最全对数函数概念导学案完整版.doc
对数函数导学案
必修一 第三章第二节 对数函数赵宇课前预习学案一、预习目标理解对数函数的概念,正确画出对数函数图像,掌握对数函数的性质。
二、预习内容1. 对数函数的定义2. 画出x y 2log =和x y 21log =的图像3. 画出x y 3log =和x y 31log =的图像4. 总结归纳对数函数的图像与性质课堂探究学案一、学习目标1、理解对数函数的概念,正确画出对数函数图像,掌握对数函数的性质。
2、培养学生处理图像和应用函数解决实际问题的能力。
学习重点:对数函数的定义,图像和性质学习难点:对数函数图像和性质的理解二、知识反馈:三、知识回顾:四、学习过程【新课探究】回顾对数式与指数式的互化,将指数函数式转化成对数函数式,得到对数函数。
探究并完成下面的填空题。
1. 对数函数的定义:形如_______的函数称为对数函数。
它的定义域是_____,值域是_____。
注:①x a log 前面的系数为1,自变量在真数的位置,底数a 必须满足______。
②以10为底的对数为x y lg =,以e 为底的对数为______。
2. 画出x y 2log =和x y 1log =的图像3. 画出x y 3log =和x y 31log =的图像1.小组讨论探究对数函数的图像和性质 ()1,0log ≠>=a a x y a2.总结规律多个图象像支花,(1,0)过点把它扎,上升递增下降减,底互倒时横轴夹,函数值为任意数,数轴右边图象查,若要比较底数值,令y 为1看大小。
【课堂检测】1. 比较大小⑴ 3log 2和.53log 2 ⑵ 3log 21和.53log 21 ⑶ 3log a 和.53log a总结:底数相同,用对数函数单调性比较大小 ⑷ 3log 21和 4331log ⑸ 3log 4和 4log 3总结:底数不同时,寻求中间值作媒介进行比较2. 求定义域⑴)1,0)(-4(log ≠>=a a x y a⑵)x -2(log 22x y = ⑶)-2(log 21x y = 【学后总结与反思】1、学完本节课,你都有那些收获?2、学完本节课,你还存在哪些问题,该如何去解决?【课后作业】1、求下列函数定义域()5log 1y x =- 21l o g y x = 71l o g 13y x =-y =2、比较大小(1)10log 6与10log 8;(2)0.5log 6与0.5log 4(3)30.4,0.43,0.4log 33、求下列函数图像经过的定点坐标l o g a y x =____________________log (3)a y x =+____________________ log 1a y x =-__________________log (21)2a y x =-+________________ 形如log ()a y x m n =++的图像过定点__________________________4、已知函数[]3()2log ,1,9f x x x =+∈,求函数[]22()()y f x f x =+的最大值及y 取最大值是x 的值。
对数函数导学案.doc
2.2.1对数与对数运算(一)一【学习目标】 (一) 教学知识点1.对数的概念;2.对数式与指数式的互化. (二) 能力训练要求1.理解对数的概念;2.能够进行对数式与指数式的互化;3.培养学生数学应用意识. 二、教学重点:对数的定义. 三、教学难点:对数概念的理解. 四【新课讲授】(导学)假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?列出表达式: (自学)知识点1 : 对数的概念1.对数定义:一般地,如果 ,)1,0(≠>a a 且则数 b 叫做以a 为底 N 的对数, 记作 ,其中a 称为对数的底,N 称为真数. (b N N a a b =⇔=log )(1)底数的取值范围 ;真数的取值范围(2)对数式和指数式关系式 子名称 a b N指数式 对数式思考1.将下列指数式写成对数式: (1)62554= (2)64126=- (3)273=a(4)73.531=m )(知识点2 两种重要对数1.常用对数:以10为底的对数叫做常用对数N 10log 简记作 . 思考2:5log 10简记作; 5.3log 10简记作2.自然对数:用以无理数e=2.71828……为底的对数叫自然对数, N e log 简记作思考3:3log e 简记作 10log e 简记作 思考4. 将下列对数式写成指数式:(1)416log 21-=; (2)7128log 2=; (3)201.0lg -=; (4)303.210ln =.知识点三 : 重要公式:⑴负数与零没有对数; ⑵01log =a , 1log =a a ⑶对数恒等式N aNa =log五【典例欣赏】(互学) 1对数概念应用例1.求下列各式中x 的取值范围:(1)log 2(x -10);(2)log (x -1)(x +2);(3)log (x +1)(x -1)2.2对数基本运算例2求下列各式中的x 的值:(1)32log 64-=x ;(2)68log =x ;(3)x =100lg ;(4)x e =-2ln 。
高一数学导学案--对数函数的概念---课前案
高一数学导学案 对数函数的概念 课前案一、 目标导航1.理解对数函数的概念2.根据对数函数的概念求函数的定义域(重点、易错点)3.掌握对数函数的图象(重点)4.掌握对数函数的有关性质;能够利用对数函数的图象和性质解决简单的问题.(重点、难点)二、 问题导引 1.2.我们知道,底数互为倒数的两个指数函数的图象关于y 轴对称。
对于底数互为倒数的两个对数函数,比如x y x y 212log 和log ==,它们的图象是否也有某种对称关系呢?可否用其中一个函数的图象画出另一个函数的图象?三、路径导学1. 对数函数的定义一般地,函数 叫做对数函数,其中x 是自变量,定义域是 。
特别地,以10为底地对数函数 叫做常用对数函数,以e 为底的对数函数 叫做自然对数函数。
2. 如何判断一个函数是对数函数?课中案------例题讲解知识点一 对数函数的概念例1:下列函数中,哪些是y 关于x 的对数函数?(1))1,0(log 2≠>=a a x y a 且 (2))1(log 2-=x y(3)x y 8log 2= (4))1,0(log ≠>=x x a y x 且 (5)x y 5log = 变式练习:若函数x a ax f a log )5()(2-+=为对数函数,则f(81)= .例2:已知对数函数y =f (x )的图象过点(4,2),求f(21)及f(2lg2)的值.知识点二 定义域问题例3:求下列函数的定义域:(1)23log x y =;(2))1,0)(-4(log ≠>=a a x y a 且(3)y=)3lg(42+-x x变式练习:求下列函数定义域:(1))4-16(log 2xy =; (2) 32log )(x x f =知识点三 对数函数的图象问题例4.函数y=log 2x ,y=log 5x ,y=lg x 的图象如图所示.(1)说明哪个函数对应于哪个图象,并说明理由;(2)在如图的平面直角坐标系中分别画出y=lo g 12x ,y=lo g 15x ,y=lo g 110x 的图象;(3)从(2)的图中你发现了什么?课后案 A 组1.已知函数)1(log )(2+=x x f ,若1)(=m f ,则m 等于( ) A.0 B.1 C.2 D.32.函数2log 12-=x y 的定义域是( )A.()+∞,0B.[)∞+,0 C.()∞+,4 D.()()∞+⋃,,440 3. 下列函数中,在区间(0,+∞)内不是增函数的是 ( )A.y=5xB.y=lg x+2C.y=x 2+1D.y= lo g 12x4.已知a >0,且a ≠1,则函数y =x +a 与y =log a x 的图象只可能是 ( )5.如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( )A .0<a <b <1B .0<b <a <1C .a >b >1D .b >a >16.(多选)设集合{}x yx A 2log ==,{}x y y B 2log ==则下列关系正确的是 ( )A.B B A = B. A B ⊆ C. A B A = D. B B A =7.已知对数函数f(x)的图象过点P (8,3),则f(321)= . 8.函数f(x)= x a aa )1(2log )1(++-是对数函数,则实数a= .9. 函数x x f alog )(=的定义域是 .10. 已知集合{}{},10,8,6,4,2集合,,4,3,2,1==B A 下列表达式能建立从集合A 到集合B 的函数关系的是 . ①xy 2=;②2x y =;③x y 2log =;④y=2x. 11.画出下列函数的图象:(1)xy 10lg = (2)x y lg 10= (3)x y 3log =12.求下列函数的定义域: (1) x x f lg 1)(= (2)xx x f -+=1)1ln()( (3)f (x )=log 12 (-x 2+2x )B 组1.若函数)12ln(2++=ax ax y 的定义域是R ,求实数a 的取值范围.2.设全集U=R,函数)3lg()(x a a x x f -++-=的定义域为集合A ,集合B=⎭⎬⎫⎩⎨⎧≤≤32241x x .命题p:若 ,则φ≠B A . 从①a=-5, ②a=-3,③a=2这三个条件中选择一个条件补充到上面的命题p 中,使命题p 为真命题,说明理由,并求)(B C A U .。
对数函数导学案
学习内容 2.2 对数函数及其性质【学习目标】①理解对数函数的概念,体会对数函数是一类重要的函数模型.②掌握对数函数的图像和性质.二、学习重、难点1、重点:对数函数及其基本性质;2、难点:.对数函数图像及其应用【课前预习案】-------自主学习1.一般地,我们把函数___________________(10≠>aa且)称为对数函数.2.1>a时,函数xyalog=的定义域为___________________,值域为___________________,单调___________________区间___________________,)1,0(∈x时,y___________________0,),1(+∞∈x时,y___________________0.3.10<<a时,函数xyalog=的定义域为___________________,值域为___________________,单调___________________区间___________________,)1,0(∈x时,y___________________0,),1(+∞∈x时,y___________________0.4.xy10log==___________________叫做常用对数,xyelog==___________________叫做自然对数.【具体要求】阅读课本70--73页解决课前预习中的问题【学法指导】自主探究、合作交流【课堂探究】阅读课本第70页到72页的内容,尝试回答下面的问题探究1、元旦晚会前,同学们剪彩带备用。
现有一根彩带,将其对折后,沿折痕剪开,可将所得的两段放在一起,对折再剪段。
设所得的彩带的根数为x ,剪的次数为y ,试用x 表示y .新知:对数函数的概念试一试:以下函数是对数函数的是( )A.2log (32)y x =- B. (1)log x y x-= C. 213log y x = D. ln y x = E. 23log 5y x =+探究2、探究2:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 作图:在同一坐标系中画出下列对数函数的图象.2log y x =; 0.5log y x =.新知:对数函数的图象和性质:1a >01a <<图 象定义域 值域 过定点 单调性【展示点评】----------我自信 具体要求:(1)书写、格式规范。
对数函数的概念导学案
4.3.1 对数函数的概念导学案【学习目标】1. 理解对数函数的概念,能够解释数学概念和规则的含义.2. 理解对数函数与指数函数的关系,能够在关联的情景中抽象出一般的数学概念和规则.3.能够通过指数函数底数取值范围的要求,归纳出对数函数的底数的取值范围.一、导:预习课本P130—P131,理清概念并完成下面问题。
