绝对值不等式练习题
高一数学绝对值不等式试题
高一数学绝对值不等式试题1.不等式的解集为()A.B.C.D.【答案】B【解析】因为不等式|2x-1|<2-3x的解集即为3x-2<2x-1<2-3x,解得x<,因此解集为{x|x<},选B2.关于的不等式在上恒成立,求实数的取值范围.【答案】【解析】解:去掉绝对值符号,利用分段函数的思想得到解析式为分段研究最小值,并结合图像求解得到a的范围。
3.不等式对任意实数x恒成立,则实数a的取值范围为()A.∪[4,+∞)B.∪[5,+∞)C.[1,2]D.∪[2,+∞)【答案】A.【解析】令,作出图像可求出其最大值为4,,故应选A.4.不等式对任意实数恒成立,则实数的取值范围为()A.B.(C.D.【答案】A【解析】即解得故选A5.不等式的解集为________________.【答案】【解析】略6.已知实数满足,,则的最小值为.【答案】 12【解析】略7.不等式的整数解的个数为()A.0B.1C.2D.大于2【答案】B【解析】略8.(12分)关于x的不等式|x-2|+|x-a|≥a在R上恒成立,求实数a的取值范围.【答案】{a|a≤1}【解析】(1)当a≤0时,不等式|x-2|+|x-a|≥a在R上恒成立;(2)当a>0时,由于|x-2|+|x-a|≥|2-a|,要使不等式|x-2|+|x-a|≥a恒成立,只要|2-a|≥a即可,解得0<a≤1;综上(1)和(2)可知,实数a的取值范围为{a|a≤1}.9.(2013•红桥区二模)已知集合M={x||x+2|+|x﹣1|≤5},N={x|a<x<6},且M∩N=(﹣1,b],则b﹣a=()A.﹣3B.﹣1C.3D.7【答案】C【解析】解绝对值不等式求得M={x|﹣3≤x≤2},再由N={x|a<x<6},且M∩N=(﹣1,b],可得a=﹣1,b=2,从而求得b﹣a的值.解:由于|x+2|+|x﹣1|表示数轴上的x对应点到﹣2和1对应点的距离之和,而﹣3和2对应点到﹣2和1对应点的距离之和正好等于5,故由|x+2|+|x﹣1|≤5可得﹣3≤x≤2,∴集合M={x||x+2|+|x﹣1|≤5}={x|﹣3≤x≤2}.再由N={x|a<x<6},且M∩N=(﹣1,b],可得a=﹣1,b=2,b﹣a=3,故选C.点评:本题主要考查绝对值的意义,绝对值不等式的解法,两个集合的交集的定义,属于中档题.10.(2014•南昌一模)已知函数f(x)=|2x﹣a|+a.若不等式f(x)≤6的解集为{x|﹣2≤x≤3},则实数a的值为()A.1B.2C.3D.4【答案】A【解析】由不等式f(x)≤6可得,解得a﹣3≤x≤3.再根据不等式f(x)≤6的解集为{x|﹣2≤x≤3},可得a﹣3=﹣2,从而求得a的值.解:∵函数f(x)=|2x﹣a|+a,故有不等式f(x)≤6可得|2x﹣a|≤6﹣a,∴,解得a﹣3≤x≤3.再根据不等式f(x)≤6的解集为{x|﹣2≤x≤3},可得a﹣3=﹣2,∴a=1,故选:A.点评:本题主要考查绝对值不等式的解法,体现了转化的数学思想,属于中档题.。
高三数学绝对值不等式试题
高三数学绝对值不等式试题1.已知函数(Ⅰ)a=-3时,求不等式的解集;(Ⅱ)若关于x的不等式恒成立,求实数a的取值范围【答案】(Ⅰ) [-1,2] ;(Ⅱ) (-,]【解析】(Ⅰ) 当a="-3" 时,即为≤6,将分成,和三种情况,通过分类讨论去掉绝对值,将原不等式等价转化为三个一元一次不等式组,解这些不等式组即可得到原不等式的解集; (Ⅱ)利用绝对值不等式性质:求出的最小值,由关于x的不等式恒成立及不等式恒成立的知识知,<,解这个不等式,即可得到实数的取值范围.试题解析:(Ⅰ) 当a="-3" 时,为≤6,等价于或或,解得或或,所以不等式的解集为[-1,2];(5分)(Ⅱ) 因为=,所以<,解得实数a的取值范围(-,].(10分)【考点】含绝对值不等式解法,绝对值不等式性质,恒成立问题2.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是()A.[3,+∞)B.(-∞,3]C.(-1,2)D.(-2,3]【答案】B【解析】当x≤-1时,|x+1|+|x-2|=-x-1-x+2=-2x+1≥3;当-1<x≤2时,|x+1|+|x-2|=x+1-x+2=3;当x>2时,|x+1|+|x-2|=x+1+x-2=2x-1>3;综上可得|x+1|+|x-2|≥3,所以只要a≤3.即实数a的取值范围是(-∞,3],故选B.3.设A={x∈Z||x-2|≤5},则A中最小元素为( )A.2B.-3C.7D.0【答案】B【解析】由|x-2|≤5,得-3≤x≤7,又x∈Z,∴A中的最小元素为-3,选B.4.不等式解集是_____________________.【答案】【解析】设,则.由,解得,所以解集为【考点】分段函数图像不等式5.解不等式:x+|2x-1|<3.【答案】{x|-2<x<}【解析】原不等式可化为或解得≤x<或-2<x<.所以不等式的解集是{x|-2<x<}.6.若存在实数使得成立,则实数的取值范围为.【答案】【解析】在数轴上,表示横坐标为的点到横坐标为的点距离,就表示点到横坐标为1的点的距离,∵,∴要使得不等式成立,只要最小值就可以了,即,∴.故实数的取值范围是,故答案为:.【考点】绝对值不等式的解法.7.已知函数.若关于的不等式的解集是,则的取值范围是 .【答案】【解析】因为函数.若关于的不等式的解集是.即等价于对恒成立.等价于恒成立.即的最小值大于或等于.由绝对值不等式的性质可得.所以即.所以填.【考点】1.绝对值不等式的性质.2.不等式中恒成立问题.3.最值问题.8.已知函数.(1)若恒成立,求的取值范围;(2)当时,解不等式:.【答案】(1);(2).【解析】(1)即求出即可;(2)去绝对值解答.试题解析:(1)即2分又5分(2)当时,当时,当时,综上,解集为10分【考点】不等式选讲、绝对值不等式.9.关于的不等式的解集为,则实数的取值范围是 .【答案】【解析】表示的是到的距离和到的距离之和,表示的是到的距离,当时,此时若时则不能保证的解集为;当时,此时若时则不能保证的解集为;当,即,此时当为时,所以.【考点】1.绝对值不等式的几何意义.10.已知函数(I)若不等式的解集为,求实数的值;(II)在(I)的条件下,若对一切实数恒成立,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)的取值范围为(-∞,5].【解析】(Ⅰ)不等式的解集为,求实数a的值,首先解不等式,解得,利用解集为,从而求出的值;(Ⅱ)若对一切实数恒成立,转化为求的最小值,只要实数的取值小于或等于它的最小值,不等式对一切实数恒成立,故关键点是求的最小值,由(Ⅰ)知,故,设,于是,易求出最小值为5,则的取值范围为(-∞,5].试题解析:(Ⅰ)由得,解得.又已知不等式的解集为,所以,解得.(Ⅱ)当时,,设,于是,所以当时,;当时,;当时,.综上可得,的最小值为5.从而若,即对一切实数恒成立,则的取值范围为(-∞,5].【考点】本题考不等式的解法,考查学生数形结合的能力以及化归与转化思想.11.设函数(Ⅰ)若,解不等式;(Ⅱ)若函数有最小值,求实数的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)分类去掉绝对值符号,化为整式不等式再解,最后取并集即可.(Ⅱ)把函数f(x)化为分段函数,然后再找出f(x)有最小值的充要条件解之即可.试题解析:(Ⅰ)a=1时,f(x)=+x+3当x≥时,f(x)≤5可化为3x-1+x+3≤5,解得≤x;当x<时,f(x)≤5可化为-3x+1+x+3≤5,解得-,综上可得,原不等式的解集为(Ⅱ)f(x)= +x+3=函数有最小值的充要条件是,解得【考点】1.绝对值不等式;2.分段函数及其求函数值.12.设函数,.(1) 解不等式;(2) 设函数,且在上恒成立,求实数的取值范围.【答案】(1);(2)【解析】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式及不等式证明以及解法等内容.(1)利用数轴分段法求解;(2)借助数形结合思想,画出两个函数的图像,通过图像的上下位置的比较,探求在上恒成立时实数的取值范围.试题解析:(1) 由条件知,由,解得. (5分)(2) 由得,由函数的图像可知的取值范围是. (10分)【考点】(1)绝对值不等式;(2)不等式证明以及解法;(3)函数的图像.13.(Ⅰ)(坐标系与参数方程)直线与圆相交的弦长为.(Ⅱ)(不等式选讲)设函数>1),且的最小值为,若,则的取值范围【答案】,3≤x≤8【解析】即,即,配方得,,所以,直线与圆相交的弦长为。
高三数学绝对值不等式试题
高三数学绝对值不等式试题1.已知函数.(Ⅰ)求的解集;(Ⅱ)设函数,若对任意的都成立,求的取值范围.【答案】(Ⅰ)或(Ⅱ)【解析】(Ⅰ)先利用根式的性质将函数的解析式化为含绝对的函数,在将具体化为,利用零点分析法化为不等式组,通过解不等式组解出的解集;(Ⅱ)利用零点分析法,通过分讨论将的解析式化为分段函数,作出函数的图像,由函数知,函数图像是恒过(3,0),斜率为的直线,由对任意的都成立知,函数的图像恒在函数的上方,作出函数的图像,观察满足的条件,求出的取值范围.试题解析:(Ⅰ)∴即∴①或②或③解得不等式①:;②:无解③:所以的解集为或. 5分(Ⅱ)即的图象恒在图象的上方图象为恒过定点,且斜率变化的一条直线作函数图象如图,其中,,∴由图可知,要使得的图象恒在图象的上方∴实数的取值范围为. 10分【考点】根式性质,含绝对不等式解法,分段函数,数形结合思想,分类整合思想2.解不等式:|x+1|>3.【答案】(-∞,-4)∪(2,+∞).【解析】由|x+1|>3得x+1<-3或x+1>3,解得x<-4或x>2.所以解集为(-∞,-4)∪(2,+∞).3.求函数y=|x-4|+|x-6|的最小值.【答案】2【解析】y=|x-4|+|x-6|≥|x-4+6-x|=2.所以函数的最小值为2.4. A.(坐标系与参数方程)已知直线的参数方程为 (为参数),圆的参数方程为(为参数), 则圆心到直线的距离为_________.B.(几何证明选讲)如右图,直线与圆相切于点,割线经过圆心,弦⊥于点,,,则_________.C.(不等式选讲)若存在实数使成立,则实数的取值范围是_________.【答案】A. ; B.; C.【解析】A. 先把直线l和圆C的参数方程化为普通方程y=x+1,(x-2)2+y2=1,再利用点到直线的距离公式求出即可.B.在圆中线段利用由切割线定理求得PA,进而利用直角三角形PCO中的线段,结合面积法求得CE即可.C. 