.(本小题12分)已知方程x 2+y 2-2x -4y +m =0.(1)假设此方程表示圆,求m 的取值范围;(2)假设(1)中的圆与直线x +2y -4=0相交于M ,N 两点,且OM ⊥ON (O 为坐标原点),求m 的值.【解】 (1)x 2+y 2-2x -4y +m =0,D =-2,E =-4,F =m ,D 2+E 2-4F =20-4m >0,m <5.(2)将x =4-2y 代入x 2+y 2-2x -4y +m =0得5y 2-16y +8+m =0,y 1+y 2=165,y 1y 2=8+m 5,∵OM ⊥ON ,得出:x 1x 2+y 1y 2=0,∴5y 1y 2-8(y 1+y 2)+16=0,∴m =85. 18.(本小题14分)已知P 是直线l :3x +4y +8=0上的动点,PA ,PB 是圆C :x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点.(1)求四边形PACB 面积的最小值;(2)直线l 上是不是存在点P ,使∠BPA =60°?假设存在,求出点P 的坐标;假设不存在,说明理由.【解】 (1)如下图,△PAC ≌△PBC ,那么有S PACB =2S △PAC .圆心C (1,1),半径r =1.由切线性质得AC ⊥PA ,那么|PA |=|PC |2-|AC |2,又|AC |=1,∴S △PAC =12|AC |·|PA |=12|PC |2-1. 又P 在直线l 上,那么|PC |的最小值是C 到直线l 的距离d =|3+4+8|9+16=3. ∴S △PAC 的最小值为1232-1= 2.∴四边形PACB 面积的最小值是22. (2)假设直线l 上存在点P 知足题意.∵∠APB =60°,∴|AP |=3|AC |=3,|PC |=2.设P (x ,y ),那么有⎩⎪⎨⎪⎧ x -12+y -12=4,3x +4y +8=0,整理可得25x 2+40x +96=0.∵Δ=402-4×25×96<0,∴如此的点P是不存在的.。
解析几何 高中数学试题解析版
一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1.若椭圆x2+y2a =1(a>0)的离心率为√ 22,则a的值为( )A. 2B. 12C. 2或√ 22D. 2或12【答案】D【解析】【分析】本题考查椭圆的性质的应用及分类讨论的思想,属于基础题.考虑a>1和0<a<1两种情况,根据离心率的公式计算得到答案.【解答】解:当a>1时,离心率为√ a−1√ a =√ 22,解得a=2;当0<a<1时,离心率为√ 1−a=√ 22,解得a=12.综上所述:a=2或a=12.故选:D2.把一个圆心角为120°的扇形卷成一个圆锥的侧面,则此圆锥底面圆的半径与这个圆锥的高之比是( )A. 1∶4B. √ 2∶2C. √ 2∶√ 3D. √ 2∶4【答案】D【解析】【分析】本题考查圆锥的计算,理解圆锥的展开图中扇形的弧长等于圆锥的底面周长是关键.设母线为l,半径为r,利用圆锥的展开图中扇形的弧长等于圆锥的底面周长得到半径与母线的关系,再根据勾股地理得到高,从而可以得出结果.【解答】解:设圆锥的母线为l,底面半径为r,高为ℎ则扇形的弧长为120180π×l=23πl,由圆锥的展开图中扇形的弧长等于圆锥的底面周长,得2πr=23πl,则r=13l,再由勾股定理得ℎ=√ l2−r2=2√ 23l,故r ℎ=13l 2√ 23l =√ 24,故选D .3.已知原点到直线l 的距离为1,圆(x −2)2+(y −√ 5)2=4与直线l 相切,则满足条件的直线l 有 ( ) A. 1条 B. 2条C. 3条D. 4条【答案】C 【解析】【分析】本题主要考查点到直线的距离,圆与圆位置关系,先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定公切线的直线条数. 【解答】解:∵(x −2)2+(y −√ 5 )2=4, ∴圆心坐标(2,√ 5),半径为2, ∵以坐标原点为圆心,以1为半径, ∴圆方程x 2+y 2=1, ∴两圆圆心距√ 5+22=3, ∴两圆相外切,∴两圆有三条公切线,(两条外公切线,一条内公切线). 故选C .4.已知PA ⃗⃗⃗⃗⃗ =(2,1,−3),PB ⃗⃗⃗⃗⃗ =(−1,2,3),PC ⃗⃗⃗⃗⃗ =(7,6,λ),若P ,A ,B ,C 四点共面,则λ=( ) A. 9 B. −9C. −3D. 3【答案】B 【解析】【分析】由共面向量定理得PC ⃗⃗⃗⃗⃗ =x PA ⃗⃗⃗⃗⃗ +y PB ⃗⃗⃗⃗⃗ ,从而(7,6,λ)=x(2,1,−3)+y(−1,2,3),由此能求出λ的值. 本题考查实数值的求法,考查共面向量定理等基础知识,考查运算求解能力,是基础题. 【解答】解:∵PA ⃗⃗⃗⃗⃗ =(2,1,−3),PB ⃗⃗⃗⃗⃗ =(−1,2,3),PC ⃗⃗⃗⃗⃗ =(7,6,λ), P ,A ,B ,C 四点共面,∴存在一对实数x ,y ,PC⃗⃗⃗⃗⃗ =x PA ⃗⃗⃗⃗⃗ +y PB ⃗⃗⃗⃗⃗ , ∴(7,6,λ)=x(2,1,−3)+y(−1,2,3),∴{7=2x−y6=x+2yλ=−3x+3y,解得λ=−9.故选:B.5.已知点A为圆(x+3)2+(y−2)2=1上的动点,点B的坐标为(1,1),P为x轴上一动点,则|AP|+|BP|的最小值是( )A. 3B. 4C. 5D.6【答案】B【解析】【分析】本题考查到圆上点的距离的最值及点关于线的对称点的求法,属于拔高题.根据三角形三边关系以及两点间距离公式求解即可.【解答】解:设圆心M(−3,2),半径为1,B关于x轴的对称点B1(1,−1),连接MB1交x轴于N点,则N即是P,因为这时|NB|=|NB1|,|NB|+|MN|=|MB1|,当P在x轴的其它位置F时,|FB|=|FB1|,借助图形可得|FB|+|FM|>|MB1|(三角形的两边和大于第三边),所以|AP|+|BP|的最小值是为|MB1|−1=√ 42+32−1=5−1=4,此时A为线段MB1与圆的交点.故选B.6.已知椭圆E:x2a2+y2b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点,若AB的中点坐标为(1,−1),则E的方程为( )A. x245+y236=1 B. x236+y227=1 C. x227+y218=1 D. x218+y29=1【答案】D【解析】【分析】本题考查求椭圆的方程,考查直线与椭圆的位置关系,点差法的运用,考查学生的计算能力,属于中档题,设A(x1,y1),B(x2,y2),代入椭圆的方程,两式相减,根据线段AB的中点坐标为(1,−1),进而可得a,b的关系,根据右焦点为F(3,0),求出a,b的值,即可得出椭圆的方程.【解答】解:设A(x 1,y 1),B(x 2,y 2),代入椭圆方程得{x 12a 2+y 12b 2=1x 22a 2+y 22b2=1, 相减得x 12−x 22a 2+y 12−y 22b2=0, ∴x 1+x 2a 2+y 1−y 2x 1−x 2⋅y 1+y 2b2=0,∵x 1+x 2=2,y 1+y 2=−2,k AB =y 1−y2x 1−x 2=−1−01−3=12,∴2a 2+12×−2b2=0,化为a 2=2b 2,又c =3=√ a 2−b 2,解得a 2=18,b 2=9. ∴椭圆E 的方程为x 218+y 29=1.故选D .7.已知圆C:x 2+y 2=1,直线l:x +y +2=0,P 为直线l 上的动点,过点P 作圆C 的两条切线,切点分别为A ,B ,则直线AB 过定点 ( ) A. (−12,−12)B. (−1,−1)C. (−12,12)D. (12,−12)【答案】A 【解析】【分析】本题考查直线与圆的位置关系,涉及圆方程的综合应用,属于中档题.根据题意,设P 的坐标为(t,−2−t),由圆的切线性质可得PA ⊥AC ,PB ⊥BC ,则有点A 、B 在以PC 为直径的圆上,求出该圆的方程,与圆C 的方程联立可得直线AB 的方程,将其变形分析可得答案. 【解答】解:根据题意,P 为直线l :x +y +2=0上的动点,设P 的坐标为(t,−2−t), 过点P 作圆C 的两条切线,切点分别为A ,B ,则PA ⊥AC ,PB ⊥BC , 则点A 、B 在以PC 为直径的圆上,又由C(0,0),P(t,−2−t),则以PC 为直径的圆的方程为x(x −t)+y(y +2+t)=0, 变形可得:x 2+y 2−tx +(t +2)y =0,则有{x 2+y 2=1x 2+y 2−tx +(t +2)y =0,联立可得:1−tx +(t +2)y =0,变形可得:1+2y −t(x −y)=0, 即直线AB 的方程为1+2y −t(x −y)=0,则有{1+2y =0x −y =0,解可得{x =−12y =−12,故直线AB 过定点(−12,−12), 故选:A .8.已知F 1,F 2是椭圆与x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过左焦点F 1的直线与椭圆交于A ,B 两点,且满足|AF 1|=2|BF 1|,|AB|=|BF 2|,则该椭圆的离心率是( ) A. 12B. √ 33C. √ 32D. √ 53【答案】B 【解析】【分析】本题考查椭圆的简单性质的应用,考查数形结合以及转化思想的应用,属于中档题. 利用已知条件,画出图形,通过三角形的边长关系,结合余弦定理,求解椭圆的离心率即可. 【解答】解:作出图形,如下:由题意可得:|F 1B|+|BF 2|=2a ,|AB|=|BF 2|,可得|AF 1|=a ,|AF 2|=a ,|AB|=|BF 2|=32a ,|F 1F 2|=2c , 在△ABF 2中,由余弦定理得cos∠BAF 2=94a 2+a 2−94a 22×32a×a=13,在△AF 1F 2中,由余弦定理得cos∠BAF 2=a 2+a 2−4c 22×a×a =1−2(c a)2,所以13=1−2(ca )2,即e =c a =√ 33. 故选:B .二、多选题(本大题共4小题,共20.0分。
高中数学解析几何训练题(带答案)
高中数学解析几何训练题(带答案)试卷分析高中数学习题精选第三部分解析几何一、选择题:1、直线的倾斜角是______。
A. B. C. D.2、直线m、l关于直线_ = y对称,若l的方程为,则m的方程为_____。
A. B. C. D.3、已知平面内有一长为4的定线段AB,动点P满足|PA||PB|=3,O为AB中点,则|OP|的最小值为______。
A.1 B. C.2 D.34、点P分有向线段成定比,若,则所对应的点P的集合是___。
A.线段 B.线段的延长线 C.射线 D.线段的反向延长线5 、已知直线L经过点A 与点B ,则该直线的倾斜角为______。
A.150 B.135 C.75 D.456、经过点A 且与直线垂直的直线为______。
A. B. C. D.7、经过点且与直线所成角为30的直线方程为______。
A. B.或C. D.或8、已知点A 和点B ,直线m过点P 且与线段AB相交,则直线m的斜率k的取值范围是______。
A. B. C. D.9、两不重合直线和相互平行的条件是______。
A. B.或 C. D.10、过且倾斜角为15的直线方程为______。
