平面内点的坐标教案

合集下载

沪科版(2012)初中数学八上 11.1 平面内点的坐标 教案

沪科版(2012)初中数学八上 11.1 平面内点的坐标  教案

第11章平面直角坐标系11.1平面内点的坐标(第2课时)教学设计学生自主交流:学生通过自主探究和合作交流得到:各个象限点及坐标轴的符号的特点.(续表)活动二:实践探究交流新知活动2:练一练1.点P(m+2,m-1)在x轴上,则点P的坐标是 .2.点P(m+2,m-1)在y轴上,则点P的坐标是 .3. 点P(x,y)满足 xy=0, 则点P在 .4.若xy=0,则点p(x,y)位于_师生共同完成解答过程:解:(1)(3,0) (2)(0,-3) (3)x轴或y轴上(4)y轴(原点除外)上教师通过分析总结:注意: 1. x轴上的点的纵坐标为0,表示为(x,0),2. y轴上的点的横坐标为0,表示为(0,y)。

原点(0,0)既在x轴上,又在y轴上。

活动3:点到两轴的距离P-1-3-2-1-211223yx(2,-3)本环节是进一步复习和巩固各个象限点及坐标轴的符号的特点,在此基础上拓宽学生的知识面.培养学生合作交流的意识,体会与他人合作的重要性.1123456-1-2-3-4-6 2 3 4 5 6-1-2-3-4-5-5-60 xyA(0,0)(2,-1)(-3,-4)(-4,-3)(-5,0)(-4,4.5)(0,-3)(0,2.5)(4,3.5)BCHTOEF。

上海科学技术出版社初中八年级数学上册全套教案

上海科学技术出版社初中八年级数学上册全套教案

平面内点的坐标【课时安排】2课时【第一课时】【教学目标】1.通过实际问题抽象出平面直角坐标系及其相关概念,使学生认识平面直角坐标系原点、横轴和纵轴等,会由坐标描点,由点写出坐标;让学生体会到平面上的点与有序实数对之间的对应关系;2.经历画平面直角坐标系,由点写出坐标和由坐标描点的过程,进一步渗透数形结合的数学思想;3.培养学生自主探究与合作交流的学习习惯。

【教学重点】正确认识平面直角坐标系,会准确地由点写出坐标,由坐标描点。

【教学难点】各象限内坐标的符号及各坐标轴上点坐标的特点,平面上的点与有序实数对之间的对应关系。

【教学过程】一、设置问题情境:(一)回顾一下数轴的概念,及实数与数轴有怎样的关系?(学生回答)(二)情境:(多媒体显示)如图所示请指出数轴上A、B两点所表示的数;直线表示一条笔直公路,向东为正方向,原点为学校位置,A、B是位于公路旁两学生家的位置,你能说出它们的位置吗?这说明了什么?引申:确定一个点在直线上的位置,只需要一个数据,这个实数可称为点在数轴上的坐标。

怎样确定平面上一个点的位置呢?二、观察交流,构建新知。

观察、交流、思考:(1)确定平面上一点的位置需要什么条件?(2)既然确定平面上一点的位置需要两个数,那么能否用两条数轴建立模型来表示平面上任一点的位置呢?教师在学生回答的基础上,边操作边讲出:为了确定平面上一个点的位置,我们先在平面内画两条互相垂直并且原点重合的数轴,水平的数轴叫x 轴或横轴,取向右为正方向,垂直的数轴叫y轴或纵轴,取向上为正方向,两轴交点O为原点,这样就建立了平面直角坐标系。

这个平面叫做坐标平面。

有了坐标平面,平面内的点就可以用一个有序实数对来表示。

引导观察:如图中点P可以这样表示:由P向x轴作垂线,垂足M在x 轴上的坐标是-2,点P向y轴作垂线,垂足N在y轴的坐标是3,于是就说点P的横坐标是-2,纵坐标3,把横坐标写在纵坐标前面记作(-2,3),即P点坐标(-2,3)。

平面直角坐标教案5篇

平面直角坐标教案5篇

平面直角坐标教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如工作总结、工作计划、作文大全、心得体会、申请书、演讲稿、教案大全、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as work summaries, work plans, essays, experiences, application forms, speeches, lesson plans, and other sample articles. If you want to learn about different data formats and writing methods, please pay attention!平面直角坐标教案5篇一个教案使教师更好地在教学中应对学生的学习差异和特殊需求,老师在编写教案时需要充分考虑学生的学习需求和兴趣点,以下是本店铺精心为您推荐的平面直角坐标教案5篇,供大家参考。