由绝对值的基本不等式得:,解得-3≤m≤1.【考点】(1)参数方程;(2)圆的性质;(3)绝对值不等式.5.设,若关于的不等式有解,则参数的取值范围为________.【答案】[0,3]【解析】由知,不等式有解等价于,解得.【考点】绝对值不等式的解法、转化思想.6.已知函数.(1)若不等式的解集为,求实数a的值;(5分)(2)在(1)的条件下,若存在实数使成立,求实数的取值范围.(5分)【答案】(1);(2).【解析】本题考查绝对值不等式的解法和存在问题的求法等基础知识,考查学生运用函数零点分类讨论的解题思想和转化思想.第一问,先解绝对值不等式,得到x的取值范围,由已知条件可知解出的x的取值范围与完全相同,列出等式,解出a;第二问,在第一问的基础上,的解析式确定,若存在n使成立,则,构造新的函数,去掉绝对值使之化为分段函数,求出最小值代入上式即可.试题解析:(1)由得,∴,即,∴,∴. 5分(2)由(1)知,令,则,∴的最小值为4,故实数的取值范围是. 10分【考点】1.绝对值不等式的解法;2.绝对值函数的最值.7.已知实数x,y满足:|x+y|<,|2x-y|<,求证:|y|<.【答案】见解析【解析】解因为3|y|=|3y|=|2(x+y)-(2x-y)|≤2|x+y|+|2x-y|,由题设知,|x+y|<,|2x-y|<,从而3|y|<+=,所以|y|<.8.若不等式|kx-4|≤2的解集为{x|1≤x≤3},则实数k=________.【答案】2【解析】由|kx-4|≤2⇔2≤kx≤6.∵不等式的解集为{x|1≤x≤3},∴k=2.9.不等式的解集是 .【答案】【解析】解含绝对值的不等式可以分类讨论,当即时,不等式变为得,因此;当即时,不等式变为得,因此,所以原不等式的解是把所得两个集合合并得.【考点】解含绝对值的不等式.10.不等式的解集为 .【答案】【解析】即两边平方得,,,所以,不等式的解集为.【考点】绝对值不等式的解法11.若关于x的不等式有解,则实数的取值范围是: .【答案】【解析】∵关于的不等式有解,表示数轴上的到和的距离之差,其最小值等于,最大值是,由题意,∴.【考点】绝对值不等式的解法.12.关于的不等式的解集为,则实数的取值范围是 .【答案】【解析】表示的是到的距离和到的距离之和,表示的是到的距离,当时,此时若时则不能保证的解集为;当时,此时若时则不能保证的解集为;当,即,此时当为时,所以.【考点】1.绝对值不等式的几何意义.13.若关于x的不等式的解集为空集,则实数a的取值范围是 .【答案】【解析】∵|x-1|-|x-2|=|x-1|-|2-x|≤|x-1-x+2|=1,若不等式|x-1|-|x-2|≥a2+a+1(x∈R)的解集为空集,则|x-1|-|x-2|<a2+a+1恒成立,即a2+a+1>1,解得x<-1或x>0.∴实数a的取值范围是(-∞,-1)∪(0,+∞).【考点】1.绝对值不等式的解法;2.函数恒成立问题14.已知函数,其中实数.(1)当时,求不等式的解集;(2)若不等式的解集为,求的值.【答案】(1)不等式的解集为;(2)【解析】(1)将代入得一绝对值不等式:,解此不等式即可.(2)含绝对值的不等式,一般都去掉绝对值符号求解。
含绝对值的不等式考试试题及答案
含绝对值的不等式考试试题及答案例5-3-13 解下列不等式:(1)|2-3x|-1 V 2⑵ |3x+5|+1 > 6解 (1)原不等式同解于|2 -3x|<3^ -3<2 -3x<3^> -|<x<| 故原不等式的解集为何牛 <金< 学(2)原不等式可化为|3x+5| > 5 .__ 3x+5> 5 或 3x+5v -5O 52〉0或- ¥故解集为-罟卜注解含绝对值的不等式,关键在于正确地根据绝对值的定义去掉绝对值符号。
解 5-3-14 解不等式 4V |x 2-5x| < 6。
解原不等式同解于不等式组片卞〉4 ①紂一划<6 (ii)不等式(i)同解于x 2-5x v -4 或 x 2-5x > 4其解集可用数轴标根法表示如下:2 5-A1注本例的难点是正确区别解集的交、并关系。
“数轴标根法”是确定 解集并防止出错的有效辅助方法。
例 5-3-15 解不等式 |x+2|-|x-1| > 0解原不等式同解于|x+2| > |x-1| “—,(x+2)2》(x-1) 2O +4E +4^x a+ l <=> &忑A -3 <=> - £不等式(ii)同解于2-6 < x -5x < 6-5^ + £〉02 或M-5x-6<0 °|-lCx<60 -1£蛊忑 2 或 3C xC 6取不等式(i) , (ii)的解的交集,即得原不等式的解集[j 四)U(l, 2]U[3, 4)U(¥&〕或Q4 &E故原不竽式的解集为国掘〉-A注 解形如|ax+b|-|cx+d| > 0的不等式,适合于用移项后两边平方脱去 绝对值符号的方法。
但对其他含多项绝对值的情形,采用此法一般较繁,不可 取。
含有绝对值的不等式练习
含有绝对值的不等式练习【同步达纲练习】A 级一、选择题1.设x ∈R ,则不等式|x |<1是x 2<1成立的( )条件. A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件 2.若a,b,c ∈R ,且|a-c |<|b |,则( )A.|a |>|b |+|c |B.|a |<|b |-|c |C.|a |>|b |-|c |D.|a |>|c |-|b |3.不等式|x 2-x-6|>3-x 的解集是( )A.(3,+∞)B.(-∞,-3)∪(3,+∞)C.(-∞,-3)∪(-1,+∞)D.(-∞,-3)∪(-1,3)∪(3,+∞) 4.设集合A ={x ||2-x -3|<1,x ∈N },则A 中元素个数是( ) A.13 B.12 C.11 D.10 5.下面四个式子:①|a-b |=|b-a | ②|a+b |+|a-b |≥2|a |③2)(a -=a④21(|a |+|b |)≥ab 中,成立的有( )A.1个B.2个C.3个D.4个二、填空题6.对于任意的实数x ,不等式|x+1|+|x-2|>a 恒成立,则实数a 的取值范围是 .7.不等式|x 2+2x-1|≥2的解集是 . 8.不等式|x x 1-|>xx-1的解集是 .三、解答题9.解不等式12+x >x.10.设m 等于|a |、|b |和1中最大的一个,当|x |>m 时,求证:2xbx a +<2.AA 级一、选择题1.设实数a,b 满足ab<0,则( )A.|a+b |>|a-b |B.|a+b |<|a-b |C.|a-b |<|a |-|b |D.|a-b |<|a |+|b |2.不等式组⎪⎩⎪⎨⎧+->+->x 2x 2x 3x 30x 的解集是( )A.{x |0<x<2}B.{x |0<x<2.5}C.{x |0<x<6}D.{x |0<x<3}3.不等式24x -+xx ≥0的解集是( )A.{x |-2≤x ≤2}B.{x |-3≤x<0或0<x ≤2}C.{x |-2≤x<0或0<x ≤2}D.{x |-3≤x<0或0<x ≤3}4.设a>1,方程|x+log a x |=|x |+|log a x|的解集是( )A.0≤x ≤1B.x ≥1C.x ≥aD.0<x ≤a5.设全集为R ,A ={x |x 2-5x-6>0},B ={x ||x-5|<a }(a 为常数),且11∈B ,则( ) A. A ∪B =R B.A ∪B =RC. A ∪B =RD.A ∪B =R二、填空题6.已知|a |≤1,|b |≤1,那么|ab+22)1()1(b a --|与1的大小关系是 .7.对于实数x,y 有|x+y |<|x-y |,则x ,y 应满足的关系是 . 8.不等式|x |+|x-2|≤1的解集是 .三、解答题9.解不等式|x+7|-|3x-4|+223->010.已知f(x)=21x +,当a ≠b 时,求证|f(a)-f(b)|≤|a-b |【素质优化训练】一、选择题1.不等式ba b a ++≤1成立的充要条件是( ) A.ab ≠0B.a 2+b 2≠0C.ab>0D.ab<02.在x ∈(31,3)上恒有|log a x|<1成立,则实数a 的取值范围是( ) A.a ≥3 B.0<a ≤31C.a ≥3或0<a ≤31D.a ≥3或0<a<313.已知x<y<0,设a =|x |,b =|y |,c =21|x-y |,d =xy ,则a,b,c,d 的大小关系是( )A.b<d<c<aB.a<d<c<bC.a<c<d<bD.c<b<d<a4.平面直角坐标系中,横、纵坐标都是整数的点叫做整点,那么满足不等式(|x |-1)2+(|y |-1)2<2的整点(x,y)的个数是( )A.16B.17C.18D.25 5.已知f(x)=|lgx |,若0<a<b<c ,且f(a)>f(c)>f(b),则( ) A.(a-1)(c-1)>0 B.ac>1 C.ac =1 D.ac<1二、填空题6.当0<a<1时,满足|log a (x+1)|>|log a (x-1)|的x 的取值范围是 .7.若α,β∈R +,C ∈R +,则|α+β|2与(1+c)|α|2+(1+c1)|β|2的大小关系是 .8.已知ab+bc+ca =1,则|a+b+c |与3的大小关系是 . 9.不等式)1()10)(3)(2(2----x x x x x ≥0的解集是 .三、解答题10.设不等式5-x>7|x+1|与ax 2+bx-2>0同解,求a,b 的值.11.已知f(x)=x 2-x+13,|x-a |<1,求证:|f(x)-f(a)|<2(|a |+1)补充题:1.关于实数x 的不等式|x-2)1(2+a |≤2)1(2-a 与x 2-3(a+1)x+2(3a+1)≤0(a ∈R)的解集依次为A 和B ,求使A ⊆B 的a 的取值范围.2.已知f(x)=x 2+px+q ,求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于21.3.设a,b ∈R ,|a |+|b |<1,α、β是方程x 2+ax+b =0的两根,确定|α|、|β|的范围.4.设a ∈R ,函数f(x)=ax 2+x-a(-1≤x ≤1).(1)若|a |≤1,证明|f(x)|≤45. (2)求a 的值使函数f(x)有最大值817.参考答案【同步达纲练习】A 级1.C2.D3.D4.C5.C6.(-∞,3)7.{x |x≥1或x≤-3或x =-1}8.(-∞,0) (1,+∞)9.解:原不等式等价于x<0或⎩⎨⎧>+≥2120x x x ⇒0≤x<1+2,综上得:解集为{x |x<1+2}. 10.