A. B. C. D.11、a = 1是直线和互相垂直的___。
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也非必要条件12、与曲线关于直线对称的曲线方程是______。
A. B. C. D.13、曲线关于点对称的曲线的方程是______。
A. B. C. D.14、实数a = 0是和平行的______A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也非必要条件15、已知m和n的斜率分别是方程的两根,则m和n所成角为______。
A.15 B.30 C.45 D.6016、直线的倾斜角为______。
A. B. C. D.17、a为非负实数,直线不通过的象限是______。
2019_2020学年高中数学第二章解析几何初步1.5平面直角坐标系中的距离公式练习(含解析)北师大版必修2
1.5 平面直角坐标系中的距离公式填一填1.两点间的距离公式 (1)数轴上:一般地,数轴上两点A ,B 对应的实数分别是x A ,x B ,则|AB |=|x B -x A |. (2)平面直角坐标系中:一般地,若两点A ,B 对应的坐标分别为A (x 1,y 1),B (x 2,y 2),则|AB |=x 2-x 12+y 2-y 12. 2.点到直线的距离点P (x 0,y 0)到直线Ax +By +C =0的距离记为d ,则d =|Ax 0+By 0+C |A 2+B2. 3.两平行线间的距离两条平行直线的方程分别为l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0,两条直线间的距离记为d ,即d =|C 2-C 1|A 2+B2.判一判1.原点O 到点P (x ,y )的距离为|OP |=x 2+y 2.(√) 23.平面内任意两点间的距离均可使用两点间的距离公式.(√)4.直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0的距离是|C 1-C 2|.(×)5.原点到直线Ax +By +C =0的距离公式是|C |A 2+B2.(√)6.平行线间的距离是两平行线上两点间距离的最小值.(√) 7.连接两条平行直线上两点,即得两平行线间的距离.(×)8想一想1. 提示:点到直线的距离公式只适用直线方程的一般式.2.两条平行直线间的距离公式写成d =|C 1-C 2|A 2+B 2时对两条直线应有什么要求?提示:两条平行直线的方程都是一般式,并且x ,y 的系数分别对应相等. 3.两条平行直线间距离有哪几种求法? 提示:(1)直接利用两平行线间的距离公式.(2)在一条直线上任意选取一点利用点到直线的距离公式求解(一般要选特殊的点,如直线与坐标轴的交点、坐标为整数的点).(3)当两直线都与x 轴(或y 轴)垂直时,可利用数形结合来解决. ①当两直线都与x 轴垂直时,l 1:x =x 1,l 2:x =x 2,则d =|x 2-x 1|; ②当两直线都与y 轴垂直时,l 1:y =y 1,l 2:y =y 2,则d =|y 2-y 1|. 4.距离公式综合应用的常见类型有哪些? 提示:(1)最值问题.①利用对称转化为两点之间的距离问题.②利用所求式子的几何意义转化为点到直线的距离.③利用距离公式将问题转化为一元二次函数的最值问题,通过配方求最值. (2)求参数问题.利用距离公式建立关于参数的方程或方程组,通过解方程或方程组求值. (3)求方程的问题.立足确定直线的几何要素——点和方向,利用直线方程的各种形式,结合直线的位置关系(平行直线系、垂直直线系及过交点的直线系),巧设直线方程,在此基础上借助三种距离公式求解.思考感悟:练一练1.已知A (3,7),B A .5 B. 5 C .3 D .29 答案:B2.已知直线上两点A (a ,b ),B (c ,d ),且a 2+b 2-c 2+d 2=0,则( ) A .原点一定是线段AB 的中点 B .A ,B 一定都与原点重合C .原点一定在线段AB 上,但不是线段AB 的中点D .原点一定在线段AB 的垂直平分线上 答案:D3.点(1,-1)到直线x -y +1=0的距离是( )A .3 2 B.22C .3 D.322答案:D4.点(5,-3)到直线x +2=0的距离等于( ) A .7 B .5 C .3 D .2 答案:A5.直线l 1:x +y =0与直线l 2:2x +2y +1=0间的距离是________.答案:24知识点一两点间距离公式的应用1.已知点A (2,m )与点B (m,1)间的距离是13,则实数m =( )A .-1B .4C .-1或4D .-4或1 解析:∵|AB |=m -22+1-m 2=13,∴m 2-3m -4=0,解得m =-1或m =4. 答案:C2.已知点A (2,1),B (-2,3),C (0,1),则△ABC 中,BC 边上的中线长为________. 解析:BC 中点为(-1,2),所以BC 边上中线长为2+12+1-22=10. 答案:10知识点二 求点到直线的距离3.已知点(a,1)到直线x -y +1=0的距离为1,则a 的值为( ) A .1 B .-1 C. 2 D .± 2解析:由题意,得|a -1+1|12+-12=1,即|a |=2, 所以a =± 2.故选D. 答案:D4.点P (x ,y )在直线x +y -4=0上,O 是原点,则|OP |的最小值是( ) A.10 B .2 2 C. 6 D .2解析:由题意可知|OP |的最小值即原点(0,0)到直线x +y -4=0的距离d =|-4|2=2 2.知识点三 两条平行直线间的距离5.12b +c 等于( )A .-12B .48C .36D .-12或48解析:将l 1:3x +4y +5=0改写为6x +8y +10=0, 因为两条直线平行,所以b =8. 由|10-c |62+82=3,解得c =-20或c =40.所以b +c =-12或48.故选D. 答案:D6.已知直线3x +2y -3=0和6x +my +1=0互相平行,则它们之间的距离是( )A .4 B.21313C.51326 D.71326解析:由两直线平行可知36=2m ≠-31,故m =4.又方程6x +4y +1=0可化简为3x +2y +12=0,∴平行线间的距离为|12--3|22+32=71326.故选D. 答案:D知识点四 对称问题7.直线y =3xA .y =3x -10B .y =3x -18C .y =3x +4D .y =4x +3解析:在直线上任取两点A (1,-1),B (0,-4),则其关于点P 的对称点A ′,B ′可由中点坐标公式求得为A ′(3,-1),B ′(4,2),由两点式可求得方程为y =3x -10.答案:A8.直线2x +3y -6=0关于点(1,-1)对称的直线的方程是( ) A .3x -2y +2=0 B .2x +3y +7=0 C .3x -2y -12=0 D .2x +3y +8=0解析:由平面几何知识易知所求直线与已知直线2x +3y -6=0平行,则可设所求直线的方程为2x +3y +C =0(C ≠-6).在直线2x +3y -6=0上任取一点(3,0),其关于点(1,-1)对称的点为(-1,-2),则点(-1,-2)必在所求直线上,∴2×(-1)+3×(-2)+C =0,解得C =8. 故所求直线的方程为2x +3y +8=0. 答案:D综合知识 距离公式的综合应用9.已知△ABC 中,A (2,-1),B (4,3),C (3,-2). (1)求BC 边上的高所在直线方程的一般式; (2)求△ABC 的面积.解析:(1)因为k BC =3--24-3=5,所以BC 边上的高AD 所在直线斜率k =-15.所以AD 所在直线方程为y +1=-15(x -2).即x +5y +3=0.(2)BC 的直线方程为:y +2=5(x -3). 即5x -y -17=0,点A 到直线BC 的距离为|2×5--1-17|52+-12=626. 又因为|BC |=3-42+-2-32=26,所以△ABC 的面积S =12×626×26=3.10.已知直线l 1经过点A (0,1),直线l 2经过点B (5,0),且直线l 1∥l 2,l 1与l 2间的距离为5,求直线l 1,l 2的方程.解析:∵直线l 1∥l 2,∴当直线l 1,l 2垂直于x 轴时,直线l 1的方程为x =0,直线l 2的方程为x =5, 这时直线l 1,l 2之间的距离等于5,符合题意. 当直线l 1,l 2不垂直于x 轴时,可设其斜率为k , 依题意得,直线l 1的方程为y =kx +1,即kx -y +1=0,直线l 2的方程为y =k (x -5), 即kx -y -5k =0.由两条平行直线间的距离公式,得|1+5k |1+k2=5, 解得k =125.∴直线l 1的方程为12x -5y +5=0,直线l 2的方程为12x -5y -60=0.综上,符合题意的直线l 1,l 2的方程有两组:l 1:x =0,l 2:x =5或l 1:12x -5y +5=0,l 2:12x -5y -60=0.基础达标一、选择题1.点P (1,-1)到直线l :3y =2的距离是( )A .3 B.53C .1 D.22解析:点P (1,-1)到直线l 的距离d =|3×-1-2|02+32=53,选B. 答案:B2.已知点M (1,4)到直线l :mx +y -1=0的距离为3,则实数m =( )A .0 B.34C .3D .0或34解析:点M 到直线l 的距离d =|m +4-1|m 2+1=|m +3|m 2+1,所以|m +3|m 2+1=3,解得m =0或m =34,选D.答案:D3.两条平行直线3x +4y -12=0与ax +8y +11=0间的距离为( ) A.1310 B.135 C.72 D.235解析:直线3x +4y -12=0,即直线6x +8y -24=0,根据直线3x +4y -12=0与ax +8y +11=0平行,可得a =6,故两条平行直线3x +4y -12=0与ax +8y +11=0间的距离为|-24-11|36+64=72. 答案:C4.已知点A (1,3),B (3,1),C (-1,0),则△ABC 的面积等于( ) A .3 B .4 C .5 D .6解析:设AB 边上的高为h ,则S △ABC =12|AB |·h .|AB |=3-12+1-32=22,AB 边上的高h 就是点C 到直线AB 的距离.AB 边所在的直线方程为y -31-3=x -13-1,即x +y -4=0.点C 到直线x +y -4=0的距离为|-1+0-4|2=52,因此,S △ABC =12×22×52=5.答案:C5.直线l 垂直于直线y =x +1,原点O 到l 的距离为1,且l 与y 轴正半轴有交点.则直线l 的方程是( )A .x +y -2=0B .x +y +1=0C .x +y -1=0D .x +y +2=0解析:因为直线l 与直线y =x +1垂直,所以设直线l 的方程为y =-x +b .又l 与y 轴正半轴有交点,知b >0,即x +y -b =0(b >0),原点O (0,0)到直线x +y -b =0(b >0)的距离为|0+0-b |12+12=1,解得b =2(b =-2舍去),所以所求直线l 的方程为x +y -2=0. 答案:A6.