新版沪科版八年级数学上册第11章《平面直角坐标系》教案

新版沪科版八年级数学上册第11章《平面直角坐标系》教案

第十一章平面直角坐标系11.1平面内点的坐标第1课时平面直角坐标系◇教学目标◇【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念;2.理解坐标平面内的点与有序实数对的一一对应关系;3.能在方格纸中建立平面直角坐标系来描述点的位置.【过程与方法】1.通过画坐标系,由点找坐标等过程,发展学生的数形结合意识、合作交流意识;2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识.【情感、态度与价值观】让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.◇教学重难点◇【教学重点】理解平面直角坐标系的有关知识;在给定的平面直角坐标系中,会根据点的位置写出它的坐标.【教学难点】坐标轴上的数字与坐标系中的坐标之间的关系.◇教学过程◇一、情境导入假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(如图),回答以下问题:(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?二、合作探究1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分.在了解有关平面直角坐标系的知识后,再返回刚才讨论的问题.结论:如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,则“碑林”的位置是(3,1),“大成殿”的位置是(-2,-2).问题:在(3)的条件下,你能把其他景点的位置表示出来吗?结论:能,钟楼的位置是(-2,1),雁塔的位置是(0,3),影月湖的位置是(0,-5),科技大学的位置是(-5,-7).2.例题讲解典例写出图中多边形ABCDEF各顶点的坐标.此图中各顶点的坐标是否永远不变?你能举个例子吗?[解析]多边形ABCDEF各顶点的坐标分别为A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).不是.当坐标轴的位置发生变动时,各点的坐标相应地变化.若以线段BC所在的直线为x轴,纵轴(y轴)位置不变,如图,则六个顶点的坐标分别为A(-2,3),B(0,0),C(3,0),D(4,3),E(3,6),F(0,6).再思考这个结论是否是永恒的.结论:不是.还能再改变坐标轴的位置,得出不同的坐标.继续进行坐标轴的变换,总结一下共有多少种不同的变换方式.3.想一想在上例中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段测定位置有什么特点?(3)坐标轴上点的坐标有什么特点?【归纳总结】(1)坐标轴上的点的坐标中至少有一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0.(2)x轴、y轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限.(3)各个象限内的点的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).变式训练如图,确定点A,B,C,D,E,F,G的坐标.[解析]点A(-1,-1),点B(0,-3),点C(2,-5),点D(4,-1),点E(3,2),点F(-2,3),点G(2,-2).三、板书设计平面直角坐标系1.平面直角坐标系:横轴、纵轴、横坐标、纵坐标、原点.2.象限的划分.◇教学反思◇学生在实际生活中经常遇到物体位置的问题,可能想不到这些问题与数学的联系,老师在这节课上应引导学生建立平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力,增强学生学习数学的兴趣.。

3.2平面直角坐标系(第1课时)教案

3.2平面直角坐标系(第1课时)教案

课题:平面直角坐标系●教学目标:知识与技能目标:1.使学生逐步理解平面直角坐标系的有关概念,并会正确地画出平面直角坐标系;2.理解平面内点的坐标的意义,会根据平面内已知点的位置写出它对应的坐标.过程与方法目标:1.通过画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意识;2.通过直角坐标系的教学,向学生渗透数形结合的思想方法.情感态度与价值观目标:1.通过直角坐标系的教学,使学生进一步明确数学理论来源于实践,反过来又能指导实践进一步发展的辩证唯物主义思想.●重点:1.使学生能在平面直角坐标系中,已知点的坐标,能确定这一点的位置;2.已知点的位置,能写出与它对应的坐标.难点:已知点的位置,能写出与它对应的坐标.●教学流程:一、情境引入数轴上的点与实数之间有什么关系?1、数轴上的点A表示数1.反过来,数1就是点A的位置.我们说点1是点A在数轴上的坐标.2、同理可知,点B→-3;点C →2.5;点D →0.数轴上的点与实数之间存在着一一对应的关系.目的:通过回顾数轴上的点与实数之间的关系为新课学习做铺垫.二、自主探究探究1:如图是某市的旅游示意图,在科技大学的小亮如何向来访的朋友介绍该市的几个风景点的位置呢?(1)小红在旅游示意图上画上了方格,标上数字,并用(0,0)表示科技大学的位置,用(5,7)表示中心广场的位置,那么钟楼的位置如何表示?(2,5)表示哪个地点的位置?(5,2)呢?解:钟楼的位置用(3,8)表示,(2,5)表示大成殿的位置,(5,2)表示影月湖的位置.(2)如果小亮和他的朋友在中心广场,并以中心广场为“原点”,做了如图所示的标记,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?解: “碑林”的位置用(3,1)表示,大成殿的位置用(-3,-2)表示.概念引入:像这样,平面上两条互相垂直且有公共原点的数轴组成了平面直角坐标系。

点的坐标:平面上任意一点P,过P分别向x轴和y轴作垂线,垂足在x轴上y轴上对应的数a,b,分别叫做点P的横坐标纵坐标。

【教案一】11.1平面内点的坐标

【教案一】11.1平面内点的坐标

11.1平面内点的坐标(一)教学目标:【知识目标】1、理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念。

2、认识并能画出平面直角坐标系。

3、能在给定的平面直角坐标系中,由点的位置写出它的坐标。

4、认识象限,熟悉各个象限内点的坐标特征。

【能力目标】1、通过画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意识。

2、通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。

【情感目标】由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。

教学重点:1、理解平面直角坐标系的有关知识。

2、在给定的平面直角坐标系中,会根据点的位置写出它的坐标。

3、由点的坐标观察,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。

教学难点:1、横(或纵)坐标相同的点的连线与坐标轴的关系的探究。

2、坐标轴上点的坐标有什么特点的总结。

教学方法:讨论式学习法教学过程设计:一、导入新课『师』:同学们,你们喜欢旅游吗?假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图,回答以下问题:(图5-6)(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴、分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?在上一节课,我们已经学习了许多确定位置的方法,主要学习用反映极坐标思想的定位方式,和用反映直角坐标思想的定位方式。

在这个问题中大家看用哪种方法比较合适?『生』:用反映直角坐标思想的定位方式。

3.2《平面直角坐标系》(教案)