证明:∵|x |>m≥|a |. ⎪⎩⎪⎨⎧≥>≥>1m x bm x ⇒|x |2>|b |. ∴|x a +2x b |≤|x a |+|2x b |=xa +2xb <xa +22xx =2,故原不等式成立.AA 级1.B2.C3.B4.B5.D6.|ab+)1)(1(22b a --|≤1 7.x,y 异号 8.空集9.由223-=2-1,于是原不等式可化为:|x+7|-|3x-4|+2-1>0.等价于⎪⎩⎪⎨⎧>-+--+>012)43(734x x x ①或⎪⎩⎪⎨⎧>-+-++≤≤-012437347x x x ②或⎩⎨⎧>+-++--<0243)7(7x x x ③.解①得:34 <x<5+22.解②得:-21-22<x≤34.解③得无解.综上得,原不等式解集为(-422+,4210+). 10.证明:要证|f(a)-f(b)|<|a-b |.(21a +-21b +)2<(a-b)2.即:1+a 2+1+b 2-2)1)(1(22b a ++<a 2+b 2-2ab ,只需证:1+ab<)1)(1(22b a ++. ∵1+ab<|1+ab|,∴只需证|1+ab |<)1)(1(22b a ++.即证:1+2ab+a 2b 2<1+a 2+b 2+a 2b 2.即:2ab<a 2+b 2,又a≠b,故2ab<a 2+b2成立,故原不等式成立.【素质优化训练】1.B2.C3.D4.A5.D6.(2,+∞)7.|α+β|2≤(1+c)|α|2+(1+c1)|β|28.|a+b+c |≥3 9.解集是{x |x<1且x≠0,3≤x≤10或x =2}.10.解不等式5-x>7|x+1|成立的前提条件是:x<5.(1)当-1≤x<5,不等式化为:5-x>7x+7,∴-1≤x<-41.(2)当x<-1,不等式化为:5-x>-7x-7,∴x>-2,因此有:-2<x<-1.综合起来:不等式解为-2<x<-41,∴-2<x<-41为不等式ax 2+bx-2>0的解,∵a<0,不等式变形为x 2+a b x-a 2<0,它与不等式x 2+49x+21<0比较系数得:a =-4,b =-9. 11.证明:∵f(x)-f(a)=x 2-x-a 2+a =(x-a)(x+a-1),∴|f(x)-f(a)|=|(x-a)(x+a-1)|=|x-a ||x+a-1|<|x+a-1|=|x-a+2a-1|≤|x-a |+2|a |+1<2|a |+2=2(|a |+1)补充题:1.解:A ={x |2a≤x≤a 2+1},由x 2-3(a+1)x+2(3a+1)≤0知(x-2)[x-(3a+1)]≤0,当3a+1≥2时,即a≥31时,B ={x |2≤x≤3a+1},当a≥31时,要使A ⊆B ,则⎩⎨⎧+≤+≤131222a a a ,∴1≤a≤3.当a<31时,B ={x |3a+1≤x≤2}.要使A ⊆B ,则⎩⎨⎧+≤+≤+1312132a a a a ,∴a =-1.故要使A ⊆B 的a 的范围是{a |1≤a≤3或a =-1}.2.证明:假设|f(1)|,|f(2)|,|f(3)|都小于21,则有|f(1)|+2|f(2)|+|f(3)|<21+2×21+21=2,又由于f(x)=x 2+px+q ,可得f(1)-2f(2)+f(3)=1+p+q-(8+4p+2q)+(9+3p+q),所以|f(1)|+2|f(2)|+|f(3)|≥|f(1)-2f(2)+f(3)|=2两式矛盾.故|f(1)|,|f(2)|,|f(3)|中至少有一个不小于21. 3.解:由韦达定理知:α+β=-a,αβ=b ,而|a |+|b |=|α+β|+|αβ|<1.∴|α+β|<1-|αβ|=1-|α||β|.又|α+β|>|α|-|β|,∴|α|-|β|<1-|α||β|,即(|α|-1)(|β|+1)<0,∵|β|+1>0,∴|α|-1<0,即|α|<1,同理|β|<1.即|α|,|β|取范围为:|α|<1,|β|<1.4.证明:(1)∵|x |≤1,|a |≤1,∴|f(x)|=|a(x 2-1)+x |≤|a ||x 2-1|+|x |≤|x 2-1|+|x |=1-|x 2|+|x |=-(|x |-21)2+45≤45. (2)当a =0时,f(x)=x ;当-1≤x ≤1时,f(x)的最大值为f(1)=1不可能满足题设条件,∴a ≠0,又f(1)=a+1-a =1,f(-1)=a-1-a =-1,故f(±1)均不是最大值.∴f(x)的最大值为817,应在其对称轴上,即顶点位置取得.∴a<0.∴命题等价于⎪⎪⎪⎩⎪⎪⎪⎨⎧<=-<-<-0817)21(1211a a f a ⇒⎪⎪⎩⎪⎪⎨⎧=++-=0)81)(2(21a a a ⇒⎪⎪⎩⎪⎪⎨⎧-=-=-<81a 2a 21a 或,∴a =-2.。
绝对值不等式(高考版)(含经典例题+答案)
绝对值不等式(一) 绝对值不等式c b x a x c b x a x ≤-+-≥-+-绝对值的几何意义:a 的几何意义是:数轴上表示数轴上点a 到原点的距离;b a -的几何意义是:数轴上表示数轴上,a b 两点的距离。
b a +的几何意义是:数轴上表示数轴上,a b -的两点的距离。
x a x b -+-的几何意义是:数轴上表示点x 到,a b 的两点的距离和,故b a b x a x -≥-+- 利用图像和几何意义解c b x a x ≤-+-或c b x a x ≥-+-的解集。
分区间讨论:()()()⎪⎩⎪⎨⎧>--≤≤-<++-=-+-b x b a x b x a a b a x b a x b x a x 22c b ax ≤-的解法:I.当0>c 时,不等式解集为:c b ax c ≤+≤- II.当0<c 时,不等式解集为:空集 c b ax ≥+的解法:I.当0>c 时,不等式解集为:c b ax c b ax -≤+≥+或 II.当0<c 时,不等式解集为:全体实数解:由于|x +1|+|x -2|≥|(1-(-2)|=3,所以只需a ≤3即可.若本题条件变为“∃x ∈R 使不等式|x +1|+|x -2|<a 成立为假命题”,求a 的范围.解:由条件知其等价命题为对∀x ∈R ,|x +1|+|x -2|≥a 恒成立,故a ≤(|x +1|+|x -2|)min ,又|x +1|+|x -2|≥|(x +1)-(x -2)|=3,∴a ≤3.例2:不等式log3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则实数a 的取值范围是________. 解:由绝对值的几何意义知:|x -4|+|x +5|≥9,则log 3(|x -4|+|x +5|)≥2所以要使不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a <2.解:当x >1时,原不等式等价于2x <3⇒x <32,∴1<x <32;当-1≤x ≤1时,原不等式等价于x +1-x +1<3,此不等式恒成立,∴-1≤x ≤1;当x <-1时,原不等式等价于-2x <3⇒x >-32,∴-32<x <-1.综上可得:-32<x <32。
高三数学绝对值不等式试题
高三数学绝对值不等式试题1. (1).(不等式选做题)对任意,的最小值为()A.B.C.D.【答案】C【解析】因为,当且仅当时取等号,所以的最小值为,选C.【考点】含绝对值不等式性质2.集合A={x|<0},B={x||x-b|<a}.若“a=1”是“A∩B≠∅”的充分条件,则实数b的取值范围是______.【答案】(-2,2)【解析】A={x|<0}={x|-1<x<1},B={x||x-b|<a}={x|b-a<x<b+a},因为“a=1”是“A∩B≠∅”的充分条件,所以-1≤b-1<1或-1<b+1≤1,即-2<b<2.3.若关于x的不等式|x-2|+|x-a|≥a在R上恒成立,则a的最大值是()A.0B.1C.-1D.2【答案】B【解析】由于|x-2|+|x-a|≥|a-2|,∴等价于|a-2|≥a,解之得a≤1.故实数a的最大值为1,选B.4.设A={x∈Z||x-2|≤5},则A中最小元素为( )A.2B.-3C.7D.0【答案】B【解析】由|x-2|≤5,得-3≤x≤7,又x∈Z,∴A中的最小元素为-3,选B.5.解不等式:|x-1|>.【答案】{x|x<0或x>2}【解析】当x<0时,原不等式成立;当x≥1时,原不等式等价于x(x-1)>2,解得x>2或x<-1,所以x>2;当0<x<1时,原不等式等价于x(1-x)>2,这个不等式无解.综上,原不等式的解集是{x|x<0或x>2}.6.已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.【答案】(1)x≤1或x≥4(2)-3≤a≤0【解析】(1)当a=-3时,f(x)≥3,|x-3|+|x-2|≥3,或或解得x≤1或x≥4.(2)原命题f(x)≤|x-4|在[1,2]上恒成立|x+a|+2-x≤4-x在[1,2]上恒成立-2-x≤a≤2-x在[1,2]上恒成立,故-3≤a≤0.7.已知函数.(1)当时,解不等式;(2)若时,,求a的取值范围.【答案】(1);(2)[-7,7].【解析】本题主要考查绝对值不等式的解法、不等式恒成立等基础知识,考查学生分析问题解决问题的能力、转化能力、计算能力.第一问,先把a=-1代入,先写出的解析式,利用零点分段法去掉绝对值,解不等式组,得到不等式的解集;第二问,在已知的范围内的绝对值可去掉,解绝对值不等式,使之转化成2个恒成立.试题解析:(1)当a=-1时,不等式为|x+1|-|x+3|≤1.当x≤-3时,不等式化为-(x+1)+(x+3)≤1,不等式不成立;当-3<x<-1时,不等式化为-(x+1)-(x+3)≤1,解得;当x≥-1时,不等式化为(x+1)-(x+3)≤1,不等式必成立.综上,不等式的解集为. 5分(2)当x∈[0,3]时,f(x)≤4即|x-a|≤x+7,由此得a≥-7且a≤2x+7.当x∈[0,3]时,2x+7的最小值为7,所以a的取值范围是[-7,7]. 10分【考点】绝对值不等式的解法、不等式恒成立.8.不等式的解集为__________________.【答案】.【解析】,由,解得.【考点】绝对值不等式的解法.9.设(1)当时,,求a的取值范围;(2)若对任意,恒成立,求实数a的最小值【答案】(1);(2)【解析】本题主要考查绝对值不等式的解法、不等式的性质等基础知识,考查学生分析问题解决问题的能力,考查学生的转化能力和计算能力第一问,利用绝对值不等式的解法,先解出的解,再利用是的子集,列不等式组,求解;第二问,先利用不等式的性质求出的最小值,将恒成立的表达式转化为,再解绝对值不等式,求出的取值范围试题解析:(1),即依题意,,由此得的取值范围是[0,2] 5分(2)当且仅当时取等号解不等式,得故a的最小值为 10分【考点】1 绝对值不等式的解法;2 集合的子集关系;3 不等式的性质;4 恒成立问题10.