已知△ABC 的三个顶点是A (-a,0),B (a,0)和C ⎝ ⎛⎭⎪⎫a2,32a ,则△ABC 的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .斜三角形解析:因为k AC =32a a 2+a =33,k BC =32a a2-a=-3,k AC ·k BC =-1,所以AC ⊥BC ,又|AC |=⎝ ⎛⎭⎪⎫a 2+a 2+⎝ ⎛⎭⎪⎫32a 2=3|a |. |BC |=⎝ ⎛⎭⎪⎫a 2-a 2+⎝ ⎛⎭⎪⎫32a -02=|a |,|AC |≠|BC |. 所以△ABC 为直角三角形.答案:C7.若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点距离的最小值为( )A .3 2B .2 C. 2 D .4解析:由题意,知点M 在直线l 1与l 2之间且与两直线距离相等的直线上,设该直线方程为x +y +c =0,则|c +7|2=|c +5|2,即c =-6,∴点M 在直线x +y -6=0上,∴点M 到原点的距离的最小值就是原点到直线x +y -6=0的距离,即|-6|2=3 2.答案:A 二、填空题8.已知点A (-1,2),B (3,b )的距离是5,则b =________.解析:根据两点间的距离公式,可得3+12+b -22=5,解得b =5或b =-1. 答案:5或-19.若点(2,k )到直线5x -12y +6=0的距离是4,则k 的值是________.解析:∵|5×2-12k +6|52+122=4, ∴|16-12k |=52,∴k =-3,或k =173.答案:-3或17310.两直线3x +y -3=0与6x +my +n =0平行且距离为10,则m +n =________. 解析:因为两直线平行,所以m =2, 由两平行线的距离公式知⎪⎪⎪⎪⎪⎪-3-n 232+12=10, 解得n =14或n =-26.所以m +n =16或m +n =-24. 答案:16或-2411.已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________________________________________________________________________.解析:显然直线l 的斜率不存在时,不满足题意; 设所求直线方程为y -4=k (x -3), 即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2, 所以k =2或k =-23.所以所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 答案:2x -y -2=0或2x +3y -18=012.已知实数x ,y 满足2x +y +5=0,那么x 2+y 2的最小值为________.解析:求x 2+y 2的最小值,就是求2x +y +5=0上的点到原点的距离的最小值,转化为坐标原点到直线2x +y +5=0的距离d =522+12= 5. 答案: 5 三、解答题13.已知点P (2,-1).(1)求过P 点且与原点距离为2的直线l 的方程;(2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少?(3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.解析:(1)过P 点的直线l 与原点距离为2,而P 点坐标为(2,-1),可见,过P 点垂直于x 轴的直线满足条件,此时直线l 的斜率不存在,其方程为x =2.若直线l 的斜率存在,设其方程为y +1=k (x -2),即kx -y -2k -1=0.由已知,得|-2k -1|k 2+1=2,解得k =34,此时l 的方程为3x -4y -10=0.综上,直线l 的方程为x =2或3x -4y -10=0.(2)过P 点且与原点O 距离最大的直线是过P 点且与OP 垂直的直线.由l ⊥OP ,得k l k OP=-1,所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2),即2x -y -5=0.即直线2x -y -5=0是过P 点且与原点O 距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,存在过点P 且到原点距离最大为5的直线,因此不存在过点P 到原点距离为6的直线.14.已知直线l 1:x +3y -3m 2=0和直线l 2:2x +y -m 2-5m =0相交于点P (m ∈R ). (1)用m 表示直线l 1与l 2的交点P 的坐标;(2)当m 为何值时,点P 到直线x +y +3=0的距离最短?并求出最短距离.解析:(1)解方程组⎩⎪⎨⎪⎧x +3y -3m 2=0,2x +y -m 2-5m =0,得x =3m ,y =m 2-m ,∴直线l 1与l 2的交点P 的坐标为(3m ,m 2-m ).(2)设点P 到直线x +y +3=0的距离为d ,d =|3m +m 2-m +3|2=|m 2+2m +3|2=|m +12+2|2=m +12+22,∴当m =-1时,即P 点坐标为(-3,2)时,点P 到直线x +y +3=0的距离最短,最短距离为 2.能力提升15.已知两点A (2,3),B (4,1),直线l :x +2y -2=0,在直线l 上求一点P . (1)使|PA |+|PB |最小; (2)使||PA |-|PB ||最大.解析:(1)可判断A ,B 在直线l 的同侧,设A 点关于l 的对称点A 1的坐标为(x 1,y 1), 则有⎩⎪⎨⎪⎧x 1+22+2·y 1+32-2=0,y 1-3x 1-2·⎝ ⎛⎭⎪⎫-12=-1,解得⎩⎪⎨⎪⎧x 1=-25,y 1=-95.由直线的两点式方程得直线A 1B 的方程为y -1-95-1=x -4-25-4,即y =711(x -4)+1,由⎩⎪⎨⎪⎧x +2y -2=0,y =711x -4+1得直线A 1B 与l 的交点为P ⎝⎛⎭⎪⎫5625,-325,由平面几何知识可知,此时|PA |+|PB |最小.(2)由直线的两点式方程求得直线AB 的方程为y -31-3=x -24-2,即x +y -5=0.由⎩⎪⎨⎪⎧x +2y -2=0,x +y -5=0得直线AB 与l 的交点为P (8,-3),此时||PA |-|PB ||最大.16.已知三条直线l 1:mx -y +m =0,l 2:x +my -m (m +1)=0,l 3:(m +1)x -y +(m +1)=0,它们围成△ABC .(1)求证:不论m 取何值时,△ABC 中总有一个顶点为定点; (2)当m 取何值时,△ABC 的面积取最值?并求出最值. 解析:(1)证明:设直线l 1与直线l 3的交点为A .由⎩⎪⎨⎪⎧mx -y +m =0,m +1x -y +m +1=0,解得⎩⎪⎨⎪⎧x =-1,y =0,∴点A 的坐标为(-1,0),∴不论m 取何值,△ABC 中总有一个顶点A (-1,0)为定点.(2)由⎩⎪⎨⎪⎧ x +my -m m +1=0,m +1x -y +m +1=0,解得⎩⎪⎨⎪⎧x =0,y =m +1,即l 2与l 3交点为B (0,m +1).再由⎩⎪⎨⎪⎧mx -y +m =0,x +my -m m +1=0,解得⎩⎪⎨⎪⎧x =m m 2+1,y =m 3+m 2+mm 2+1,即l 1与l 2交点为C ⎝ ⎛⎭⎪⎫mm 2+1,m 3+m 2+m m 2+1.设边AB 上的高为h , ∴S △ABC =12|AB |·h =12·1+m +12·⎪⎪⎪⎪⎪⎪m m +1m 2+1-m 3+m 2+m m 2+1+m +1m +12+1=12·|m 2+m +1|m 2+1=12·m 2+m +1m 2+1=12⎝ ⎛⎭⎪⎫1+m m 2+1.当m =0时,S =12;当m ≠0时,S =12⎝⎛⎭⎪⎪⎫1+1m +1m . ∵函数f (x )=x +1x的值域为[2,+∞)∪(-∞,-2].∴-12≤1m +1m <0或0<1m +1m≤12,∴14≤S <12或12<S ≤34. 当m =1时,△ABC 的面积的最大值为34,当m =-1时,△ABC 的面积的最小值为14.。
(新)高中数学解析几何复习题教师版(供参考)
高中数学解析几何复习题1.已知双曲线22x a-22y b =1(a>0,b>0)的一条渐近线方程是y,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.236x -2108y =1B.29x -227y =1C.2108x -236y =1 D.227x -29y =1【答案】B【解析】由双曲线22x a -22y b =1(a>0,b>0)的一条渐近线方程是y,则b ay 2=24x 的准线方程为x =-6,知-c =-6,c =66②,由①②得a =3,b =29x -227y =1.2.已知椭圆22x a +22y b =1(a>b>0)的右焦点为F(3,0),过点F 的直线交椭圆于A 、B 两点。
若AB 的中点坐标为(1,-1),则E 的方程为 ( )A 、245x +236y =1 B 、236x +227y =1 C 、227x +218y =1 D 、218x +29y =1【答案】D ;【解析】设11(,)A x y 、22(,)B x y ,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,运用点差法,所以直线AB 的斜率为22b k a =,设直线方程为22(3)b y x a=-,联立直线与椭圆的方程222224()690a b x b x b a +-+-=,所以2122262b x x a b +==+;又因为229a b -=,解得229,18b a ==.3.椭圆C :22143x y +=的左右顶点分别为12,A A ,点P 在C 上且直线2PA 斜率的取值范围是[2,1]--,那么直线1PA 斜率的取值范围是( )A .13[,]24 B .33[,]84 C .1[,1]2 D .3[,1]4【答案】B【解析】设P 点坐标为00(,)x y ,则2200143x y +=,2002PA y k x =-,1002PA y k x =+,于是1222222003334244PA PA x y k k x x -•===---,故12314PA PA k k =-.∵2[2,1]PA k ∈-- ∴133[,]84PA k ∈.故选B. 4.已知双曲线C:22x a-22y b =1(a >0,b >0)的离心率为2,则C 的渐近线方程为 ( )A 、y=±14x (B )y=±13x (C )y=±12x (D )y=±x 【答案】C ;【解析】22512c b e a a ==+=,故2214b a =,即12b a =,故渐近线方程为12b y x x a =±=±.【学科网考点定位】本题考查双曲线的基本性质,考查学生的化归与转化能力.5.若抛物线22y px =的焦点与双曲线22122x y -=的右焦点重合,则p 的值为( )A .2-B .2C .4D .4-【答案】C抛物线22y px =的焦点坐标为(,0)2p,由双曲线22122x y -=方程可得222a b ==, 2224c a b =+=,故双曲线的右焦点坐标为(2,0),所以2,42pp ==.6.