3.2《平面直角坐标系》(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平面直角坐标系的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对坐标系的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.2《平面直角坐标系》(教案)
一、教学内容
3.2《平面直角坐标系》:本节课我们将围绕以下内容展开:
1.平面直角坐标系的定义与性质;
2.坐标平面上的点与坐标表示方法;
3.坐标轴上点的坐标特点;
4.两个坐标轴将平面分为的四个象限及其特点;
5.各象限内点的坐标规律;
6.相邻象限内点的坐标关系;
7.平行于坐标轴的直线上的点的坐标规律;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平面直角坐标系的基本概念。平面直角坐标系是由两条互相垂直的数轴组成的,它可以准确地表示平面上的点。它是解析几何的基础,对于解决实际问题非常重要。
2.案例分析:接下来,我们来看一个具体的案例。通过地图上的坐标系,我们可以找到某个地点的精确位置,并计算两点之间的距离。
其次,在新课讲授环节,我发现学生在理解坐标系概念和坐标表示方法方面存在一定难度。在讲解过程中,我尽量使用简洁明了的语言和丰富的实例,帮助他们更好地理解。但我也意识到,对于这部分内容,可能需要更多的时间让学生去消化和吸收。在接下来的教学中,我会适当调整教学节奏,给学生更多思考和提问的机会。
再谈谈实践活动,学生们在分组讨论和实验操作环节表现出了很高的热情。他们通过实际操作,对坐标系有了更直观的认识。但同时,我也注意到部分学生在讨论过程中过于依赖同伴,缺乏独立思考。针对这一问题,我将在后续教学中加强对学生的引导,培养他们的自主学习能力。

111平面内点的坐标讲解

111平面内点的坐标讲解

学习目标:1、 通过生活中的实例,认识到可以用有序数对表示点的位置。

2、 会用有序数对确定平面内的点。

注意强调数对的 有序”。

3、 让学生感受到可以用数量表示图形位置,形成形数结合的意识。

重点:理解有序数对的概念,用有序数来表示位置。

难点:理解有序数对是“有序的”,并用它解决实际问题。

预习案一、情境1:在一条笔直的街道边,竖着一排等距离的路灯,小华、小红、小明的位置 如图1所示,你能根据图示确切地描述他们三个人的位置关系吗?j j \\ I I _ I. I >1不知小阴通1情境2:我们到电影院看电影时,每个人都需要一张电影票,你是怎么根据电影票上的 数子找到位置的?1. 有 的两个数a 与b 组成的数对,叫做有序数对,记作2. (a,b)与(b.a)的顺序不同,含义就不同,如(3,4)表示的座位是 (4,3)表示的座次是 。

二、填空1、 有序数对a,b 正确的表示方法是 。

2、 用1, 2, 3可以组成有序数对有 对。

3、 课间操时,小华、小军、小刚的位置如图,小华对小刚说: “如果我的位置用(0, 0)表示,小军的位置用(2, 1)表示, 那么你的位置可以表示成()”A 、 (5, 4)B 、 (4, 5)C 、 (3, 4)D 、 (4, 3)4、在电影票上,将“7排6号”简记为(7, 6),则6排7号可表示为 (8, 6)表示的意义是。

5、 如图的棋盘中,若“帅”位于点(1, 一2)上, “相”位于点(3, 一 1)上,则“炮”位于点 .6、 某阶梯教室共有12排座位,第一排有16个座位,后面每 排都比前一排多1个座位,若每排座位数为 m 排数为n.(3)用含有 n 的代数式表示 mi : .7、某人在车间里工作的时间 t 与工作总量y 组成有序数对(t, y),若他的工作效率是 不变的,其中两组数对分别为(4, 80), (7, y),则y =.8 、 如图所示,A 的位置为(2,6), 小明从 A 出发,经 (2.5) 7(3,5) 7(4,5) 7(4,4) ^(5,4) ^(6,4),小刚也从 A 出发,经(3.6) 7(4,6) 7(4,7) 7(5,7) ^(6,7),则此时两人相距几个格?探究案1、如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?2、 阅读教材第47页的“用经纬度表示地理位置” 一文.3、 你有没有见过用其他的方式来表示位置的?1)如有的电影院分楼上楼下两层,这时就要在电影票上写明是楼上几排几号了;又如 在一些大型会场,往往把场地分为 A 、B C 等区,这时就要在座位票上写明是哪个区、几排 几号了2)、我们规定:沿正北方向顺时针旋转 9角并前进a 个单位,记作(9 , a),那么你能说明下列有序数对所表示的图形的含义吗? (1) (45度,6)(2) (120度,8)(一)有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了。

了解平面直角坐标系教案:探究不同点的坐标规律

了解平面直角坐标系教案:探究不同点的坐标规律

了解平面直角坐标系教案:探究不同点的坐标规律:平面直角坐标系作为数学的一个基础知识点,是从初中阶段一直到高中阶段都需要掌握的重点。

在平面直角坐标系中,点是一个不可或缺的组成部分。

因此,了解点的坐标规律是学好平面直角坐标系的基础。

针对这一点,本教案将探究不同点的坐标规律,为学生深入理解平面直角坐标系奠定牢固基础。

一、教学目标:1.能够正确掌握平面直角坐标系的基本概念和表示方法;2.能够正确理解点的坐标规律;3.能够掌握平面直角坐标系中的留白标志及方向确定方法;4.能够应用所学知识正确求出点的坐标。