解不等式:x+|2x-1|<3.【答案】{x|-2<x<}【解析】原不等式可化为或解得≤x<或-2<x<.所以不等式的解集是{x|-2<x<}.11.在实数范围内,不等式的解集为.【答案】【解析】不等式,由绝对值的几何意义知(如下图),当时,不等式成立.【考点】含绝对值不等式.12.(1)解关于的不等式;(2)若关于的不等式有解,求实数的取值范围.【答案】(1);(2).【解析】(1)解绝对值不等式的关键是去掉绝对号,如果有多个绝对号,可考虑零点分段的办法,该题只需分和分类讨论;(2)构造函数,只需函数.试题解析:(1)不等式等价于:,或,所以解集为;(2)记,则,∴实数的取值范围是.【考点】1、;绝对值不等式的解法;2、分段函数的最值.13.若关于x的不等式有解,则实数的取值范围是: .【答案】【解析】∵关于的不等式有解,表示数轴上的到和的距离之差,其最小值等于,最大值是,由题意,∴.【考点】绝对值不等式的解法.14.关于的不等式.(Ⅰ)当时,解此不等式;(Ⅱ)设函数,当为何值时,恒成立?【答案】(1)解集为;(2).【解析】本题考查绝对值不等式的解法和不等式的恒成立问题,考查学生的分类讨论思想和转化能力.第一问,先将代入,利用对数值得,利用零点分段法去绝对值解不等式;第二问,先将已知转化为,利用绝对值的几何意义得到的最大值,所以,即.试题解析:(1)当时,原不等式可变为,可得其解集为(2)设,则由对数定义及绝对值的几何意义知,因在上为增函数,则,当时,,故只需即可,即时,恒成立.【考点】1.解绝对值不等式;2.绝对值的几何意义;3.函数的最大值.15.已知函数.(1)若的解集为,求实数的值.(2)当且时,解关于的不等式.【答案】(1);(2)当时,原不等式的解集为,当时,原不等式的解集为.【解析】本题考查绝对值不等式的解法及利用解集求实数的值,考查学生的分类讨论思想和转化能力.第一问,利用绝对值不等式的解法求出的范围,让它和已知解集相同,列出等式,解出和的值;第二问,先将代入,得到解析式,再代入到所求不等式中,找到需要解的不等式,注意到当时,2个绝对值一样,所以先进行讨论,当时,按照解绝对值不等式的步骤,先列出不等式组,内部求交集,综合和的情况得到结论.试题解析:(Ⅰ)由得,所以解之得为所求. 4分(Ⅱ)当时,,所以当时,不等式①恒成立,即;当时,不等式或或,解得或或,即;综上,当时,原不等式的解集为,当时,原不等式的解集为. 10分【考点】1.绝对值不等式的解法.16.已知的最小值为,则二项式展开式中项的系数为 .【答案】15【解析】二项式展开式中含的项为其系数为.【考点】1、绝对值不等式的性质;2、二项式定理.17.已知函数f(x)=|x-2|+2|x-a|(a∈R).(I)当时,解不等式f(x)>3;(II)不等式在区间(-∞,+∞)上恒成立,求实数a的取值范围.【答案】(I) ;(II)或.【解析】(I) 分三种情况去掉绝对值解不等式;(II)分三种情况讨论,即得的最小值为,再得,解不等式得a的取值范围.试题解析:(Ⅰ)解得;解得;解得, 3分不等式的解集为. 5分(Ⅱ);;;的最小值为; 8分则,解得或. 10分【考点】1、绝对值不等式的解法.18.设函数.(Ⅰ)解不等式;(Ⅱ)若函数的解集为,求实数的取值范围.【答案】①②.【解析】(Ⅰ)把绝对值函数写出分段函数,然后分别解不等式. (Ⅱ)画出函数的图象,由图象知过定点的直线的斜率满足函数的解集为.试题解析:(Ⅰ),即解集为..5分(Ⅱ)如图,,故依题知,即实数的取值范围为 5分【考点】1.绝对值不等式;2.数形结合数学思想.19.设.(1)解不等式;(2)若对任意实数,恒成立,求实数a的取值范围.【答案】(Ⅰ)或;(Ⅱ)【解析】(Ⅰ)绝对值函数是分段函数,要分段考虑, (Ⅱ)对 ,恒成立等价于对,恒成立,等价于对,函数的最大值小于等于 , 利用函数在区间上是单调递增,求出最大值即可试题解析:解:, 2分(Ⅰ)画出函数的图像如图,的解为或. 4分的解集为或 5分(Ⅱ),即, 7分10分【考点】绝对值不等式,不等式恒成立.20.若关于的不等式的解集非空,则实数的取值范围是;【答案】【解析】根据题意,由于的不等式即可知实数的取值范围是。
高三数学绝对值不等式试题答案及解析
高三数学绝对值不等式试题答案及解析1. (1).(不等式选做题)对任意,的最小值为()A.B.C.D.【答案】C【解析】因为,当且仅当时取等号,所以的最小值为,选C.【考点】含绝对值不等式性质2.集合A={x|<0},B={x||x-b|<a}.若“a=1”是“A∩B≠∅”的充分条件,则实数b的取值范围是______.【答案】(-2,2)【解析】A={x|<0}={x|-1<x<1},B={x||x-b|<a}={x|b-a<x<b+a},因为“a=1”是“A∩B≠∅”的充分条件,所以-1≤b-1<1或-1<b+1≤1,即-2<b<2.3.不等式有实数解的充要条件是_____.【答案】.【解析】记,则不等式有实数解等价于,因为,故【考点】绝对值三角不等式.4.(2013•重庆)若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是_________.【答案】(﹣∞,8]【解析】由于|x﹣5|+|x+3|表示数轴上的x对应点到5和﹣3对应点的距离之和,其最小值为8,再由关于实数x的不等式|x﹣5|+|x+3|<a无解,可得a≤8,故答案为:(﹣∞,8].5.解不等式|2x-4|<4-|x|.【答案】【解析】原不等式等价于①或②或③不等式组①无解.由②0<x≤2,③2<x<,得不等式的解集为.6.已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求实数x 的取值范围.【答案】≤x≤【解析】由题知,|x-1|+|x-2|≤恒成立,故|x-1|+|x-2|不大于的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,当且仅当(a+b)·(a-b)≥0时取等号,∴的最小值等于2.∴x的范围即为不等式|x-1|+|x-2|≤2的解,解不等式得≤x≤.7.已知函数.(1)当时,解不等式;(2)若时,,求a的取值范围.【答案】(1);(2)[-7,7].【解析】本题主要考查绝对值不等式的解法、不等式恒成立等基础知识,考查学生分析问题解决问题的能力、转化能力、计算能力.第一问,先把a=-1代入,先写出的解析式,利用零点分段法去掉绝对值,解不等式组,得到不等式的解集;第二问,在已知的范围内的绝对值可去掉,解绝对值不等式,使之转化成2个恒成立.试题解析:(1)当a=-1时,不等式为|x+1|-|x+3|≤1.当x≤-3时,不等式化为-(x+1)+(x+3)≤1,不等式不成立;当-3<x<-1时,不等式化为-(x+1)-(x+3)≤1,解得;当x≥-1时,不等式化为(x+1)-(x+3)≤1,不等式必成立.综上,不等式的解集为. 5分(2)当x∈[0,3]时,f(x)≤4即|x-a|≤x+7,由此得a≥-7且a≤2x+7.当x∈[0,3]时,2x+7的最小值为7,所以a的取值范围是[-7,7]. 10分【考点】绝对值不等式的解法、不等式恒成立.8. A.(坐标系与参数方程)已知直线的参数方程为 (为参数),圆的参数方程为(为参数), 则圆心到直线的距离为_________.B.(几何证明选讲)如右图,直线与圆相切于点,割线经过圆心,弦⊥于点,,,则_________.C.(不等式选讲)若存在实数使成立,则实数的取值范围是_________.【答案】A. ; B.; C.【解析】A. 先把直线l和圆C的参数方程化为普通方程y=x+1,(x-2)2+y2=1,再利用点到直线的距离公式求出即可.B.在圆中线段利用由切割线定理求得PA,进而利用直角三角形PCO中的线段,结合面积法求得CE即可.C. 由绝对值的基本不等式得:,解得-3≤m≤1.【考点】(1)参数方程;(2)圆的性质;(3)绝对值不等式.9.不等式的解集是【答案】【解析】解答本题可利用“分段讨论法”,也可利用“几何法”,根据绝对值的几何意义,结合数轴得,不等式的解集是.【考点】绝对值不等式的解法10.已知关于x的不等式|ax-2|+|ax-a|≥2(a>0).(1)当a=1时,求此不等式的解集;(2)若此不等式的解集为R,求实数a的取值范围.【答案】(1)(2)a≥4【解析】(1)当a=1时,不等式为|x-2|+|x-1|≥2,由绝对值的几何意义知,不等式的意义可解释为数轴上的点x到1、2的距离之和大于等于2.∴x≥或x≤.∴不等式的解集为.注:也可用零点分段法求解.(2)∵|ax-2|+|ax-a|≥|a-2|,∴原不等式的解集为R等价于|a-2|≥2,∴a≥4或a≤0.又a>0,∴a≥4.11.设不等式|2x-1|<1的解集为M.(1)求集合M;(2)若a,b∈M,试比较ab+1与a+b的大小.【答案】(1)M={x|0<x<1}(2)ab+1>a+b【解析】(1)由|2x-1|<1得-1<2x-1<1,解得0<x<1.所以M={x|0<x<1}.(2)由(1)和a,b∈M可知0<a<1,0<b<1,所以(ab+1)-(a+b)=(a-1)(b-1)>0.故ab+1>a+b.12.不等式的解集是 .【答案】【解析】由题意可得,,解得.【考点】绝对值不等式的解法.13.不等式的解集是________.【答案】【解析】,当即时,则或,所以,故此时不成立;当即时,显然恒成立,故答案为.【考点】绝对值不等式的解法.14.已知不等式|x+2|+|x|≤a的解集不是空集,则实数a的取值范围是().A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)【答案】D【解析】因为|x+2|+|x|的最小值为2,所以要使不等式的解集不是空集,则有a≥2.15.不等式的解集是.【答案】【解析】含绝对值的不等式我们可以通过根据绝对值的定义通过分类讨论的方法去掉绝对值符号,然后解决问题,本题也可不分类讨论,首先不等式变形为,它等价于,这是二次不等式,解得,还要注意题目要求写成集合形式.【考点】解不等式.16.不等式的解集为 .【答案】【解析】即两边平方得,,,所以,不等式的解集为.【考点】绝对值不等式的解法17.