已知21,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若2ABF ∆是正三角形,则这个椭圆的离心率是( )A .22 B .32 C .33 D .23【答案】C 由条件,得1123||||3AF F F =,∴2323b c a =,即22233a c ac -=,∴222303c ac a +-=,∴223103e e +-=,解得33e =(负值舍去),故选C . 7.已知抛物线24y x =的准线过双曲线22221(0,0)x y a b a b-=>>的左焦点且与双曲线交于A 、B 两点,O 为坐标原点,且△AOB的面积为32,则双曲线的离心率为( )A .32B .4C .3D .2【答案】D 解:抛物线24y x =的准线方程为:1x =-,由题意知,双曲线的左焦点坐标为()1,0-,即1c =且22,,,b b A c B c a a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,因为△AOB 的面积为32,所以,2132122b a ⨯⨯⨯=,即:2b a 32=所以,2132a a -=,解得:12a =,1212c e a ∴=== 故应选D. 8.如图,抛物线22(0)y px p =>的焦点为F ,斜率1k =的直线l 过焦点F ,与抛物线交于A 、B 两点,若抛物线的准线与x 轴交点为N ,则tan ANF ∠=( )A . 1B .12C .2D .2【答案】C∵222p x y y px⎧=+⎪⎨⎪=⎩,∴2220y py p --=,∴2y p =,∴(12)A y p =,3(12)(2)22A p x p p =++=,∴(22A p d x p =+=+,∴tan 2ANF ∠==. 9.已知双曲线2219x y m-=的一个焦点在圆22450x y x +--=上,则双曲线的渐近线方程为 A .34y x =±B .43y x =± C.3y x =± D.4y x =±【答案】B 用m,0),代入圆的方程,求出m 的值,然后即可求出双曲线的渐近线方程.10.设F 是双曲线22221x y a b-=的右焦点,双曲线两渐近线分另。
高中数学寒假专题复习资料第二讲解析几何新人教A版必修2(2021学年)
高中数学寒假专题复习资料第二讲解析几何新人教A版必修2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学寒假专题复习资料第二讲解析几何新人教A版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学寒假专题复习资料第二讲解析几何新人教A版必修2的全部内容。
第二讲解析几何一.直线与圆1.直线的倾斜角(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0。
(2)范围:直线l倾斜角的取值范围是[0,π).2.斜率公式(1)直线l的倾斜角为α≠90°,则斜率k=tan_α。
(2)P1(x1,y1),P2(x2,y2)在直线l上,且x1≠x2,则l的斜率k=\f(y2-y1,x2-x1)。
3.直线方程的五种形式名称方程适用范围点斜式y-y0=k(x-x0)不含直线x=x0斜截式y=kx+b不含垂直于x轴的直线不含直线x=x1(x1≠x2)两点式错误!=错误!和直线y=y1(y1≠y2)不含垂直于坐标轴和过原点的直截距式错误!+错误!=1线Ax+By+C=0,平面内所有直线都适用一般式A2+B2≠04.两条直线平行与垂直的判定(1)两条直线平行:①对于两条不重合的直线l1,l2,若其斜率分别为k1,k2,则有l1∥l2⇔k1=k2.②当直线l1,l2不重合且斜率都不存在时,l1∥l2。
(2)两条直线垂直:①如果两条直线l1,l2的斜率存在,设为k1,k2,则有l1⊥l2⇔k1·k2=-1。
②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l1⊥l2。
解析几何中韦达定理初学(直线与圆,含基础+重点+难点)(教师版)25学年高二数学期中(人教选修一)
特训05 解析几何中韦达定理初学(直线与圆,含基础+重点+难点)一、解答题1.已知点32,2P æöç÷èø,圆C :226210x y x y +--+=.(1)求圆C 过点P 的最短弦所在的直线方程;(2)若圆C 与直线0x y a -+=相交于A ,B 两点,O 为原点,且OA OB ^,求a 的值.2.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程.(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.【答案】(1)x 2+y 2=4.(2)存在,(4,0)【解析】解:(1) 设圆心C (a ,0)(a >-),则=2,解得a =0或a =-5(舍去).所以圆C 的方程为x 2+y 2=4.(2) 当直线AB ⊥x 轴时,x 轴平分∠ANB ,此时N 可以为x 轴上任意一点.当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1)(k ≠0),点N (t ,0),A (x 1,y 1),B (x 2,y 2),由得(k 2+1)x 2-2k 2x +k 2-4=0,经检验Δ>0,所以x 1+x 2=,x 1x 2=.若x 轴平分∠ANB ,则kAN=-kBN ,即+=0,则+=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0,即-+2t =0,解得t =4,所以当点N 坐标为(4,0)时,能使得∠ANM =∠BNM 总成立.【考查意图】与圆有关的定点问题.3.已知圆C :()2215x y +-=,直线l :10mx y m -+-=与圆C 交于两点A ,B .(1)若AB =m 的值;(2)若点P 为直线l 所过定点,且2PB AP =,求直线l 的方程.【答案】(1)1m =±(2)0x y -=或20x y +-=【分析】(1)根据点到直线的距离公式,结合圆的弦长公式即可求解,(2)Q 直线l 的方程:mx \直线l 过定点()1,1P ,且设,,uuu r 4.已知圆2212200x y x +-+=,过点()4,2M 的直线与圆交于,A B 两点,线段AB 的中点为N .(1)若点N 的坐标为()4,0,求AB ;(2)若线段MN 的垂直平分线经过点()2,0P ,求直线AB 的方程.当直线AB 的斜率存在时,设直线AB 的方程为联立()222412200y k x x y x ì-=-í+-+=î,得()21k x +225.在平面直角坐标系中,直线0x y ++=与圆C 相切,圆心C 的坐标为(1,1)-.(1)求圆C 的方程;(2)设直线y x m =+与圆C 交于,M N 两点,且OM ON ^,求m 的值.6.已知动点E 与两定点()44,,5,555A B æöç÷èø的距离之比为25(1)求动点E 的轨迹C 的方程;(2)过点()2,2P 作两条直线分别与轨迹C 相交于,M N 两点,若直线PM 与PN 的斜率之积为1,试问线段MN 的中点是否在定直线上,若在定直线上,请求出直线的方程;若不在定直线上,请说明理由.7.圆C :()2210x a x y ay a -++-+=.(1)若圆C 与y 轴相切,求圆C 的方程;(2)已知1a >,圆C 与x 轴相交于两点M 、N (点M 在点N 的左侧).过点M 任作一条直线与圆O :229x y +=相交于两点A 、B 问:是否存在实数a ,使得ANM BNM Ð=Ð?若存在,请说明理由.【答案】(1)220x y x +-=或225440x y x y +--+=.(2)存在,理由见解析.8.已知圆M经过((()(),,4,0,A B C D --中的三点,且半径最大.(1)求圆M 的方程;(2)过点()2,0E 的直线与圆M 交于,P Q 两点(P 在x 轴上方),在x 轴上是否存在定点N ,使得x 轴平分PNQ Ð若存在,请求出点N 的坐标;若不存在,请说明理由.【点睛】关键点睛:本题的关键是利用圆的几何性质确定圆,由成立.9.已知圆C :()2241x y ++=和点()1,0A ,P 为圆C 外一点,直线PQ 与圆C 相切于点Q ,=PQ .(1)求点P 的轨迹方程;(2)记(1)中的点P 的轨迹为T ,是否存在斜率为1-的直线l ,使以l 被曲线T 截得得弦MN 为直径得圆过点()2,0B -?若存在,求出直线l 的方程;若不存在,说明理由.(2)设直线l 方程为y =-联立方程()22649y x t x y =-+ìïí-+=ïî【点睛】关键点点睛:本题的关键是利用直径所对圆周角为直角、一元二次方程根与系数关系进行求解10.已知圆C :()()22231x y -+-=与圆C ¢:()2215x y +-=.(1)求C 与C ¢相交所得公共弦长;(2)若过点()0,1A 且斜率为k 的直线l 与圆C 交于P ,Q 两点,其中O 为坐标原点,且12OP OQ ×=uuu r uuu r,求.PQ uuu r11.已知圆C的圆心在x轴上,且过(-.(1)求圆C的方程;P-的直线与圆C交于,E F两点(点E位于x轴上方),在x轴上是否存在点A,使得当直线变(2)过点(1,0)Ð=Ð?若存在,求出点A的坐标;若不存在,请说明理由.化时,均有PAE PAF12.已知圆A :22(2)25x y ++=,A 为圆心,动直线l 过点(2,0)P ,且与圆A 交于B ,C 两点,记弦BC 的中点Q 的轨迹为曲线E .(1)求曲线E 的方程;(2)过A 作两条斜率分别为1k ,2k 的直线,交曲线E 于M ,N 两点,且123k k =-,求证:直线MN 过定点.所以AQ BC ^,即AQ PQ ^所以点Q 的轨迹为以AP 为直径的圆,所以曲线(2)当直线MN 的斜率存在时,设直线MN 的方程为y kx =+代入224x y +=,得22(1)k x +设11(,)M x y ,22(,)N x y ,则x 则0D >,12221kt x x k +=-+,y y kx t +与曲线E 的方程联立,可得故直线MN 的方程为=1x -,恒过点综上,直线MN 过定点(1,0)-13.已知圆()22:1C x a y -+=与直线1y x --=交于M 、N 两点,点P 为线段MN 的中点,O 为坐标原点,直线OP 的斜率为13-.△的面积;(1)求a的值及MON(2)若圆C与x轴交于,A B两点,点Q是圆C上异于,A B的任意一点,直线QA、QB分别交:4l x=-于,R S 两点.当点Q变化时,以RS为直径的圆是否过圆C内的一定点,若过定点,请求出定点;若不过定点,请说明理由.14.已知圆2216260C x y x y ++-+=:和圆2222:810410C x y x y r +--+-=(0)r >.(1)若圆1C 与圆2C 相交,求r 的取值范围;(2)若直线:1l y kx =+与圆1C 交于P ,Q 两点,且4OP OQ =×uuu r uuu r,求实数k 的值;(3)若2r =,设P 为平面上的点,且满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标.