二、教学重点和难点:1.点的坐标规律的理解与掌握;2.平面直角坐标系中留白标志及方向确定方法的掌握。

三、教学方法:1.集体探究法:让学生自主探究、互相交流,指导学生理解点的坐标规律。

2.案例探究法:通过案例探究,桥接起教师讲解和复习巩固,加深学生对知识点的理解。

3.练习辅导法:通过练习,让学生巩固练习,检验学生掌握程度。

四、教学活动设计:1.自由探究:呈现一个平面直角坐标系,让学生根据坐标系上不同点的位置,总结点的坐标规律。

2.案例探究:通过探究正方形、矩形等图形的坐标规律,将学生对平面直角坐标系中点的坐标规律理解得更加深入。

3.练习辅导:教师带领学生完成一些简单的练习,唤醒学生对平面直角坐标系中点的坐标规律的记忆和掌握。

五、实施方案与策略1.自由探究环节针对这个环节,教师可以在黑板或白板上,准备好一个平面直角坐标系。

让学生根据自己的感性认知,来寻找平面坐标系中不同点的坐标规律。

在学生观察和探究过后,教师再慢慢的引导学生,让他们更清晰地理解点的坐标规律。

同时,教师也可以示范画出一些带有其他标示的图形,以此来拓展学生的思维,提高学生的理解力度。

2.案例探究环节在案例探究环节,教师可以选用简单、具有代表性的图形进行探究。

对于每个图形中不同点的坐标,教师可以带领学生逐个进行分析、解读,并且告诉学生在不同的图形中有不同的绘图方向和留白标识符。

沪科2011课标版初中数学八年级上册第十一章11.1平面内点的坐标优秀教学案例

沪科2011课标版初中数学八年级上册第十一章11.1平面内点的坐标优秀教学案例
2.通过解决实际问题,让学生体验到数学在生活中的重要作用,提高学生运用数学知识解决问题的能力。
3.培养学生积极、乐观的学习态度,勇于面对挑战,克服困难的信心,培养学生的创新精神和综合素质。
在教学过程中,我将以生动形象的语言、贴近生活的实例、有趣的教学活动,引导学生积极参与,激发学生的学习兴趣。同时,注重因材施教,关注学生的个体差异,给予每个学生充分的表现机会,培养学生的自信心和自尊心。通过师生互动、生生互动,营造轻松、愉快、充满活力的课堂氛围,使学生在愉快的氛围中掌握知识,提高能力,培养情感。
(四)反思与评价
1.引导学生进行自我反思,回顾学习过程,总结学习方法和经验,提高学生的自主学习能力和反思能力。
2.设计评价量表或问题,让学生对自己的学习过程进行评价,如对坐标系的理解程度、解决问题的能力等,培养学生客观评价自己的能力。
3.教师对学生的学习过程和结果进行综合评价,关注学生的个体差异,给予鼓励和指导,促进学生的全面发展。
沪科2011课标版初中数学八年级上册第十一章11.1平面内点的坐标优秀教学案例
一、案例背景
沪科2011课标版初中数学八年级上册第十一章11.1平面内点的坐标,是学生在学习了平面几何、代数基础知识后,对坐标系知识的深入理解和应用。该章节内容涉及平面直角坐标系的建立、点的坐标的概念及其表示方法,以及坐标轴上点的坐标特点等,对于培养学生的空间想象力、逻辑思维能力和解决问题的能力具有重要意义。
(三)学生小组讨论
1.教师提出探究问题:“如何用坐标表示一个几何图形的位置?”让学生分组进行讨论和交流。
2.学生通过画图、讨论等方式,探讨不同几何图形的坐标表示方法,如线段、三角形、矩形等。
3.各小组汇报讨论成果,教师给予点评和指导,引导学生深入理解坐标系在几何图形中的应用。

平面内点的坐标教案

平面内点的坐标教案

平⾯内点的坐标教案11.1 平⾯上点的坐标(第1课时)⼀、教学内容本节主要学习平⾯上点坐标的有关概念,能从平⾯直⾓坐标系中写出点的坐标,及能根据坐标确定坐标中点的位置。

⼆、教学⽬标1、通过实际问题抽象出平⾯直⾓坐标系及其相关概念,使学⽣认识平⾯直⾓坐标系原点、横轴和纵轴等,会由坐标描点,由点写出坐标;让学⽣体会到平⾯上的点与有序实数对之间的对应关系;2、经历画平⾯直⾓坐标系,由点写出坐标和由坐标描点的过程,进⼀步渗透数形结合的数学思想;3、培养学⽣⾃主探究与合作交流的学习习惯。

三、教学重点正确认识平⾯直⾓坐标系,会准确地由点写出坐标,由坐标描点。

四、教学难点各象限内坐标的符号及各坐标轴上点坐标的特点,平⾯上的点与有序实数对之间的对应关系。

五、教学关键:充分体会有序实数对在实际中的应⽤六、教学准备:多媒体教学课件、三⾓尺七、教学⽅法:探讨、合作⼋、教学过程:(⼀)设置问题情境:1、回顾⼀下数轴的概念,及实数与数轴有怎样的关系?(学⽣回答)2、情境:(多媒体显⽰)(1)如图所⽰请指出数轴上A、B两点所表⽰的数;直线表⼀条笔直公路,向东为正⽅向,原点为学校位置,A、B是位于公路旁两学⽣家的位置,你能说出它们的位置吗?这说明了什么?引申:确定⼀个点在直线上的位置,只需要⼀个数据,这个实数可称为点在数轴上的坐标。

怎样确定平⾯上⼀个点的位置呢?(2)上电影院看电影,电影票上⾄少要有⼏个数据才能确定你的位置?(3)在教室⾥,怎样确定⼀个同学的位置?(⼆)观察交流,构建新知观察、交流、思考,回答教科书第2页的两个问题。

