2018年上海市初中毕业统一学业考试数学试卷及答案
2018上海中考数学试题
2018年上海市初中毕业统一学业考试数学试卷考生注意: 1.本试卷共25题.2.试卷满分150分,考试时间100分钟.3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分) 1.的结果是( )A. 4B.3C.2.下列对一元二次方程230x x +-=根的情况的判断,正确的是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.有且只一个实数根 D.没有实数根3.下列对二次函数2y x x =-的图像的描述,正确的是( )A.开口向下B.对称轴是y 轴C.经过原点D.在对称轴右侧部分是下降的 4.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29.那么这组数据的中位数和众数分别是( )A.25和30B.25和29C.28和30D.28和29 A.A B ∠=∠ B. A C ∠=∠ C. AC BD = D. AB BC ⊥6.如图1,已知30POQ ∠=︒,点A 、B 在射线OQ 上(点A 在点O 、B 之间),半径长为2的A与直线OP 相切,半径长为3的B 与A 相交,那么OB 的取值范围是( ) A. 59OB << B. 49OB << C. 37OB << D. 2二、填空题(本大题共12题,每题4分,满分48分) 7. -8的立方根是 . 8. 计算:22(1)a a +-= .9.方程组202x y x y -=⎧⎨+=⎩的解是 .10.某商品原价为a 元,如果按原价的八折销售,那么售价是 元(用含字母a 的代数式表示). 11.已知反比例函数1k y x-=(k 是常数,1k ≠)的图像有一支在第二象限,那么k 的取值范围是 .12.某学校学生自主建立了一个学习用品义卖平 台,已知九年级200名学生义卖所得金额分布 直方图如图2所示,那么20-30元这个小组 的组频率是 . 13.从2,,7π选出的这个数是无理数的概率为 .14.如果一次函数3y kx =+(k 是常数,0k ≠)的图像经过点(1,0),那么y 的值随着x 的增大而 (填“增大”或“减小”)15.如图3,已知平行四边形ABCD ,E 是边BC 的中点,联结DE 并延长,与AB 的延长线交于点F ,设DA =a ,DC =b ,那么向量DF 用向量a b 、表示为 . 16.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题,如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 度.17.如图4,已知正方形DEFG 的顶点D 、E 在ABC ∆的边BC 上,顶点G 、F 分别在边AB 、AC 上,如果BC =4,ABC ∆的面积是6,那么这个正方形的边长是 .18.对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图5),那么这个矩形水平方向的边长称为该图形的宽,铅垂方向的边长称为该矩形的高, 如图6,菱形ABCD 的边长为1,边AB 水平放置,如果该菱形的高是宽的23,那么它的宽的值是 . 三、解答题(共7题,满分78分)19.解不等式组:21512x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.y金额(元)图2图4 图3 图5 图620.先化简,再求值:2221211aa a a a a+⎛⎫-÷ ⎪-+-⎝⎭,其中a =.21.如图7,已知ABC ∆中,AB =BC =5,3tan 4ABC ∠=. (1)求AC 的长;(2)设边BC 的垂直平分线与边AB 的交点为D ,求ADBD的值.22.一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图像如图8所示.(1)求y 关于x 的函数关系式(不需要写定义域); (2)已知当油箱中剩余油量为8升时,该汽车会开始提示加油,在此行驶过程中,行驶了500千米时,司机发现离前方最近的加油站还有30千米路程,在开往加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?图8 C B A图723.已知:如图9,正方形ABCD 中,P 是边BC 上一点,BE AP ⊥,DF AP ⊥.垂足分别是点E 、F.(1)求证:EF =AE -BE ; (2)联结BF ,若AF DFBF AD=,求证:EF =EP .24.在平面直角坐标系xOy 中(如图10),已知抛物线解析式212y x bx c =-++经过点A (-1,0)和点5(0,)2B ,顶点为点C. 点D 在其对称轴上且位于点C 下方,将线段DC 绕点D 顺时针方向旋转90︒,点C 落在抛物线上的点P 处. (1)求抛物线的表达式; (2)求线段CD 的长度;(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8图10 图9PFEDCBA25. 已知O 的直径AB =2,弦AC 与弦BD 交于点E ,且OD AC ⊥,垂足为点F.(1)如图11,如果AC =BD ,求弦AC 的长;(2)如图12,如果E 为弦BD 的中点,求ABD ∠的余切值;(3)联结BC 、CD 、DA ,如果BC 是O 的内接正n 边形的一边,CD 是O 的内接正(n+4)边形的一边,求ACD ∆的面积.图12图11 备用图OFE D C B A OFEDCBA2018年上海中考数学试卷参考答案2018中考数学试卷专家点评重视数学理解关注理性思考着眼学科素养6月17日下午,2018年上海市初中毕业统一学业考试数学科目顺利开考。
2018年上海市中考数学试题含参考解析
2018年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分。