设点P 坐标为(,)m n ,直线1l 、即:0kx y n km -+-=,1xk --因为直线1l 被圆1C 截得的弦长与直线15.已知动点(,)P x y 与两定点(1,0)A -,(2,0)B 的距离的比为12.(1)求动点P 的轨迹方程并说明是什么图形;(2)过点B 作直线l ,l 与点P 的轨迹C 相交于M 、N 两点,已知(2,0)Q -,若MNQ S =V l 的方程.16.如图,已知圆C 与y 轴相切于点()02T ,,与x 轴的正半轴交于M ,(N 点M 在点N 的左侧两点,且3MN =.(1)求圆C 的方程;(2)过点M 任作一直线与圆O :224x y +=相交于A ,B 两点,连结AN ,BN ,试探究:直线AN 与直线BN 的斜率的和AN BN k k +是否为定值?17.已知点A ,B 是圆221:(2)(2)1C x y -+-=上的动点,且1120AC B Ð=°,直线PA ,PB 为圆1C 的切线,当点A ,B 变动时,点P 的轨迹为曲线2C .(1)求曲线2C 的方程;(2)过点()3,0G ,斜率为k 的直线与曲线2C 交于点M ,N ,点Q 为曲线2C 上纵坐标最大的点,求证:直线MQ ,NQ 的斜率之和为定值.【点睛】直线与圆锥曲线弦的问题包括求弦的方程、弦长、弦中点坐标轨迹等问题,解决这些问题的总体思路是设相关量,找等量关系,使问题解决.18.如图,经过原点O 的直线与圆()22:14M x y ++=相交于A ,B 两点,过点()1,0C 且与垂直的直线与圆M 的另一个交点为D .(1)当点B 坐标为()1,2--时,求直线的方程;(2)记点A 关于x 轴对称点为F (异于点A ,B ),求证:直线BF 恒过x 轴上一定点,并求出该定点坐标;(3)求四边形ABCD 的面积S 的取值范围.19.在平面直角坐标系xOy 中,已知两点()()4,0,1,0S T ,动点P 满足2PS PT =,设点P 的轨迹为C .如图,动直线l 与曲线C 交于不同的两点,A B (,A B 均在x 轴上方),且180ATO BTO Ð+Ð= .(1)求曲线C 的方程;(2)当A 为曲线C 与y 轴正半轴的交点时,求直线l 的方程;(3)是否存在一个定点,使得直线l 始终经过此定点?若存在,求出定点的坐标;若不存在,请说明理由.【答案】(1)224x y +=(2)由题意知()0,2A ,设,依题意可知直线l 的斜率存在,设直线由180ATO BTO Ð+Ð= ,得AT BT k k +则2222201y x ì-+=ï-íï,所以2202x y =ìí=-î(舍去(3)设直线l 方程为y kx b =+联立方程224x y y kx bì+=í=+î,得(2k 212122224,,11kb b x x x x k k --\+==++180,ATO BTO Ð+Ð= Q AT k \【点睛】求解曲线的方程,可以有以下两种方法:一是根据圆锥曲线的定义,求得曲线的方程;另一个是。
2021届高考二轮复习数学专题精品试卷 专题十 解析几何 教师版(含答案)
位置关系
外 离
外切
公共点个数
,则 相交
内 切
内含
, ,的 关系 公切线条数 3.圆锥曲线及其性质 (1)椭圆的标准方程及几何性质
标 准方程
图 形
焦 点坐标
顶 点坐标
焦点在 轴上
焦点在 轴上
,
,
,
,
,
,
,
长 轴
短 轴
焦 距
范 围
长轴
, 是长半轴的长
短轴
, 是短半轴的长
焦距
, 是半焦距
,
,
离 心率 (2)双曲线的标准方程及几何性质
设斜率为
的直线 与圆锥曲线 相交于
两点,
,
,
一、选择题.
1.已知直线
和
互相平行,则实数 等于( )
A. 或 3 B. C. D.1 或 【答案】A
【解析】∵两条直线
和
互相平行,
∴
,解得
或
.
若
,则
与
平行,满足题意;
若
,则
与
平行,满足题意,
故选 A.
【点评】本题主要考查了直线平行的条件,属于基础题.
2.直线
如果两条直线 , 的斜率存在,设为 , ,则有
;
当其中一条直线的斜率不存在,而另一条直线的斜率为 时,
.
(3)两条直线的交点的求法
直线 :
,:
,
则 与 的交点坐标就是方程组 (4)三种距离公式
的解.
①
,
两点之间的距离:
.
②点
到直线 :
的距离:
.
③平行线
与
(5)圆的定义及方程
高中数学平面解析几何真题(解析版)
专题09平面解析几何真题汇编1.设A,B为椭圆的长轴顶点,E,F为的两个焦点,|ABl=4,,P为上一点,满足,则△PEF的面积为.【答案】1【解析】由题意知该椭圆可设为.由余弦定理,.所以.2.在平面直角坐标系xOy中,椭圆的左、右焦点分别是,椭圆C的弦ST与UV分别平行于x轴与y轴,且相交于点P.已知线段PU,PS,PV,PT的长分别为1,2,3,6,则的面积为【答案】【解析】由对称性,不妨设在第一象限,则由条件知.即P(2,1).进而由得U(2,2)),S(4,1),代入椭圆C的方程知,解得a2=20,b2=5.从而.3.在平面直角坐标系中,椭圆C的方程为,F、A分别为椭圆C的上焦点、右顶点.若P为椭圆C上位于第一象限内的动点,则四边形面积的最大值为___________。
【答案】【解析】易知,,设则其中,当时,四边形OAPF面积的最大值为.故答案为:4.在平面直角坐标系中,点集,在点集K中随机取出三个点,则这三点中存在两点之间距离为的概率为___________。
【答案】【解析】易知,点集K中有9个点,故在点集K中随机取出三个点的种数为。
将点集K中的点按图标记为其中有8对点之间的距离为。
由对称性,考虑取两点的情形.则剩下的一个点有7种取法,这样有个三点组(不计每组中三点的次序)。
对每个,点集中恰有两点与距离为,因而,恰有这8个三点组被计算了两次。
故满足条件的三点组个数为从而所求概率为.故答案为:5.已知双曲线C:,左、右焦点分别为F1、F2.过点F2作一直线与双曲线C的右半支交于点P、Q,使得.则的内切圆半径为________.【答案】【解析】如图所示.由双曲线的性质知:.由.从而,的内切圆半径为:.6.设椭圆的两个焦点为,过点的直线与椭圆交于点P、Q.若,且,则椭圆的短轴与长轴的比值为__________.【答案】【解析】不妨设.设椭圆的长轴、短轴的长度分别为,焦距为.则,且由椭圆的定义知.故.如图所示,设H为线段的中点.则,且.由勾股定理知:7.抛物线的焦点为,准线为是抛物线上的两个动点,且满足.设线段的中点上的投影为,则的最大值是_______.【答案】1【解析】根据抛物线的定义可知,,故,在三角形中,根据余弦定理有,由于,所以,即,故.点睛:本题主要考查直线与抛物线的位置关系,考查基本不等式求最值的方法,考查化归与转化的数学思想方法.抛物线的定义是:动点到定点的距离等于到定直线的距离,这是在有关抛物线的小题中常考考知识点.本题中利用抛物线的定义,进行转化后,利用余弦定理和基本不等式来求解最值.8.直线与抛物线交于两点,为抛物线上的一点,.则点的坐标为______.【答案】【解析】设.由.则①又,则②因为,所以,.故.将方程组①、②代入上式并整理得.显然,.否则,.于是,点在直线上,即点重合.所以,.故所求点.故答案为:9.双曲线的右半支与直线围成的区域内部(不含边界)整点(横纵坐标均为整数的点)的个数是________. 【答案】9800 【解析】由对称性知,只需先考虑轴上方的情况. 设与双曲线右半支交于点,与直线交于点.则线段内部的整点的个数为.从而,在轴上方区域内部整点的个数为. 又轴上有98个整点,则所求整点的个数为.10.已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为 .【答案】[]36,【解析】设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M 相交,得342d ≤. 解得36a ≤≤. 11.椭圆上任意两点,若,则乘积的最小值为 .【答案】【解析】 设,.由在椭圆上,有①②得.于是当时,达到最小值.12.在平面直角坐标系xOy中,圆与抛物线:y2=4x恰有一个公共点,且圆与x轴相切于的焦点F.求圆的半径.【答案】【解析】设圆的半径为R,圆心为(1,R)(-1,R),则圆的方程可写作.不妨设圆与抛物线相切于点,则过该切点的切线方程:以圆为对象,得以抛物线为对象,得.于是可得①②又切点在抛物线y2=4x上,③由①得,由②得.解得:.故圆半径为.13.如图,在锐角△ABC中,M是BC边的中点.点P在△A BC内,使得AP平分∠BAC.直线MP与△ABP,△ACP的外接圆分别相交于不同于点P的两点D,E.证明:若DE=MP,则BC=2BP.【答案】证明见解析【解析】如图:只要证明两小黄全等△DBP,△EMC。
高三数学解析几何专项练习卷(教师版)
高三数学解析几何专项练习卷(中心组*教师版)一、填空题1、已知)4,3(),2,1(B A -,则线段AB 的中垂线的点法向式方程是 【答案】:0)3(2)1(4=-+-y x2、已知直线l的方程为cos 2y θ=+,则直线l 的倾斜角的取值范围是_______【答案】:2[0,][,)33πππ⋃3、已知方程221410x y k k +=+-表示椭圆,则实数k 的取值范围是________ 【答案】:(4,3)(3,10)-⋃4、如果把圆m y y x C =-+2:22沿向量)1,2(-=a平移后得到圆C ',且C '与直线043=-y x 相切,则实数m 的值为 .【答案】:25115、一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .【答案】:22325()24x y -+=6、已知直线与曲线恰有一个交点,则实数的值为 . 【答案】:10,2-7、已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF ∙<,则0y 的取值范围是________________【答案】:由题知12(F F ,220012x y -=,所以12MF MF ∙= 0000(,),)x y x y -∙- =2220003310x y y +-=-<,解得0y <<8、过双曲线2212y x -=的右焦点F 作直线l 交双曲线于,A B 两点,若实数λ使得AB λ=的直线恰有3条,则λ=_______ 【答案】: 41y ax =-22y x =a9、以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB |=,|DE|=则C 的焦点到准线的距离为________________ 【答案】:410、已知直线y kx m =+与抛物线22y x =交于,A B 两点,且OA OB OA OB +=-,其中O 为坐标原点,若OM AB ⊥于M ,则点M 的轨迹方程为___________ 【答案】:()2211x y -+=11、在ABC △中,点O 是BC 上的一点,2=,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB m AM =,AC nAN =,则n m 2+的值为_________【答案】:312、已知点3,12P ⎛⎫- ⎪⎝⎭在抛物线()2:20E x py p =>的准线上,过点P 作抛物线的切线,若切点A 在第一象限,F 是抛物线的焦点,点M 在直线AF 上,点N 在圆()()22:221C x y +++=上,则MN 的最小值为____________【答案】:51二、选择题13、若直线01=-+by ax 与圆122=+y x 相交,则点P ),(b a 的位置是( )A 、在圆上B 、在圆外C 、在圆内D 、以上皆有可能 【答案】:B14、已知双曲线22221x y C a b-=:(0a >,0b >)的一条渐近线方程为y =,且与椭圆221123x y +=有公共焦点.