思考:1、确定平⾯上⼀点的位置需要什么条件?2、既然确定平⾯上⼀点的位置需要两个数,那么能否⽤两条数轴建⽴模型来表⽰平⾯上任⼀点的位置呢?教师在学⽣回答的基础上,边操作边讲出:为了确定平⾯上⼀个点的位置,我们先在平⾯内画两条互相垂直并且原点重合的数轴,⽔平的数轴叫x轴或横轴,取向右为正⽅向,垂直的数轴叫y轴或纵轴,取向上为正⽅向,两轴交点O为原点,这样就建⽴了平⾯直⾓坐标系。

《平面直角坐标系 》教案 (公开课)2022年人教版数学

《平面直角坐标系 》教案 (公开课)2022年人教版数学

7.1.2 平面直角坐标系[教学目标]1、认识平面直角坐标系的意义;2、理解点的坐标的意义,在给定的直角坐标系中,会根据坐标描出点的位置;3、会用坐标表示点,能建立适当的直角坐标系,描述物体的位置.[教学重点与难点]1、重点:平面直角坐标系和点的坐标;描出点的位置和建立坐标系.2、难点:根据点的位置写出点的坐标;适当地建立坐标系.[教学过程]一、复习导入1、数轴上的点可以用什么来表示?可以用一个数来表示,我们把这个数叫做这个点的坐标.[投影1]如图,点A的坐标是2,点B的坐标是-3.C坐标为-4的点在数轴上的什么位置?在点C处.这就是说,知道了数轴上一个点的坐标,这个点的位置就确定了.类似于利用数轴确定直线上点的位置,能不能找到一种方法来确定平面内的点的位置呢?2、写出图中点A、B、C、D、E的坐标..由点的位置可以写出它的坐标,反之,点的坐标怎样确定点的位置呢?二、平面直角坐标系我们知道,平面内的点的位置可以用有序数对来表示,为此,我们可以在平面内画出两条互相垂直、原点重合的数轴组成直角坐标系来表示.如图,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点.有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了.探究:如图,正方形ABCD的边长为6.(1)如果以点A为原点,AB所在的直线为x轴,建立平面坐标系,那么y轴是哪条线?y轴是AD所在直线.(2)写出正方形的顶点A、B、C、D的坐标.A(0,0),B(0,6),C(6,6),D(6,0).(3)请你另建立一个平面直角坐标系,此时正方形的顶点A、B、C、D的坐标又分别是多少?与同学交流一下.二、点的坐标如图,由点A 分别向x 轴和y 轴作垂线,垂足M 在x 轴上的坐标是3,垂足N 在y 轴上的坐标是4,我们说A 点的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A 的坐标,记作A(3,4).类似地,请你根据课本41面图6.1-4,写出点B 、C 、D 的坐标.B(-3,4)、C(0,2)、D(-3,0).注意:写点的坐标时,横坐标在前,纵坐标在后.三、四个象限建立了平面直角坐系以后,坐标平面就被两条坐标轴分成Ⅰ、Ⅱ、Ⅲ、 Ⅳ四个局部,分别叫第一象限、第二象限、第三象限、第四象限.坐标轴上的点不属于任何象限.[投影2]做一做:课本43面练习1题.思考:1、原点O 的坐标是什么?x 轴和y 轴上的点的坐标有什么特点?原点O 的坐标是(0,0),x 轴上的点的纵坐标为0,y 轴上的点的横坐标为0.2、各象限内的点的坐标有什么特点?第一象限上的点,横坐标为正数,纵坐标为正数;第二象限上的点,横坐标为负数,纵坐标为正数;第三象限上的点,横坐标为负数,纵坐标为负数;第四象限上的点,横坐标为正数,纵坐标为负数.四、课堂练习1、点A(-2,-1)与x 轴的距离是________,与y 轴的距离是________.注意:纵坐标的绝对值是该点到x 轴的距离,横坐标的绝对值是该点到y 轴的距离.2、点A(3,a)在x 轴上,点B(b,4)在y 轴上,那么a=______,b=______.3、点M(-2,3)在第 象限,那么点N(-2,-3)在____象限.,点P(2, -3) 在____象限,点Q(2, 3) 在____象限.五、课堂小结1、平面直角坐标糸及有关概念;2、、一个点,如何确定这个点的坐标.3、坐标轴上的点和象限点的特点.六、布置作业〔4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】 利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下图.(1)求a 的值,并求出该户居民上月用水8t 应收的水费;(2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元;(2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】 建立一次函数模型解决实际问题某商场欲购进A 、B 两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元.(1)求y 关于x 的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B 种饮料有(500-x )箱,那么y =(63-55)x +(40-35)(500-x )=3xy =3x +2500(0≤x ≤500);(2)由题意,得55x +35(500-x )≤x ≤125.∴当x =125时,y 最大值=3×125+2500=2875.∴该商场购进A 、B 两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23. 答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC 的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。