(5分钟)问1:什么是对数函数?定义域是多少?问2:对数函数为什么是函数?二、思、议、展(20分钟)【基础自测】1.下列函数是对数函数的是( )A .y =2+log 3xB .y =log a (2a )(a >0,且a ≠1)C .y =log a x 2(a >0,且a ≠1)D .y =ln x2. 据统计, 第x 年到鄱阳湖国家湿地公园越冬的白鹤数量: y (只)近似满足:()3log 2y a x =+, 观测发现第1年有越冬白鹤3 000只, 估计第7年有越冬白鹤( ) A.4 000 只B.5 000 只C.6 000 只D.7 000 只3. 函数y =lg(3x -2)的定义域是( )A .[1,+∞)B .(1,+∞)C .[23,+∞)D .(23,+∞)探究一:对数函数的概念(5分钟)例1. 下列函数表达式中,是对数函数的有( )①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ;⑤y =log x (x +2);⑥y =2log 4x ;⑦y =log 2(x +1).A .1个B .2个C .3个D .4个探究二:对数函数的定义域(10分钟)例2. 求下列函数的定义域:(1))1(log 23-=x y ; (2)y =log a (3+x )(a >0,且a ≠1).例3. 假设某地初始物价为1,每年以6%的增长率递增,经过y 年后的物价为x. (1)该地的物价经过几年后会翻一番?(2)填写下表并根据表中的数据,说明该地物价的变化规律.三、评(3分钟)四、检:完成课本P131练习1,2,3及下列当堂检测题.(10分钟) 1. 下列函数中是对数函数的是( ) A.14log y x =B.14log (1)y x =+ C.241log x y =D.14log 1y x =+2. 函数f (x )=lg1-xx -4的定义域为( ) A .(1,4)B .[1,4)C .(-∞,1)∪(4,+∞)D .(-∞,1]∪(4,+∞)3.函数()ln f x x =的定义域是( )A.()0,2B.[]0,2C.()2,+∞D.()0,+∞。
题型最全的导学案: 对数函数
课题:对数函数考纲要求:1.掌握对数函数的概念、图象和性质;2.能利用对数函数的性质解题. 教材复习1.一般地,我们把函数 叫做对数函数,其中x 是自变量,函数的定义域是3.不同底数的对数函数在同一坐标系中的图像如右: 则,,,,1,0a b c d 的大小关系是 基本知识方法1.对数函数的概念、图象和性质:①)10(log ≠>=a a x y a 且 的定义域为+R ,值域为R ;②b a log 的符号规律:同范围时值为正,异范围时值为负. ③)10(log ≠>=a a x y a 且的单调性:1>a 时,在()+∞,0单增,01a <<时,在()+∞,0单减.④)10(log ≠>=a a x y a 且的图象特征:1>a 时,图象像一撇,过()1,0点,在x 轴上方a 越大越靠近x 轴; 01a <<时,图象像一捺,过()1,0点,在x 轴上方a 越小越靠近x 轴.⑤“同正异负“法则:给定两个区间()0,1和()1,+∞,若a 与x 的范围处于同一个区间,则对数值大于零;否则若a 与x 的范围分处两个区间,则对数值小于零. 2.指数函数x y a =与对数函数log a y x =互为反函数; 3.解决与对数函数有关的问题,要特别重视定义域;4.解决对数不等式、对数方程时,要重视考虑对数的真数、底数的范围;5.对数不等式的主要解决思想是对数函数的单调性.典例分析:题型一:对数函数的图像问题1.()1(98上海)若01a <<,则函数log (5)a y x =+的图象不经过.A 第一象限 .B 第二象限 .C 第三象限 .D 第四象限()2(2013福建文)函数)1ln()(2+=x x f 的图象大致是.A .B .C .D()3(2013届高一同安第一中学期中)函数()ln ||f x x x =的图像大致是()4(07山东)函数log (3)1a y x =+-(0a >,且1a ≠)的图象恒过定点A ,若点A在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为()5(2013全国新课标Ⅱ)设3log 6a =,5log 10b =,7log 14c =,则.A c b a >> .B b c a >> .C a c b >> .D a b c >>题型二:对数函数的性质问题2.()1(07安徽文)设1a >,且2l o g (1)a m a =+,log (1)a n a =-,log (2)a p a =,则,,m n p 的大小关系为 .A n m p >> .B m p n >> .C m n p >> .D p m n >>()2(05辽宁)若011log 22<++aa a,则a 的取值范围是 .A ),21(+∞.B ),1(+∞.C )1,21( .D )21,0(()3若函数()()log 1a f x x =+(0a >,1a ≠)的定义域和值域都是[]0,1,则a =.A 13.B .C 2.D 2()4(05天津文)若函数2()log (2)(0,1)a f x x x a a =+>≠在区间1(0,)2,内恒有 ()0f x >,则()f x 的单调递增区间为.A 1(,)4-∞-.B 1(,)4-+∞.C (0,)+∞.D 1(,)2-∞-()5函数21142()(log )log 5f x x =-在区间[]2,4上的最小值是问题3.求下列函数的值域 :()1()212log 32y x x =+-; ()2()2log 24x y x ⎛⎫=⋅ ⎪⎝⎭(x ≥1)问题4.(06江苏)不等式21log (6)x x++≤3的解集为题型三:对数函数的综合应用问题4.已知函数()()log 1x a f x a =-(0a >且1a ≠)()1求()x f 的定义域,值域;()2求证该函数的图象关于直线y x =对称;问题5. 已知函数()log ax bf x x b+=-(0a >且1,0)a b ≠>. ()1求)(x f 的定义域;()2讨论)(x f 的奇偶性;()3讨论)(x f 的单调性.课后作业:1.函数y =212log (617)x x -+的值域是.A R.B [)8,+∞ .C (],3-∞-.D [3,)+∞2.(2012福建龙岩一中第二次月考文)函数12log (1)y x =-的图象大致为3.(01全国)若定义在区间()1,0-内的函数2()log (1)a f x x =+满足()0f x >,则a 的取值范围是 .A 10,2⎛⎫ ⎪⎝⎭ .B 10,2⎛⎤ ⎥⎝⎦ .C 1,2⎛⎫+∞ ⎪⎝⎭.D ),0(+∞4.已知函数()lg f x x =,若0a b <<,且()()f a f b =,则2a b +的取值范围是.A ()+∞ .B )⎡+∞⎣ .C ()3,+∞ .D [)3,+∞5.若2log 13a>,则a 的取值范围是6.)lg(2x x y +-=的递增区间为 ,值域为7.2121log 4x -≤0,则x ∈8.已知01a <<,01b <<,解不等式:()log 31b x a-<9.若02log )1(log 2<<+a a a a ,则a 的取值范围是.A )1,0( .B )21,0( .C )1,21( .D ),1(+∞10.已知7.01.17.01.1,8.0log ,8.0log ===c b a ,则c b a ,,的大小关系是.A c b a << .B c a b << .C b a c << .D a c b <<11.(07天津河西区模拟)若函数()12log 2log y x =-的值域是(),0-∞,则它的定义域是 .A ()0,2 .B ()2,4 .C ()0,4 .D ()0,112.设,a b R ∈且2a ≠,定义在区间(),b b -内的函数1()lg12axf x x+=+是奇函数. ()1求b 的取值范围;()2讨论函数()f x 的单调性.13.(07湖北八校联考)设()log 1a a f x x ⎛⎫=- ⎪⎝⎭(01a <<).()1证明:()f x 是(),a +∞上的减函数;()2解不等式()1f x >.走向高考:1.(02新课程)已知10<<<<a y x ,则有.A ()log 0a xy < .B ()0log 1a xy << .C ()1l o g 2a xy << .D ()log 2a xy >2. (05天津文)已知111222log log log b a c <<,则.A 222b a c >> .B 222a b c >> .C 222c b a >> .D 222c a b >>3.(2011天津)2log 3.45a =,4log 3.65b =,3log 0.315c ⎛⎫= ⎪⎝⎭,则.A a b c >> .B b a c >> .C a c b >> .D c a b >>4.(2012天津)已知 1.22a =,0.81()2b -=,52log 2c =,则,,a b c 的大小关系为.A c b a << .B c a b<< .C b a c << .D b c a <<5.(08全国)若函数()y f x =的图象与函数1y =的图象关于直线y x =对称,则()f x = .A 22e x - .B 2e x .C 21e x + .D 2+2e x6.(2011四川文)函数1()12x y =+的图象关于直线y x =对称的图象像大致是7.(04重庆)函数y =的定义域是.A [1,)+∞ .B 23(,)+∞ .C 23[,1] .D 23(,1]8.(06辽宁文)设0()ln 0x e x g x x x ⎧=⎨>⎩ ,,,≤则12g g ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭9.(07天津)设a b c ,,均为正数,且122log a a =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则.A a b c << .B c b a <<.C c a b << .D b a c <<10.(05全国Ⅲ)若ln 22a =,ln 33b =,ln 55c =,则.A a b c << .B c b a<< .C c a b << .D b a c <<11.(2013天津文)设函数()2x f x e x =+-,2()ln 3g x x x =+-,若实数,a b 满足 ()0f a =,()0g b =,则 .A ()0()g a f b << .B ()()0f b g a <<.C ()0()g a f b << .D ()()0f bg a <<12.(2013全国新课标Ⅱ文) 设3log 2a =,5log 2b =,23c log =,则.A a c b >> .B a c b>> .C c b a >> .D c a b >>。
对数函数导学案(全章)
对数函数导学案(全章)导学目标本章主要介绍对数函数及其性质,通过研究,你将了解以下内容:- 对数函数的定义与表示方法;- 对数函数的性质及其与指数函数之间的关系;- 对数函数在实际问题中的应用。
1. 对数函数的定义与表示方法1.1 对数函数的定义对数函数是一种能够描述指数运算逆运算的数学函数。
设正数a > 0 且a ≠ 1,b > 0,则以 a 为底 b 的对数,记作logₐb,定义为满足a^logₐb = b 的实数。
1.2 对数函数的表示方法对数函数可以用不同的表示方法来表示,常见的有以下两种:- 指数形式:logₐb = x,表示以 a 为底 b 的对数为 x;- 运算形式:logₐb = logc b / logc a,表示以 a 为底 b 的对数,等于以任意正数 c 为底 b 的对数与以 c 为底 a 的对数的商。
2. 对数函数的性质与关系2.1 对数函数的性质对数函数具有以下性质:- logₐa = 1;- logₐa^x = x,其中 a > 0,a ≠ 1;- logₐ1 = 0,其中 a > 0,a ≠ 1;- log₁₀10 = 1,log₂2 = 1。
2.2 对数函数与指数函数的关系对数函数与指数函数之间存在着紧密的联系:- 若 a^x = b,则logₐb = x;- 若logₐb = x,则 a^x = b。
3. 对数函数的应用对数函数在实际问题中有广泛的应用,例如:- 在经济学中,对数函数可以用来描述利率、复利和指数增长等问题;- 在物理学中,对数函数可以用来描述声音的音量、地震的震级等问题;- 在计算机科学中,对数函数可以用来描述算法的时间复杂度等问题。
总结本章主要介绍了对数函数的定义与表示方法,对数函数的性质与指数函数的关系,以及对数函数在实际问题中的应用。
通过研究,你可以更好地理解并运用对数函数解决相关的数学问题。
参考资料:- 张宇老师. (2021). 《高中数学》. 北京师范大学出版社.。
对数函数导学案