已知函数f(x)=|x+2|+|2x-4|(1)求f(x)<6的解集;(2)若关于的不等式f(x)≥m2-3m的解集是R,求m的取值范围【答案】(1)不等式的解是{x|0<x<};(2)【解析】本题考查绝对值不等式的解法和不等式的恒成立问题,考查学生的分类讨论思想和转化能力第一问,利用零点分段法进行求解;第二问,利用函数的单调性求出最小值证明恒成立问题试题解析:(I)由题设知:当时,不等式等价与,即; 2分当时,不等式等价与,即; 4分当时,不等式等价与,即无解所以满足不等式的解是 6分(II)由图像或者分类讨论可得的最小值为4 8分则,解之得,【考点】1 绝对值不等式的解法;2 恒成立问题;3 分段函数的最值问题18.设关于的不等式的解集为,且,则实数的取值范围是 .【答案】.【解析】由题意当时,,当时,,即,由,则或,所以实数的取值范围为.【考点】绝对值不等式.19.若关于x的不等式的解集为空集,则实数a的取值范围是 .【答案】【解析】∵|x-1|-|x-2|=|x-1|-|2-x|≤|x-1-x+2|=1,若不等式|x-1|-|x-2|≥a2+a+1(x∈R)的解集为空集,则|x-1|-|x-2|<a2+a+1恒成立,即a2+a+1>1,解得x<-1或x>0.∴实数a的取值范围是(-∞,-1)∪(0,+∞).【考点】1.绝对值不等式的解法;2.函数恒成立问题20.已知函数(1)求不等式的解集;(2)若关于x的不等式的解集非空,求实数的取值范围.【答案】(1);(2)或.【解析】本题考查绝对值不等式的解法和不等式的有解问题,考查学生运用函数零点分类讨论的解题思路和问题的转化能力.第一问,利用零点分段法进行分段,分别去掉绝对值,列出不等式组,求出每一个不等式的解,通过求交集、求并集得到原不等式的解集;第二问,先将不等式的解集非空,转化为,利用绝对值的运算性质,求出函数的最小值4,所以,再解绝对值不等式,得到的取值范围.试题解析:(Ⅰ)原不等式等价于或或 3分解得或或即不等式的解集为 5分(Ⅱ) 8分∴或. 10分【考点】1.绝对值的运算性质;2.绝对值不等式的解法.21.已知函数,其中实数.(1)当时,求不等式的解集;(2)若不等式的解集为,求的值.【答案】(1)不等式的解集为;(2)【解析】(1)将代入得一绝对值不等式:,解此不等式即可.(2)含绝对值的不等式,一般都去掉绝对值符号求解。
高中数学-绝对值不等式的解法练习
高中数学-绝对值不等式的解法练习一、选择题1.如果1x <2和|x |>13同时成立,那么实数x 的取值范围是( )A .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-13<x <12B .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12或x <-13C .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12D .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-13,或x >13解析:解不等式1x <2,得x <0或x >12.解不等式|x |>13,得x >13或x <-13.∴实数x 的取值范围为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12或x <-13.答案:B2.不等式2<|2x +3|≤4的解集为( )A .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72<x <-52或-12<x ≤12B .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72<x <-52或-12<x <12C .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72≤x <-52或-12<x ≤12D .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72≤x ≤-52或-12<x ≤12解析:由2<|2x +3|≤4,可得2<2x +3≤4或 -4≤2x +3<-2.解得-12<x ≤12或-72≤x <-52.答案:C3.关于x 的不等式⎪⎪⎪⎪⎪⎪ax -1x >a 的解集为集合M ,且2∉M ,则实数a 的取值范围为( ) A .⎝ ⎛⎭⎪⎫14,+∞ B .⎣⎢⎡⎭⎪⎫14,+∞ C .⎝ ⎛⎭⎪⎫0,12 D .⎝ ⎛⎦⎥⎤0,12 解析:因为2∉M ,所以2∈∁R M .所以⎪⎪⎪⎪⎪⎪2a -12≤a ,即-a ≤2a -12≤a .解得a ≥14.答案:B4.不等式|3-x |+|x +4|>8的解集是( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-92 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >72 C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-92或x >72 D .R解析:|3-x |+|x +4|>8⇔⎩⎪⎨⎪⎧x ≤-4,3-x -x -4>8或⎩⎪⎨⎪⎧-4<x <3,3-x +x +4>8或⎩⎪⎨⎪⎧x ≥3,x -3+x +4>8⇔⎩⎪⎨⎪⎧x ≤-4,-1-2x >8或⎩⎪⎨⎪⎧-4<x <3,7>8或⎩⎪⎨⎪⎧x ≥3,2x >7.∴x <-92或x >72.∴原不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-92或x >72.答案:C 二、填空题5.若关于x 的不等式|ax -2|<3的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-53<x <13,则a =________. 解析:由原不等式的解集,可知-53,13为原不等式对应的方程|ax -2|=3的根,即⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪-53a -2=3,⎪⎪⎪⎪⎪⎪13a -2=3.解得a =-3. 答案:-36.已知函数f (x )=|2x -1|+x +3,若f (x )≤5,则实数x 的取值范围是________. 解析:由已知,有|2x -1|+x +3≤5,即|2x -1|≤2-x .所以x -2≤2x -1≤2-x ,即⎩⎪⎨⎪⎧2x -1≤2-x ,2x -1≥x -2,即⎩⎪⎨⎪⎧x ≤1,x ≥-1.所以-1≤x ≤1.答案:[-1,1]三、解答题7.已知一次函数f (x )=ax -2. (1)当a =3时,解不等式|f (x )|<4; (2)解关于x 的不等式|f (x )|<4;(3)若关于x 的不等式|f (x )|≤3对任意x ∈[0,1]恒成立,求实数a 的取值范围. 解:(1)当a =3时,f (x )=3x -2,所以|f (x )|<4⇔|3x -2|<4⇔-4<3x -2<4⇔ -2<3x <6⇔-23<x <2.所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23<x <2. (2)|f (x )|<4⇔|ax -2|<4⇔-4<ax -2<4⇔-2<ax <6.当a >0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -2a <x <6a ; 当a <0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪6a <x <-2a . (3)|f (x )|≤3⇔|ax -2|≤3⇔-3≤ax -2≤3⇔-1≤ax ≤5⇔⎩⎪⎨⎪⎧ax ≤5,ax ≥-1.因为x ∈[0,1], 所以-1≤a ≤5.所以实数a 的取值范围为[-1,5].8.已知对区间⎝ ⎛⎦⎥⎤0,54内的一切实数a ,满足关于x 的不等式|x -a |<b 的x 也满足不等式|x -a 2|<12,试求实数b 的取值范围.解:设A ={x ||x -a |<b },B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪|x -a 2|<12, 则A ={x |a -b <x <a +b ,b >0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a 2-12<x <a 2+12. 由题意,知当0<a ≤54时,A ⊆B .所以⎩⎪⎨⎪⎧a -b ≥a 2-12,a +b ≤a 2+12,0<a ≤54.所以b ≤-a 2+a +12且b ≤a 2-a +12.因为0<a ≤54,所以-a 2+a +12=-a -122+34∈⎣⎢⎡⎦⎥⎤316,34,a 2-a +12=⎝ ⎛⎭⎪⎫a -122+14∈⎣⎢⎡⎦⎥⎤14,1316.所以b ≤316且b ≤14.从而b ≤316.故实数b 的取值范围为⎝ ⎛⎦⎥⎤0,316.一、选择题1.设集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>2,x ∈R },若A ⊆B ,则实数a ,b 必满足( )A .|a +b |≤3B .|a +b |≥3C .|a -b |≤3D .|a -b |≥3解析:由|x -a |<1,得a -1<x <a +1. 由|x -b |>2,得x <b -2或x >b +2. ∵A ⊆B ,∴a -1≥b +2或a +1≤b -2. ∴a -b ≥3或a -b ≤-3.∴|a -b |≥3. 答案:D2.若关于x 的不等式|2x +1|-|x -4|≥m 恒成立,则实数m 的取值范围为( ) A .(-∞,-1] B .⎝ ⎛⎦⎥⎤-∞,-52C .⎝⎛⎦⎥⎤-∞,-92 D .(-∞,-5] 解析:设F (x )=|2x +1|-|x -4|=⎩⎪⎨⎪⎧-x -5,x <-12,3x -3,-12≤x ≤4,x +5,x >4.如图所示,F (x )min =-32-3=-92.故m ≤F (x )min =-92.答案:C二、填空题3.已知a ∈R ,若关于x 的方程x 2+x +⎪⎪⎪⎪⎪⎪a -14+|a |=0有实根,则实数a 的取值范围是________.解析:∵关于x 的方程x 2+x +⎪⎪⎪⎪⎪⎪a -14+|a |=0有实根,∴Δ=12-4⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪a -14+|a |≥0,即⎪⎪⎪⎪⎪⎪a -14+|a |≤14.根据绝对值的几何意义,知0≤a ≤14.