则C 的方程为( )A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】:B15、已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( )A. 33⎛- ⎝⎭B. (C. 33⎡-⎢⎣⎦D. ⎡⎣ 【答案】:C16、在平面直角坐标系xOy 中,已知向量,,1,0a b a b a b ==⋅=,点Q 满足()2OQ a b =+,曲线{}|c o s s i n ,02C P O P a b θθθπ==+≤<,区域{}|0,P r P QR r R Ω=<≤≤<,若C Ω为两段分离的曲线,则( ) A. 13r R <<< B. 13r R <<≤ C. 13r R ≤<< D. 13r R <<< 【答案】A三、解答题17、已知直线l 过点(2,1)P ,且与x 轴的正半轴、y 轴的正半轴分别交于B A 、两点,O 为坐标原点,以下几个命题中有真也有假,请任选其中两个真命题,给出证明,并写出取最..................................值时直线....l 的方程:....(1)+有最小值;有最小值;(3)OAB ∆面积有最小值;(5)⋅有最大值; (6)OAB ∆周长有最大值;(7) OB OA +有最小值;(8)=时,AB 取最小值。
高中数学平面解析几何练习题(含解析)
高中数学平面解析几何练习题(含解析)一、单选题1.若曲线C :2224100x y ax ay a ++--=表示圆,则实数a 的取值范围为( ) A .()2,0- B .()(),20,-∞-⋃+∞ C .[]2,0-D .(][),20,-∞-+∞2.过点1,2,且焦点在y 轴上的抛物线的标准方程是( ) A .24y x =B .24y x =-C .212=-x yD .212x y =3.过 ()()1320A B --,,,两点的直线的倾斜角是( )A .45︒B .60︒C .120D .1354.已知()3,3,3A ,()6,6,6B ,O 为原点,则OA 与BO 的夹角是( ) A .0B .πC .π2D .2π35.已知抛物线2:4C y x =与圆22:(1)4E x y -+=交于A ,B 两点,则||AB =( )A .2B .C .4D .6.已知抛物线2x my =焦点的坐标为(0,1)F ,P 为抛物线上的任意一点,(2,2)B ,则||||PB PF +的最小值为( )A .3B .4C .5D .1127.动点P ,Q 分别在抛物线24x y =和圆228130+-+=x y y 上,则||PQ 的最小值为( )A .B C D 8.直线2360x y +-=关于点(1,1)对称的直线方程为( ) A .3220x y -+= B .2370x y ++= C .32120x y --=D .2340x y +-=9.已知椭圆2222:1()0x c bb y a a +>>=的上顶点为A ,左、右焦点分别为12,F F ,连接2AF 并延长交椭圆C 于另一点B ,若12:7:3F B F B =,则椭圆C 的离心率为( )A .14B .13C .12D 10.“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题11.直线2310x y -+=与5100x y +-=的夹角为________.12.已知圆:C 2220x y x ++=,若直线y kx =被圆C 截得的弦长为1,则k =_______. 13.过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________. 14.写出与圆221x y +=和圆()()224316x y -++=都相切的一条切线方程___________.三、解答题15.已知△ABC 底边两端点(0,6)B 、(0,6)C -,若这个三角形另外两边所在直线的斜率之积为49-,求点A 的轨迹方程.16.已知1F 、2F 是椭圆()2222:10x yC a b a b+=>>的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥.若12PF F △的面积为9,求实数b 的值.17.已知圆C :22120x y Dx Ey +++-=关于直线x +2y -4=0对称,且圆心在y 轴上,求圆C 的标准方程.18.已知椭圆C :22142x y +=,()0,1A ,过点A 的动直线l 与椭圆C 交于P 、Q 两点.(1)求线段PQ 的中点M 的轨迹方程;(2)是否存在常数,使得AP AQ OP OQ λ⋅+⋅为定值?若存在,求出λ的值;若不存在,说明理由.参考答案:1.B【分析】根据圆的一般式变形为标准式,进而可得参数范围. 【详解】由2224100x y ax ay a ++--=, 得()()2222510x a y a a a ++-=+, 由该曲线表示圆, 可知25100a a +>, 解得0a >或2a <-, 故选:B. 2.C【分析】设抛物线方程为2x my =,代入点的坐标,即可求出m 的值,即可得解; 【详解】解:依题意设抛物线方程为2x my =,因为抛物线过点1,2, 所以()212m =⨯-,解得12m =-,所以抛物线方程为212=-x y ;故选:C 3.D【分析】根据两点坐标求出直线的斜率,结合直线倾斜角的范围即可得出结果. 【详解】由已知直线的斜率为 ()03tan 1018021k αα--===-≤<--,,所以倾斜角135α=. 故选:D. 4.B【分析】求出OA 和BO ,利用向量关系即可求出.【详解】因为()3,3,3A ,()6,6,6B ,则()3,3,3OA =,()6,6,6BO =---, 则3cos ,1OA BO OA BO OA BO⨯⋅<>===-⋅,所以OA 与BO 的夹角是π. 故选:B. 5.C【分析】先联立抛物线与圆求出A ,B 横坐标,再代入抛物线求出纵坐标即可求解.【详解】由对称性易得A ,B 横坐标相等且大于0,联立()222414y xx y ⎧=⎪⎨-+=⎪⎩得2230x x +-=,解得123,1x x =-=,则1A B x x ==,将1x =代入24y x =可得2y =±,则||4AB =. 故选:C. 6.A【分析】先根据焦点坐标求出m ,结合抛物线的定义可求答案. 【详解】因为抛物线2x my =焦点的坐标为()0,1,所以14m=,解得4m =. 记抛物线的准线为l ,作PN l ⊥于N ,作BAl 于A ,则由抛物线的定义得||||||||||3PB PF PB PN BA +=+=,当且仅当P 为BA 与抛物线的交点时,等号成立.故选:A. 7.B【分析】设2001,4P x x ⎛⎫⎪⎝⎭,根据两点间距离公式,先求得P 到圆心的最小距离,根据圆的几何性质,即可得答案.【详解】设2001,4P x x ⎛⎫⎪⎝⎭,圆化简为22(4)3x y +-=,即圆心为(0,4)所以点P 到圆心的距离d = 令20t x =,则0t ≥, 令21()1616f t t t =-+,0t ≥,为开口向上,对称轴为8t =的抛物线, 所以()f t 的最小值为()812f =,所以min d所以||PQ的最小值为min d =故选:B 8.D【分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,1对称的点的坐标为(2,2)x y --,代入已知直线即可求得结果.【详解】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,1对称的点的坐标为(2,2)x y --,以(2,2)x y --代换原直线方程中的(,)x y 得()()223260x y -+--=,即2340x y +-=.故选:D. 9.C【分析】根据椭圆的定义求得12,F B F B ,在1ABF 中,利用余弦定理求得22cos F AF ∠,在12AF F △中,再次利用余弦定理即可得解.【详解】解:由题意可得122F B F B a +=, 因为12:7:3F B F B =, 所以1273,55F B a F B a ==, 因为A 为椭圆的上顶点,所以12AF AF a ==,则85AB a =,在1ABF 中,22222211221644912525cos 82225a a a AF AB BF F AF AF ABa a +-+-∠===⨯⨯,在12AF F △中,122212121222cos F F AF AF A F A F A F F =+∠-, 即222224c a a a a =+-=,所以12c a =,即椭圆C 的离心率为12. 故选:C.10.A【分析】根据给定直线方程求出12l l ⊥的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】依题意,12(4)(2)0l l m m m m ⊥⇔-++=,解得0m =或1m =,所以“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的充分不必要条件. 故选:A 11.4π##45︒ 【分析】根据直线方程可得各直线斜率,进而可得倾斜角之间的关系,从而得夹角. 【详解】直线2310x y -+=的斜率123k ,即倾斜角α满足2tan 3α=, 直线5100x y +-=的斜率215k =-,即倾斜角β满足1tan 5β=-,所以()12tan tan 53tan 1121tan tan 153βαβαβα----===-+⎛⎫+-⨯ ⎪⎝⎭, 所以34βαπ-=,又两直线夹角的范围为0,2π⎡⎤⎢⎥⎣⎦,所以两直线夹角为4π,故答案为:4π. 12.【分析】将圆C 一般方程化为标准方程,先求圆心到直线的距离,再由圆的弦长公式即可解出k 的值.【详解】解:将2220x y x ++=化为标准式得()2211x y ++=,故半径为1;圆心()1,0-到直线y kx =,由弦长为1可得1=,解得k =故答案为:13.()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. 