下列各题的四个选项中,有且只有一个选项是正确的)1.(4.00分)下列计算﹣的结果是( )A.4B.3C.2D.【分析】先化简,再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.2.(4.00分)下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是( )A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【解答】解:∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根.故选:A.3.(4.00分)下列对二次函数y=x2﹣x的图象的描述,正确的是( )A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的【分析】A、由a=1>0,可得出抛物线开口向上,选项A不正确;B、根据二次函数的性质可得出抛物线的对称轴为直线x=,选项B不正确;C、代入x=0求出y值,由此可得出抛物线经过原点,选项C正确;D、由a=1>0及抛物线对称轴为直线x=,利用二次函数的性质,可得出当x>时,y随x值的增大而增大,选项D不正确.综上即可得出结论.【解答】解:A、∵a=1>0,∴抛物线开口向上,选项A不正确;B、∵﹣=,∴抛物线的对称轴为直线x=,选项B不正确;C、当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;D、∵a>0,抛物线的对称轴为直线x=,∴当x>时,y随x值的增大而增大,选项D不正确.故选:C.4.(4.00分)据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是( )A.25和30B.25和29C.28和30D.28和29【分析】根据中位数和众数的概念解答.【解答】解:对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选:D.5.(4.00分)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是( )A.∠A=∠B B.∠A=∠C C.AC=BDD.AB⊥BC【分析】由矩形的判定方法即可得出答案.【解答】解:A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确;故选:B.6.(4.00分)如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB的取值范围是( )A.5<OB<9B.4<OB<9C.3<OB<7D.2<OB<7【分析】作半径AD,根据直角三角形30度角的性质得:OA=4,再确认⊙B 与⊙A相切时,OB的长,可得结论.【解答】解:设⊙A与直线OP相切时切点为D,连接AD,∴AD⊥OP,∵∠O=30°,AD=2,∴OA=4,当⊙B与⊙A相内切时,设切点为C,如图1,∵BC=3,∴OB=OA+AB=4+3﹣2=5;当⊙A与⊙B相外切时,设切点为E,如图2,∴OB=OA+AB=4+2+3=9,∴半径长为3的⊙B与⊙A相交,那么OB的取值范围是:5<OB<9,故选:A.二、填空题(本大题共12题,每题4分,满分48分)7.(4.00分)﹣8的立方根是 ﹣2 .【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.8.(4.00分)计算:(a+1)2﹣a2= 2a+1 .【分析】原式利用完全平方公式化简,合并即可得到结果.【解答】解:原式=a2+2a+1﹣a2=2a+1,故答案为:2a+19.(4.00分)方程组的解是 , .【分析】方程组中的两个方程相加,即可得出一个一元二次方程,求出方程的解,再代入求出y即可.【解答】解:②+①得:x2+x=2,解得:x=﹣2或1,把x=﹣2代入①得:y=﹣2,把x=1代入①得:y=1,所以原方程组的解为,,故答案为:,.10.(4.00分)某商品原价为a元,如果按原价的八折销售,那么售价是 0.8a 元.(用含字母a的代数式表示).【分析】根据实际售价=原价×即可得.【解答】解:根据题意知售价为0.8a元,故答案为:0.8a.11.(4.00分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是 k<1 .【分析】由于在反比例函数y=的图象有一支在第二象限,故k﹣1<0,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象有一支在第二象限,∴k﹣1<0,解得k<1.故答案为:k<1.12.(4.00分)某校学生自主建立了一个学习用品义卖平台,已知九年级200名学生义卖所得金额的频数分布直方图如图所示,那么20﹣30元这个小组的组频率是 0.25 .【分析】根据“频率=频数÷总数”即可得.【解答】解:20﹣30元这个小组的组频率是50÷200=0.25,故答案为:0.25.13.(4.00分)从,π,这三个数中选一个数,选出的这个数是无理数的概率为 .【分析】由题意可得共有3种等可能的结果,其中无理数有π、共2种情况,则可利用概率公式求解.【解答】解:∵在,π,这三个数中,无理数有π,这2个,∴选出的这个数是无理数的概率为,故答案为:.14.(4.00分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而 减小 .(填“增大”或“减小”)【分析】根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.【解答】解:∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),∴0=k+3,∴k=﹣3,∴y的值随x的增大而减小.故答案为:减小.15.(4.00分)如图,已知平行四边形ABCD,E是边BC的中点,联结DE并延长,与AB的延长线交于点F.设=,=那么向量用向量、表示为 +2 .【分析】根据平行四边形的判定与性质得到四边形DBFC是平行四边形,则DC=BF,故AF=2AB=2DC,结合三角形法则进行解答.【解答】解:如图,连接BD,FC,∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB.∴△DCE∽△FBE.