第章波函数及薛定谔方程详解

合集下载

波函数与薛定谔方程

波函数与薛定谔方程

波函数与薛定谔方程引言:在量子力学中,波函数与薛定谔方程是两个核心概念。

波函数描述了粒子的量子态,而薛定谔方程则给出了波函数的时间演化规律。

本文旨在解释波函数与薛定谔方程的概念,并探讨它们在量子力学中的重要性。

一、波函数的定义与性质:波函数用符号Ψ表示,是随时间和空间变化的数学函数。

对于一个单粒子的量子系统,波函数Ψ(x,t)是描述其位置和时间依赖的函数,其中x表示位置,t表示时间。

波函数的模的平方|Ψ(x,t)|²(也称为概率密度)给出了在某个位置找到粒子的概率。

波函数的归一化要求概率密度在整个空间积分为1,即∫|Ψ(x,t)|²dx = 1。

另外,波函数是复数形式的,通过它可以得到粒子的相位和幅度信息。

二、薛定谔方程及其意义:薛定谔方程是由奥地利物理学家薛定谔于1925年提出的,用于描述量子系统的演化。

薛定谔方程的一般形式为:ih∂Ψ/∂t = HΨ其中,i是虚数单位,h是普朗克常数,Ψ是波函数,H是哈密顿算符。

薛定谔方程可以看作是一个时间演化方程,它告诉我们波函数如何随时间变化。

三、薛定谔方程的解与量子态的演化:薛定谔方程的解Ψ(x,t)给出了波函数在时间和空间上的演化规律。

解薛定谔方程有多种方法,其中最常见的是分离变量法、微扰法和数值计算法。

通过求解薛定谔方程,我们可以得到粒子在不同时间、不同位置的波函数。

薛定谔方程解的平方Ψ(x,t)²表示了在经典条件下,在某个位置x找到粒子的概率密度分布。

波函数的演化规律是通过薛定谢方程来描述的,因此它反映了量子态的演化过程。

波函数的演化可以告诉我们粒子的位置、动量和能量等重要信息。

四、波函数的物理意义:波函数不仅仅是一个数学概念,它具有重要的物理意义。

首先,波函数的平方给出了在某个位置找到粒子的概率密度分布。

这一点与经典物理中的粒子位置概念是不同的,因为在量子力学中,粒子的位置是模糊的,只能通过概率来描述。

其次,波函数还包含了粒子的相位信息。

19-(3)波函数 薛定谔方程

19-(3)波函数 薛定谔方程
19-3 波函数 薛定谔方程
1
一 波函数
波函数:描述具有波粒二象性粒子的运动函数。 设一自由粒子,不受外力作用,则粒子作匀速直线运动(设 沿X轴),其动量、能量保持恒定。 X
E const
P const


E h
h p
恒定! 恒定!
从波动观点看来:这种波只能是单色平面波。
2
自由粒子的波函数 X
波函数:描述具有波粒二象性粒子的运动函数。 注意:波函数一般要用复数表示!
5
二 波函数的统计解释(波恩Born)
代表什么?
粒子的观点 极大值 极小值 中间值 较多电子到达 较少电子到达 介于二者之间 波动的观点 波强度大 波强度小 介于二者之间
b
x
p h

大量粒子的一次性行为和一个粒子多 次性重复性行为是等价的。 统一地看:粒子出现的几率正比
E Ek
Px
2m
i
t


2

2 2
2m x
( 6)
15
2 势场中的薛定谔方程
若粒子处在势场中,势能为U(x、t),总能量:
E Px
2
U ( x , t )(7)
Px
2
2m
E U ( x , t ) ( 8)
2m
将(5)式看成一般情况下的特例:


2
( x , y , z ) U ( x , y , z ) E ( x , y , z )(18)
2
2m
定态薛定谔方程: 2
2m
2
( E U ) 0(19)
19

2

波函数 薛定谔方程

波函数 薛定谔方程
2 2
(3)粒子能量 一维运动( 一维运动(沿
E 是一定值
x 轴),V(x) 不显含 t ,一维定态问题
2 d 2 H = +V(x) 2 2m dx
2 d 2ψ(x) +V (x)ψ(x) = Eψ(x) 2 2m dx
d 2ψ(x) 2m + 2 [E V(x)] (x) = 0 ψ 2 dx
ψ1(x) 与 ψ1 (x) 描写粒子的同一个状态
所以只取
n =1
A由归一化条件求出
ψ (x)
2
:粒子出现在附近单位长度间隔中的几率
粒子出现在

x ~ x + dx 之间的几率 dW = ψ(x) dx
2
1 = ∫ ψ (x) dx = ∫0 ψ (x) dx = ∫0 x)

a
2
a
2
a
nπx A sin dx a
2 2
=∫
0
1 2nπx 1 2 a 2nπx a A (1 cos )dx = A (x sin ) 2 a 2 2nπ a 0
2
1 2 = Aa , 2
2 A= a
2 nπx sin ψn (x) = a a 0
0< x <a x < 0, x > a
nπ En = 2ma2
2
2 2
∝ E , E 不再解释为能量密度
2
2
三、波函数的标准条件和归一化条件 经典力学: 某时刻质点在什么位置? 动量是多少? 经典力学: 某时刻质点在什么位置? 动量是多少? 轨迹方程? 轨迹方程? 量子力学: 微观粒子的波函数是什么? 量子力学: 微观粒子的波函数是什么? 粒子出现在空间各点上的几率是多大? 粒子出现在空间各点上的几率是多大? 粒子动量取各种可能数值的几率是多大? 粒子动量取各种可能数值的几率是多大? 某时刻粒子出现在空间各点上的几率是唯一的、完全确定的 某时刻粒子出现在空间各点上的几率是唯一的、 波函数: 波函数:单值函数 某时刻粒子出现在空间各点上的几率是有限的 波函数: 波函数:有限的 粒子出现在空间各点上的几率分布及随时间的变化是连续的 波函数: 波函数:连续的