【分析】方法一:设圆的方程为220x y Dx Ey F ++++=,根据所选点的坐标,得到方程组,解得即可;【详解】[方法一]:圆的一般方程依题意设圆的方程为220x y Dx Ey F ++++=,(1)若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;(2)若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;(3)若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;(4)若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或 ()()22215x y -+-=或 224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. [方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心) 设()()()()0,04,01,14,2A B C D -点,,,(1)若圆过、、A B C 三点,圆心在直线2x =,设圆心坐标为(2,)a ,则()224913,a a a r +=+-⇒===22(2)(3)13x y -+-=; (2)若圆过A B D 、、三点, 设圆心坐标为(2,)a,则2244(2)1,a a a r +=+-⇒==22(2)(1)5x y -+-=;(3)若圆过 A C D 、、三点,则线段AC 的中垂线方程为1y x =+,线段AD 的中垂线方程 为25y x =-+,联立得47,33x y r ==⇒,所以圆的方程为224765()()339x y -+-=;(4)若圆过B C D 、、三点,则线段BD 的中垂线方程为1y =, 线段BC 中垂线方程为57y x =-,联立得813,155x y r ==⇒=,所以圆的方程为()228169()1525x -y +-=. 故答案为:()()222313x y -+-=或 ()()22215x y -+-=或 224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭. 【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.14.1y =或247250x y ++=或4350x y --=【分析】先判断两圆位置关系,再分情况依次求解可得.【详解】圆221x y +=的圆心为()0,0O ,半径为1;圆()()224316x y -++=的圆心为()4,3C -,半径为4,圆心距为5OC =,所以两圆外切,如图,有三条切线123,,l l l , 易得切线1l 的方程为1y =,因为3l OC ⊥,且34OC k =-,所以343l k =,设34:3l y x b =+,即4330x y b -+=,则()0,0O 到3l 的距离315b =,解得53b =(舍去)或53-,所以343:50x y l --=,可知1l 和2l 关于3:4OC y x =-对称,联立341y x y ⎧=-⎪⎨⎪=⎩,解得4,13⎛⎫- ⎪⎝⎭在2l 上, 在1l 上任取一点()0,1,设其关于OC 的对称点为()00,x y , 则0000132421314y x y x +⎧=-⨯⎪⎪⎨-⎛⎫⎪⨯-=- ⎪⎪⎝⎭⎩,解得002425725x y ⎧=-⎪⎪⎨⎪=-⎪⎩,则27124252447253l k --==--+,所以直线2244:173l y x ⎛⎫-=-+ ⎪⎝⎭,即247250x y ++=, 综上,切线方程为1y =或247250x y ++=或4350x y --=. 故答案为:1y =或247250x y ++=或4350x y --=.15.()22108136x y x +=≠【分析】设(,)A x y ,利用斜率的两点式列方程并整理可得轨迹方程,注意0x ≠. 【详解】设(,)A x y 且0x ≠,则22663649AB ACy y y k k x x x -+-=⋅==-, 整理得:A 的轨迹方程()22108136x y x +=≠. 16.3b =【分析】由题意以及椭圆的几何性质列方程即可求解. 【详解】因为12PF PF ⊥,所以1290F PF ∠=︒, 所以12F PF △为直角三角形,22212(2)PF PF c +=,122PF PF a +=, ()2221212122PF PF PF PF PF PF +=+-⋅,即()()221212242c a PF PF =-⨯⋅, 1212192F PF S PF PF =⋅=△, 所以2244490c a =-⨯=,所以2449b =⨯.所以3b =; 综上,b =3.17.22(2)16x y +-=. 【分析】由题设知圆心(,)22D EC --,且在已知直线和y 轴上,列方程求参数D 、E ,写出一般方程,进而可得其标准方程. 【详解】由题意知:圆心(,)22D EC --在直线x +2y -4=0上,即-2D -E -4=0. 又圆心C 在y 轴上,所以-2D=0. 由以上两式得:D =0, E =-4,则224120x y y +--=, 故圆C 的标准方程为22(2)16x y +-=.18.(1)2211222x y ⎛⎫+-= ⎪⎝⎭ (2)存在,1λ=【分析】(1)①当直线l 存在斜率时,设()11,P x y 、()22,Q x y 、()00,M x y ,00x ≠,利用点差法求解; ②当直线l 不存在斜率时,易知()0,0M ,验证即可;(2)①当直线l 存在斜率时,设直线l 的方程为:1y kx =+,与椭圆方程联立,结合韦达定理,利用数量积运算求解; ②当直线l 不存在斜率时,直线l 的方程为:0x =,易得(P、(0,Q ,验证即可.【详解】(1)解:①当直线l 存在斜率时,设()11,P x y 、()22,Q x y 、()00,M x y ,00x ≠,则应用点差法:22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式联立作差得:12121212()()()()042x x x x y y y y -+-++=, ∴()()()()121200121212121212002122PQ PQ PQ OM y y y y y y y y y y k k k k x x x x x x x x x x -+-+=⋅=⋅=⋅=⋅=--+-+, 又∵001PQ MA y k k x -==, ∴0000112y y x x -⋅=-,化简得22000220x y y +-=(00x ≠), ②当直线l 不存在斜率时,()0,0M ,综上,无论直线是否有斜率,M 的轨迹方程为2211222x y ⎛⎫+-= ⎪⎝⎭;(2)①当直线l 存在斜率时,设直线l 的方程为:1y kx =+,联立221142y kx x y =+⎧⎪⎨+=⎪⎩并化简得:22(21)420k x kx ++-=,∴0∆>恒成立,∴122421k x x k +=-+,122221x x k ⋅=-+,又AP ()11,x k x =⋅,AQ ()22,x k x =⋅,OP ()11,1x k x =⋅+,OQ ()22,1x k x =⋅+,∴AP AQ OP OQ λ⋅+⋅()()()22121212111k x x k x x k x x λ=+⋅⋅++⋅⋅+++,()()()222222211222141212121k k k k k k λλλ-+++++=-+=-+++, 若使AP AQ OP OQ λ⋅+⋅为定值, 只需()222121λλ++=,即1λ=,其定值为3-, ②当直线l 不存在斜率时,直线l 的方程为:0x =,则有(P、(0,Q , 又AP ()1=,AQ ()0,1=,OP (=,OQ (0,=, ∴2λλ⋅+⋅=--AP AQ OP OQ ,当1λ=时,AP AQ OP OQ λ⋅+⋅也为定值3-, 综上,无论直线是否有斜率,一定存在一个常数1λ=, 使AP AQ OP OQ λ⋅+⋅为定值3-.。
高中数学解析几何复习题教师版
高中数学解析几何复习题1.已知双曲线22x a-22y b =1(a>0,b>0)的一条渐近线方程是yx ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.236x -2108y =1B.29x -227y =1C.2108x -236y =1 D.227x -29y =1【答案】B【解析】由双曲线22x a -22y b =1(a>0,b>0)的一条渐近线方程是y,则b ay 2=24x 的准线方程为x =-6,知-c =-6,c =66②,由①②得a =3,b =,则双曲线的方程为29x -227y =1.2.已知椭圆22x a +22y b =1(a>b>0)的右焦点为F(3,0),过点F 的直线交椭圆于A 、B 两点。
若AB 的中点坐标为(1,-1),则E 的方程为 ( )A 、245x +236y =1 B 、236x +227y =1C 、227x +218y =1 D 、218x +29y =1【答案】D ;【解析】设11(,)A x y 、22(,)B x y ,所以22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,运用点差法,所以直线AB 的斜率为22b k a =,设直线方程为22(3)b y x a=-,联立直线和椭圆的方程222224()690a b x b x b a +-+-=,所以2122262b x x a b +==+;又因为229a b -=,解得229,18b a ==.3.椭圆C :22143x y +=的左右顶点分别为12,A A ,点P 在C 上且直线2PA 斜率的取值范围是[2,1]--,则直线1PA 斜率的取值范围是( )A .13[,]24 B .33[,]84 C .1[,1]2 D .3[,1]4【答案】B【解析】设P 点坐标为00(,)x y ,则2200143x y +=,2002PA y k x =-,1002PA y k x =+,于是1222222003334244PA PA x y k k x x -•===---,故12314PA PA k k =-.∵2[2,1]PA k ∈--∴133[,]84PA k ∈.故选B.4.已知双曲线C:22x a-22y b =1(a >0,b >0)C 的渐近线方程为 ( )A 、y=±14x (B )y=±13x (C )y=±12x (D )y=±x 【答案】C ;【解析】c e a ===2214b a =,即12b a =,故渐近线方程为12b y x x a =±=±.【学科网考点定位】本题考查双曲线的基本性质,考查学生的化归和转化能力.5.若抛物线22y px =的焦点和双曲线,则p 的值为( )A .2-B .2C .4D .4-【答案】C抛物线22y px =的焦点坐标为方程可得222a b ==,2224c a b =+=,故双曲线的右焦点坐标为(2,0),所以6.已知21,F F 是椭圆的两个焦点,过1F 且和椭圆长轴垂直的直线交椭圆于A 、B两点,若2ABF ∆是正三角形,则这个椭圆的离心率是( )AC 由条件,得∴32c ,即,∴,∴,故选C . 7.已知抛物线24y x =的准线过双曲线A 、B 两点,O 为坐标原点,且△AOB )A.4 C .3 D .2【答案】D解:抛物线24y x =的准线方程为:1x =-,由题意知,双曲线的左焦点坐标为()1,0-,即1c =因为△AOB故应选D.8.如图,抛物线22(0)y px p =>的焦点为F ,斜率1k =的直线l 过焦点F ,和抛物线交于A 、B 两点,若抛物线的准线和x 轴交点为N ,则tan ANF ∠=( )A . 1B .12C . 22D . 2【答案】C∵222p x y y px⎧=+⎪⎨⎪=⎩,∴2220y py p --=,∴2y p p =±,∴(12)Ay p =+,3(12)(2)22A p x p p =++=+,∴(22)2A p d x p =+=+,∴122tan 222ANF +∠==+. 9.已知双曲线2219x y m-=的一个焦点在圆22450x y x +--=上,则双曲线的渐近线方程为 A .34y x =±B .43y x =± C .223y x =± D .324y x =±【答案】B 用m 表示在圆上的焦点坐标(m+9,0),代入圆的方程,求出m 的值,然后即可求出双曲线的渐近线方程.10.设F 是双曲线22221x y a b-=的右焦点,双曲线两渐近线分另。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学解析几何复习题1.已知双曲线22x a-22y b =1(a>0,b>0)的一条渐近线方程是yx ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.236x -2108y =1B.29x -227y =1C.2108x -236y =1 D.227x -29y =1【答案】B【解析】由双曲线22x a -22y b =1(a>0,b>0)的一条渐近线方程是y,则ba①,抛物线y 2=24x 的准线方程为x =-6,知-c =-6,c =66②,由①②得a =3,b =29x -227y =1.2.已知椭圆22x a +22y b =1(a>b>0)的右焦点为F(3,0),过点F 的直线交椭圆于A 、B 两点。