对数函数导学案【学习要求】①理解对数函数的概念,熟悉对数函数的图象与性质规律;②掌握对数函数的性质,并能利用对数函数的性质初步解决一些有关求函数定义域、比较两个数的大小等. 对数函数是什么?在细胞分裂的问题中,细胞分裂个数y 和分裂次数x 的函数关系用指数函数 表示;那么,分裂次数x 与细胞的个数y 的关系式可用 表示,习惯上,用 表示自变量,用 表示函数值,分裂次数x 与细胞的个数y 的关系式可改为 一:对数函数的定义一般地,函数______________叫做对数函数,其中x 叫做_________,函数的定义域为________________. 概念巩固:下列函数是对数函数吗?二、对数函数的图像三个步骤:列表 → 描点 → 连线『试一试』:在同一坐标系中,用描点法作出3log y x =和13log y x =的图像.『思一思』(教材73页探究)选取底数(00,1)a a >≠且的若干不同的值,在同一平面直角坐标系内作出相应的对数函数图像. 观察有什么共同特征?x24(1)log (2)(2)3log (3)ln y x y x y x ===122log log y x y x ==在同一直角坐标系中画出和的图象三、对数函数log (0,1)a y x a a =>≠且的图像和性质四、例题例1、 求下列函数的定义域:(3)y = 2(4)log (164)x y =-例2、 比较大小:(1)l og 23.4与 log 28.5思考:如果改成以0.3为底, log 23.4 log 28.5如果改为以a 为底, log 23.4 log 28.5变式训练(教材74页)已知下列不等式,比较正数m ,n 的大小:五、课后作业红对勾卷子76(2)log 5,log 72(1)log a y x =(2)log (4)a y x =-33(1)log log m n <0.30.3(2)log log m n>(3)log log a a m n <。
必修一对数函数导学案
关系logt P =,生物死亡年数t 都有唯一的值与之对应,从而t 是P 的函数)新知:一般地,当a >0且a ≠1时,函数log a y x =叫做对数函数(logarithmic function),自变量是x ; 函数的定义域是(0,+∞). 反思:对数函数定义与指数函数类似,都是形式定义,注意辨别,如:22log y x =,5log (5)y x = 都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制 (0a >,且1)a ≠. 探究任务二:对数函数的图象和性质问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.试试:同一坐标系中画出下列对数函数的图象.2log y x=;0.5log y x =.反思:(1)根据图象,你能归纳出对数函数的哪些(2)图象具有怎样的分布规律?2※ 典型例题例1求下列函数的定义域: (1)2log a y x =;(2)log (3)a y x =-;变式:求函数y =的定义域.例2比较大小:(1)ln 3.4,ln 8.5; (2)0.30.3log 2.8,log 2.7; (3)log 5.1,log 5.9a a .小结:利用单调性比大小;注意格式规范.※ 动手试试练1. 求下列函数的定义域.(1)0.2log (6)y x =--; (2)y =练2. 比较下列各题中两个数值的大小.(1)22log 3log 3.5和; (2)0.30.2log 4log 0.7和; (3)0.70.7log 1.6log 1.8和; (4)23log 3log 2和.当堂检测(时量:5分钟 满分:10分)计分:1. 当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象是( ).2. 函数22log (1)y x x =+≥的值域为( ). A. (2,)+∞ B. (,2)-∞C. [)2,+∞D. [)3,+∞ 3. 不等式的41log 2x >解集是( ).A. (2,)+∞B. (0,2)B.1(,)2+∞ D.1(0,)24. 比大小:(1)log 67 log 7 6 ; (2)log 31.5 log 2 0.8.5. 函数(-1)log (3-)x y x =的定义域是 .1. 已知下列不等式,比较正数m 、n 的大小: (1)3log m <3log n ; (2)0.3log m >0.3log n ; (3)log a m >log a n (a >1)2. 求下列函数的定义域:(1)y =(2)y =四、总结提升 ※ 学习小结1. 对数函数的概念、图象和性质;2. 求定义域;3. 利用单调性比大小.※ 知识拓展对数函数凹凸性:函数()log ,(0,1)a f x x a a =>≠,12,x x 是任意两个正实数.当1a >时,1212()()()22f x f x x x f ++≤;当01a <<时,1212()()()22f x f x x x f ++≥.函数2x y =中的自变量与因变量对调位置而得出的. 习惯上我们通常用x 表示自变量,y 表示函数,即写为2log y x =.新知:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ) 例如:指数函数2x y =与对数函数2log y x =互为反函数.试试:在同一平面直角坐标系中,画出指数函数2x y =及其反函数2log y x =图象,发现什么性质?反思:(1)如果000(,)P x y 在函数2x y =的图象上,那么P 0关于直线y x =的对称点在函数2log y x =的图象上吗?为什么?(2)由上述过程可以得到结论:互为反函数的两个函数的图象关于 对称.※ 典型例题例1求下列函数的反函数:(1) 3x y =; (2)log (1)a y x =-.小结:求反函数的步骤(解x →习惯表示→定义域)变式:点(2,3)在函数log (1)a y x =-的反函数图象上,求实数a 的值.4例2溶液酸碱度的测量问题:溶液酸碱度pH 的计算公式lg[]pH H +=-,其中[]H +表示溶液中氢离子的浓度,单位是摩尔/升. (1)分析溶液酸碱度与溶液中氢离子浓度之间的变化关系?(2)纯净水7[]10H +-=摩尔/升,计算其酸碱度.小结:抽象出对数函数模型,然后应用对数函数模型解决问题,这就是数学应用建模思想.※ 动手试试练1. 己知函数()x f x a k =-的图象过点(1,3)其反函数的图象过点(2,0),求()f x 的表达式.练2. 求下列函数的反函数. (1) y=x (x ∈R ); (2)y =log a2x (a >0,a ≠1,x >0)当堂检测0.5log y x =的反函数是( ). A. 0.5log y x =- B. 2log y x = C.2xy = D.1()2xy =2. 函数2x y =的反函数的单调性是( ). A. 在R 上单调递增 B. 在R 上单调递减C. 在(0,)+∞上单调递增D. 在(0,)+∞上单调递减 3. 函数2(0)y x x =<的反函数是( ).A. (0)y x =>B. (0)y x =>C. (0)y x =>D. y =4. 函数x y a =的反函数的图象过点(9,2),则a 的值为 .5. 右图是函数1log ay x=,2log a y x =3log a y x=, 4log a y x=的图象,则底数之间的关系为 .1. 现有某种细胞100个,其中有占总数12的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg 30.477,lg 20.301==).2. 探究:求(0)ax b y ac cx d+=≠+的反函数,并求出两个函数的定义域与值域,通过对定义域与值域的比较,你能得出一些什么结论?四、总结提升 ※ 学习小结① 函数模型应用思想;② 反函数概念.※ 知识拓展函数的概念重在对于某个范围(定义域)内的任意一个自变量x 的值,y 都有唯一的值和它对应. 对于一个单调函数,反之对应任意y 值,x 也都有惟一的值和它对应,从而单调函数才具有反函数. 反函数的定义域是原函数的值域,反函数的值域是原函数的定义域,即互为反函数的两个函数,定义域与值域是交叉相等※ 典型例题例1判断下列函数的奇偶性. (1)1()log1x f x x-=+;(2)())f x x =.例2证明函数22()log (1)f x x =+在(0,)+∞上递增.变式:函数22()log (1)f x x =+在(,0)-∞上是减函数还是增函数?例3 求函数0.2()log (45)f x x =-+的单调区间.变式:函数2()log (45)f x x =-+的单调性是 .小结:复合函数单调性的求法及规律:“同增异减”.※ 动手试试 练1. 比较大小: (1)log log (01)a a e a a π>≠和且 ;6(2)2221log log (1)()2a a a R ++∈和.练2. 已知log (31)a a -恒为正数,求a 的取值范围.练 3. 函数log a y x =在[2,4]上的最大值比最小值大1,求a 的值.练4. 求函数23log (610)y x x =++的值域.1. 下列函数与y x =有相同图象的一个函数是( )A.y =B.2xy x=C.log (01)a xy aa a =>≠且 D.log xa y a=2.函数y = ).A.[1,)+∞B.2(,)3+∞C.2[,1]3D.2(,1]33. 若(ln )34f x x =+,则()f x 的表达式为( ) A. 3ln x B. 3ln 4x + C. 3x e D. 34x e +4.函数2()lg(8)f x x =+的定义域为 ,值域为 .5. 将20.3,2log 0.5,0.5log 1.5由小到大排列的顺序是 .三、总结提升 ※ 学习小结1. 对数运算法则的运用;2. 对数运算性质的运用;3. 对数型函数的性质研究;4. 复合函数的单调性. ※ 知识拓展 复合函数(())y f x ϕ=的单调性研究,遵循一般步骤和结论,即:分别求出()y f u =与()u x ϕ=两个函数的单调性,再按口诀“同增异减”得出复合后的单调性,即两个函数同为增函数或者同为减函数,则复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 为何有“同增异减”?我们可以抓住 “x 的变化→()u x ϕ=的变化→()y f u =的变化”这样一条思路进行分析。
导学案-对数函数
高一数学导学案时间:10.17 班级:教师:课题:对数函数及其性质(一)教学目标1.对数函数的概念;2.对数函数的图象与性质.教学重难点:1.理解对数函数的概念;2.掌握对数函数的图象、性质;教学过程一、复习引入:1、指数与对数的互化关系:;2.重要结论:;;3、的图象和性质.a>10<a<1图象性质(1)定义域:(2)值域:(3)过点,即x= ____时,y=________(4)在R上是函数(4)在R上是函数4、我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞数是分裂次数的函数,这个函数可以用指数函数=表示.这个函数可以写成对数的形式就是___________.如果用表示自变量,表示函数,这个函数就是.引出新课--对数函数.二、新授内容:1.对数函数的定义:______________________________________________________. 2.对数函数的图象:例:作出函数与的图象:思考:与的图象有什么关系?3.练习:1.画出函数及的图象,并且说明这两个函数的区别联系.4.对数函数的图像与性质:a>10<a<1图象性质定义域:值域:恒过定点_____,即当x= _____ 时,y=_________当时,__________当时,_____当时,__________当时,________在(0,+∞)上是____ 函数在(0,+∞)上是__ 函数三、讲解范例:例1.求下列函数的定义域:(1);(2);(3)(4)例2.比较下列各组数中两个值的大小:⑴;⑵;⑶(4) (5)(6)四、练习巩固:1。
求下列函数的定义域:(1 (2) (3) (4)(5)(6)(7)2. 比较下列各组数中两个值的大小(6)(a>0且a≠1)练习2、函数的图象恒过定点()3、已知函数的定义域与值域都是[0,1],求a的值。
6对数函数(1)导学案——高一上学期数学苏教版必修第一册