波函数和薛定谔方程

波函数和薛定谔方程

px ∂ 2Ψ = − Ψ, ∂x 2 h2
2
py ∂ 2Ψ = − Ψ 2 2 ∂y h pz ∂ 2Ψ = − Ψ ∂z 2 h2
2
2
h p2 2 − ∇ Ψ= Ψ 2m 2m (3)
是同一个量子态的不同表述
Ψ (r,t)是以坐标 r 为自变量的波函数, 坐标空间波函数,坐标表象波函数; C(p, t) 是以动量 p 为自变量的波函数, 动量空间波函数,动量表象波函数; 二者描写同一量子状态。
r r Ψ (r , t ) 与 c( p, t ) 有类似的物理意义 r 2 Ψ (r , t ) 是指在t时刻,粒子在r处出现的概率密度 r 2 c( p, t ) 是指在t时刻,粒子具有动量p的概率密度
与能量为E及动量为p 的粒子相联系的波(物质波) h E 的频率及波长为 λ= ν = p i rr h ( p⋅r − Et ) r 自由粒子平面波函数 ψ (r , t ) = Ae h
2.1 波函数的统计解释
另一种理解: 为防止电子间 发生作用,让 电子一个一个 地入射,发现 时间足够长后 的干涉图样和 大量电子同时 入射时完全相 同。(1989) 粒子是基本的,电子的波动性是大量电子之 间相互作用的结果。
2.3 含时薛定谔方程
2.3.1 经典粒子的动力学方程
r r dr t = t 0时刻,已知初态是: r0 , p0 = m dt
t = t0
2r r d r 粒子满足的方程是牛顿 方程: F = m 2 dt
从牛顿方程,人们可以确定以后任何时刻 t 粒子的状态 r 和 p 。因为初条件知道的是坐标及其对时间的一阶导 数,所以方程是时间的二阶常微分方程。
dτ ∫ ∞
→∞
2.2 态叠加原理

大学物理课件:波函数 薛定谔方程

大学物理课件:波函数 薛定谔方程

14.6.2 薛定谔方程
薛定谔方程:适用于低速下微观粒子在力场中运动的 波函数所满足的微分方程称为薛定谔方程. 1.薛定谔方程的建立
a.自由粒子平面波函数:
(x, y,z,t) 0ei[Et(xpx ypy zpz )]/
b.自由粒子的薛定谔方程:
(14.6.4)
2
2 i
2m
t
(14.6.6)
波函数 薛定谔方程 14.6.1 波函数及其统计解释
波函数:由于微观粒子具有波粒二象性,其位置 与动量不能同时确定,所以已无法用经典物理方 法去描述其运动状态,故用波函数描述微观粒子 的运动。
1.经典的波与波函数
机械波:y(x,t) Acos2π(t x )
电磁波:
E ( x,t )
E0
c os 2π(t
c.粒子在外力场中运动且势能为 V
粒子的能量:
E
1 2m
(
px2
py2
pz2
)
V
(x,
y,
z,t)
对应的薛定谔方程:
2
2 V i
2m
t
该方程是关于空间、时间的线性偏微分方程,具有波动 方程的形式。将其应用于微观粒子所得大量结果与实验 符合,薛定谔因此贡献荣获1933年度诺贝尔物理学奖。
2.定态薛定谔方程
例题 14.6.1 设质量为m的粒子沿x轴方向运动,其势
能为:
u(x)
, 0,
x 0,x a 0 x a (14.6.15)
Ep
无限深势阱:该势能如图所示形如一
无限深的阱,故称无限深势阱,本问
题为求解该一维无限深势阱内粒子的
o
ax
波函数。
解:分析 因为势能不随时间变化,故粒子波函数

波函数与薛定谔方程

波函数与薛定谔方程

x x ( r ) x ( r )dr 三维情况: p x p x ( r ) x ( r )dr p F F ( r )F ( r )dr
若波函数未归一化,则 ( r )F (r )dr F F ( r ) ( r )dr
没有归一化,
∫∞ |Ψ (r , t )|2 dτ= A (A 是大于零的常数),则有
∫∞ |A-1/2Ψ (r , t )|2 dτ= 1 也就是说,A-1/2Ψ (r , t ) 是归一化的波函数,与Ψ (r , t )描写同一 几率波,(A)-1/2 称为归一化因子. 注意:对归一化波函数仍有一个模为一的因子不确定性.若Ψ(r , t )
一般情况下,如果Ψ1和Ψ2 是体系的可能状态,那么它们的 线性叠加
Ψ= C1Ψ1 + C2Ψ2
也是该体系的一个可能状态,其中 C1
和 C2 是复常数,这就是量子力学的态叠加原理.
态叠加原理一般表述:
若Ψ1 ,Ψ2 ,..., Ψn ,...是体系的一系列可能的状态, 则这些态的线性叠加 Ψ= C1Ψ1 + C2Ψ2 + ...+ CnΨn + ...
p x | c ( p x ) |2 dp x
(二)力学量算符
(1)动量算符
既然ψ(x) 是归一化波函数,相应动量表象波函数为c(px) 一 一 对应,相互等价的描述粒子的同一状态,那末动量的平均 值也应可以在坐标表象用ψ(x)表示出来.但是ψ(x)不含px变量, 为了能由ψ(x)来确定动量平均值,动量 px必须改造成只含自 变量 x 的形式,这种形式称为动量 px的算符形式,记为
x y z
A1e
考虑一维积分 若取 A1= (2)-1/2, 则:
*