若AB 的中点坐标为(1,-1),则E 的方程为 ( )A 、245x +236y =1 B 、236x +227y =1 C 、227x +218y =1 D 、218x +29y =1【答案】D ;【解析】设11(,)A x y 、22(,)B x y ,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,运用点差法,所以直线AB 的斜率为22b k a =,设直线方程为22(3)b y x a=-,联立直线与椭圆的方程222224()690a b x b x b a +-+-=,所以2122262b x x a b +==+;又因为229a b -=,解得229,18b a ==.3.椭圆C :22143x y +=的左右顶点分别为12,A A ,点P 在C 上且直线2PA 斜率的取值范围是[2,1]--,那么直线1PA 斜率的取值范围是( )A .13[,]24 B .33[,]84 C .1[,1]2 D .3[,1]4【答案】B【解析】设P 点坐标为00(,)x y ,则2200143x y +=,2002PA y k x =-,1002PA y k x =+,于是1222222003334244PA PA x y k k x x -•===---,故12314PA PA k k =-.∵2[2,1]PA k ∈-- ∴133[,]84PA k ∈.故选B. 4.已知双曲线C:22x a-22y b =1(a >0,b >0)C 的渐近线方程为 ( )A 、y=±14x (B )y=±13x (C )y=±12x (D )y=±x 【答案】C ;【解析】22512c b e a a ==+=,故2214b a =,即12b a =,故渐近线方程为12b y x x a =±=±.【学科网考点定位】本题考查双曲线的基本性质,考查学生的化归与转化能力.5.若抛物线22y px =的焦点与双曲线22122x y -=的右焦点重合,则p 的值为( )A .2-B .2C .4D .4-【答案】抛物线22y px =的焦点坐标为(,0)2p,由双曲线22122x y -=方程可得222a b ==, 2224c a b =+=,故双曲线的右焦点坐标为(2,0),所以2,42pp ==.6.已知21,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若2ABF ∆是正三角形,则这个椭圆的离心率是( )A .22 B .32 C .33 D .23【答案】C 由条件,得1123||||3AF F F =,∴2323b c a =g ,即22233a c ac -=,∴222303c ac a +-=,∴223103e e +-=,解得33e =(负值舍去),故选C . 7.已知抛物线24y x =的准线过双曲线22221(0,0)x y a b a b-=>>的左焦点且与双曲线交于A 、B 两点,O 为坐标原点,且△AOB 的面积为32,则双曲线的离心率为( )A .32B .4C .3D .2【答案】D 解:抛物线24y x =的准线方程为:1x =-,由题意知,双曲线的左焦点坐标为()1,0-,即1c =且22,,,b b A c B c a a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,因为△AOB 的面积为32,所以,2132122b a ⨯⨯⨯=,即:2b a 32=所以,2132a a -=,解得:12a =,1212c e a ∴=== 故应选D. 8.如图,抛物线22(0)y px p =>的焦点为F ,斜率1k =的直线l 过焦点F ,与抛物线交于A 、B 两点,若抛物线的准线与x 轴交点为N ,则tan ANF ∠=( )A . 1B .12C .22D .2【答案】C∵222p x y y px⎧=+⎪⎨⎪=⎩,∴2220y py p --=,∴2y p p =±,∴(12)Ay p =+,3(12)(2)22A p x p p =++=+,∴9的一个焦点在圆22450x y x +--=上,则双曲线的渐近线方程为 ABCDB 用m0),代入圆的方程,求出m 的值,然后即可求出双曲线的渐近线方程.10.设Fl 1,l 2过F 作直线l 1的垂线,分别交l 1,l 2于A ,B 两点.若OA, AB, OB 成等差数列,且向量BF u u u r 与FA u u u r同向,则双曲线的离心率e 的大小为( )C. 2D由条件知,OA AB ⊥,所以2222+OB OA AB OB AB OA ⎧+=⎨=⎩,则::3:4:5OA AB OB =,因为向量BF u u u r 与FA u u u r 同向,故过F 作直线1l,解得2a b =,故双曲线的离心率 l 倾斜角α的取值范围是( )。
A 、[0,π)B 、[0,4π]Y [2π, π)C 、[4π,π]D 、[0,4π]Y (2π, π)【答案】B【正解】Θ),1(),1,2(2m B A 02>m ∴ 点A 与射线y x (1=≥0)上的点连线的倾斜角,选B 。
12.已知直线αsin :1x y l =和直线c x y l +=2:2,则直线1l 与2l ( )。
A.通过平移可以重合B.不可能垂直C.可能与x 轴围成等腰直角三角形D.通过1l 上某一点旋转可以重合【答案】D 【正解】只要112sin --≠a ,那么两直线就相交,若相交则可得到(D ) 13.直线),2(,2tan ππαα∈+⋅-=x y 的倾斜角是( )。
A.α B.2πα-C.α-D.απ-【答案】D 【正解】由题意得:κ=)tan(tan απα-=-)2,0(),2(παπππα∈-∴∈Θ∴在[0,π]内正切值为κ的角唯一∴倾斜角为απ-14.设F1和F2为双曲线1422=-y x 的两个焦点,点在双曲线上且满足ο9021=∠PF F ,则21PF F ∆的面积是A.1B.25C.2D.5【答案】A 【正解】1422=-y x 5,2==C a 4||||||21=-∴PF PF 16||||||2||222121=+-⇒PF PF PF PF ① 又Θο9021=∠PF F ∴22221)52(||||=+PF PF ②联立①②解得2||||21=∴PF PF ∴121=∆PF F S 15.直线1+=kx y ,当k 变化时,直线被椭圆1422=+y x 截得的最大弦长是( ) A.4 B.2 C.334 D.不能确定【答案】C 【正解】直线1+=kx y ,恒过P(0,1),又是椭圆的短轴上顶点,因而此直线被椭圆的弦长即为点P 与椭圆上任意一点Q 的距离,设椭圆上任意一点Q )sin ,cos 2(θθ。
5sin 2sin 3)1(sin )cos 2(||2222+--=-+=∴θθθθPQ 316||31sin 2max =-=∴PQ 时,当θ334||max=∴PQ ,故选C 16.过点A (a ,0)作椭圆1:22221=+by a x C 的弦,弦中点的轨迹仍是椭圆,记为2C ,若1C 和2C 的离心率分别为e 和'e ,则e 和'e 的关系是( )。
A.e ='e B.e =2'e C.2e ='e D.不能确定【答案】A 【正解】设弦AB 中点P (),y x ,则B ()2,2y x α- 由22)2(αα-x +224b y =1,22)2(4aa x -+224b y =1*44222b ac -=∴ 2222a b a e -=∴=a b a 22- 'e e =∴17.已知P 为抛物线221x y =上的动点,点P 在x 轴上的射影为M ,点A 的坐标是)217,6(,则PM PA +的最小值是( )A 、8 B 、219 C 、10 D 、221【答案】B抛物线y x 22=的焦点为⎪⎭⎫ ⎝⎛-21,0F ,点P 到准线的距离为d 。
则2121-+=-+=+PF PA d PA PM PA ,所以当P ,A ,F 三点共线时最小为21921=-AF . 18.在平面直角坐标系xOy 中,M 为不等式组220210380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点,则直线OM 斜率的最小值为A.2 B.1 C.31-D.21-【答案】C 【解析】画出可行域得该区域为点()()()1,0,2,2,3,1-形成的三角形,因此OM k 的最小值为101.303--=--19.过点(,0)引直线ι与曲线21y x =- 交于A,B 两点 ,O 为坐标原点,当△AOB 的面积取最大值时,直线ι的斜率等于( )A. B.- C. D-【答案】B【解析】画图可知过点(,0)的直线与曲线相切时斜率为-1,所以相交成三角形的直线斜率在(-1,0)之间20.已知直线12:3250,:(31)20l x ay l a x ay +-=---=,若12//l l ,则a 的值为( )A 、16-B 、6C 、0D 、0或16-【答案】D 【解析】12//l l ,则232(31)060a a a a a ---=⇒+=,所以0a =或16-.21.已知直线l 1:02)1(=-+-ay x a ,l 2:03)12(=+++y a ax ,若21l l ⊥,则a 的值为 A .0或2 B .0或一2 C .2 D .-2【答案】B【解析】因为21l l ⊥,所以有(1a)a a(2a 1)0-++=,即220a a +=,解得0a =或2a =-,故选B. 22.直线y=kx+3与圆(x -2)2+(y -3)2 =4相交于A ,B 两点,若|AB|=23,则k=( ) (A )±3 (B )±33 (C )3 (D )33【答案】B 【解析】由圆的方程可知圆心为()2,3,半径为2。