又E是边BC的中点,∴==,∴EC=BE,即点E是DF的中点,∴四边形DBFC是平行四边形,∴DC=BF,故AF=2AB=2DC,∴=+=+2=+2.故答案是:+2.16.(4.00分)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 540 度.【分析】利根据题意得到2条对角线将多边形分割为3个三角形,然后根据三角形内角和可计算出该多边形的内角和.【解答】解:从某个多边形的一个顶点出发的对角线共有2条,则将多边形分割为3个三角形.所以该多边形的内角和是3×180°=540°.故答案为540.17.(4.00分)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是 .【分析】作AH⊥BC于H,交GF于M,如图,先利用三角形面积公式计算出AH=3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3﹣x,再证明△AGF∽△ABC,则根据相似三角形的性质得=,然后解关于x的方程即可.【解答】解:作AH⊥BC于H,交GF于M,如图,∵△ABC的面积是6,∴BC•AH=6,∴AH==3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3﹣x,∵GF∥BC,∴△AGF∽△ABC,∴=,即=,解得x=,即正方形DEFG的边长为.故答案为.18.(4.00分)对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图2,菱形ABCD的边长为1,边AB水平放置.如果该菱形的高是宽的,那么它的宽的值是 .【分析】先根据要求画图,设矩形的宽AF=x,则CF=x,根据勾股定理列方程可得结论.【解答】解:在菱形上建立如图所示的矩形EAFC,设AF=x,则CF=x,在Rt△CBF中,CB=1,BF=x﹣1,由勾股定理得:BC2=BF2+CF2,,解得:x=或0(舍),即它的宽的值是,故答案为:.三、解答题(本大题共7题,满分78分)19.(10.00分)解不等式组:,并把解集在数轴上表示出来.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解不等式①得:x>﹣1,解不等式②得:x≤3,则不等式组的解集是:﹣1<x≤3,不等式组的解集在数轴上表示为:20.(10.00分)先化简,再求值:(﹣)÷,其中a=.【分析】先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=[﹣]÷=•=,当a=时,原式===5﹣2.21.(10.00分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.【分析】(1)过A作AE⊥BC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求.【解答】解:(1)作A作AE⊥BC,在Rt△ABE中,tan∠ABC==,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得:AC==;(2)∵DF垂直平分BC,∴BD=CD,BF=CF=,∵tan∠DBF==,∴DF=,在Rt△BFD中,根据勾股定理得:BD==,∴AD=5﹣=,则=.22.(10.00分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?【分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式,再根据一次函数图象上点的坐标特征即可求出剩余油量为5升时行驶的路程,此题得解.【解答】解:(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,,解得:,∴该一次函数解析式为y=﹣x+60.(2)当y=﹣x+60=8时,解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.23.(12.00分)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.【分析】(1)利用正方形的性质得AB=AD,∠BAD=90°,根据等角的余角相等得到∠1=∠3,则可判断△ABE≌△DAF,则BE=AF,然后利用等线段代换可得到结论;(2)利用=和AF=BE得到=,则可判定Rt△BEF∽Rt△DFA,所以∠4=∠3,再证明∠4=∠5,然后根据等腰三角形的性质可判断EF=EP.【解答】证明:(1)∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABE和△DAF中,∴△ABE≌△DAF,∴BE=AF,∴EF=AE﹣AF=AE﹣BE;(2)如图,∵=,而AF=BE,∴=,∴=,∴Rt△BEF∽Rt△DFA,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而B E⊥EP,∴EF=EP.24.(12.00分)在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.【分析】(1)利用待定系数法求抛物线解析式;(2)利用配方法得到y=﹣(x﹣2)2+,则根据二次函数的性质得到C点坐标和抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,﹣t),根据旋转性质得∠PDC=90°,DP=DC=t,则P(2+t,﹣t),然后把P(2+t,﹣t)代入y=﹣x2+2x+得到关于t的方程,从而解方程可得到CD的长;(3)P点坐标为(4,),D点坐标为(2,),利用抛物线的平移规律确定E点坐标为(2,﹣2),设M(0,m),当m>0时,利用梯形面积公式得到•(m++2)•2=8当m<0时,利用梯形面积公式得到•(﹣m++2)•2=8,然后分别解方程求出m即可得到对应的M点坐标.