波函数及薛定谔方程详解课件

波函数及薛定谔方程详解课件

03ቤተ መጻሕፍቲ ባይዱ
CATALOGUE
薛定谔方程在量子力学中的应用
无限深势阱
无限深势阱模型描述粒子被限 制在一定空间范围内运动的情 形,通常用于描述微观粒子在
势能无限高区域的行为。
在无限深势阱中,波函数具有 特定的边界条件,即在势阱边
界处波函数为零。
薛定谔方程在无限深势阱中的 解为分段函数,表示粒子在不 同势阱内的能量状态。
波函数及薛定 谔 方程详解课件
contents
目录
• 波函数简介 • 薛定谔方程概述 • 薛定谔方程在量子力学中的应用 • 波函数与薛定谔方程的关系 • 实验验证与实例分析 • 总结与展望
01
CATALOGUE
波函数简介
波函数的定 义
波函数是一种描述微观粒子状 态的函数,它包含了粒子在空 间中的位置和动量的信息。
06
CATALOGUE
总结与展望
波函数与薛定谔方程的意义
波函数
波函数是描述微观粒子状态的函数, 它包含了粒子在空间中的位置、动量 和自旋等所有信息。通过波函数,我 们可以计算出粒子在给定条件下的行 为和性质。
薛定谔方程
薛定谔方程是描述波函数随时间变化 的偏微分方程,它反映了微观粒子在 运动过程中所遵循的规律。通过求解 薛定谔方程,我们可以预测粒子在不 同条件下的行为和性质。
时间相关形式
在有限域中,薛定谔方程的形式为 ifrac{dpsi}{dt}=Hpsi,其中H为哈密 顿算子。
薛定谔方程的解
分离变量法
对于具有周期性势能的情况,可以将波函数分离为几个独立的函数,分别求解 后再组合得到原方程的解。
微扰法
对于势能存在微小扰动的情况,可以通过微扰法求解薛定谔方程,得到近似解。

36-1第三十六讲波函数-薛定谔方程

36-1第三十六讲波函数-薛定谔方程
应该是唯一的和有限的,概率的空间分布不能 发生突变,所以波函数必须满足单值、有限、 连续三个条件——称波函数的标准条件。
注 意 :a) 波函数不是一个物理量,是用来表示测量 概率的数学量。 b) 波函数(描述的微观粒子运动状态,即 德布罗意物质波)是概率波,
它描述微观粒子的运动状态是以微观粒子在 t时刻出现在空间某处的概率来表示。
I | |2 z x iy, z x iy
由光子理论知:
n | |2
n—单位体积内粒子数,
单位体积内粒子数n正比单个粒子t时刻在该单位 体积内出现的概率。
因此:空间某处波函数模的平方与单个粒子t时刻 在该处单位体积内出现的概率成正比。
1926年波恩提出:实物粒子的德布罗意波是一种概 率波,t时刻粒子出现在
1925年薛定谔在德布罗意假设的基础上, 建立了微观粒子所遵循的方程,即薛定谔方程。
薛定谔方程是量子力学的基本方程,它揭示 了微观物理世界物质运动的基本规律,就像牛顿 定律在经典力学中所起的作用一样。
薛定谔方程是量子力学的一个基本假设,它 既不可能从已有的经典规律推导出来,也不可能 直接从实验事实总结出来(因为波函数本身是不 可观测的).实际上是“猜” 加“凑”出来的.方 程的正确性只能靠实践检验.到目前为止,实践检 验它是正确的.
c) 根据玻恩的解释,波函数本身并没有直接的 物理意义,有物理意义的是波函数模的平方,
波函数模的平方 | (r, t) |2 描述微观粒子在t时 刻出现在空间某处的概率。
从这点来说,物质波在本质上与电磁波、机械 波是不同的。物质波是一种概率波,它反映微 观粒子运动的统计规律。
波函数不给出粒子在什么时刻一定到达某点,只 给出到达各点的统计分布。一个粒子下一时刻出现在 什么地方,走什么路径是不知道的(非决定性的)。