对数函数(1)【学习目标】1. 通过具体实例,了解对数函数的概念.2. 能求解对数函数相关定义域问题;3. 能用描点法或借助计算工具画出具体对数函数的图象,探索并理解对数函数的单调性与特殊点.4. 知道对数函数y =log a x 与指数函数y =a x (a >0,且a ≠1)互为反函数.【学习过程】【活动一】对数函数的概念在某种细胞分裂过程中,细胞个数y 是分裂次数x 的指数函数y =2x .因此,知道x 的值(输入值是分裂次数),就能求出y 的值(输出值是细胞个数).现在,如果我们知道了细胞个数y ,如何确定分裂次数x ?请阅读书本第152页,思考下列问题:(1)y 与x 的关系式为y =2x ,那么,如何用y 来表示出x ?(2)在思考1得出的关系式中,x 是y 的函数吗?为什么?(3)书本前面提到的放射性物质,经过的时间x (单位:年)与物质剩余量y 的关系式为y =0.84x ,那么,如何用y 来表示出x ? x 是y 的函数吗?(4)习惯上,我们常用x 表示自变量,用y 表示它的函数.这样,上面两个函数可写出怎样的形式?(5)函数x y x y x y x y 21384.02log ,log ,log ,log ====具有什么共同特征?什么是对数函数?例1 若对数函数f (x )=(2m 2-m )log a x +m -1的图象过点(4,-2),求a +m =________;【活动二】对数函数相关的定义域问题:例2 求下列函数的定义域:(1) y =log a x -1(a >0,a ≠1).(2) y =1log 2x ;(3) y =log (2x -1)(-4x +8).例3 已知函数)(log )(22a x ax x f +-=的定义域为R ,求实数a 的取值范围;【活动三】对数函数的图象(1)请在同一平面直角坐标系内作出函数x y 2=及x y 2log =的图象,观察图象,探讨这两个函数的关系?(2)能否从理论角度证实、论述上述关系?(3)尝试作出x y 21log 的图象?【总结】我们如何得到对数函数y =log a x (a >0,a ≠1)的图象和性质? 尝试完成表格:例4 函数y =log a (x +1)-2(a >0,且a ≠1)的图象恒过定点________. 例5 当a >1时,在同一坐标系中,函数y =a -x 与y =log a x 的图象为( )A B C D例6 比较下列各组数中两个数的大小:(1) log 23.4,log 28.5; (2) log 0.51.8,log 0.52.1; (3) log 75,log 67.【当堂检测】1.求下列函数的定义域: 1)34(log )(15.0+-=x x f )(;(2))12(log 1)(5.0+=x x f ; (3))35lg(lg )(x x x f -+=.2.函数x x f 2)(=的反函数为)(y x g =,则=)21(g ; 3. 已知函数f (x )=x 31log 3的定义域为[3,9],则函数f (x )的值域是________.4.试判断函数)23(log )(5.0-=x x f 的单调性,并用定义证明.5.比较下列各组中两个值的大小:(1)log a 3.1,log a 5.2(a >0,且a ≠1); (2)log 3π,log π3. (3)log 30.2,log 40.2。
对数函数导学案
第九课时 对数函数(1)【学习目标】通过具体实例了解对数函数的概念,并知道对数函数)1,0(log ≠>=a a x y a 与指数函数)1,0(≠>=a a a y x 互为反函数;掌握对数函数的图象和性质,并能应用它们解决一些简单问题。
【重点】对数函数的概念与性质。
【难点】对数函数性质的运用。
【活动过程】活动一:复习探究,感受数学对数式与指数式的互化问题1:y x 2log =这个式子能否把它看成x 是y 的函数?活动二:小组合作,建构数学1、对数函数定义:2、(1)作xy 2=与x y 2log =的图像。
问题2:函数log a y x =与函数x y a =)10(≠>a a 且的定义域、值域之间有什么关系? 问题3:对数函数的图象与指数函数的图象关于直线 对称。
(2)作x y 2log =与x y 21log =的图像。
(3)作x y 2log =与x y 3log =的图像。
3、对数函数的图像与性质5、指数函数x y a =(0,1)a a >≠与对数函数log a y x =(0,1)a a >≠称为互为反函数。
6、一般地,如果函数()y f x =存在反函数,那么它的反函数,记作活动三:学习展示,运用数学例1、求下列函数的定义域(1)0.2log (4);y x =-; (2)log a y =(0,1).a a >≠;(3)2(21)log (23)x y x x -=-++ (4)y例2、利用对数函数的性质,比较下列各组数中两个数的大小:(1)2log 3.4,2log 3.8; (2)0.5log 1.8,0.5log 2.1;(3)7log 5,6log 7; (4)2log 3,4log 5,32例3、已知0<log 4log 4m n <,比较m ,n 的大小。
变1:已知log 4log 4m n <,则m ,n 的大小又如何?变2:(1)若4log 15a<(0a >且1)a ≠,求a 的取值范围; (2)已知(23)log (14)2a a +->,求a 的取值范围; 活动四:课后巩固一、基础题1、函数5log (23)x y x -=-的定义域为 ,函数的定义域是2、 比较下列各组数中值的大小:(1)2log 3.4 2log 8.5;(2)0.3log 1.8 0.3log 2.7(3)log 5.1a log 5.9a . (4)0.91.1, 1.1log 0.9,0.7log 0.8 (5)2log 0.4 3log 0.4,3、已知a 2>b>a>1,则m=log a b ,n=log b a ,p= log ba b 的大小关系是 4、解下列方程:(1)35327x += (2 ) 55log (3)log (21)x x =+ (3)lg(1)x =-5、解不等式:(1)55log (3)log (21)x x <+ (2)lg(1)1x -<6、设函数lg(1)lg(2)y x x =-+-的定义域为M ,函数2lg(32)y x x =-+的定义域为N ,则M ,N 的关系是7、已知()|log |a f x x =,其中01a <<,则下列不等式成立的是(1)11()(2)()43f f f >>(2)11(2)()()34f f f >> (3)11()()(2)43f f f >> (4)11()(2)()34f f f >> 二、提高题:8、若2log 13a <(0a >且1)a ≠,求a 的取值范围。
对数的概念(导学案)
§5.1对数的概念预习案一、三维目标:知识与技能(1)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型。
(2)了解指数函数xay=(a>0, 1≠a)与对数函数xyalog=(a>0, a1≠)互为反函数。
2、过程与方法在解决简单实际问题的过程中,体会对数函数是一类重要的函数模型。
能运用现代信息技术学习、探索和解决问题。
情感、态度与价值观通过对对数函数的研究,使学生深刻认识到函数是一种通过某一事物的变化信息可推知另一事物信息的对应关系的数学模型,结合实际问题,感受运用对数函数概念建立模型的过程与方法。
二、学习重点:理解对数函数的概念。
三、学习难点:指数函数xay=(a>0, 1≠a)与对数函数xyalog=(a>0, a1≠)互为反函数。
四、知识链接:1、对数函数的概念我们把函数叫做对数函数,a叫做。
特别地,我们称为常用对数函数;称为自然对数函数。
指数函数xay=(a>0, 1≠a)与对数函数xyalog=(a>0, a1≠)有什么关系?探究案例1计算:计算对数函数xy2log=对应于x取1,2,4时的函数值;计算常用对数函数xy lg=对应于x取1,10,100,0.1时的函数值。
变式: 计算对数函数xy 21log =对应于x 取0.25,0.5,1,2,4,8,16时的函数值;计算常用对数函数x y lg =对应于x 取0.1,0.001.,1,1000时的函数值。
例2 写出下列函数的反函数:(1)x y lg = (2)x y 31log = (3)x y 5= (4)x y ⎪⎭⎫ ⎝⎛=43训练案1、计算对数函数x y 3log =对应于x 取1,3,9时的函数值。
2、列函数的定义域:(1)5lg )2(222-=-x x x f (2)求函数)3lg(562+--=x x x y 的定义域。
《2.2对数函数》导学案1
《2.2对数函数》导学案1解读对数概念及运算对数是中学数学中重要的内容之一,理解对数的定义,掌握对数的运算性质是学习对数的重点内容.现梳理这部分知识,供同学们参考.一、对数的概念对数概念与指数概念有关,指数式和对数式是互逆的,即a b =N ⇔log a N =b (a >0,且a ≠1),据此可得两个常用恒等式:(1)log a a b =b ;(2)alog a N =N .例1 计算:log 22+log 51+log 3127+9log 32.分析 根据定义,再结合对数两个恒等式即可求值.解 原式=1+0+log 33-3+(3log 32)2=1-3+4=2.点评 解决此类问题关键在于根据幂的运算法则将指数式和对数式化为同底数. 二、对数的运算法则常用的对数运算法则有:对于M >0,N >0. (1)log a (MN )=log a M +log a N ;(2)log a MN =log a M -log a N ;(3)log a M n =nlog a M .例2 计算:lg 14-2lg 73+lg 7-lg 18. 分析 运用对数的运算法则求解. 解 由已知,得原式=lg (2×7)-2(lg 7-lg 3)+lg 7-lg (32×2) =lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.点评 对数运算法则是进行对数运算的根本保证,同学们必须能从正反两方面熟练应用.三、对数换底公式根据对数的定义和运算法则 可以得到对数换底公式: log a b =log c blog c a (a >0且a ≠1,c >0且c ≠1,b >0). 由对数换底公式又可得到两个重要结论:(1)log a b ·log b a =1;(2)log an b m=mn log a b .例3 计算:(log 25+log 4125)×log 32log35.分析 在利用换底公式进行化简求值时,一般是根据题中对数式的特点选择适当的底数进行换底,也可选择以10为底进行换底.解 原式=(log 25+32log 25)×log 322log 35 =52log 25×12log 52=54.点评 对数的换底公式是“同底化”的有力工具,同学们要牢记.通过上面讲解,同学们可以知道对数的定义是对数式和指数式互化的依据,正确进行它们之间的相互转换是解题的有效途径.对数的运算性质,同学们要熟练掌握,在应用过程中避免错误,将公式由“正用”“逆用”逐步达到“活用”的境界.对数换底公式的证明及应用设a >0,c >0且a ≠1,c ≠1,N >0,则有log a N =log c Nlog c a ,这个公式称为对数的换底公式,它在对数的运算中有着重要的应用,课本中没有给出证明,现证明如下:证明 记p =log a N ,则a p =N .**式两边同时取以c 为底的对数(c >0且c ≠1)得 log c a p =log c N ,即plog c a =log c N . 所以p =log c N log c a ,即log a N =log c Nlog c a . 推论1:log a b ·log b a =1.推论2:log an b m=mn log a b (a >0且a ≠1,b >0).例4 (1)已知log 189=a ,18b =5,求log 3645的值; (2)求log 23·log 34·log 45·…·log 6364的值. 解 (1)因为log 189=a ,18b =5, 所以lg 9lg 18=a .所以lg 9=alg 18,lg 5=blg 18. 所以log 3645=lg5×9lg 1829=lg 5+lg 92lg 18-lg 9 =b lg 18+a lg 182lg 18-a lg 18=b +a 2-a .(2)log 23·log 34·log 45·…·log 6364 =lg 3lg 2·lg 4lg 3·lg 5lg 4·…·lg 64lg 63 =lg 64lg 2=6lg 2lg 2=6.点评 对数运算法则中,对数式都是同底的,凡不同底的对数运算,都需要用换底公式将底统一,一般统一成常用对数.例5 已知12log 8a +log 4b =52,log 8b +log 4a 2=7,求ab 的值. 解 由已知可得⎩⎪⎨⎪⎧16log 2a +12log 2b =52,13log 2b +log 2a =7,即⎩⎪⎨⎪⎧log 2a +3log 2b =15,3log 2a +log 2b =21.解得⎩⎪⎨⎪⎧log 2a =6,log 2b =3.所以a =26,b =23.故ab =26·23=512.点评 发现底数“4”,“8”与“2”的关系,将底数统一成“2”,解决问题比较简单. 此外还有下面的关系式:log N M =log a M log a N =log b Mlog b N ;log a M ·log b N =log a N ·log b M ;log a M log b M =log a Nlog b N =log a b ;Nlog a M =Mlog a N .