平面直角坐标系内点的坐标特征教案

平面直角坐标系内点的坐标特征教案

平面直角坐标系内点的坐标特征教案教学目标1.理解各象限内及坐标轴上的点的坐标的特征;(重点)2.会用象限或坐标轴说明直角坐标系内点的位置,能根据点的位置确定横、纵坐标的符号.(难点)教学过程一、情境导入平面直角坐标系把平面分成了四个象限,那么各个象限的点他们有什么特点呢?说出下列个点的坐标,并观察不同象限内的点的坐标有什么特征.二、合作探究探究点一:认识平面直角坐标系如图所示,点A、点B所在的位置是( )A.第二象限,y轴上B.第四象限,y轴上C.第二象限,x轴上D.第四象限,x轴上解析:根据点在平面直角坐标系中的位置来判定.点A在第四象限,点B在x轴正半轴上.故选D.方法总结:两坐标轴上的点不属于任何一个象限,象限是按逆时针方向排列的.探究点二:各象限内及坐标轴上的点的坐标的特征【类型一】已知点的坐标判断点所在的象限设点M(a,b)为平面直角坐标系内的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意有理数,且b<0时,点M 位于第几象限?解析:(1)横坐标为正,纵坐标为负的点在第四象限;(2)由ab>0知a,b同号,则点M在第一或第三象限;(3)b<0,则点M 在x轴下方.解:(1)点M在第四象限;(2)可能在第一象限(a>0,b>0)或者在第三象限(a<0,b<0);(3)可能在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或者y轴负半轴上.方法总结:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点,(-,+)表示第二象限内的点,(-,-)表示第三象限内的点,(+,-)表示第四象限内的点.【类型二】根据点所在的象限求字母的取值范围在平面直角坐标系中,点P(m,m -2)在第一象限内,则m的取值范围是________.解析:根据第一象限内点的坐标的符号特征,横坐标为正,纵坐标为正,可得关于m的一元一次不等式组⎩⎪⎨⎪⎧m>0,m-2>0.解得m>2.故答案为m>2.方法总结:求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求出相应字母的取值范围.【类型三】坐标轴上点的坐标特征点A(m+3,m+1)在x轴上,则A 点的坐标为( )A.(0,-2) B.(2,0)C.(4,0) D.(0,-4)解析:点A(m+3,m+1)在x轴上,根据x轴上点的坐标特征知m+1=0,求出m 的值代入m+3中即可.故选B.方法总结:坐标轴上的点的坐标特点:x轴上的点的纵坐标为0,y轴上的点的横坐标为0.根据点所在坐标轴确定字母取值,进而求出点的坐标.【类型四】由点到坐标轴的距离确定点的位置已知点P到x轴的距离为2,到y 轴的距离为1.如果过点P作两坐标轴的垂线,垂足分别在x轴的正半轴上和y轴的负半轴上,那么点P的坐标是( )A.(2,-1) B.(1,-2)C.(-2,-1) D.(1,2)解析:由点P到x轴的距离为2,可知点P的纵坐标的绝对值为2,又因为垂足在y轴的负半轴上,则纵坐标为-2;由点P 到y轴的距离为1,可知点P的横坐标的绝对值为1,又因为垂足在x轴的正半轴上,则横坐标为1.故点P的坐标是(1,-2).故选B.方法总结:本题的易错点有三处:①混淆距离与坐标之间的区别;②不知道与“点P到x轴的距离”对应的是纵坐标,与“点P到y轴的距离”对应的是横坐标;③忽略坐标的符号出现错解.若本例题只已知距离而无附加条件,则点P的坐标有四个.【类型五】已知点的坐标在坐标系中描点在如图的直角坐标系中描出下列各点:A(4,3),B(-2,3),C(-4,-1),D(2,-3).解析:本题关键就是已知点的坐标,如何描出点的位置,以描点B(-2,3)为例,即在x轴上找到坐标-2,过-2对应的点作x轴的垂线,再在y轴上找到坐标3,过3对应的点作y轴的垂线,与前垂线的交点即为B(-2,3),同理可描出其他三个点.解:如图所示:方法总结:在直角坐标系中描出点P(a,b)的方法:先在x轴上找到数a对应的点M,在y轴上找到数b对应的点N,再分别由点M、点N作x轴、y轴的垂线,两垂线的交点就是所要描出的点P.已知坐标平面上的点的坐标,描出对应点的位置,反过来在坐标平面上给一点,找出它对应的坐标,熟练掌握平面直角坐标系是解题的关键.三、板书设计平面直角坐标系及点的坐标⎩⎪⎨⎪⎧定义:原点、坐标轴点的坐标⎩⎪⎨⎪⎧定义与符号特征点的坐标的确定描点教学反思通过平面直角坐标系的有关内容的学习,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加。

平面直角坐标系中点与坐标的计算方法教案

平面直角坐标系中点与坐标的计算方法教案

平面直角坐标系中点与坐标的计算方法教案。

一、直角坐标系的基本概念在平面直角坐标系中,假设有两个垂直的坐标轴,分别标记为x 轴和y轴。

x轴和y轴的交点被称为原点,用(0,0)表示。

我们可以通过在x轴和y轴上的标记确定其他点的位置。

一个点的坐标由其x轴和y轴的距离决定。

在坐标系中,我们通常用有序对(x, y)表示点的位置,其中,x表示x轴上的坐标,y表示y轴上的坐标。

二、点的中点的计算方法在平面直角坐标系中,两个点之间的中点可以用以下公式来计算:M = ((x1 + x2)/2,(y1 + y2)/2)其中,M表示两点之间的中点,(x1, y1)表示第一个点的坐标,(x2, y2)表示第二个点的坐标。

教案:1.导入(5分钟)a.引入知识点:平面直角坐标系中点的计算方法b.说明教学目标:学生能够掌握平面直角坐标系中点的计算方法2. 讲解(25分钟)a.介绍直角坐标系的概念,包括坐标轴、原点、点的坐标等b.详细讲解点的中点的计算方法,说明公式的含义和意义,并通过示范让学生掌握公式的应用3. 练习(20分钟)a.让学生自己通过给出的点的坐标,来计算它们之间的中点b.老师逐一检查学生的计算结果,并指出错误之处,帮助学生理解4. 拓展(10分钟)a.扩充知识点,介绍点的对称轴的概念以及计算方法b.演示实例,巩固学生对点的对称轴的理解5. 总结(5分钟)a.对本节课所学知识点进行概括b.帮助学生能够掌握平面直角坐标系中点与坐标的计算方法以上为平面直角坐标系中点与坐标的计算方法的教案内容,教学过程中,需要根据学生的实际情况进行调整。