第一章波函数和薛定谔方程

第一章波函数和薛定谔方程
它往往出现在 2 大的地方 而不会出现在 2 小的地方 同时 (3) 又是以波的方式在空间传播
于是粒子的运动又表现出波动性 总之.微粒的运动遵从的是统计性的规律 而不同于经典力学的确定性规律
(3) 波函数的不确定性:
1、常数因子不定性:
(rv)和 C (rv) 描述同一种运动状态。
)
0 cos 2
(E h
t
x) hp
1 0 cos (Et x
px )
(x,
t)

i (Et
0e
px x)
(取实部)
描述自由粒子(三维)可用平面波波函数来描述。
i ( pvrvEt )
pv Aeh
如果粒子处于随时间和位置变化的力场中运动, 它的动量和能量不再是常量(或不同时为常量) 粒子的状态就不能用平面波描写,这样的微观 粒子的运动状态也可以用较复杂的波完全描述。
对归一化波函数仍有一个模为一的相因子不定性。 若Ψ (r , t )是归一化波函数,那末, exp{iα}Ψ (r , t )也是归一化波函数(其中α是实数)
(4)波函数的归一化
( , ) * d 2 d
(全)
(全)
归一化条件就可以简单表示为:
( , ) 1
t时刻粒子出现在 pv点附近 dpv体积元内的几率;
电子衍射实验
1.1.5 Heisenberg不确定度关系
接受了波函数的统计诠释,完全摒弃经典粒子的轨 道概念,即排除了粒子每时每刻有确定的位置和确 定的动量。
粒子出现在x~x+dx间隔的概率 | (x) |2 dx
所以由波函数只能给出粒子位置的平均值 x及其偏差 x2

2波函数和薛定谔方程

2波函数和薛定谔方程

第二章
波函数和薛定谔方程
三、波函数的归一化
由于粒子必定要在空间中的某一点出现,所以粒子 在空间各点出现的概率之和等于1,因而粒子在空间各点 出现的概率只决定于波函数在空间各点的相对强度,而 不决定于强度的绝对大小。换句话说,将波函数乘上一 个常数后,所描写的粒子的状态并不改变。
(r , t ) 与 C (r , t ) 表示同一个态。
2
概率密度
dW ( x, y, z, t ) 2 ( x, y , z , t ) C ( x, y , z , t ) d
§2.1 波函数的统计解释
第二章
2
波函数和薛定谔方程
C ( x, y, z, t ) d 1

归一化
C
1


( x, y, z , t ) d
§2.1 波函数的统计解释
第二章
波函数和薛定谔方程
自由粒子的波函数
Ae
i ( pr Et )
如果粒子受到随时间或位置变化的力场的作用,它的 动量和能量不再是常量,这时粒子就不能用平面波来描写,
而必须用较复杂的波来描写。一般记为:
(r , t )
描写粒子状态的波函数,它 通常是一个复函数。
c1 1 c2 2 cn n
cn n
n
§2.2 态迭加原理
第二章
波函数和薛定谔方程
二、波函数按平面波展开
以一个确定的动量 p 运动的自由粒子的状态用波函数
p (r , t ) Ae
i ( pr Et )
描写。按照态迭加原理,粒子的状态可表示为
波函数为
i (r , t ) A exp ( p r Et )

量子力学课件1-2章-波函数-定态薛定谔方程

量子力学课件1-2章-波函数-定态薛定谔方程

V (x,t) (x,t)
假定在 t 0 时刻波函数归一化,随时间演化时它能否保持归一化? 答案:薛定谔方程自动保持波函数的归一化.
证明:
d (x,t) 2 dx (x,t) 2 dx.
dt
t
2 * * *
i
t
( x, t )
2
2m
d2 dx2
V
( x, t )
接收器上从来没有在两个以上地方同时接收到电子的一部分。电子表现
出“粒子性”。
2)电子表现出的干涉是自己与自己的干涉,不是不同电子之间的
干涉,“波动性”是单个电子的行为。
问题:一个电子怎样通过双缝产生干涉现象呢? 结论:微观粒子与物质相互作用时,表现粒子性;运动过程中体现波动性。
§ 3 概率
假设一个屋子中有14个人,他们的年龄分布为:
j2 j2P( j). 0
注意:一般情况下平方的平均是不等于平均的平方的。
普遍地, 可以给出j的函数的平均值
f ( j) f ( j)P( j).
0
显然,两个图具有同样的中值、平均值、最可几值和 同等数目的元素,如何表示出分布对平均值“弥散”程度 的不同?
j j j ,
2 (j)2 . 分布方差
经典物理描述物体运动的范式和途径:
宏观物体,经典力学: (1)求出任意时刻物体的位置 x(t)
(2)求出速度v dx ,动量p mv ,动能 T 1 mv2
dt
2
方法: 牛顿方程
m
d2x dt 2
V (x,t) x
,
F(x,t) V (x,t) x
初始条件 x(0), v(0)
等等,
微观粒子,量子力学:
14岁 1人,

薛定谔方程与量子体系的波函数解析

薛定谔方程与量子体系的波函数解析

薛定谔方程与量子体系的波函数解析量子力学是描述微观世界的一门科学,而薛定谔方程是量子力学的基石之一。

薛定谔方程描述了量子体系的波函数演化规律,通过对波函数的解析可以揭示微观世界的奥秘。

薛定谔方程是由奥地利物理学家薛定谔于1925年提出的,它是一种描述微观粒子的运动的偏微分方程。

薛定谔方程的一般形式为:iħ∂ψ/∂t = -ħ²/2m∇²ψ + Vψ其中,i是虚数单位,ħ是普朗克常数的约化常数,∂ψ/∂t表示波函数ψ对时间的偏导数,∇²ψ表示波函数ψ对空间的二阶偏导数,m是粒子的质量,V是势能。