答案:⎣⎢⎡⎦⎥⎤0,14 4.若函数f (x )是R 上的减函数,且函数f (x )的图像经过点A (0,3)和B (3,-1),则不等式|f (x +1)-1|<2的解集是________.解析:∵|f (x +1)-1|<2,∴-2<f (x +1)-1<2,即-1<f (x +1)<3.∴f (3)<f (x +1)<f (0).∵函数f (x )在R 上是减函数, ∴0<x +1<3.解得-1<x <2. 答案:{x |-1<x <2} 三、解答题5.如图所示,点O 为数轴的原点,A ,B ,M 为数轴上三点,C 为线段OM 上的动点.设x 表示点C 与原点的距离,y 表示点C 到点A 的距离的4倍与点C 到点B 的距离的6倍之和.(1)将y 表示为x 的函数;(2)要使y 的值不超过70,实数x 应该在什么范围内取值? 解:(1)依题意,得y =4|x -10|+6|x -20|,0≤x ≤30. (2)由题意,得x 满足⎩⎪⎨⎪⎧4|x -10|+6|x -20|≤70,0≤x ≤30.(*)当0≤x ≤10时,不等式组(*)化为 4(10-x )+6(20-x )≤70,解得9≤x ≤10. 当10<x <20时,不等式组(*)化为 4(x -10)+6(20-x )≤70,解得10<x <20. 当20≤x ≤30时,不等式组(*)化为 4(x -10)+6(x -20)≤70,解得20≤x ≤23. 综上,实数x 的取值范围是[9,23]. 6.已知函数f (x )=|x -a |.(1)若关于x 的不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若关于x 的不等式f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.解:法一 (1)由f (x )≤3,得|x -a |≤3. 解得a -3≤x ≤a +3.又关于x 的不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5.解得a =2.(2)由(1),得a =2,f (x )=|x -2|. 设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2.所以当x <-3时,g (x )>5; 当-3≤x ≤2时,g (x )=5;当x>2时,g(x)>5.综上,函数g(x)的最小值为5.从而若关于x的不等式f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则实数m的取值范围为(-∞,5].法二(1)同法一.(2)由(1),得a=2,f(x)=|x-2|.设g(x)=f(x)+f(x+5).由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立),得函数g(x)的最小值为5.从而若关于x的不等式f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则实数m的取值范围为(-∞,5].。
高三数学绝对值不等式试题
高三数学绝对值不等式试题1.,若,则的取值范围为__________.【答案】【解析】因为,当且仅当取等号,所以,又,所以,因此的取值范围为.【考点】含绝对值不等式的性质2.设A={x∈Z||x-2|≤5},则A中最小元素为( )A.2B.-3C.7D.0【答案】B【解析】由|x-2|≤5,得-3≤x≤7,又x∈Z,∴A中的最小元素为-3,选B.3.解不等式|2x-4|<4-|x|.【答案】【解析】原不等式等价于①或②或③不等式组①无解.由②0<x≤2,③2<x<,得不等式的解集为.4.已知f(x)=.(1)当a=1时,求f(x)≥x的解集;(2)若不存在实数x,使f(x)<3成立,求a的取值范围.【答案】(1);(2)【解析】(1)根据绝对值的几何意义分类去掉绝对值符号,化为几个整式不等式,然后求解,最后求它们的并集即可.(2)由题意可知恒成立,由绝对值不等式的性质可得,即,解出a即可.试题解析:(1)当a=1时,,解得;当时,解得,无解,解得; 3分综上可得到解集. 5分(2)依题意,,则, 8分(舍),所以 10分【考点】解绝对值不等式的解法.5.设,若关于的不等式有解,则参数的取值范围为________.【答案】[0,3]【解析】由知,不等式有解等价于,解得.【考点】绝对值不等式的解法、转化思想.6.若存在实数使成立,则实数的取值范围是 .【答案】【解析】为使存在实数使成立,只需的最小值满足不大于.在数轴上,表示横坐标为的点到横坐标为a的点A距离,就表示点到横坐标为1的点B的距离,所以,从而,解得.故答案为.【考点】绝对值的几何意义,绝对值不等式的解法.7.不等式的解集是________.【答案】【解析】,当即时,则或,所以,故此时不成立;当即时,显然恒成立,故答案为.【考点】绝对值不等式的解法.8.定义:关于的不等式的解集叫的邻域.已知的邻域为区间,其中、分别为椭圆的长半轴和短半轴.若此椭圆的一焦点与抛物线的焦点重合,则椭圆的方程为()A.B.C.D.【答案】B【解析】由题中的定义知,的邻域为区间,则关于不等式的解集为,解关于不等式得,解得,所以,又由于椭圆的一焦点与抛物线的焦点重合,则,即,所以,解得,,故此椭圆的方程为,故选B.【考点】1.新定义;2.含绝对值的不等式的解法;3.椭圆的方程9.已知函数,若不等式的解集为,则的值为__________.【答案】.【解析】当且时,.【考点】不等式选讲.10.已知的最小值为,则二项式展开式中项的系数为 .【答案】15【解析】二项式展开式中含的项为其系数为.【考点】1、绝对值不等式的性质;2、二项式定理.11.解不等式.【答案】【解析】先构造函数,去绝对值,将函数的解析式利用分段函数的形式求出,将问题转化为分段不等式进行求解.令,当时,,,则,此时恒成立; 3分当时,,,则,令,即,解得,由于,则有; 6分当时,,,则,此时不成立, 9分综上所述,不等式的解集为. 10分【考点】含绝对值不等式的解法、分段函数12.设函数(Ⅰ)若,解不等式;(Ⅱ)若函数有最小值,求实数的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)分类去掉绝对值符号,化为整式不等式再解,最后取并集即可.(Ⅱ)把函数f(x)化为分段函数,然后再找出f(x)有最小值的充要条件解之即可.试题解析:(Ⅰ)a=1时,f(x)=+x+3当x≥时,f(x)≤5可化为3x-1+x+3≤5,解得≤x;当x<时,f(x)≤5可化为-3x+1+x+3≤5,解得-,综上可得,原不等式的解集为(Ⅱ)f(x)= +x+3=函数有最小值的充要条件是,解得【考点】1.绝对值不等式;2.分段函数及其求函数值.13.已知函数,(Ⅰ)已知常数,解关于的不等式;(Ⅱ)若函数的图象恒在函数图象的上方,求实数的取值范围.【答案】(1)不等式的解集为(2)【解析】解:(Ⅰ)由得,或或故不等式的解集为 3分(Ⅱ)∵函数的图象恒在函数图象的上方∴恒成立,即恒成立 5分∵,∴的取值范围为. 7分【考点】绝对值不等式点评:主要是考查了绝对值不等式的定义,以及不等式的恒成立问题转化为最值来处理的运用,属于中档题。
高二数学绝对值不等式试题答案及解析
高二数学绝对值不等式试题答案及解析1.已知实数满足,证明:.【答案】见解析【解析】有已知条件,可得,,然后得到,展开进行整理即可。
证明:证法一,∴,,∴,. 2分∴,即, 4分∴,∴, 6分即,∴. 8分证法二:要证,只需证 2分只需证只需证 4分即. 6分,∴,,∴成立.∴要证明的不等式成立. 8分【考点】绝对值不等式;不等式证明的基本方法.2.不等式的解集是 ( )A.B.C.D.【答案】D【解析】由得,即或,解得或【考点】解含绝对值不等式3.不等式的解集为A.[-5.7]B.[-4,6]C.D.【答案】C【解析】本题利用绝对值的几何意义,结合数轴求解。
不等式的解集为,选C。
【考点】绝对值不等式解法点评:简单题,绝对值不等式解法,通常以“去绝对值符号”为出发点。
有“平方法”,“分类讨论法”,“几何意义法”,不等式性质法等等。
4.已知关于x的不等式的解集是非空集合,则的取值范围是【答案】【解析】根据题意,关于x的不等式|x+a|+|x-1|+a<2013(a是常数)的解是非空集合,即为存在y=|x+a|+|x-1|的图形在y=2013-a的下方. y=|x+a|+|x-1|的图形是一条有两个折点的折线.y=2013-a是一条平行于x轴的直线.a的取值范围是(-∞,1006);6所以答案为:(-∞,1006).【考点】绝对值不等式点评:(1)关于x的不等式|x+a|+|x-1|+a<2013(a是常数)的解是非空集合,等价于存在y=|x+a|+|x-1|的图形在y=2013-a的下方.与恒成立是有本质区别的.(2)y=|x+a|+|x+b|的图形为一条带有两个折点的直线.5.在实数范围内,不等式的解集为__________【答案】【解析】解:由不等式|2x-1|+|2x+1|≤6,可得①-(2x-1)+(-2x-1)≤6, x<-,或②-(2x-1)+(2x+1)≤6-≤x<,或③2x-1+2x+1≤6,X解①得-≤x<-,解②得-≤x<,解③得≤x≤把①②③的解集取并集可得不等式的解集为【考点】分式不等式点评:本题主要考查分式不等式的解法,体现了等价转化和分类讨论的数学思想,属于中档题.6.不等式的解集为。
第10课--绝对值不等式(经典例题练习、附答案)
第10课 绝对值不等式 ◇考纲解读 ①理解不等式a b a b a b -≤+≤+②掌握解绝对值不等式等不等式的基本思路,会用分类、换元、数形结合的方法解不等式;◇知识梳理1.绝对值的意义 ①代数意义:___,(0)___,(0)___,(0)a a a a >⎧⎪= =⎨⎪ <⎩②几何意义:a 是数轴上表示a 的点____________。