同时,老师在上课时需要注意及时对学生的问题进行解答和指导,确保学生掌握了相关知识点。

数学高中一年级教案:探究平面上点的坐标表示

数学高中一年级教案:探究平面上点的坐标表示

数学高中一年级教案:探究平面上点的坐标表示一、引言在高中一年级的数学课程中,学生将学习到平面直角坐标系及其使用。

平面上的点可以通过坐标来表示,这是数学中的一种重要概念。

本教案将帮助学生深入探究平面上点的坐标表示方法,通过实际操作和思考,加深对该概念的理解。

二、学习目标1. 了解平面直角坐标系的基本概念和用法;2. 掌握点在平面直角坐标系中的表示方法;3. 能够画出给定点的坐标,并理解其含义。

三、教学过程1. 引入通过展示平面直角坐标系的图像,介绍其基本结构和构成要素:x轴、y轴、原点。

解释直角坐标系的作用是描述点在平面上的位置。

2. 分组讨论将学生分成小组,每个小组由三至四名学生组成。

要求每个小组成员接力回答以下问题:a. 什么是点在平面上的坐标表示?b. 坐标是如何表示一个点在平面上的位置的?c. 如何确定一个点在平面上的具体位置?3. 教师示范在黑板上画出一个简单的直角坐标系,并选择一个点A作为示范。

解释点A的坐标表示及其含义。

请一名学生上台演示如何用直角坐标系准确地表示点的位置。

4. 小组探究每个小组发放一些点的图片或卡片,要求学生根据图片或卡片上给出的信息用直角坐标系表示出每个点的位置。

鼓励学生互相讨论并解答疑惑。

5. 小组汇报每个小组选出一名代表,上台依次介绍他们小组所表示的点的坐标。

其他组员可以提问或提供反馈。

教师在表扬正确答案的同时,对错误答案进行纠正和解释。

6. 深入思考让学生思考以下问题:a. 如果一点的横纵坐标相同,那么这个点在平面上的位置如何?b. 如果一点的横纵坐标均为负数,那么这个点在平面上的位置如何?c. 如果一个点在直角坐标系的第一象限中,那么这个点的坐标呈现什么特点?7. 讨论与总结引导学生讨论以上问题,并总结归纳出点在平面上的坐标表示的规律和特点。

8. 拓展练习提供一些拓展练习,要求学生根据给出的坐标画出对应的点,并在平面上描述该点的位置特征。

教师在练习中适时帮助学生解答疑惑。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.1 平面上点的坐标(第1课时)
一、教学内容
本节主要学习平面上点坐标的有关概念,能从平面直角坐标系中写出点的坐标,及能根据坐标确定坐标中点的位置。

二、教学目标
1、通过实际问题抽象出平面直角坐标系及其相关概念,使学生认识平面直角坐标系原点、横轴和纵轴等,会由坐标描点,由点写出坐标;让学生体会到平面上的点与有序实数对之间的对应关系;
2、经历画平面直角坐标系,由点写出坐标和由坐标描点的过程,进一步渗透数形结合的数学思想;
3、培养学生自主探究与合作交流的学习习惯。

三、教学重点
正确认识平面直角坐标系,会准确地由点写出坐标,由坐标描点。

四、教学难点
各象限内坐标的符号及各坐标轴上点坐标的特点,平面上的点与有序实数对之间的对应关系。

五、教学关键:充分体会有序实数对在实际中的应用
六、教学准备:多媒体教学课件、三角尺
七、教学方法:探讨、合作
八、教学过程:
(一)设置问题情境:
1、回顾一下数轴的概念,及实数与数轴有怎样的关系?(学生回答)
2、情境:(多媒体显示)
(1)如图所示请指出数轴上A、B两点所表示的数;直线表一条笔直公路,向东为正方向,原点为学校位置,A、B是位于公路旁两学生家的位置,你能说出它们的位置吗?这说明了什么?
引申:确定一个点在直线上的位置,只需要一个数据,这个实数可称为点在数轴上的坐标。

怎样确定平面上一个点的位置呢?
(2)上电影院看电影,电影票上至少要有几个数据才能确定你的位置?
(3)在教室里,怎样确定一个同学的位置?
(二)观察交流,构建新知
观察、交流、思考,回答教科书第2页的两个问题。

思考:1、确定平面上一点的位置需要什么条件?
2、既然确定平面上一点的位置需要两个数,那么能否用两条数轴建立模
型来表示平面上任一点的位置呢?
教师在学生回答的基础上,边操作边讲出:为了确定平面上一个点的位置,我们先在平面内画两条互相垂直并且原点重合的数轴,水平的数轴叫x轴或横轴,取向右为正方向,垂直的数轴叫y轴或纵轴,取向上为正方向,两轴交点O为原点,这样就建立了平面直角坐标系。

这个平面叫做坐标平面。

有了坐标平面,平面内的点就可以用一个有序实数对来表示。

引导观察:如左图中点P可以这样表示:由P 向
x轴作垂线,垂足M在x轴上的坐标是-2,点P向
y轴作垂线,垂足N在y3,于是就说
点P的横坐标是-2,纵坐标3,把横坐标写在纵坐
标前面记作(-2,3),即P点坐标(-2,3)。