薛定谔方程的解析解可以通过求解该方程得到。

量子体系的波函数是描述粒子在空间中的概率分布的函数。

波函数的模的平方表示了粒子在空间中出现的概率密度。

根据薛定谔方程,波函数随时间的演化是由波函数本身和势能共同决定的。

通过对薛定谔方程进行求解,可以得到波函数的解析解,从而揭示了量子体系的性质。

波函数的解析解可以分为定态解和非定态解。

定态解是指波函数不随时间变化的解,它描述了量子体系的基态和激发态。

定态解可以通过薛定谔方程的分离变量法进行求解,将波函数表示为时间和空间的乘积形式,然后将其代入薛定谔方程,得到关于时间和空间的两个偏微分方程。

通过求解这两个方程,可以得到波函数的解析解。

非定态解是指波函数随时间变化的解,它描述了量子体系的演化过程。

非定态解可以通过薛定谔方程的定态展开法进行求解,将波函数表示为定态波函数的线性组合形式,然后将其代入薛定谔方程,得到关于时间的一阶偏微分方程。

通过求解这个方程,可以得到波函数的解析解。

薛定谔方程的解析解不仅可以用于描述量子体系的波函数演化,还可以用于计算量子体系的物理量。

根据波函数的解析解,可以计算出粒子的位置、动量、能量等物理量的期望值。

这些期望值与实验结果的比较可以验证薛定谔方程的有效性,并揭示量子体系的性质。

总之,薛定谔方程是描述量子体系的波函数演化规律的基本方程。

普通物理学波函数 薛定谔方程

普通物理学波函数 薛定谔方程


2
i 2 2m x t
2 2
上页
下页
2、一维势场U(x,t)中运动粒子
i E t 2 2 P 2 2 x P2 E Ek U U 2m
2
2 2 U i 2 2m x t
在势场中一维运动的粒子的含时 薛定谔方程
单位体积中出现的概率,又称为概率密度 时刻 t , 粒子在空间
r
处 dV 体积内出现的概率
( r , t ) 不可直接测量!
(r ) (r )
2 可测量——在空间 w( r ) ( r ) 的概率密度。
r 处可观测到粒子
量子力学指出,我们只能判断在一定空间范围发现粒子 的概率,不能确定一个粒子一定在什么地方;只能作某种 可能性的判断,不能做绝对确定性t
三维势场中运动粒子的含时薛定谔方程
上页 下页
定态薛定谔方程 一维:
2 2 U i 2 2m x t
i E t
( x )e

i Et
U E 2 2m x 2 d 2 U E 2 2m d x
2 2 i 2 2m x t 2 U i 2m t
2
一维定态薛定谔方程
d 2 2m 2 ( E U ) 0 2 dx
2m 2 ( E U ) 0
2
三维定态薛定谔方程
上页
下页
奥地利物理学家,1933年诺贝尔物理奖获得者。薛 定谔是著名的理论物理学家,量子力学的重要奠基人之 一,同时在固体的比热、统计热力学、原子光谱及镭的 放射性等方面的研究都有很大成就。 薛定谔的波动力学,是在德布罗意提出的物质波的 基础上建立起来的。他把物质波表示成数学形式,建立 了称为薛定谔方程的量子力学波动方程。薛定谔方程在 量子力学中占有极其重要的地位,它与经典力学中的牛 顿运动定律的价值相似。在经典极限下,薛定谔方程可 薛定谔 以过渡到哈密顿方程。薛定谔方程是量子力学中描述微 Erwin 观粒子(如电子等)运动状态的基本定律,在粒子运动速 Schrö dinger 率远小于光速的条件下适用。 薛定谔对分子生物学的发展也做过工作。由于他的 ( 1887–1961) 影响,不少物理学家参与了生物学的研究工作,使物理 学和生物学相结合,形成了现代分子生物学的最显著的 特点之一。 薛定谔对原子理论的发展贡献卓著,因而于1933年 同英国物理学家狄拉克共获诺贝尔物理奖金。

波函数薛定谔方程

波函数薛定谔方程

✓ 必须能满足德布罗意波公式的要求
E , h
h
p
✓ 必须是线性微分方程,即其方程的解必须能满 足叠加原理 (因为物质波能够干涉)。
第16章 量子物理基础
16–6 波函数 薛定谔方程
8
薛定谔提出了波函数Ψ(x,y,z,t)所适用的(在非相对论) 动力学方程:
i
2
2 V
t
2m
(1)2 2 2 2 称之为拉普拉斯算符
2m
式中E是粒子的总能量,又称为能量本征值。
第16章 量子物理基础
16–6 波函数 薛定谔方程
11
一维定态薛定谔方程
设微观粒子在外势场中作一维运动,这时该方程为
d2 dx2
(x)
2m
2
(E
V
)
(
x)
0
对于自由粒子,V=0,在一维情况,并注意 E p2
(非相对论)
2m
i px
(x) 0e
第16章 量子物理基础
16–6 波函数 薛定谔方程
12
3.薛定谔方程的意义
✓ 薛定谔方程在量子力学中的地位与牛顿方程在 经典物理中的地位相当。
✓ 薛定谔方程本身并不是实验规律的总结,也没 有什么更基本的原理可以证明它的正确性。
✓ 从薛定谔方程得到的结论正确与否,需要用实 验事实去验证。薛定谔方程是量子力学的一条基本 假设。
第16章 量子物理基础
16–6 波函数 薛定谔方程
6
二、薛定谔方程
薛定谔(Erwin Schro..dinger, 1887~1961)奥地利物理学家. 1926年建 立了以薛定谔方程为基础的波动力学,并 建立了量子力学的近似方法. 他还对生命 科学作出重大贡献,他的指导思想是 “科学一定是统一的、相通的.”