对数函数图象及性质的简单应用对数函数图象是对数函数的一种表达形式,形象显示了函数的性质,为研究它的数量关系提供了“形”的直观性.它是探求解题思路、获得问题结果的重要途径.能准确地作出对数函数的图象是利用平移、对称的变换来研究复杂函数的性质的前提,而数形结合是研究与对数函数的有关问题的常用思想.一、求函数的单调区间例6 画出函数y =log 2x 2的图象,并根据图象指出它的单调区间. 解 当x ≠0时,函数y =log 2x 2满足 f (-x )=log 2(-x )2=log 2x 2=f (x ),所以y =log 2x 2是偶函数,它的图象关于y 轴对称. 当x >0时,y =log 2x 2=2log 2x ,因此先画出y =2log 2x (x >0)的图象为C 1,再作出C 1关于y 轴对称的图象C 2,C 1与C 2构成函数y =log 2x 2的图象,如图所示.由图象可以知道函数y =log 2x 2的单调减区间是(-∞,0),单调增区间是(0,+∞). 点评 作图象时一定要考虑定义域,否则会导致求出错误的单调区间,同时在确定单调区间时,要注意增减区间的分界点,特别要注意区间的开与闭问题.二、利用图象求参数的值例7 若函数f (x )=log a (x +1)(a >0,a ≠1)的定义域和值域都是[0,1],则a 等于( ) A .13B . 2C .22D .2解析 当a >1时,f (x )=log a (x +1)的图象如图所示. f (x )在[0,1]上是单调增函数,且值域为[0,1], 所以f (1)=1,即log a (1+1)=1, 所以a =2,当0<a <1时,其图象与题意不符,故a 的值为2,故选D . 答案 D点评 (1)当对数的底数不确定时要注意讨论; (2)注意应用函数的单调性确定函数的最值(值域). 三、利用图象比较实数的大小例8 已知log m 2<log n 2,m ,n >1,试确定实数m 和n 的大小关系.解 在同一直角坐标系中作出函数y =log m x 与y =log n x 的图象如图所示,再作x =2的直线,可得m >n .点评 不同底的对数函数图象的规律是:(1)底都大于1时,底大图低(即在x >1的部分底越大图象就越接近x 轴);(2)底都小于1时,底大图高(即在0<x <1的部分底越大图象就越远离x 轴).四、利用图象判断方程根的个数例9 已知关于x 的方程|log 3x |=a ,讨论a 的值来确定方程根的个数.解 因为y =|log 3x |=⎩⎪⎨⎪⎧log 3x , x >1,-log 3x , 0<x <1,在同一直角坐标系中作出函数与y =a 的图象,如图可知: (1)当a <0时,两个函数图象无公共点,所以原方程根的个数为0; (2)当a =0时,两个函数图象有一个公共点,所以原方程根有1个; (3)当a >0时,两个函数图象有两个公共点,所以原方程根有2个.点评 利用图象判断方程根的个数一般都是针对不能将根求出的题型,与利用图象解不等式一样,需要先将方程等价转化为两端对应的函数为基本函数(最好一端为一次函数),再作图象.若含有参数,要注意对参数的讨论,参数的取值不同,函数图象的位置也就不同,也就会引起根的个数不同.三类对数大小的比较一、底相同,真数不同例10 比较log a 2与log a 33的大小.分析 底数相同,都是a ,可借助于函数y =log a x 的单调性比较大小. 解 由(2)6=8<(33)6=9,得2<33. 当a >1时,函数y =log a x 在(0,+∞)上是增函数, 故log a 2<log a 33; 当0<a <1时,函数y =log a x 在(0,+∞)上是减函数, 故log a 2>log a 33.点评 本题需对底数a 的范围进行分类讨论,以确定以a 为底的对数函数的单调性,从而应用函数y =log a x 的单调性比较出两者的大小.二、底不同,真数相同例11 比较log 0.13与log 0.53的大小.分析 底数不同但真数相同,可在同一坐标系中画出函数y =log 0.1x 与y =log 0.5x 的图象,借助于图象来比较大小;或应用换底公式将其转化为同底的对数大小问题.解 方法一 在同一坐标系中作出函数y =log 0.1x 与y =log 0.5x 的图象,如右图. 在区间(1,+∞)上函数y =log 0.1x 的图象在函数y =log 0.5x 图象的上方, 故有log 0.13>log 0.53.方法二 log 0.13=1log 30.1,log 0.53=1log 30.5. 因为3>1,故y =log 3x 是增函数, 所以log 30.1<log 30.5<0. 所以1log 30.1>1log 30.5. 即log 0.13>log 0.53.方法三 因为函数y =log 0.1x 与y =log 0.5x 在区间(0,+∞)上都是减函数,故log 0.13>log 0.110=-1,log 0.53<log 0.52=-1,所以log 0.13>log 0.53.点评 方法一借助于对数函数的图象;方法二应用换底公式将问题转化为比较两个同底数的对数大小;方法三借助于中间值来传递大小关系.三、底数、真数均不同 例12 比较log 323与log 565的大小.分析 底数、真数均不相同,可通过考察两者的范围来确定中间值,进而比较大小. 解 因为函数y =log 3x 与函数y =log 5x 在(0,+∞)上都是增函数, 故log 323<log 31=0,log 565>log 51=0, 所以log 323<log 565.点评 当底数、真数均不相同时,可找中间量(如1或0等)传递大小关系,从而比较出大小.综上所述,比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的范围决定,若“底”的范围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论,如例10;二看真数,底数不同但真数相同的两个对数可借助于图象,或应用换底公式将其转化为同底的对数来比较大小,如例11;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或0等)来比较,如例12.初学对数给你提个醒对数函数是函数的重要内容之一,由于同学们对概念、定义域、值域、图象等知识点掌握得不够好,经常出现解题错误,现将这些错误进行归纳并举例说明.一、忽视0没有对数例13 求函数y =log 3(1+x )2的定义域. 错解 对于任意的实数x ,都有(1+x )2≥0, 所以原函数的定义域为R .剖析 只考虑到负数没有对数.事实上,由对数的定义可知,零和负数都没有对数. 正解 {x |x ≠-1} 二、忽视1的对数为0 例14 求函数y =1log 22x +3的定义域.错解 由2x +3>0,得x >-32, 所以定义域为{x |x >-32}.剖析 当2x +3=1时,log 21=0,分母为0没有意义,上述解法忽视了这一点. 正解 {x |x >-32且x ≠-1}三、忽视底数的取值范围例15 已知log (2x +5)(x 2+x -1)=1,则x 的值是( ) A .-4 B .-2或3 C .3D .-4或5错解 由2x +5=x 2+x -1,化简得x 2-x -6=0, 解得x =-2或x =3.故选B .剖析 忽视了底数有意义的条件:2x +5>0且2x +5≠1.当x =-2时,2x +5=1,应舍去,只能取x =3.正解 C四、忽视真数大于零例16 已知lg x +lg y =2lg (x -2y ),求log 2xy 的值.错解 因为lg x +lg y =2lg (x -2y ), 所以xy =(x -2y )2,即x 2-5xy +4y 2=0,所以x =y 或x =4y ,即x y =1或xy =4, 所以log 2x y =0,或log 2xy =4.剖析 错误的原因在于忽视了原式中的三个对数式隐含的条件,x >0,y >0,x -2y >0,所以x >2y >0,所以x =y 不成立.正解 因为lg x +lg y =2lg (x -2y ), 所以xy =(x -2y )2,即x 2-5xy +4y 2=0, 所以x =y 或x =4y ,因为x >0,y >0,x -2y >0,所以x =y 应舍去,所以x =4y ,即xy =4, 所以log 2xy =4.五、对数运算性质混淆例17 下列运算:(1)log 28log 24=log 284; (2)log 28=3log 22;(3)log 2(8-4)=log 28-log 24;(4)log 243·log 23=log 2(43×3).其中正确的有( ) A .4个 B .3个 C .2个D .1个错解 A剖析 (1)log 28log 24真数8与4不能相除;(3)中log 2(8-4)不能把log 乘进去运算,没有这种运算的,运算log 284=log 28-log 24才是对的;(4)错把log 提出来运算了,也没有这种运算,正确的只有(2).正解 D六、忽视对含参底数的讨论例18 已知函数y =log a x (2≤x ≤4)的最大值比最小值大1,求a 的值. 错解 由题意得log a 4-log a 2=log a 2=1, 所以a =2.剖析 对数函数的底数含有参数a ,错在没有讨论a 与1的大小关系而直接按a >1解题. 正解 (1)若a >1,函数y =log a x (2≤x ≤4)为增函数, 由题意得log a 4-log a 2=log a 2=1, 所以a =2,又2>1,符合题意.(2)若0<a <1,函数y =log a x (2≤x ≤4)为减函数, 由题意得log a 2-log a 4=log a 12=1, 所以a =12,又0<12<1,符合题意, 综上可知a =2或a =12.巧借对数函数图象解题数形结合思想,就是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维相结合.通过对图形的认识、数形转化,来提高思维的灵活性、形象性、直观性,使问题化难为易、化抽象为具体.它包含“以形助数”和“以数辅形”两个方面.一、利用数形结合判断方程解的范围方程解的问题可以转化为曲线的交点问题,从而把代数与几何有机地结合起来,使问题的解决得到简化.例1 方程lg x +x =3的解所在区间为( ) A .(0,1) B .(1,2) C .(2,3)D .(3,+∞)答案 C解 在同一平面直角坐标系中,画出函数y =lg x 与y =-x +3的图象(如图所示).它们的交点横坐标x 0显然在区间(1,3)内,由此可排除选项A 、D .实际上这是要比较x 0与2的大小.当x 0=2时,lg x 0=lg 2,3-x 0=1.由于lg 2<1,因此x 0>2,从而判定x 0∈(2,3).点评 本题是通过构造函数用数形结合法求方程lg x +x =3的解所在的区间.数形结合,要在结合方面下功夫.不仅要通过图象直观估计,而且还要计算x0的邻近两个函数值,通过比较其大小进行判断.二、利用数形结合求解的个数例2已知函数f(x)满足f(x+2)=f(x),当x∈[-1,1)时,f(x)=x,则方程f(x)=lg x的根的个数是________.解析构造函数g(x)=lg x,在同一坐标系中画出f(x)与g(x)的图象,如图所示,易知有4个根.答案4点评本题学生极易填3,其原因是学生作图不标准,尤其是在作对数函数的图象时没有考虑到当x=10时,y=1.因此,在利用数形结合法解决问题时,要注意作图的准确性.三、利用数形结合解不等式例3使log2x<1-x成立的x的取值范围是______________________________________.解析构造函数f(x)=log2x,g(x)=1-x,在同一坐标系中作出两者的图象,如图所示,直接从图象中观察得到x∈(0,1).答案(0,1)点评用数形结合的方法去分析解决问题,除了会读图外,还要会画图,绘制图形既是利用数形结合方法的需要,也是培养我们动手能力的需要.对数函数常见题型归纳一、考查对数函数的定义例4已知函数f(x)为对数函数,且满足f(3+1)+f(3-1)=1,求f(5+1)+f(5-1)的值.解设对数函数f(x)=log a x(a>0,a≠1),由已知得log a(3+1)+log a(3-1)=1,即log a[(3+1)×(3-1)]=1⇒a=2.所以f (x )=log 2x (x >0).从而得f (5+1)+f (5-1)=log 2[(5+1)×(5-1)]=2. 二、考查对数的运算性质 例5 log 89log 23的值是( ) A .23B .1C .32D .2解析 原式=log 29log 28·1log 23 =23·log 23log 22·1log 23=23. 答案 A三、考查指数式与对数式的互化例6 已知log a x =2,log b x =3,log c x =6,求log abc x 的值. 解 由已知,得a 2=x ,b 3=x ,c 6=x , 所以a =x 12,b =x 13,c =x 16. 