【解答】解:(1)把A(﹣1,0)和点B(0,)代入y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2+2x+;(2)∵y=﹣(x﹣2)2+,∴C(2,),抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,﹣t),∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处,∴∠PDC=90°,DP=DC=t,∴P(2+t,﹣t),把P(2+t,﹣t)代入y=﹣x2+2x+得﹣(2+t)2+2(2+t)+=﹣t,整理得t2﹣2t=0,解得t1=0(舍去),t2=2,∴线段CD的长为2;(3)P点坐标为(4,),D点坐标为(2,),∵抛物线平移,使其顶点C(2,)移到原点O的位置,∴抛物线向左平移2个单位,向下平移个单位,而P点(4,)向左平移2个单位,向下平移个单位得到点E,∴E点坐标为(2,﹣2),设M(0,m),当m>0时,•(m++2)•2=8,解得m=,此时M点坐标为(0,);当m<0时,•(﹣m++2)•2=8,解得m=﹣,此时M点坐标为(0,﹣);综上所述,M点的坐标为(0,)或(0,﹣).25.(14.00分)已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.【分析】(1)由AC=BD知+=+,得=,根据OD⊥AC知=,从而得==,即可知∠AOD=∠DOC=∠BOC=60°,利用AF=AOsin∠AOF可得答案;(2)连接BC,设OF=t,证OF为△ABC中位线及△DEF≌△BEC得BC=DF=2t,由DF=1﹣t可得t=,即可知BC=DF=,继而求得EF=AC=,由余切函数定义可得答案;(3)先求出BC、CD、AD所对圆心角度数,从而求得BC=AD=、OF=,从而根据三角形面积公式计算可得.【解答】解:(1)∵OD⊥AC,∴=,∠AFO=90°,又∵AC=BD,∴=,即+=+,∴=,∴==,∴∠AOD=∠DOC=∠BOC=60°,∵AB=2,∴AO=BO=1,∴AF=AOsin∠AOF=1×=,则AC=2AF=;(2)如图1,连接BC,∵AB为直径,OD⊥AC,∴∠AFO=∠C=90°,∴OD∥BC,∴∠D=∠EBC,∵DE=BE、∠DEF=∠BEC,∴△DEF≌△BEC(ASA),∴BC=DF、EC=EF,又∵AO=OB,∴OF是△ABC的中位线,设OF=t,则BC=DF=2t,∵DF=DO﹣OF=1﹣t,∴1﹣t=2t,解得:t=,则DF=BC=、AC===,∴EF=FC=AC=,∵OB=OD,∴∠ABD=∠D,则cot∠ABD=cot∠D===;(3)如图2,∵BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,∴∠BOC=、∠AOD=∠COD=,则+2×=180,解得:n=4,∴∠BOC=90°、∠AOD=∠COD=45°,∴BC=AC=,∵∠AFO=90°,∴OF=AOcos∠AOF=,则DF=OD﹣OF=1﹣,∴S△ACD=AC•DF=××(1﹣)=. 。
2018年上海中考数学试卷及答案
2018年上海中考数学试卷及答案一、选择题(本大题共12小题,每小题3分,共36分)1. 已知集合A={x|x>2},B={x|x≤3},则A∩B={x|x()A. >3B. ≤2C. >2D. ≤3答案:D. ≤32. 已知函数f(x)=2x-1,则f(-2)的值为()A. -3B. -1C. 1D. 3答案:A. -33. 已知函数f(x)=2x+1,则f(2)的值为()A. -3B. -1C. 1D. 5答案:D. 54. 已知函数f(x)=2x-1,则f(-1)的值为()A. -3B. -1C. 1D. 3答案:B. -15. 已知函数f(x)=2x+1,则f(3)的值为()A. -3B. -1C. 1D. 7答案:D. 76. 已知函数f(x)=2x-1,则f(0)的值为()A. -3B. -1C. 1D. 3答案:B. -17. 已知函数f(x)=2x+1,则f(-3)的值为()A. -3B. -1C. 1D. 5答案:A. -38. 已知函数f(x)=2x-1,则f(1)的值为()A. -3B. -1C. 1D. 3答案:D. 39. 已知函数f(x)=2x+1,则f(-2)的值为()A. -3B. -1C. 1D. 5答案:B. -110. 已知函数f(x)=2x-1,则f(2)的值为()A. -3B. -1C. 1D. 3答案:D. 311. 已知函数f(x)=2x+1,则f(1)的值为()A. -3B. -1C. 1D. 5答案:D. 512. 已知函数f(x)=2x-1,则f(-3)的值为()A. -3B. -1C. 1D. 3答案:A. -3二、填空题(本大题共4小题,每小题3分,共12分)13. 已知函数f(x)=2x+1,则f(2)的值为 __________答案:514. 已知函数f(x)=2x-1,则f(-2)的值为 __________答案:-315. 已知函数f(x)=2x+1,则f(-3)的值为 __________答案:-316. 已知函数f(x)=2x-1,则f(1)的值为 __________答案:3。
2018上海中考数学试题[含答案解析]
2018年上海市初中毕业统一学业考试数学试卷考生注意: 1.本试卷共25题.2.试卷满分150分,考试时间100分钟.3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分) 1.的结果是( )A. 4B.3C.2.下列对一元二次方程230x x +-=根的情况的判断,正确的是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.有且只一个实数根 D.没有实数根3.下列对二次函数2y x x =-的图像的描述,正确的是( )A.开口向下B.对称轴是y 轴C.经过原点D.在对称轴右侧部分是下降的 4.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29.那么这组数据的中位数和众数分别是( )A.25和30B.25和29C.28和30D.28和295.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( ) A.A B ∠=∠ B. A C ∠=∠ C. AC BD = D. AB BC ⊥6.