波函数薛定谔方程

波函数薛定谔方程

H.M.Qiut i t x U x m ∂∂=Ψ+−),(22§13.7 波函数及其统计解释薛定谔方程一、波函数及其统计解释H.M.Qiu波函数波函数还应该归一化1=ΨΨ∫dV H.M.Qiu将波函数()()22例1()()exp 2x x απαΨ=−H.M.Qiuπ例2H.M.Qiu量子力学的哲学基础概率概念的引入意味着:在已知给定条件下,H.M.Qiu二、薛定谔方程1.自由粒子的薛定谔方程A i t x exp =−−⎢⎥⎜⎟⎝⎠⎣⎦H.M.Qiu()()exp x xt A Et p x Ψ=−−⎢⎥⎣⎦时薛定谔方程22i t m x =−∂∂ H.M.Qiu⎥⎦⎢⎣z y x 22∂Ψ∂Ψ一维自由粒子薛定谔方程H.M.Qiu补充:关于算符H.M.Qiu2x m t ⎦⎣∂∂2i Ψ哈密顿算符薛定谔方程H.M.Qiu0ˆ=tH∂∂若即U (x,t )与时间无关,称为定态)1()()(… t ET td t dT i =)2()()(ˆ…x E x H Φ=Φ能量取确定值的状态H.M.Qiu)()(),(t T x t x E E E ΦΨ=Ee x C =)(Φ)1()(…t ET td i =)2()()(ˆ…x E x HΦ=ΦH.M.Qiu()00,x x a ⎧≤≥例1(22sin 0Et he x x aa ππ−⎨≤≤⎪⎩H.M.Qiu问题:何处找到粒子的几率最大?1n =由题意:2x =处找到粒子的几率最大在2ax =例1解归一化波函数为:()⎧H.M.Qiu定态薛定谔方程在不同坐标系下的表示直角坐标系:H.M.Qiu▲薛定谔方程是线性微分方程补充:关于态叠加原理H.M.Qiu补充:力学量的平均值2⎛⎞Ψ含时薛定谔方程:任意力学量B 的平均值为ˆB BdV ψψ∗=∫。

波函数和薛定谔方程

波函数和薛定谔方程

波函数和薛定谔⽅程波函数和薛定谔⽅程⼀、波函数的统计解释、叠加原理和双缝⼲涉实验微观粒⼦具有波粒⼆象性(德布罗意假设);德布罗意关系(将描述粒⼦和波的物理量联系在⼀起) k n h p h E ====λων物质波(微观粒⼦—实物粒⼦)引⼊波函数(概率波幅)—描述微观粒⼦运动状态对于微观粒⼦来说,如果不考虑“⾃旋”⼀类的“内禀”态,单值波函数是其物理状态的最详尽描述。

⾄少在⽬前量⼦⼒学框架中,我们不能获得⽐波函数更多的物理信息。

微观粒⼦的状态⽤波函数完全描述——量⼦⼒学中的⼀条基本原理该原理包含三⽅⾯内容:粒⼦的状态⽤波函数表⽰、波函数的统计解释和对波函数性质的要求。

要明确“完全”的含义是什么。

按着波函数的统计解释,波函数统计性的描述体系的量⼦态,若已知单粒⼦(不考虑⾃旋)波函数)(r ψ,则不仅可以确定粒⼦的位置概率分布,⽽且如动量等粒⼦的其它⼒学量的概率分布也均可通过波函数⽽完全确定。

由此可见,只要已知体系的波函数,便可获得该体系的⼀切物理信息。

从这个意义上说,有关体系的全部信息已包含在波函数中,所以说微观粒⼦的状态⽤波函数完全描述。

必须强调指出,波函数给出的有关粒⼦的“信息”本质上是统计性质的。

例如,在适当条件下制备动量为p 的粒⼦,然后测量其空间位置,我们根本⽆法预⾔测量的结果,我们只能知道获得各种可能结果的概率。

很⾃然,⼈们会提出这样的疑问:既然量⼦⼒学只能给出统计结果,那就只需引⼊⼀个概率分布函数(象经典统计⼒学那样),何必假定⼀个复值波函数呢?事实上,引⼊复值波函数的物理基础,乃是量⼦⼒学中的⼜⼀条基本原理——叠加原理。

这条原理告诉我们,两种状态的叠加,绝不是概率相加,数学求和)。

正因如此,在双缝⼲涉实验中,我们才能看见屏上的⼲涉花纹。

实物粒⼦双缝⼲涉实验分析我们⾸先只打开⼀条狭缝,根据粒⼦的波动性,可以预⾔屏上将显⽰波长p / =λ(p 为粒⼦动量)的单缝衍射花纹。

但是,根据粒⼦的微粒性,它们将是⼀个⼀个打上去的,怎样将这两种性质的描述调和起来呢?为此,我们想象将⼊射粒⼦束强度降低,直到只⼀个粒⼦通过狭缝,这时屏上会出现很微弱的衍射花纹吗?当然不会!单个粒⼦只能作为⼀个不可分割的整体打到屏上的⼀个点,从⽽出现⼀个⼩斑点。