于是,有abc =x 12+13+16=x 1, 所以x =abc ,则log abc x =1.四、考查对数函数定义域和值域(最值)例7 (江西高考)若f (x )=1log 122x +1,则f (x )的定义域为( )A .⎝ ⎛⎭⎪⎫-12,0B .⎝ ⎛⎦⎥⎤-12,0C .⎝ ⎛⎭⎪⎫-12,+∞D .(0,+∞)答案 A解析 要使f (x )有意义,需log 12(2x +1)>0=log 121, ∴0<2x +1<1,∴-12<x <0.例8 已知函数f (x )=2+log 3x (1≤x ≤9),则函数g (x )=f 2(x )+f (x 2)的最大值为________,最小值为________.解析 由已知,得函数g (x )的定义域为⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9⇒1≤x ≤3.且g (x )=f 2(x )+f (x 2)=(2+log 3x )2+2+log 3x 2 =log 23x +6log 3x +6.则当log 3x =0,即x =1时,g (x )有最小值g (1)=6; 当log 3x =1,即x =3时,g (x )有最大值g (3)=13. 答案 13 6 五、考查单调性例9 若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 为( ) A .24B .22C .14D .12解析 由于0<a <1,所以f (x )=log a x (0<a <1)在区间[a ,2a ]上递减,在区间[a ,2a ]上的最大值为f (a ),最小值为f (2a ),则f (a )=3f (2a ),即log a a =3log a (2a )⇒a =24.答案 A六、考查对数函数的图象例10 若不等式x 2-log a x <0在(0,12)内恒成立,则a 的取值范围是________.解析 由已知,不等式可化为x 2<log a x . 所以不等式x 2<log a x 在(0,12)内恒成立,可转化为当x ∈(0,12)时,函数y =x 2的图象在函数y =log a x 图象的下方,如图所示. 答案 [116,1)点评 不等式x 2<log a x 左边是一个二次函数,右边是一个对数函数,不可能直接求解,充分发挥图象的作用,则可迅速达到求解目的.巧比对数大小一、中间值法若两对数底数不相同且真数也不相同时,比较其大小通常运用中间值作媒介进行过渡. 理论依据:若A >C ,C >B ,则A >B . 例11 比较大小:log 932,log 8 3.解 由于log 932<log 93=14=log 822<log 83, 所以log 932<log 8 3.点评 以14为纽带,建立起放缩的桥梁,解题时常通过观察确定中间值的选取. 二、比较法比较法是比较对数大小的常用方法,通常有作差和作商两种策略. 理论依据:(1)作差比较:若A -B >0,则A >B ;(2)作商比较:若A ,B >0,且AB >1,则A >B .例12 比较大小:(1)log 47,log 1221; (2)log 1.10.9,log 0.91.1.解 (1)log 47-log 1221=(log 47-1)-(log 1221-1) =log 474-log 1274=1log 744-1log 7412,由于0<log 744<log 7412,所以1log 744>1log 7412,即log 47>log 1221.(2)由于log 1.10.9,log 0.91.1都小于零, 所以|log 1.10.9||log 0.91.1|=(log 1.10.9)2=(-log 1.10.9)2 =(log 1.1109)2>(log 1.11110)2=1, 故|log 1.10.9|>|log 0.91.1|, 所以log 1.10.9<log 0.91.1.点评 将本例(1)推广延伸为:若1<A <B ,C >0,则log A B >log AC (BC ),进而可比较形如此类对数的大小.三、减数法将对数值的大概范围确定后,两边同减去一个数,通过局部比较大小.理论依据:若A -C >B -C ,则A >B . 例13 比较大小:log n +2(n +1),log n +1n (n >1). 解 因为log n +2(n +1)-1=log n +2n +1n +2>log n +2n n +1>log n +1nn +1=log n +1n -1.所以log n +2(n +1)>log n +1n .点评 将本例推广延伸为:若1<A <B ,C >0,则log A +C (B +C )>log A B ,进而可比较形如此类对数的大小.四、析整取微法将对数的整数部分分别析取出来,通过比较相应小数部分的大小使得问题获解. 理论依据:若A =log a M =k +x ,B =log b N =k +y ,且x >y ,则A >B . 例14 比较大小:log 123,log 138. 解 令log 123=-2+x ,log 138=-2+y , 于是2-(-2+x )=3,3-(-2+y )=8, 则2-x-3-y=34-89<0,故2-x <3-y .两边同时取对数,化简得xlg 2>ylg 3,则x y >lg 3lg 2>1,即x >y ,故log 123>log 138.点评 这种方法便于操作,容易掌握,并且所涉及的知识又都是通性通法,有利于“回归课本,夯实基础”,此法值得深思.例15 对于函数y =f (x ),x ∈D ,若存在一常数c ,对任意x 1∈D ,存在惟一的x 2∈D ,使f x 1+f x 22=c ,则称函数f (x )在D 上的均值为c .已知f (x )=lgx ,x ∈[10,100],则函数f (x )=lg x 在[10,100]上的均值为( )A .32B .34C .110D .10分析 该题通过定义均值的方式命题,以定义给出题目信息,是当前的一种命题趋势.其本质是考查关于对数和指数的运算性质和对定义的理解与转化.解析 首先从均值公式可得lg (x 1x 2)=2c , 所以x 1x 2=102c =100c . 因为x 1,x 2∈[10,100],所以x 1x 2∈[100,10 000].所以100≤100c ≤ 10 000.所以1≤c ≤2. 从选项看可知成为均值的常数可为32.故选A . 答案 A例16 函数y =|log 2x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度b -a 的最小值为( )A .3B .34C .2D .23分析 对函数的性质的分析研究一直是高中数学的重点,尤其是二次函数、指数函数和对数函数等重点函数的形态研究.本题正是以函数y =log 2x 为基础而编制,从定性分析和定量的计算中刻划a ,b 的关系.结合函数的图象(图象是函数性质的立体显示)数形结合易于寻找、确定二者的关系.解析 画出函数图象如图所示. 由log 2a =-2得a =14. 由log 2b =2得b =4.数形结合知a ∈[14,1],b ∈[1,4].考虑函数定义域,满足值域[0,2]的取值情况可知, 当b =1,a =14时,b -a 的最小值为1-14=34.故选B . 答案 B解题要学会反思解题中的反思是完善解题思路的有效方法,面对一道较为综合的题,寻找解题思路时,想一步到位,往往不太现实;边解边反思,逐步产生完善、正确的解题思路,却是可行的,请看:题目:已知函数f (x )=log m x -3x +3,试问:是否存在正数α,β,使f (x )在[α,β]上的值域为[log m (β-4),log m (α-4)]?若存在,求出α,β的值;若不存在,说明理由.甲:在[α,β]上的值域为[log m (β-4),log m (α-4)],也就是⎩⎪⎨⎪⎧log m α-3α+3=log mβ-4,log mβ-3β+3=logmα-4⇒⎩⎪⎨⎪⎧αβ-5α+3β=9,αβ-5β+3α=9⇒α=β,与α<β矛盾,故不存在.乙:你的解答不全面,你的求解建立在一个条件的基础上,就是函数f (x )是增函数,而题目并没有说明这个函数是增函数呀!丙:没错,应该对m 进行讨论. 设0<α≤x 1<x 2≤β,由于x 1-3x 1+3-x 2-3x 2+3=6x 1-x 2x 1+3x 2+3<0, 那么0<x 1-3x 1+3<x 2-3x 2+3.讨论:(1)若0<m <1,则log m x 1-3x 1+3>log m x 2-3x 2+3,即f (x 1)>f (x 2),得f (x )为减函数.(2)若m >1,则log m x 1-3x 1+3<log m x 2-3x 2+3,即f (x 1)<f (x 2),得f (x )为增函数. 若m 存在,当0<m <1时,则⎩⎪⎨⎪⎧log m β-3β+3=log mβ-4,log mα-3α+3=logmα-4⇒⎩⎪⎨⎪⎧β2-2β-9=0,α2-2α-9=0.显然α,β是方程x 2-2x -9=0的两根,由于此方程的两根中一根为正,另一根为负,与0<α<β不符,因此m 不存在;当m >1时,就是甲的解题过程,同样满足条件的α,β不存在.老师:乙和丙实质上是对甲的解法做了个反思.通过你们的讨论可以看出,反思的作用相当大,它可以使思路逐步完善,最终形成完美的解题过程.对数函数高考考点例析对数函数是高中数学函数知识的重要组成部分,关于对数函数的考查在高考中一直占有重要的地位.下面我们针对近几年高考中考查对数函数知识的几个着眼点作一一剖析,希望对大家的学习有所帮助.考点一 判断图象交点个数1.(湖南高考)函数f (x )=⎩⎪⎨⎪⎧4x -4, x ≤1,x 2-4x +3, x >1的图象和函数g (x )=log 2x 的图象的交点个数是( )A .1B .2C .3D .4解析 作出函数f (x )与g (x )的图象,如图所示,由图象可知:两函数图象的交点有3个. 答案 C考点二 函数单调性的考查2.(江苏高考)函数f (x )=log 5(2x +1)的单调增区间是________.解析 函数f (x )的定义域为⎝ ⎛⎭⎪⎫-12,+∞,令t =2x +1(t >0).因为y =log 5t 在t ∈(0,+∞)上为增函数,t =2x +1在⎝ ⎛⎭⎪⎫-12,+∞上为增函数,所以函数y =log 5(2x +1)的单调增区间为⎝ ⎛⎭⎪⎫-12,+∞. 答案 ⎝ ⎛⎭⎪⎫-12,+∞考点三 求变量范围3.(辽宁高考)设函数f (x )=⎩⎪⎨⎪⎧21-x, x ≤1,1-log 2x , x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)解析 当x ≤1时,由21-x≤2,知x ≥0,即0≤x ≤1.当x >1时,由1-log 2x ≤2,知x ≥12,即x >1,所以满足f (x )≤2的x 的取值范围是[0,+∞).答案 D考点四 比较大小(一)图象法4.(天津高考)设a ,b ,c 均为正数,且2a=log 12a ,⎝ ⎛⎭⎪⎫12b =log 12b ,⎝ ⎛⎭⎪⎫12c =log 2c ,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c解析由2a >0, ∴log 12a >0, ∴0<a <1. 同理0<b <1,c >1, ∴c 最大在同一坐标系中作出y =2x,y =⎝ ⎛⎭⎪⎫12x,y =log 12x 的图象如图所示,观察得a <b .∴a <b <c . 答案 A (二)排除法当我们面临的问题不易从正面入手直接挑选出正确的答案或解题过程繁琐时,可以从反面入手,因为选择题的正确答案已在选项中列出,从而逐一考虑所有选项,排除其中不正确的,则剩下的就是正确的答案.5.(全国高考)若a =ln 22,b =ln 33,c =ln 55,则( ) A .a <b <c B .c <b <a C .c <a <bD .b <a <c解析 首先比较a ,b , 即比较3ln 2,2ln 3的大小, ∵3ln 2=ln 8<ln 9=2ln 3, ∴a <b .故排除B 、D .同理可得c <a . 答案 C (三)媒介法对于直接比较困难时,常插入媒介,以此为桥梁进行比较,常插入0或1. 6.(山东高考)下列大小关系正确的是( ) A .0.43>30.4<log 40.3 B .0.43<log 40.3<30.4 C .log 40.3<0.43<30.4 D .log 40.3<30.4<0.43 解析 分析知0<0.43<1,30.4>30=1, log 40.3<log 41=0, 故log 40.3<0.43<30.4.故选C . 答案 C (四)特值法对于有些有关对数不等式的选择题,通过取一些符合条件的特殊值验证,往往也能简便求解.7.(青岛模拟)已知0<x <y <a <1,则有( ) A .log a (xy )<0 B .0<log a (xy )<1 C .1<log a (xy )<2D .log a (xy )>2解析 取x =18,y =14,a =12,代入log a (xy )检验即可得D . 答案 D。