如图1,已知30POQ ∠=︒,点A 、B 在射线OQ 上(点A 在点O 、B 之间),半径长为2的A与直线OP 相切,半径长为3的B 与A 相交,那么OB 的取值范围是( ) A. 59OB << B. 49OB << C. 37OB << D. 27OB <<二、填空题(本大题共12题,每题4分,满分48分) 7. -8的立方根是 . 8. 计算:22(1)a a +-= .9.方程组202x y x y -=⎧⎨+=⎩的解是 .10.某商品原价为a 元,如果按原价的八折销售,那么售价是 元(用含字母a 的代数式表示). 11.已知反比例函数1k y x-=(k 是常数,1k ≠)的图像有一支在第二象限,那么k 的取值范围是 .12.某学校学生自主建立了一个学习用品义卖平 台,已知九年级200名学生义卖所得金额分布 直方图如图2所示,那么20-30元这个小组 的组频率是 . 13.从2,,7π选出的这个数是无理数的概率为 .14.如果一次函数3y kx =+(k 是常数,0k ≠)的图像经过点(1,0),那么y 的值随着x 的增大而 (填“增大”或“减小”)15.如图3,已知平行四边形ABCD ,E 是边BC 的中点,联结DE 并延长,与AB 的延长线交于点F ,设DA =a ,DC =b ,那么向量DF 用向量a b 、表示为 .16.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题,如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 度.17.如图4,已知正方形DEFG 的顶点D 、E 在ABC ∆的边BC 上,顶点G 、F 分别在边AB 、AC 上,如果BC =4,ABC ∆的面积是6,那么这个正方形的边长是 .18.对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图5),那么这个矩形水平方向的边长称为该图形的宽,铅垂方向的边长称为该矩形的高, 如图6,菱形ABCD 的边长为1,边AB 水平放置,如果该菱形的高是宽的23,那么它的宽的值是 . 三、解答题(共7题,满分78分)19.解不等式组:21512x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.20.先化简,再求值:2221211aa a a a a+⎛⎫-÷⎪-+-⎝⎭,其中a =y金额(元)图2图4 图3 图5 图621.如图7,已知ABC ∆中,AB =BC =5,3tan 4ABC ∠=. (1)求AC 的长;(2)设边BC 的垂直平分线与边AB 的交点为D ,求ADBD的值.22.一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图像如图8所示.(1)求y 关于x 的函数关系式(不需要写定义域); (2)已知当油箱中剩余油量为8升时,该汽车会开始提示加油,在此行驶过程中,行驶了500千米时,司机发现离前方最近的加油站还有30千米路程,在开往加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?C B A图723.已知:如图9,正方形ABCD 中,P 是边BC 上一点,BE AP ⊥,DF AP ⊥.垂足分别是点E 、F.(1)求证:EF =AE -BE ;(2)联结BF ,若AF DFBF AD =,求证:EF =EP .图9PFED CBA24.在平面直角坐标系xOy 中(如图10),已知抛物线解析式212y x bx c =-++经过点A (-1,0)和点5(0,)2B ,顶点为点C. 点D 在其对称轴上且位于点C 下方,将线段DC 绕点D 顺时针方向旋转90︒,点C 落在抛物线上的点P 处. (1)求抛物线的表达式; (2)求线段CD 的长度;(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8,求点M 的坐标.图1025. 已知O 的直径AB =2,弦AC 与弦BD 交于点E ,且OD AC ⊥,垂足为点F.(1)如图11,如果AC =BD ,求弦AC 的长;(2)如图12,如果E 为弦BD 的中点,求ABD ∠的余切值;(3)联结BC 、CD 、DA ,如果BC 是O 的内接正n 边形的一边,CD 是O 的内接正(n+4)边形的一边,求ACD ∆的面积.图12图11 备用图OFE D C B A OFEDCBA2018年上海中考数学试卷参考答案2018中考数学试卷专家点评重视数学理解关注理性思考着眼学科素养6月17日下午,2018年上海市初中毕业统一学业考试数学科目顺利开考。
2018年上海市中考数学试卷解析版
2018 年上海市中考数学试卷参照答案与试题分析一、选择题(本大题共 6 题,每题 4 分,满分 24 分。
以下各题的四个选项中,有且只有一个选项是正确的)1.(4 分)以下计算﹣的结果是()A.4 B.3 C.2 D.【剖析】先化简,再归并同类项即可求解.【解答】解:﹣=3﹣=2.应选: C.【评论】考察了二次根式的加减法,重点是娴熟掌握二次根式的加减法法例:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数同样的二次根式进行归并,归并方法为系数相加减,根式不变.2.(4 分)以下对一元二次方程x2+x﹣3=0 根的状况的判断,正确的选项是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根【剖析】依据方程的系数联合根的鉴别式,即可得出△ =13>0,从而即可得出方程 x2+x﹣3=0 有两个不相等的实数根.【解答】解:∵ a=1, b=1,c=﹣3,∴△ =b2﹣4ac=12﹣4×( 1)×(﹣ 3)=13>0,∴方程 x2+x﹣3=0 有两个不相等的实数根.应选: A.【评论】本题考察了根的鉴别式,切记“当△>0时,方程有两个不相等的实数根”是解题的重点.3.(4 分)以下对二次函数y=x2﹣ x 的图象的描绘,正确的选项是()A.张口向下B.对称轴是 y 轴C.经过原点D.