2. 含绝对值的不等式的解法①0a >时,|()|f x a >⇔____________;|()|f x a <⇔____________;②去绝对值符号是解绝对值不等式的常用方法;③根据绝对值的几何意义,通过数形结合解绝对值不等式.◇基础训练1.函数|||3|y x x =--的最大值为 ___________.2.(2008惠州调研) 函数46y x x =-+-的最小值为 .3.(2008珠海质检)已知方程20x ax b -+=的两根分别为1和2,则不等式1ax b -≤的解集为 ____________ (用区间表示).4.(2008广州二模)不等式21<-+x x 的解集是 .◇典型例题例1 .解不等式512x x +>-例2. 解不等式125x x -++>变式1:12x x a -++<有解,求a 的取值范围变式2:212x x a -++<有解,求a 的取值范围变式3:12x x a -++>恒成立,求a 的取值范围◇能力提升1.(2008湛江二模)若关于x 的不等式||2x a a -<-的解集为{}42|<<x x ,则实数=a .2.(2008韶关二模)不等式4|2||12|<++-x x 的解集为3.(2008揭阳调研)若()5f x x t x =-+-的最小值为3, 则实数t 的值是________.4. (2008汕头一模) 若不等式121x a x+>-+对于一切非零实数x 均成立,则实数a 的取值范围是_________________。
高一数学含绝对值不等式的解法练习题
含绝对值的不等式解法一、选择题1.已知a <-6,化简26a -得( ) A. 6-a B. -a -6C. a +6D. a -62.不等式|8-3x |≤0的解集是( ) A. ∅B. RC. {(1,-1)}D. ⎭⎬⎫⎩⎨⎧38 3.绝对值大于2且不大于5的最小整数是( ) A. 3B. 2C. -2D. -54.设A ={x | |x -2|<3},B ={x | |x -1|≥1},则A ∩B 等于( )A. {x |-1<x <5}B. {x |x ≤0或x ≥2}C. {x |-1<x ≤0}D. {x |-1<x ≤0或2≤x <5}5.设集合}110 {-≤≤-∈=x Z x x A 且,}5 {≤∈=x Z x x B 且,则B A 中的元素个数是( ) A. 11 B. 10 C. 16 D. 156.已知集合M ={R x x x y y ∈-+=,322},集合N ={y ︱32≤-y },则M ∩N ( ) A. {4-≥y y } B. {51≤≤-y y } C. {14-≤≤-y y } D. ∅7.语句3≤x 或5>x 的否定是( )A. 53<≥x x 或B. 53≤>x x 或C. 53<≥x x 且D. 53≤>x x 且 二、填空题1.不等式|x +2|<3的解集是 ,不等式|2x -1|≥3的解集是 .2.不等式1211<-x 的解集是_________________. 3.根据数轴表示a ,b ,c 三数的点的位置,化简|a +b |+|a +c |-|b -c |= ___ .三、解答题1.解不等式 1.02122<--x x 2.解不等式 x 2 - 2|x |-3>03.已知全集U = R , A ={x |x 2- 2 x - 8>0}, B ={x ||x +3|<2},求:(1) A ∪B , C u (A ∪B ) (2) C u A , C u B , (C u A )∩(C u B )4.解不等式3≤|x -2|<9 7.解不等式|3x -4|>1+2x .5.画出函数|21|x-||x y ++=的图象,并解不等式| x +1|+| x -2|<4.6.解下列关于x 的不等式:1<| x - 2 |≤77.解不等式2≤|5-3x |<9 11.解不等式|x -a |>b8.解关于x 的不等式:|4x -3|>2x +19.解下列关于x 的不等式:021522≤---x x x含绝对值的不等式解法答案一、选择题(共7题,合计35分) 1.1760答案:B 2.1743答案:D 3.1744答案:D 4.1773答案:D 5.2075答案:C 6.4109答案:B 7.1672答案:D二、填空题(共5题,合计21分)1.1539答案:{-5<x <1},{x |x ≥2或x ≤-1}2.1725答案:{x |0<x <4}3.1602答案:⎭⎬⎫⎩⎨⎧≤≤-3434x x4.1728答案:a <35.1788答案:0三、解答题(共19题,合计136分) 1.1510答案:{x |x >10或x <-10}2.1502答案:{}33-<>x x x 或3.1509答案:(1) A ∪B = {x |x <-1或x >4=, C U (A ∪B )= {x |-1≤x ≤4}(2) C U A = {x |-2≤x ≤4}, C U B = {x |x ≤-5或x ≥-1}, (C U A )∩(C U B ) = {x |-1≤x ≤4}4.1535答案:⎭⎬⎫⎩⎨⎧>-<317x x x 或5.1597答案:⎭⎬⎫⎩⎨⎧≥-≤2721x x x 或6.1598答案:{x |-7<x ≤-1或5≤x <11}7.1599答案:⎭⎬⎫⎩⎨⎧><553x x x 或8.1600答案:2523<<-x9.1538答案:⎭⎬⎫⎩⎨⎧>-<032x x x 或 10.1554答案:⎭⎬⎫⎩⎨⎧<≤≤<-31437134x x x 或 11.1536答案:当b <0时,解集为R ;当b =0时,解集为{x |x ∈R 且x ≠a };当b >0时,解集为{x |x <a -b 或x >a +b }.12.1601答案:a 的取值范围为a >5 13.1721答案:-5≤x <1或3<x ≤9.14.1722答案:x >2或x <1/3.15.1723答案:|x -1|+|x -2|<3⇔0<x <1或1≤x <2或2≤x <3⇔0<x <3.16.1724答案:当m >0时,原不等式的解集是{x |-3m <x <2m };当m =0时,原不等式的解集是∅;当m <0时,原不等式的解集是{x |2m <x <-3m }. 17.1726答案:x <-1/2或0<x <4.18.1727答案:x ≤-3或2<x ≤519.4121答案:21<a <32。
高三数学绝对值不等式试题答案及解析
高三数学绝对值不等式试题答案及解析1.已知,且.(1)试利用基本不等式求的最小值;(2)若实数满足,求证:.【答案】(1)3(2)参考解析【解析】(1)由已知,且.即m可化为.由柯西不等式可得结论.(2)由(1)可得.再由柯西不等式即可得结论.(1)由三个数的均值不等式得:(当且仅当即时取“=”号),故有. 4分(2),由柯西不等式得:(当且仅当即时取“=”号)整理得:,即. 7分【考点】1.柯西不等式.2.绝对值不等式.2.已知f(x)=|x+1|+|x-1|,不等式f(x)的解集为M.(1).求M;(2).当a,b M时,证明:2|a+b|<|4+ab|.【答案】(1);(2)证明过程详见解析.【解析】本题主要考查绝对值不等式、不等式的证明等基础知识,意在考查考生的运算求解能力、利用综合法、分类讨论思想的解题能力.第一问,利用零点分段法分别去掉绝对值,解不等式;第二问,可先用分析法由所求证的结论入手,分析需要证明什么,再用综合法证明,要证2|a+b|<|4+ab|,需证明,展开,需证明,由已知入手,找到,,从而证出.试题解析:(1)由,即,当时,则,得,∴;当时,则,得,恒成立,∴;当时,则,得,∴;综上,. 5分(2)当时,则,.即:,,∴,∴,即,也就是,∴,即:,即. 10分【考点】绝对值不等式、不等式的证明.3.解不等式|2x-4|<4-|x|.【答案】【解析】当x>2时,原不等式同解于2x-4<4-x,解得x<,所以2<x<;当0≤x≤2时,原不等式同解于4-2x<4-x,解得x>0,所以0<x≤2;当x<0时,原不等式同解于4-2x<4+x,解得x>0,所以x∈∅.综上所述,原不等式的解集为.4.若关于实数x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是________.【答案】(-∞,8]【解析】因为|x-5|+|x+3|表示数轴上的动点x到数轴上的点-3,5的距离之和,而(|x-5|+|x+3|)=8,∴当a≤8时,|x-5|+|x+3|<a无解,min故实数a的取值范围为(-∞,8].5.已知函数.(1)若的解集为,求实数的值.(2)当且时,解关于的不等式.【答案】(1);(2)当时,原不等式的解集为,当时,原不等式的解集为.【解析】本题考查绝对值不等式的解法及利用解集求实数的值,考查学生的分类讨论思想和转化能力.第一问,利用绝对值不等式的解法求出的范围,让它和已知解集相同,列出等式,解出和的值;第二问,先将代入,得到解析式,再代入到所求不等式中,找到需要解的不等式,注意到当时,2个绝对值一样,所以先进行讨论,当时,按照解绝对值不等式的步骤,先列出不等式组,内部求交集,综合和的情况得到结论.试题解析:(Ⅰ)由得,所以解之得为所求. 4分(Ⅱ)当时,,所以当时,不等式①恒成立,即;当时,不等式或或,解得或或,即;综上,当时,原不等式的解集为,当时,原不等式的解集为. 10分【考点】1.绝对值不等式的解法.6.若存在实数使成立,则实数的取值范围是 .【答案】【解析】令,易知的最小值为,故,所以.【考点】绝对值不等式的解法点评:本题考查绝对值不等式的解法,考查绝对值的几何意义,得到|a-1|≤3是关键,也是难点,考查分析问题、转化解决问题的能力,属于中档题.7.(本题满分10分)选修4-5:不等式选讲已知关于的不等式:的整数解有且仅有一个值为2.(1)求整数的值;(2)在(1)的条件下,解不等式:.【答案】(1),。
高一数学 含绝对值不等式的解法练习题
高一数学 含绝对值不等式的解法练习题一、 选择题:1、不等式|2-x |>0的解集是( )A 、φB 、RC 、{2}D 、{x|x ≠2}2、与不等式|2-3x |>1同解的是 ( )A 、2-3x >1±B 、3x-2>1或3x-2<-1C 、2-3x >1D 、-1<2-3x <1 3、设全集U={x||x -2|>1},A ={x||x +1|≤1},则C U A 等于 ( )A 、{x|x <-2或x >0}B 、{x|x <1或x >3}C 、{x|x <-2或0<x <1或x >3}D 、{x|1<x<3}4、不等式|ax+b|≤c 的解集为非空集合,则c 的取值范围是 ( ) A 、c ≥0 B 、c>0 C 、c<0 D 、c ≤05、若不等式|1-kx |<2的解集是{x |-1<x <3},则的k 为 ( )A 、-2<k<1B 、31-<k<1 C 、k=1 D 、k=-3 6、不等式1|12|1>+x 的解集是 ( ) A 、{x|0<x <1}B 、{x|-1<x <0}C 、{x|-1<x <0且x ≠21-}D 、{x|x<-1或x >0} 二、 填空题:7、若2∈{x _______________。
8 的解集为_______________。
9、不等式|_____________________。
10、|x +2|-|x -1|<a 的解集为非空集合,则实数a 的取值范围是______。