对数函数--导学案
xy 21log =x31log x 51logy §5.2 对数函数的图像和性质☆学习目标:(1)了解对数函数模型的实际案例,理解对数函数的概念,会画对数函数的图像. (2)理解反函数的概念,能应用所学知识解决简单的数学问题; 教学重点:对数函数的图像和性质 教学难点: 底数a 对对数函数的影响问题导学1.一般的,我们把 叫做对数函数,其中x 是自变量,函数的定义域是 .2.回忆对数函数xy 2log =的图像和性质,观察下列函数图象,由图象总结归纳对数函数在底数1a >及01a <<这两种情况下的图像和性质:1a >01a << 图象性质 定义域: ; 定义域: ; 值域: 值域: 过定点 ___________ ; 即x=_________时, y=_____________.当x>1时,_____________ . 当0<x<1时,_____________ . 当x>0时,_____________ : 当x<0时,_____________ .在),0(+∞上是_____________在),0(+∞上是____________☆反馈练习回忆对数函数的定义 类比指数函数图像与性质的学习,观察图像,归纳性质,完成表格xy 2log =x y 3log =y xy 5log = y例1.求下列函数的定义域.(1))3(log x a - (2)2log x a (3)1343log +x合作探究一(1)观察在同一坐标系内函数)),0((log 2+∞∈=x y x与函数)(2R x y x∈=的图像,分析它们之间的关系.(2)利用问题(1)结论,推测函数xa y =与函数xa y log =的关系. 合作探究二 类比指数函数性质的研究方法,观察图像,总结归纳出底数a 对函数图像及性质的影响. (1)观察图像特点,思考函数xa y log =与与函数x ay 1log =的图像是什么关系?(2) 函数x a y log =,当a>1时,a 的变化对图像有何影响?当0<a<1呢?参考书中94页例题,根据对数函数底数及定义域的限制,列式求解.观察图像特点,主要观察函数图象的对称性 。
对数函数导学案
2.32 对数函数陆邦军 2009-10-22教学目标:理解对数函数的概念,掌握对数函数的图象和性质,会根据图象和性质来解决与对数函数有关的实际运用问题;理解反函数的定义及求法;通过图象变换,深化对函数图象变化规律的理解。
教学重点:对数函数的定义、图象和性质。
教学难点:底数a 对对数函数的影响,图象变换,关联函数的单调性、奇偶性的判定和证明。
教学方法:二先二后 教学课时:3节 教学工具:常规教学过程:一、知识回顾:1、 学习指数函数时我们研究了哪些内容?2、 对数的定义是什么?对数的底数和真数有怎样的要求?为什么?3、对数的运算性质:()=∙N M a log ;=NMa log ; =na M l o g ;换底公式:=N a log 。
二、新课讲解:前面我们已经知道,细胞分裂问题中,细胞个数y 是分裂次数x 的指数函数xa y =,若知道输入值x ,便能求出输出值y .现在我们来研究相反的问题: 思考:将指数式xa y =改写成对数式是 ;1、对数函数的概念: 一般地,函数 叫做对数函数,它的定义域是 。
思考:函数x y a log =与函数xa y =(1,0≠>a a )的定义域、值域之间有什么关系?2、画图象:请画出下列两组函数的图象,观察各组函数图象之间有什么关系。
①xy 2=,x y 2log =; ②xy ⎪⎭⎫⎝⎛=21,x y 21log =.3、完成下表。
对数函数x y a log =,0(>a 且)0≠a 的图象和性质4、数学应用。
例1、求下列函数的定义域:⑴()x y -=4log 2.0;⑵()1,11log ≠>-=a a x y a .例2、比较下列各组数值的大小:⑴ 4.3log 2,8.3log 2; ⑵ 8.1log 5.0,1.2log 5.0; ⑶ 5log 7,7log 6.例3、解下列不等式:⑴ ()32log 31>+x ;⑵ ()11lg 2<+x .能力提升:1、已知函数x y 31log =,则当30<<x 时,∈y ;当5>x 时,∈y ;当30<<y 时,∈x ;当2>y 时,∈x .2、已知函数①x y a log =;②x y b log =;③x y c log =;④x y d log =的图像如图所示,比较底数a 、b 、c 、d 、0、的大小为 .x xb xc xd3、当1>a 时,函数x y a log =和()x a y -=1的图象只可能是( )5、反函数:一般地,设A ,B 分别为函数()x f y =的定义域和值域,如果由函数()x f y =所解得的()y x ϕ=也是一个函数(即对任意一个B y ∈,都有惟一的A x ∈与之对应),那么就称()y x ϕ=是函数()x f y =的反函数,记作()y f x 1-=.习惯上,x 常作自变量,故改写成()x fy 1-=的形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九课时 对数函数(1)【学习目标】通过具体实例了解对数函数的概念,并知道对数函数)1,0(log ≠>=a a x y a 与指数函数)1,0(≠>=a a a y x 互为反函数;掌握对数函数的图象和性质,并能应用它们解决一些简单问题。
【重点】对数函数的概念与性质。
【难点】对数函数性质的运用。
【活动过程】活动一:复习探究,感受数学对数式与指数式的互化问题1:y x 2log =这个式子能否把它看成x 是y 的函数?活动二:小组合作,建构数学1、对数函数定义:2、(1)作xy 2=与x y 2log =的图像。
问题2:函数log a y x =与函数xy a =)10(≠>a a 且的定义域、值域之间有什么关系?问题3:对数函数的图象与指数函数的图象关于直线 对称。
(2)作x y 2log =与x y 21log =的图像。
(3)作x y 2log =与x y 3log =的图像。
35、指数函数xy a =(0,1)a a >≠与对数函数log a y x =(0,1)a a >≠称为互为反函数。
6、一般地,如果函数()y f x =存在反函数,那么它的反函数,记作活动三:学习展示,运用数学例1、求下列函数的定义域(1)0.2log (4);y x =-; (2)log ay =(0,1).a a >≠;(3)2(21)log (23)x y x x -=-++ (4)y例2、利用对数函数的性质,比较下列各组数中两个数的大小: (1)2log 3.4,2log 3.8; (2)0.5log 1.8,0.5log 2.1;(3)7log 5,6log 7; (4)2log 3,4log 5,32例3、已知0<log 4log 4m n <,比较m ,n 的大小。
变1:已知log 4log 4m n <,则m ,n 的大小又如何?变2:(1)若4log 15a <(0a >且1)a ≠,求a 的取值范围; (2)已知(23)log (14)2a a +->,求a 的取值范围;活动四:课后巩固一、基础题1、函数5log (23)x y x -=-的定义域为 ,函数的定义域是2、 比较下列各组数中值的大小: (1)2log 3.4 2log 8.5;(2)0.3log 1.80.3log 2.7(3)log 5.1alog 5.9a .(4)0.91.1, 1.1log 0.9,0.7log 0.8 (5)2log 0.4 3log 0.4,3、已知a 2>b>a>1,则m=log a b ,n=log b a ,p= log b ab的大小关系是4、解下列方程:(1)35327x += (2 ) 55log (3)log (21)x x =+ (3)lg(1)x =-5、解不等式:(1)55log (3)log (21)x x <+ (2)lg(1)1x -<6、设函数lg(1)lg(2)y x x =-+-的定义域为M ,函数2lg(32)y x x =-+的定义域为N ,则M ,N 的关系是7、已知()|log |a f x x =,其中01a <<,则下列不等式成立的是(1)11()(2)()43f f f >>(2)11(2)()()34f f f >> (3)11()()(2)43f f f >> (4)11()(2)()34f f f >>二、提高题:8、若2log 13a<(0a >且1)a ≠,求a 的取值范围。
三、能力题:9、函数y =log 2(32-4x )的定义域是 ,值域是 .函数212()log (32)f x x x =+-的定义域是 值域 ;函数()f x 的定义域为(,1]-∞,则函数22(log (1))f x -的定义域第十课时 对数函数(2)【学习目标】熟悉对数函数的图象和性质,会用对数函数的性质求一些值域的求法。
【重点】对数函数的图象的变换,值域的求法。
【难点】对数函数的图象的变换,值域的求法。
【活动过程】活动一:复习探究,感受数学1、对数函数的概念及其与指数函数的关系:2、对数函数的图象及性质:3、函数图象变换: (1)平移变换:(2)对称变换:(3)翻折变换:练习:1.函数3log (2)y x =+的图象是由函数3log y x =的图象2. 函数3log (2)3y x =-+的图象是由函数3log y x =的图象 得到。
3、与对数有关的复合函数及其性质:活动二:学习展示,运用数学例1、说明下列函数的图像与对数函数3log y x =的图像的关系,并画出它们的示意图,由图像写出它的单调区间:(1)3log ||y x =; (2)3|log |y x =; (3) 3log ()y x =-;(4) 3log y x =-(5)画出函数2log (1)y x =+与2log (1)y x =-的图象,并指出这两个函数图象之间的关系。
练习:怎样由对数函数12log y x =的图像得到下列函数的图像?(1)12|log 1|y x =+; (2)121log y x=;例2、求下列函数值域:(1)2log (3)y x =+; (2)22log (3)y x =-; (3)2log (47)a y x x =-+(0a >且1a ≠).例3、已知x 满足20.50.52(log )7log 30x x ++≤ ,求函数22()(log )(log )24x xf x =的最值。
例4、设f (x )=lg(ax 2-2x +a )(1) 如果f (x )的定义域是(-∞, +∞),求a 的取值范围; (2) 如果f (x )的值域是(-∞, +∞),求a 的取值范围.例5、已知)01)(lg()(>>>-=b a b a x f xx,(1)求)(x f 的定义域;(2)求证此函数图像上不存在不同两点,使过两点直线平行于x 轴;(3)当b a ,满足什么条件时,)(x f 在区间),1(+∞上恒正。
活动三:课堂总结,感悟提升xxxc活动四:课后巩固一、基础题1、已知函数xyalog=,xyblog=,xyclog=,xydlog=的图象如图所示,则下式中正确的是。
(1)dcba<<<<<10(2)cdab<<<<<1(3)abcd<<<<<10(4)cdba<<<<<12、函数2)1ln()(xexf x-+=是(判断奇偶性)3、函数y=log a x在[2, 10]上的最大值与最小值的差为1,则常数a=.4、函数f(x)=log a(x2-2x+3)(a>0,且a≠1)在[21,2]上的最大值和最小值之差为2,则常数a的值是____________.5、欲使函数y=log a(x+1) (a>0, a≠1)的值域是(-∞, +∞),则x的取值范围是6、已知函数f(x0=log a|x+1|在区间(-1,0)上有f(x)>0,那么下面结论正确的是A.f(x)在(-∞,0)上是增函数B.f(x)在(-∞,0)上是减函数C.f(x)在(-∞,-1)上是增函数D.f(x)在(-∞,-1)上是减函数7、设f(x)=(log2x)2+5log2x+1,若f(α)=f(β)=0,α≠β,则α·β=_________.二、提高题:8、若(1,2)x∈时,不等式2(1)logax x-<恒成立,则a的取值范围为.9、已知0,0,21x y x y>≥+=,求函数212log(21)w xy y=++的最小值。