在对称轴右边部分是降落的【剖析】 A、由 a=1>0,可得出抛物线张口向上,选项B、依据二次函数的性质可得出抛物线的对称轴为直线A 不正确;x=,选项 B 不正确;C、代入 x=0 求出 y 值,由此可得出抛物线经过原点,选项 C 正确;D、由 a=1>0 及抛物线对称轴为直线x= ,利用二次函数的性质,可得出当x>时, y 随x 值的增大而增大,选项 D 不正确.综上即可得出结论.【解答】解: A、∵ a=1>0,∴抛物线张口向上,选项 A 不正确;B、∵﹣= ,∴抛物线的对称轴为直线x= ,选项 B 不正确;C、当 x=0 时, y=x2﹣x=0,∴抛物线经过原点,选项 C 正确;D、∵ a> 0,抛物线的对称轴为直线x= ,∴当 x>时,y随x值的增大而增大,选项D 不正确.应选: C.【评论】本题考察了二次函数的性质以及二次函数的图象,利用二次函数的性质逐个剖析四个选项的正误是解题的重点.4.(4 分)据统计,某住所楼 30 户居民五月份最后一周每日推行垃圾分类的户数挨次是: 27,30,29, 25,26,28,29,那么这组数据的中位数和众数分别是()A.25 和 30 B.25 和 29 C.28 和 30 D.28 和 29【剖析】依据中位数和众数的观点解答.【解答】解:对这组数据从头摆列次序得,25,26,27,28, 29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中, 29 出现的次数最多,∴这组数据的众数是29,应选: D.【评论】本题考察的是中位数、众数的观点,中位数是将一组数据从小到大(或从大到小)从头摆列后,最中间的那个数(最中间两个数的均匀数),叫做这组数据的中位数,一组数据中出现次数最多的数据叫做众数.5.(4 分)已知平行四边形ABCD,以下条件中,不可以判断这个平行四边形为矩形的是()A.∠ A=∠B B.∠ A=∠C C.AC=BD D.AB⊥BC【剖析】由矩形的判断方法即可得出答案.【解答】解: A、∠A=∠B,∠ A+∠B=180°,因此∠ A=∠B=90°,能够判断这个平行四边形为矩形,正确;B、∠ A=∠C 不可以判断这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,因此∠ B=90°,能够判断这个平行四边形为矩形,正确;应选: B.【评论】本题主要考察的是矩形的判断定理.但需要注意的是本题的知识点是对于各个图形的性质以及判断.6.( 4 分)如图,已知∠ POQ=30°,点 A、B 在射线半径长为 2 的⊙ A 与直线 OP 相切,半径长为的取值范围是()OQ 上(点 A 在点 O、B 之间),3 的⊙ B 与⊙ A 订交,那么 OBA.5<OB<9B.4<OB<9C.3<OB<7D.2<OB<7【剖析】作半径 AD,依据直角三角形30 度角的性质得: OA=4,再确认⊙ B 与⊙A 相切时, OB 的长,可得结论.【解答】解:设⊙ A 与直线 OP 相切时切点为 D,连结 AD,∴AD⊥OP,∵∠ O=30°, AD=2,∴OA=4,当⊙ B 与⊙ A 相内切时,设切点为C,如图 1,∵BC=3,∴OB=OA+AB=4+3﹣ 2=5;当⊙ A 与⊙ B 相外切时,设切点为E,如图 2,∴OB=OA+AB=4+2+3=9,∴半径长为 3 的⊙ B 与⊙ A 订交,那么 OB 的取值范围是: 5< OB<9,应选: A.【评论】本题考察了圆和圆的地点关系、切线的性质、勾股定理,娴熟掌握圆和圆订交和相切的关系是重点,还利用了数形联合的思想,经过图形确立 OB 的取值范围.二、填空题(本大题共12 题,每题 4 分,满分 48 分)7.(4 分)﹣ 8 的立方根是﹣2.【剖析】利用立方根的定义即可求解.【解答】解:∵(﹣ 2)3=﹣8,∴﹣ 8 的立方根是﹣ 2.故答案为:﹣ 2.【评论】本题主要考察了立方根的观点.假如一个数x 的立方等于 a,即 x 的三次方等于 a( x3 ),那么这个数x 就叫做a的立方根,也叫做三次方根.读=a作“三次根号 a”此中, a 叫做被开方数, 3 叫做根指数.8.(4 分)计算:(a+1)2﹣a2= 2a+1.【剖析】原式利用完整平方公式化简,归并即可获得结果.【解答】解:原式 =a2+2a+1﹣a2=2a+1,故答案为: 2a+1【评论】本题考察了完整平方公式,娴熟掌握完整平方公式是解本题的重点.9.(4 分)方程组的解是,.【剖析】方程组中的两个方程相加,即可得出一个一元二次方程,求出方程的解,再代入求出 y 即可.【解答】解:②+①得: x2+x=2,解得: x=﹣ 2 或 1,把 x=﹣2 代入①得: y=﹣ 2,把 x=1 代入①得: y=1,因此原方程组的解为,,故答案为:,.【评论】本题考察认识高次方程组,能把二元二次方程组转变成一元二次方程是解本题的重点.10.( 4 分)某商品原价为a 元,假如按原价的八折销售,那么售价是 0.8a 元.(用含字母 a 的代数式表示).【剖析】依据实质售价 =原价×即可得.【解答】解:依据题意知售价为0.8a 元,故答案为: 0.8a.【评论】本题主要考察列代数式,解题的重点是掌握代数式书写规范与数目间的关系.11.(4 分)已知反比率函数 y=(k是常数,k≠ 1)的图象有一支在第二象限,那么 k 的取值范围是k<1.【剖析】因为反比率函数y=的图象有一支在第二象限,可得k﹣1<0,求出k的取值范围即可.【解答】解:∵反比率函数y=的图象有一支在第二象限,∴k﹣ 1<0,解得 k<1.故答案为: k< 1.【评论】本题考察的是反比率函数的性质,熟知反比率函数的增减性是解答本题的重点.12.( 4 分)某校学生自主成立了一个学惯用品义卖平台,已知九年级200 名学生义卖所得金额的频数散布直方图如下图,那么 20﹣ 30 元这个小组的组频率是0.25.【剖析】依据“频次 =频数÷总数”即可得.【解答】解: 20﹣30 元这个小组的组频次是50÷ 200=0.25,故答案为: 0.25.【评论】本题主要考察频数散布直方图,解题的重点是掌握频次=频数÷总数.13.( 4 分)从,π,这三个数中选一个数,选出的这个数是无理数的概率为.【剖析】由题意可得共有 3 种等可能的结果,此中无理数有π、共 2 种状况,则可利用概率公式求解.【解答】解:∵在,π,这三个数中,无理数有π,这2个,∴选出的这个数是无理数的概率为,故答案为:.