引导练习:写出点A、B、C的坐标。

学生相互交流,得出正确答案。

(强调点的坐标的有序性和正确规范书写)
教师提问:已知平面内任意一点,可以写出它的坐标;反之,给出一点的坐标,你能在上图中描出吗?
试一试:D(1,3) E(-3,2) F(-4,-1)
(注意引导学生进行逆向思维)
教师提问:请同学们想一想:原点O的坐标、x轴和y轴上的点坐标有什么特点?
学生发现:O点坐标(0,0),x轴上点的纵坐标为0,y轴上点横坐标为0。

试一试:描点:G(0,1),H(1,0)(注意区别)
(三)观察思考,探究规律
教师讲解:两条坐标轴把坐标平面分成四个部分:右上部分叫第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限、和第四象限。

坐标轴不属于任何象限。

学生活动:观察、认知上图中各象限内已描出各点的坐标特点:第一、二、三、四象限内的点的坐标符号分别是:(+,+)、(—,+)、(—,—)、(+,—)(四)随堂练习
1、完成教材第3和第4页的1、2两个问题
2、多媒体展示的练习题。

(五)课堂小结:(投影显示,学生归纳)
本节课我们学习了平面直角坐标系。

学习本节我们要掌握以下三方面的知识内容:
1、能够正确画出直角坐标系。

2、能在直角坐标系中,根据坐标找出点,由点求出坐标。

坐标平面内的点和有
序实数对是一一对应的。

3、掌握象限点、x轴及y轴上点的坐标的特征:
第一象限:(+,+)第二象限:(-,+)
第三象限:(-,-)第四象限:(+,-)
x轴上的点的纵坐标为0,表示为(x,0)
y轴上的点的横坐标为0,表示为(0,y)
(六)布置作业
1、习题第1、2题
2补充:点P(m ,4-m)是第二象限的点,求m的取值范围。

3、已知三点A(0,4)、B(-3,0)、C(3,0)现以A、B、C为顶点画平行四边形,写出符合条件的D点坐标。

12.1平面上点的坐标(第2课时)
一、教学内容
本节课继续研究平面上点的坐标,主要内容是通过点连成图形,及坐标特征与应用。

二、教学目标:
1、充分应用平面上点的坐标的有关知识,进一步认识坐标系中的图形;
2、平面上点的坐标特点及运用;
3、进一步体会数形结合思想,培养学生的抽象思维能力和应用能力。

三、教学重点
1、理解平面上点的坐标形成的图形;
2、不同情况下的点的坐标特点。

四、教学难点:对点的坐标特点的运用;
五、教学关键:图形的准确描述和点坐标特征的讲解
六、教学准备:制作多媒体教学课件、三角尺
七、教学方法:探讨、合作、交流
八、教学过程
(一)回顾交流(提问学生,检测所学)
1、有关坐标系概念的复习;
2、如何由点的位置写坐标及由坐标确定点的位置?
3、各象限点有什么特点?
(二)观察交流、构建新知
多媒体展示:
探索思考1:1、点A(3,1)到x轴的距离是()到y轴的距离是()
2、点B(-1,3)到x轴的距离是()到y轴的距离是()
3、点B(a,b)到x轴的距离是()到y轴的距离是()
4、到x轴的距离为2,到y轴的距离是3的点有()个,它们是:
结论:点p(x,y)到x轴距离是|y|,到y轴距离是|x|。

思考2:在直角坐标系中描出点A(2,-3),分别找出它关于x轴、y轴及原点的对称点,并写出这些点的坐标.观察上述写出的各点的坐标,回答:
(1)关于x轴对称的两点的坐标之间有什么关系?
(2)关于?y轴对称的两点的坐标之间有什么关系?
(3)关于原点对称的两点的坐标之间又有什么关系?
教师指出:①关于x轴对称的两个点的横坐标相等,纵坐标互为相反数(简记“横等纵反”);关于y轴对称的两个点的横坐标互为相反数,纵坐标相等(横反纵等);关于原点对称的两个点,横、纵坐标分别互为相反数(横反纵反)。

(紧密结合图形进行讲解);
思考3:在直角坐标平面内,(1)第一、三象限角平分线上点的坐标有什么特点?
(2)第二、四象限角平分线上点的坐标有什么特点?
总结:第一、三象限两坐标轴夹角的平分线上的点(a,b)特点是a=b;第二、四象限两坐标轴夹角的平分线上的点(a,b)特点是a+b=0。

例1 如图1,△ABC的三个顶点的坐标分别是A(2,3),B(4,0),C(-2,0).求△ABC的面积.
例2 如图,平面直角坐标系中,已知点A(-3,-2),B(0,3),C(-3,2).求△ABC的面积.
例3 如图3,平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(-3,-1),B(1,3),C(2,-3).求△ABC的面积.(多媒体展示图形)
(三)针对训练
1、点A(m-1,2m)在第二象限内,求m范围。

若在x轴上呢?在第一、三象限坐标轴的夹角平分线上呢?
2、点A(m,m-1)与点B(3,2m)关于x轴对称,求m值,若关于y轴对称呢?
3、点(-3,4)到x轴、y轴距离各是多少?
(学生积极思考,参与活动,与同伴交流,上台演示)
(四)随堂练习:
1.第7和第8页的1、2题
2.多媒体展示的练习。

(五)课堂小结(多媒体显示,学生自己归纳)
1、如何准确向他人描述某图形?
2、平面上点的坐标特点小结。

(六)布置作业
习题第 3、4、5、6题。

相关文档
最新文档