三、能力题:10、已知0<x<1,a>0,且a≠1,比较|log a(1+x)|与|log a(1-x)|的大小.赠送以下资料《二次函数的应用》中考题集锦10题已知抛物线222(0)y x mx m m =+-≠.(1)求证:该抛物线与x 轴有两个不同的交点;(2)过点(0)P n ,作y 轴的垂线交该抛物线于点A 和点B (点A 在点P 的左边),是否存在实数m n ,,使得2AP PB =?若存在,则求出m n ,满足的条件;若不存在,请说明理由.答案:解:(1)证法1:22229224m y x mx m x m ⎛⎫=+-=+- ⎪⎝⎭,当0m ≠时,抛物线顶点的纵坐标为2904m -<, ∴顶点总在x 轴的下方.而该抛物线的开口向上,∴该抛物线与x 轴有两个不同的交点.(或者,当0m ≠时,抛物线与y 轴的交点2(02)m -,在x 轴下方,而该抛物线的开口向上,∴该抛物线与x 轴有两个不同的交点.)证法2 :22241(2)9m m m ∆=-⨯⨯-=,当0m ≠时,290m >,∴该抛物线与x 轴有两个不同的交点.(2)存在实数m n ,,使得2AP PB =.设点B 的坐标为()t n ,,由2AP PB =知,①当点B 在点P 的右边时,0t >,点A 的坐标为(2)t n -,,且2t t -,是关于x 的方程222x mx m n +-=的两个实数根. 2224(2)940m m n m n ∴∆=---=+>,即294n m >-.且(2)t t m +-=-(I ),2(2)t t m n -=--(II ) 由(I )得,t m =,即0m >.将t m =代入(II )得,0n =.∴当0m >且0n =时,有2AP PB =.②当点B 在点P 的左边时,0t <,点A 的坐标为(2)t n ,, 且2t t ,是关于x 的方程222x mx m n +-=的两个实数根.2224(2)940m m n m n ∴∆=---=+>,即 294n m >-.且2t t m +=-(I ),222t t m n =--(II )由(I )得,3mt =-,即0m >. 将3m t =-代入(II )得,2209n m =-且满足294n m >-.∴当0m >且2209n m =-时,有2AP PB =第11题一人乘雪橇沿如图所示的斜坡笔直滑下,滑下的距离S (米)与时间t (秒)间的关系式为210S t t =+,若滑到坡底的时间为2秒,则此人下滑的高度为( )A.24米 B.12米C.米 D.6米答案:B第12题我市英山县某茶厂种植“春蕊牌”绿茶,由历年来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y (元)与上市时间t (天)的关系可以近似地用如图(1)中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z (元)与上市时间t (天)的关系可以近似地用如图(2)的抛物线表示.(2)求出图(2)中表示的种植成本单价z (元)与上市时间t (天)(0t >)的函数关系式; (3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大? (说明:市场销售单价和种植成本单价的单位:元/500克.)x)图(1)图(2)天)答案:解:(1)依题意,可建立的函数关系式为:2160(0120)380(120150)220(150180)5t t y t t t ⎧-+<<⎪⎪=<⎨⎪⎪+⎩,,. ≤ ≤≤ (2)由题目已知条件可设2(110)20z a t =-+. 图象过点85(60)3,,2851(60110)203300a a ∴=-+∴=.. 21(110)20300z t ∴=-+ (0)t >. (3)设纯收益单价为W 元,则W =销售单价-成本单价. 故22221160(110)20(0120)3300180(110)20(120150)3002120(110)20(150180)5300t t t W t t t t t ⎧-+---<<⎪⎪⎪=---<⎨⎪⎪+---⎪⎩,,. ≤ ≤≤ 化简得2221(10)100(0120)3001(110)60(120150)3001(170)56(150180)300t t W t t t t ⎧--+<<⎪⎪⎪=-+<⎨⎪⎪--+⎪⎩,,. ≤ ≤≤①当21(10)100(0120)300W t t =--+<<时,有10t =时,W 最大,最大值为100; ②当21(110)60(120150)300W t t =--+<≤时,由图象知,有120t =时,W 最大,最大值为2593; ③当21(170)56(150180)300W t t =--+≤≤时,有170t =时,W 最大,最大值为56. 综上所述,在10t =时,纯收益单价有最大值,最大值为100元.第13题如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半. (1)求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点C距守门员多少米?(取7=)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取5=)答案:解:(1)(3分)如图,设第一次落地时, 抛物线的表达式为2(6)4y a x =-+. 由已知:当0x =时1y =. 即1136412a a =+∴=-,. ∴表达式为21(6)412y x =--+.(或21112y x x =-++)(2)(3分)令210(6)4012y x =--+=,.212(6)4861360x x x ∴-===-<.≈,(舍去). ∴足球第一次落地距守门员约13米.(3)(4分)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得1266x x =-=+1210CD x x ∴=-=. 1361017BD ∴=-+=(米). 解法二:令21(6)4012x --+=.解得16x =-,2613x =+.∴点C 坐标为(13,0).设抛物线CND 为21()212y x k =--+.将C 点坐标代入得:21(13)2012k --+=.解得:11313k =-(舍去),2667518k =+++=.21(18)212y x =--+ 令210(18)212y x ==--+,0.118x =-,21823x =+. 23617BD ∴=-=(米). 解法三:由解法二知,18k =, 所以2(1813)10CD =-=, 所以(136)1017BD =-+=. 答:他应再向前跑17米.第14题荆州市“建设社会主义新农村”工作组到某县大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费2.7万元;购置滴灌设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为0.9;另外每公顷种植蔬菜需种子、化肥、农药等开支0.3万元.每公顷蔬菜年均可卖7.5万元. (1)基地的菜农共修建大棚x (公顷),当年收益(扣除修建和种植成本后)为y (万元),写出y 关于x的函数关系式.(2)若某菜农期望通过种植大棚蔬菜当年获得5万元收益,工作组应建议他修建多少公项大棚.(用分数表示即可)(3)除种子、化肥、农药投资只能当年受益外,其它设施3年内不需增加投资仍可继续使用.如果按3年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议.答案:(1)()227.5 2.70.90.30.9 4.5y x x x x x x =-++=-+. (2)当20.9 4.55x x -+=时,即2945500x x -+=,153x =,2103x =从投入、占地与当年收益三方面权衡,应建议修建53公顷大棚. (3)设3年内每年的平均收益为Z (万元)()()2227.50.90.30.30.3 6.30.310.533.075Z x x x x x x x =-++=-+=--+(10分)不是面积越大收益越大.当大棚面积为10.5公顷时可以得到最大收益.建议:①在大棚面积不超过10.5公顷时,可以扩大修建面积,这样会增加收益. ②大棚面积超过10.5公顷时,扩大面积会使收益下降.修建面积不宜盲目扩大.③当20.3 6.30x x -+=时,10x =,221x =.大棚面积超过21公顷时,不但不能收益,反而会亏本.(说其中一条即可)第15题一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.(1)求出月销售量y (万件)与销售单价x (元)之间的函数关系式(不必写x 的取值范围);(2)求出月销售利润z (万元)(利润=售价-成本价)与销售单价x (元)之间的函数关系式(不必写x 的取值范围);(3)请你通过(2)中的函数关系式及其大致图象帮助公司确定产品的销售单价范围,使月销售利润不低于480万元.答案:略.第16题一座隧道的截面由抛物线和长方形构成,长方形的长为8m ,宽为2m ,隧道最高点P 位于AB 的中央且距地面6m ,建立如图所示的坐标系(1)求抛物线的解析式;(2)一辆货车高4m ,宽2m ,能否从该隧道内通过,为什么?(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?答案:(1)由题意可知抛物线经过点()()()024682A P B ,,,,,设抛物线的方程为2y ax bx c =++ 将A P D ,,三点的坐标代入抛物线方程. 解得抛物线方程为21224y x x =-++ (2)令4y =,则有212244x x -++=解得1244x x =+=-212x x -=>∴货车可以通过.(3)由(2)可知21122x x -=>∴货车可以通过.第17题如图,在矩形ABCD 中,2AB AD =,线段10EF =.在EF 上取一点M ,分别以EM MF ,为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN x =,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?B A D EMF答案:解:矩形MFGN ∽矩形ABCD ,MN MFAD AB∴=. 2AB AD MN x ==,,2MF x ∴=.102EM EF MF x ∴=-=-. (102)S x x ∴=-2210x x =-+ 2525222x ⎛⎫=--+ ⎪⎝⎭.∴当52x =时,S 有最大值为252.第18题某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润A y (万元)与投资金额x (万元)之间存在正比例函数关系:A y kx =,并且当投资5万元时,可获利润2万元.信息二:如果单独投资B 种产品,则所获利润B y (万元)与投资金额x (万元)之间存在二次函数关系:2B y ax bx =+,并且当投资2万元时,可获利润2.4万元;当投资4万元时,可获利润3.2万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果企业同时对A B ,两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?答案:解:(1)当5x =时,12250.4y k k ===,,, 0.4A y x ∴=,当2x =时, 2.4B y =;当4x =时, 3.2B y =.2.4423.2164a ba b=+⎧∴⎨=+⎩ 解得0.21.6a b =-⎧⎨=⎩∴20.2 1.6B y x x =-+.(2)设投资B 种商品x 万元,则投资A 种商品(10)x -万元,获得利润W 万元,根据题意可得220.2 1.60.4(10)0.2 1.24W x x x x x =-++-=-++ 20.2(3) 5.8W x ∴=--+当投资B 种商品3万元时,可以获得最大利润5.8万元,所以投资A 种商品7万元,B 种商品3万元,这样投资可以获得最大利润5.8万元.第19题如图所示,图(1)是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m ,支柱3350m A B =,5根支柱1122334455A B A B A B A B A B ,,,,之间的距离均为15m ,1515B B A A ∥,将抛物线放在图(2)所示的直角坐标系中.(1)直接写出图(2)中点135B B B ,,的坐标; (2)求图(2)中抛物线的函数表达式; (3)求图(1)中支柱2244A B A B ,的长度.答案:(1)1(30)B -,0,3(030)B ,,5(300)B ,; (2)设抛物线的表达式为(30)(30)y a x x =-+,把3(030)B ,代入得(030)(030)30y a =-+=. 130a =-∴. ∵所求抛物线的表达式为:1(30)(30)30y x x =--+. (3)4B ∵点的横坐标为15, 4B ∴的纵坐标4145(1530)(1530)302y =--+=. 3350A B =∵,拱高为30,∴立柱44458520(m)22A B =+=. 由对称性知:224485(m)2A B A B ==。