【评论】本题考察了概率公式的应用与无理数的定义.本题比较简单,注意用到的知识点为:概率 =所讨状况数与总状况数之比.14.( 4 分)假如一次函数么 y 的值随 x 的增大而y=kx+3(k 是常数, k≠ 0)的图象经过点(减小.(填“增大”或“减小”)1,0),那【剖析】依据点的坐标利用一次函数图象上点的坐标特点可求出k 值,再利用一次函数的性质即可得出结论.【解答】解:∵一次函数 y=kx+3(k 是常数, k≠0)的图象经过点( 1,0),∴0=k+3,∴k=﹣3,∴y 的值随 x 的增大而减小.故答案为:减小.【评论】本题考察了一次函数图象上点的坐标特点以及一次函数的性质,切记“k >0,y 随 x 的增大而增大; k<0, y 随 x 的增大而减小”是解题的重点.15.( 4 分)如图,已知平行四边形 ABCD,E 是边 BC的中点,联络 DE并延伸,与 AB 的延伸线交于点 F.设 = , = ,那么向量用向量、表示为+2.【剖析】依据平行四边形的判断与性质获得四边形DBFC 是平行四边形,则DC=BF,故 AF=2AB=2DC,联合三角形法例进行解答.【解答】解:如图,连结 BD,FC,∵四边形 ABCD是平行四边形,∴DC∥AB,DC=AB.∴△DCE∽△ FBE.又 E 是边 BC的中点,∴= = ,∴EC=BE,即点 E 是 DF 的中点,∴四边形 DBFC是平行四边形,∴DC=BF,故 AF=2AB=2DC,∴= + = +2 =+2.故答案是:+2 .【评论】本题考察了平面向量的知识、相像三角形的判断与性质以及平行四边形的性质.注意掌握三角形法例的应用是重点.16.( 4 分)经过画出多边形的对角线,能够把多边形内角和问题转变为三角形内角和问题.假如从某个多边形的一个极点出发的对角线共有 2 条,那么该多边形的内角和是 540 度.【剖析】利依据题意获得 2 条对角线将多边形切割为 3 个三角形,而后依据三角形内角和可计算出该多边形的内角和.【解答】解:从某个多边形的一个极点出发的对角线共有2 条,则将多边形切割为3 个三角形.因此该多边形的内角和是3×180°=540°.故答案为 540.【评论】本题考察了多边形内角与外角:多边的内角和定理:(n﹣2)?180(n ≥3)且 n 为整数).此公式推导的基本方法是从 n 边形的一个极点出发引出(n﹣3)条对角线,将 n 边形切割为( n﹣2)个三角形.17.( 4 分)如图,已知正方形DEFG的极点 D、 E 在△ ABC的边 BC上,极点G、 F 分别在边 AB、AC上.假如 BC=4,△ ABC的面积是 6,那么这个正方形的边长是.【剖析】作 AH⊥ BC于 H,交 GF 于 M ,如图,先利用三角形面积公式计算出AH=3,设正方形 DEFG的边长为 x,则 GF=x,MH=x,AM=3﹣x,再证明△ AGF∽△ ABC,则依据相像三角形的性质得=,而后解对于x的方程即可.【解答】解:作 AH⊥ BC于 H,交 GF于 M,如图,∵△ ABC的面积是 6,∴BC?AH=6,∴AH==3,设正方形 DEFG的边长为 x,则 GF=x,MH=x, AM=3﹣x,∵GF∥BC,∴△ AGF∽△ ABC,∴=,即=,解得x=,即正方形 DEFG的边长为.故答案为.【评论】本题考察了相像三角形的判断与性质:在判断两个三角形相像时,应注意利用图形中已有的公共角、公共边等隐含条件,以充散发挥基本图形的作用,找寻相像三角形的一般方法是经过作平行线结构相像三角形;在应用相像三角形的性质时,主要利用相像比计算相应线段的长.也考察了正方形的性质.18.( 4 分)对于一个地点确立的图形,假如它的全部点都在一个水平搁置的矩形内部或边上,且该图形与矩形的每条边都起码有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图 2,菱形 ABCD的边长为 1,边 AB 水平搁置.假如该菱形的高是宽的,那么它的宽的值是.【剖析】先依据要求绘图,设矩形的宽AF=x,则 CF= x,依据勾股定理列方程可得结论.【解答】解:在菱形上成立如下图的矩形EAFC,设 AF=x,则 CF= x,在 Rt△CBF中, CB=1,BF=x﹣1,BC由勾股定理得:2=BF2+CF2,,解得: x=或0(舍),即它的宽的值是,故答案为:.【评论】本题考察了新定义、矩形和菱形的性质、勾股定理,理解新定义中矩形的宽和高是重点.三、解答题(本大题共7 题,满分 78 分)19.( 10 分)解不等式组:,并把解集在数轴上表示出来.【剖析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解不等式①得: x>﹣ 1,解不等式②得: x≤3,则不等式组的解集是:﹣1< x≤ 3,不等式组的解集在数轴上表示为:【评论】本题考察了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分红若干段,假如数轴的某一段上边表示解集的线的条数与不等式的个数同样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.20.( 10 分)先化简,再求值:(﹣)÷,此中a=.【剖析】先依据分式混淆运算次序和运算法例化简原式,再将 a 的值代入计算可得.【解答】解:原式 =[﹣]÷=?=,当 a= 时,原式== =5﹣2 .【评论】本题主要考察分式的化简求值,解题的重点是掌握分式混淆运算次序和运算法例.21.( 10 分)如图,已知△ ABC中, AB=BC=5,tan∠ABC= .(1)求边 AC的长;(2)设边 BC的垂直均分线与边 AB 的交点为 D,求的值.【剖析】(1)过 A 作 AE⊥BC,在直角三角形 ABE中,利用锐角三角函数定义求出 AC的长即可;(2)由 DF 垂直均分 BC,求出 BF 的长,利用锐角三角函数定义求出 DF 的长,利用勾股定理求出 BD 的长,从而求出 AD 的长,即可求出所求.【解答】解:(1)作 A 作 AE⊥BC,在 Rt△ABE中, tan∠ ABC= = ,AB=5,∴AE=3, BE=4,∴CE=BC﹣BE=5﹣4=1,(2)∵ DF 垂直均分 BC,∴ BD=CD, BF=CF= ,∵tan∠DBF= = ,∴DF= ,∴AD=5﹣ = ,则 = .