波函数 薛定谔方程

波函数  薛定谔方程

玻尔在解释氢原子光谱时就提出了定态的概念雏形.定态也是量子力
学中最重要的概念之一,本节就从薛定谔方程出发,对定态的性质做一些
概括性的讨论.
若势能V(r)与时间无关,则可以设
Ψ(r,t)=Ψ(r)f(t)
(15- 41)
把式(15- 41)代入式(15- 40),得到
波函数 薛定谔方程
两边同除以Ψ(r)f(t),就可以分离变量,即
波函数 薛定谔方程
薛定谔方程描述微观粒子运动的一般方程,自然也可以描 15- 36
解,由式(15- 36)可得
(15- 37)
波函数 薛定谔方程
由式(15- 35)可得
波函数 薛定谔方程
(1)这并不是薛定谔方程的证明,薛定谔方程是量子力学的基本 假定,是对大量实验观测结果的概括,它和经典力学中的牛顿三定律一 样,是不能被证明的.
波函数 薛定谔方程
图15- 13 无限深方势阱中的波函数
波函数 薛定谔方程
图15- 14所示为 无限深方势阱中的粒 子分布密度Ψ2(x).容 易看出,当n→∞时, 粒子分布密度会趋于 均匀,即在大量粒子 数条件下,量子力学 将回到经典情况.
图15- 14 无限深方势阱中的粒子分布密度
谢谢观看
波函数 薛定谔方程
若定态波函数能够满足归一化条件,即
则在无限远处,定态波函数必然迅速趋于0,即粒子不可能出现 在无穷远处,也就是粒子被限制在有限的范围内运动,这种状态就称 为束缚态,否则就称为游离态.
波函数 薛定谔方程
在经典情况下,粒子当然也不能出现在阱外,这一点与量子 力学的解并无区别.若是经典粒子,在阱内各处的势场都为零, 因此粒子在阱内均匀分布.在量子力学情况下,容易解得粒子出 现在各处的概率并不相同,随着位置的变化而变化,即粒子分布 是不均匀的.此外,在经典情况下,粒子的能量可以取任意的有 限值,即粒子的能量是可以连续变化的,但在量子力学情况下, 粒子的能量只能取一系列分立值,即能级是量子化的.图15-13所 示为无限深方势阱中的波函数Ψ(x).

波函数与薛定谔方程

波函数与薛定谔方程

ψ = c1ψ1 + c2ψ2 + − − − + cnψn = ∑cnψn
c1, c2 ,− − −cn为 意 数 任 常
n
波函数遵从叠加原理由实验证实: 波函数遵从叠加原理由实验证实: 以双缝实验为例 1、子弹通过双缝的射击实验 (经典) 经典) 、
a
子弹
P 1 P 2
b
P
P = P + P概 叠 率 加 1 2
等项. 等项
(二),方程应具有粒子各种状态都能满足的普适性质 二 方程应具有粒子各种状态都能满足的普适性质 方程应具有粒子各种状态都能满足的普适性质. 各项系数只能为普适衡量 如 和表示粒子一般属性的量,如 和表示粒子一般属性的量 各项系数只能为普适衡量,如h,和表示粒子一般属性的量 如 普适衡量 m 等,而不能包含仅只表征某特殊状态的量如能量、动量等 而不能包含仅只表征某特殊状态的量如能量、 而不能包含仅只表征某特殊状态的量如能量 动量等.

Ψ(x, t) = Ψ e 0
i − ( Et− px) h


24
∂ψ ∂2ψ ∂ψ 原则: 一 波函数满足叠加原理 可有 原则: (一),波函数满足叠加原理 ,可有 ∂x , ∂x2 , ∂t ,− − − −
等项, 等项 不能含
∂ψ ψ2 , ,− − − − ∂x
2
光子在某处出现的概率和 光子在某处出现的概率和 概率 该处光振幅 平方成正比 振幅的 该处光振幅的平方成正比
4
自由电子的波函数
ψ ( x, y , z , t ) = ψ 0 e
v v i ( p⋅r − Et ) / h
ψ (r , t ) = ψ 02
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勒级数展开 kk0 d d k k0kk01 2 d d2 2k k0kk02
x ,t C ex ,x tie p 0 tx i k 0 p x k e 0 tx ikp x v gk k 0td
C x,t2k0si xn k xvg tvgt
由于正弦的幅角含有小量,C(x,t)只是随时间t和坐标x缓
粒子性观点:亮处—单位时间内到达该处的电子数多 暗处—单位时间内到达该处的电子数少
统计的观点:亮处—电子到达该处的概率大 暗处—电子到达该处的概率小
返回
(一)波函数 (二)波函数的解释 (三)波函数的性质 (四)自由粒子的波函数
一、波函数
问题:
(1) 是怎样描述粒子的状态呢? (2) 如何体现波粒二象性的? (3) 描写的是什么样的波呢?
微观粒子波粒二象性矛盾的分析
观点一: 电子波应理解为电子的某种实际结构,即电子 是无限多波长不同的平面波叠加而成的波包,波包的大 小即电子的大小,波包的群速度即电子的运动速度.
的.因为物质波在真空中也出现色散
d2d2 kk0 0
这暗示波包不保持其形式, 而是逐
-2 0 图-1 52.2-1 0.1波-5 包0: 一5 些1快0 速1 5 振2 0 动波的叠加
渐地扩展.随时间的演化,电子将愈 变愈“胖”,这与实验是矛盾的.
观点二: 波动性是由于有大量的电子分布于空间而形成的 象声波一样的疏密波,即电子疏密相间分布而形成的纵波.
1.单个平面波情况:
考虑沿x方向运动的自由粒子,其平面波为
等相面: x ,t A ei x k p x t
相速u满足关系: kxtc
d kd x k u 0 , d u x
dtdt
dt k
在非相对论情况下,用德布罗意关系代入自由粒子的能 量—动量关系
可得:
E p2 2m
k2 , k2
经典概念中 粒子:
1.有一定质量、电荷等“颗粒性”的属性
2.有确定的运动轨道,每一时刻有一定位置 和速度
经典概念中 1.实在的物理量的空间分布作周期性变化
波:
2.干涉、衍射现象,即相干叠加性
(2)Born 波函数的统计解释几率波 我们再看一下电子的衍射实验
❖ 大量电子一次
方 法 一
入射,立即在 屏幕上形成衍 射图样。
而不是相消.这个极值点的位置用下式确定:
0
k