三、 解答题(不够写的请做在背面)11、设A ={x ||x-1|>2},B={x ||x -5|<c},若A B =A ,求实数c 的取值范围。
12、解下列不等式:(1) |2x+51|≥21 (2) |2x -1|<2-3x (3)|2-x |-|2x +5|>2x 答案 :一、选择题 DBCACC一、 填空题 {a|a>-3或a<-5}, {x|0≤x<2}, {x|x>2,或x<0}, a>-3二、 解答题 c ≤2 x ≥203或x ≤207- x<53-。
解含绝对值的不等式专题练习有详细答案
解“含纽对值的不等成”专題练习册级学号一•选择題:1.不等衣|x + 2|<3的解集是()(A) - 5<x<1 ( B ) x< - 5 或x>1 ( C ) x< - 5 ( D ) x>12.不等衣|2z-1 |>2的解集是()1 3 1 3(A ) x> 1 或x<- 1 ( B ) A <一一或A > - ( C ) --<x<- ( D ) - 1 <x<32 2 2 23•不等衣3v|2x —l|v5的解集为()A. {x|2<x<31B. {x|-2<x<-1}C. {x|-2<x<-1 或2<x<3}D. {x|-2<x<3}4•不等S0<|2x-l|<5的解集为( )A. {x|-2<x<3}B. {x|-2<x<2} C・(x|x<-2 或x>3} D. {x|-2<x<3 fl -}25•不等衣I2x —5I>3的解集是()(A) {x I x > 4} (B){xl 1 <x< 4}(C) {x I x<一1弧 > 4)(D) {x\x< 1 或兀 > 4)6•关于x的不等氏叱vO(“ + 〃vO)的瞬集是()b_x(A) {x\x< -a} (B){x I x < > /?}(C) {x I x < /?或x: > -a} (D){xl/?<x< -a}7•不等itlx2-xl<2的解集是( )(A) {x \ x < -lgJcx > 2) (B) {x I -1 v x v 2} (C)x e 7? (D)08•不等式(l + x)(l-lxl) >0的解集是()A. {xIOSxvl} B・{xlx vO,xH-l}C. {xl-1 <x< l)D.{xlx<9•已知集合A={x卜2<x<4},B=(x|xMa},若AnB=4>, fl AuB中不含元素5,则下列值中a可能是A. 3B. 4C. 5D. 6 ( )10•若不等直丄v2和卜|>抑时应立,呱x的取值X围是()A. —丄vxvlB. x> 丄或vv-丄C. x>-D. x> -2 3 2 3 2 3 211.设集合P={X|X2-4X-5<0},Q = {X^x\-a>0}, i 能便PflQ = 0 成立的a 的值是( ) A. {a\a>5} B. {a|a>5}C. {d|-lva<5}D. ^a\a > 1}12•不等衣奸¥+凶》0的解集是( )A. {x|-2<x<2}B. 0或0K2}C. {x|-2<x<0«lc0<J<2)D. {x|-辰x<0或0W>/T}13.E »a>o,不等此卜一 4|+卜一 3|<“在实数集R 上的解集不是空集,剧“的取值X 围是( A. a >0B. a > 1 C ・ a>\ D. a >22、•一]14 •设集合4 = {人•卜一牛2}, 3 =杯二卜若A^B 9収的収值X 围是(x I 2A. {切0<«< ljB. {切0<a<\}C. {G |0 va v 1} D ・{a|0<a<\} 二填空題: 15•不等S|X +1|+|X-1|<2的解集是 ______________________17•不等贰|x+1 |+|x-11>2的解集是 ___________________________ ・1&若a>O,be/?,般不等j{\-3x + b\< "的解集是 _____________________ .19•不等jt|x +1|-|x-1>a 的解集是R,则a 的取值集合 __________________________________ 20•不等氏/-5^|+6<0.的解集是 _________________ 21•巳知集合 A={x||x+2>5EB={x|-屮+6乂・ 5>0},M AuB=三.解笞題:22. 解下列不等衣 (1)|1-2x>2⑵(x-1 ) 2<100(3)解不等 S X 2-9<X +3 (4)解不等式 |x-|2x+1||>1.16.x 2 +3x JV + 2>卞的解集是 -----------------------(5)l3x + 2lvlxl(6) I x2 -4x+2 | >-;2 (7 ) | x+3 | - | x - 3 | >3.23.BflA = {x||x-a|<4}1B = {x|x2-4x-5>0}, fl AuB=R.XX 数a 的取值X 围.24.M BlA = {xllx-ll<c,c>O},B = {xllx-3l>4},KAn^ = 0» 求C 皿值的XU。
高一数学绝对值不等式试题答案及解析
高一数学绝对值不等式试题答案及解析1.已知函数(1)当时,求不等式的解集;(2)若在上恒成立,求的取值范围。
【答案】(1)(2)【解析】(1)当时,或 6分(2)原命题在上恒成立在上恒成立在上恒成立 12分【考点】本题考查了绝对值不等式的解法点评:在解答含有绝对值不等式问题时,要注意分段讨论来取绝对值符号的及利用绝对值的几何意义来求含有多个绝对值的最值问题.2.不等式|2-x|≥1的解集是A.{x|1≤x≤3}B.{x|x≤1或x≥3}C.{x|x≤1}D.{x|x≥3}【答案】B【解析】∵|2-x|≥1,∴2-x≥1或2-x≤1,解得x≤1或x≥3, 故不等式|2-x|≥1的解集是{x|x≤1或x≥3},选B【考点】本题考查了绝对值不等式的解法点评:解含绝对值不等式的关键是脱掉绝对值符号,有时利用定义,有时利用公式,属基础题3.不等式的解集是。
【答案】-1<x<1或x<-1【解析】根据题意,当x 0时则有,当x<0时,则可知,综上可知满足不等式的解集为-1<x<1或x<-1,故答案为-1<x<1或x<-1。
【考点】一元二次不等式的解集点评:解决的关键是利用绝对值符号的讨论得到不同情况下的解集,然后取其并集即可,属于基础题。
4.不等式对任意实数恒成立,则实数的取值范围为()A.B.C.D.【答案】A【解析】因为不等式对任意实数恒成立,那么则可知,故选A.5.不等式的解集为:()A.B.C.D.【答案】B【解析】解:因为,选B6.不等式对任意实数恒成立,则实数的取值范围为。
【答案】【解析】因为对任意实数恒成立,所以大于等于在定义域上的最大值。
当时,当时,当,综上可得,在定义域上的最大值为4,则解得,或7.不等式1≤|2x-3|≤5的解是__________。
【答案】【解析】略8.若,则正确的是()A.B.C.D.【答案】A【解析】略9.若不等式对一切恒成立,那么实数的取值范围是()A.B.C.D.【答案】D【解析】略10.若,则下列不等式:中正确的是()A.(1)(2)B.(2)(3)C.(1)(3)D.(3)(4)【答案】C【解析】略11.若,则下列不等式:中正确的是()A.(1)(2)B.(2)(3)C.(1)(3)D.(3)(4)【答案】C【解析】略12.设函数,不等式的解集为(-1,2)(1)求的值;(2)解不等式.【答案】(1)a="2 " (2)同解析【解析】1)∵的解集为(-1,2)∴得a="2 "(2)由得①当,即时,②当,即时,无解③当,即时,13.不等式的解集为()A.B.C.D.【答案】D【解析】把x=1代入不等式组验算得x=1是不等式组的解,则排除(B)、(C), 再把x=-3代入不等式组验算得x=-3是不等式组的解,则排除(B),所以选(D).14.设函数(1)当时,求函数的定义域;(2)若函数的定义域为R,试求的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值的不等式练习
班级 学号 姓名
1.不等式243<-x 的整数解的个数为( )
A 0
B 1
C 2
D 大于2
2.若两实数y x ,满足0<xy ,那么总有( ) A y x y x -<+ B y x y x ->+ C y x y x -<-D x y y x -<+
3.已知0,<+>b a b a ,那么( ) A b a > B b a 11> C b a < D b
a 11< 4.不等式13-<-x x 的解是( )
A 52<<x
B 36≥x
C 2>x
D 32≤<x
5.已知,b c a <-且,0≠abc 则( )
A c b a +<
B b c a ->
C c b a +<
D c b a ->
6.不等式652>-x x 的解集为( ) A 1{-<x x 或}6>x B }32{<<x x C ∅ D 1{-<x x 或32<<x 或}6>x
7.若1lg lg ≤-b a ,那么( )
A b a 100≤<
B a b 100≤<
C b a 100≤<或a b 100≤< D
b a b 1010≤≤ 8.函数22--=x x y 的定义域是( )
A ]2,2[-
B ),2[]2,(+∞--∞
C ),1[]1,(+∞--∞
D ),2[+∞
9.不等式b a b a +≤+取等号的条件是 ,b a b a +≤-取等号的条件 .
10.不等式x x ->+512的解集是
11.如果不等式21<x 和3
1>x 同时成立,则x 的取值范围是 12.不等式x
x x x ->-11的解是 13.函数x
x x y -+=0
)21(的定义域是 14.不等式331≤-<x 的解集是 15.解下列不等式:(1)x
x 1<
(2)321>++-x x
16.解不等式:x x +<-1log 2log 4141
17.已知
,11<++b
a a
b ,求证:}{a 和}{b 中必有一个大于1,而另一个小于1.
18.使不等式a x x <-+-34有解的条件是( ) A 1>a B 1101<<a C 101<a D 10
10<<a 19.)(13)(R x x x f ∈+=,当b x <-1有),,(4)(+∈<-R b a a x f 则b a ,满足( ) A 3a b ≤ B 3b a ≤ C 3a b > D 3
b a ≥ 20.不等式组⎪⎩⎪⎨⎧+-<+-<x
x x x x 22330的解集是( ) A }02{<<-x x B }025{<<-x x C }06{<<-x x D }03{<<-x x
21.当10<<x 时,比较)1(log x a +与)1(log x a -的大小.)1,0(≠>a a。