x d t 0
dk
所以波包中心位置是
d
x
xc
t dk
物质波包的群速度为
vg
dk p
dk m m
k2 1 k p u ( )
k 2mk 2m 2m
vg 2uc 波包形状随时间的改变:设(k)是一个很窄的波包,波 数集中在k0附近一个不大范围中.在k0附近对(k) 作泰
慢地变化.所以,我们能把C(x,t) 当作近似单色波的振幅,
而把k0x-(k0)t作为单色波的相.把振幅的分子和分母
都乘以k,并简记为z=kx-vgt ,容易看到,振幅的变化
取决于因子,它有性质
szinz10
z0 z,3,
迄今,我们忽略了(k) 级数展开中高于一
阶的项,这仅当介质无色散的时候才是允许
正比于电子出现在 r 点附近的几率。
结论:衍射实验所揭示的电子的波动性是: 许多电子在同一个实验中的统计结果,或者是一个电子 在许多次相同实验中的统计结果。
波函数正是为了描述粒子的这种行为而引进的,在此基 础上,Born 提出了波函数意义的统计解释。
波动性观点:亮处—到达该处电子波的强度大 暗处—到达该处电子波的强度小
错误的根源: 波由粒子组成的看法夸大了粒子性的一面,而抹杀 了粒子的波动性的一面,具有片面性。
观点三: 电子既是粒子,也是波,是粒子和波动两象性的统 一. 不过, 这儿的波不再是经典概念下的波,粒子也不再是 经典概念下的粒子.
电子所显现的粒子性总是以具有一定的质量、电荷 等属性的客体出现,但并不与“粒子有确切的轨道”的 概念有什么必然联系.电子显现出的波动性,也只不过是 波动性中最本质的东西——波的“相干叠加性”,并不 一定要与某种实际的物理量在空间的分布联系在一起. 把微观粒子的“粒子性”与波的“相干叠加性”统一 起来是玻恩提出来的几率波.
电子一个一个的 方 入射,经过足够 法 长的时间,在屏 二 幕上形成同样的
衍射图样。
在电子衍射实验中,照相底片上
1.入射电子流强度小,开始显示电子的微粒性,长时间亦显
示衍射图样; 2. 入射电子流强度子源
O

Q光
Q

r 点附近衍射花样的强度
正比于该点附近感光点的数目
正比于该点附近出现的电子数目
实验上观测到的电子,总是处于一个小区域内。 例如在一个原子内,其广延不会超过原子大小≈1 Å。
电子衍射动画
2. 有限波包:
波包是不同波长和相速的一些简谐波的叠加.为简单起 见,这里研究一群沿x方向传播的波 :
x,t1 2- kex ikp x tdk
波包中心将出现在相角=kx-(k)t取极值处,因为 在这点附近,不同波数的分波相干叠加而加强得最厉害,
第二章 波函数与薛定谔方程
§2.1 波函数的统计解释
§2.2 态迭加原理 §2.3 动量分布概率
§2.10 阶梯形方势 §2.11 谐振子
§2.4 力学量的平均值
§2.5 薛定谔方程
§2.6 定域的概率守恒 §2.7 能量本征方程
§2.8 能量本征态的一般性质
§2.9 波函数的标准条件
§2.1 波函数的统计解释
波由粒子组成,如,声波,由分子密度疏密变化而形成的一种分布。
结论:这种看法是与实验矛盾的
原因:它不能解释长时间单个电子衍射实验---单 个电子就具有波动性.
证明1:单电子衍射
电子一个一个的入 射,经过足够长的 时间,在屏幕上形 成衍射图样。
证明2:正是由于单个电子具有波动性,才能理解氢 原子(只含一个电子!)中电子运动的稳定性以及能 量量子化这样一些量子现象。
2m
真空中的相速度是k的函数
uEm2cc2 k k p mv v
uc
结论:物质波的相速大于真空中的光速, 所以它不能与 设定粒子的速度相同.
平面波描写自由粒子,其特点是充满整个空间, 这是因为平面波振幅与位置无关。如果粒子由波 组成,那么自由粒子将充满整个空间,这是没有 意义的,与实验事实相矛盾。
相关文档
最新文档