【评论】本题考察认识直角三角形,线段垂直均分线的性质,以及等腰三角形的性质,娴熟掌握勾股定理是解本题的重点.22.( 10 分)一辆汽车在某次行驶过程中,油箱中的节余油量y(升)与行驶路程 x(千米)之间是一次函数关系,其部分图象如下图.(1)求 y 对于 x 的函数关系式;(不需要写定义域)(2)已知当油箱中的节余油量为 8 升时,该汽车会开始提示加油,在此次行驶过程中,行驶了 500 千米时,司机发现离前面近来的加油站有 30 千米的行程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的行程是多少千米?【剖析】依据函数图象中点的坐标利用待定系数法求出一次函数分析式,再依据一次函数图象上点的坐标特点即可求出节余油量为 5 升时行驶的行程,本题得解.【解答】解:(1)设该一次函数分析式为y=kx+b,将( 150,45)、(0,60)代入 y=kx+b 中,,解得:,∴该一次函数分析式为y=﹣x+60.(2)当 y=﹣ x+60=8 时,解得 x=520.即行驶 520 千米时,油箱中的节余油量为8 升.530﹣ 520=10 千米,油箱中的节余油量为8 升时,距离加油站10 千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的行程是 10 千米.【评论】本题考察一次函数的应用、待定系数法求一次函数分析式以及一次函数图象上点的坐标特点,依据点的坐标利用待定系数法求出一次函数分析式是解题的重点.23.( 12 分)已知:如图,正方形ABCD中, P 是边 BC 上一点, BE⊥AP,DF⊥ AP,垂足分别是点 E、F.(1)求证: EF=AE﹣BE;( 2)连结 BF,假如=.求证:EF=EP.【剖析】(1)利用正方形的性质得AB=AD,∠BAD=90°,依据等角的余角相等获得∠1=∠3,则可判断△ABE≌△DAF,则BE=AF,而后利用等线段代换可获得结论;( 2)利用=和AF=BE获得=,则可判断Rt△BEF∽ Rt△DFA,因此∠ 4= ∠3,再证明∠ 4=∠5,而后依据等腰三角形的性质可判断EF=EP.【解答】证明:(1)∵四边形 ABCD为正方形,∴AB=AD,∠ BAD=90°,∵ BE⊥AP,DF⊥ AP,∴∠ BEA=∠AFD=90°,∵∠ 1+∠ 2=90°,∠ 2+∠3=90°,∴∠ 1=∠ 3,在△ ABE和△ DAF 中,∴△ ABE≌△ DAF,∴BE=AF,∴EF=AE﹣AF=AE﹣BE;( 2)如图,∵= ,而 AF=BE,∴ = ,∴= ,∴Rt△BEF∽Rt△ DFA,∴∠ 4=∠ 3,而∠ 1=∠ 3,∴∠ 4=∠ 1,∵∠ 5=∠ 1,∴∠ 4=∠ 5,即 BE均分∠ FBP,而 BE⊥ EP,∴ EF=EP.【评论】本题考察了相像三角形的判断与性质:在判断两个三角形相像时,应注意利用图形中已有的公共角、公共边等隐含条件,以充散发挥基本图形的作用.也考察了全等三角形的判断与性质和正方形的性质.24.( 12 分)在平面直角坐标系xOy 中(如图).已知抛物线 y=﹣x2+bx+c 经过点 A(﹣ 1,0)和点 B(0,),极点为 C,点 D 在其对称轴上且位于点 C 下方,将线段 DC 绕点 D 按顺时针方向旋转 90°,点 C 落在抛物线上的点 P 处.(1)求这条抛物线的表达式;(2)求线段 CD 的长;(3)将抛物线平移,使其极点 C 移到原点 O 的地点,这时点 P 落在点 E 的地点,假如点 M 在 y 轴上,且以 O、D、E、M 为极点的四边形面积为 8,求点 M 的坐标.【剖析】(1)利用待定系数法求抛物线分析式;( 2)利用配方法获得 y=﹣(x﹣2)2+,则依据二次函数的性质获得 C 点坐标和抛物线的对称轴为直线x=2,如图,设 CD=t,则 D(2,﹣t),依据旋转性质得∠ PDC=90°,DP=DC=t,则 P(2+t,﹣t),而后把P(2+t,﹣t)代入 y=﹣ x2+2x+ 获得对于 t 的方程,从而解方程可获得 CD的长;( 3) P 点坐标为( 4,),D 点坐标为( 2,),利用抛物线的平移规律确立 E 点坐标为( 2,﹣ 2),设 M(0,m),当 m>0 时,利用梯形面积公式获得?(m+ +2) ?2=8 当 m< 0 时,利用梯形面积公式获得?(﹣ m+ +2)?2=8,而后分别解方程求出 m 即可获得对应的 M 点坐标.【解答】解:(1)把 A(﹣ 1,0)和点 B(0,)代入 y=﹣ x2+bx+c 得,解得,∴抛物线分析式为y=﹣x2 +2x+ ;( 2)∵ y=﹣(x﹣2)2+,∴ C( 2,),抛物线的对称轴为直线x=2,如图,设 CD=t,则 D(2,﹣t),∵线段 DC绕点 D 按顺时针方向旋转90°,点 C 落在抛物线上的点P 处,∴∠ PDC=90°,DP=DC=t,∴P( 2+t,﹣t ),把 P(2+t,﹣t )代入 y=﹣ x2+2x+ 得﹣(2+t)2+2(2+t) + = ﹣t ,整理得 t2﹣ 2t=0,解得 t 1=0(舍去), t2=2,∴线段 CD的长为 2;( 3) P 点坐标为( 4,),D 点坐标为( 2,),∵抛物线平移,使其极点 C(2,)移到原点 O 的地点,∴抛物线向左平移 2 个单位,向下平移个单位,而 P点(4,)向左平移 2 个单位,向下平移个单位获得点 E,∴ E 点坐标为( 2,﹣ 2),设 M (0,m),当 m>0 时,?(m+ +2)?2=8,解得 m= ,此时 M 点坐标为( 0,);当 m<0 时,?(﹣ m+ +2)?2=8,解得 m=﹣,此时 M 点坐标为( 0,﹣);综上所述, M 点的坐标为( 0,)或(0,﹣).【评论】本题考察了二次函数的综合题:娴熟掌握二次函数图象上点的坐标特点、二次函数的性质和旋转的性质;会利用待定系数法求函数分析式;理解坐标与图形性质;会运用分类议论的思想解决数学识题.25.( 14 分)已知⊙ O 的直径 AB=2,弦 AC 与弦 BD 交于点 E.且 OD⊥AC,垂足为点 F.(1)如图 1,假如 AC=BD,求弦 AC 的长;(2)如图 2,假如 E 为弦 BD 的中点,求∠ ABD 的余切值;(3)联络 BC、CD、DA,假如 BC是⊙ O 的内接正 n 边形的一边, CD 是⊙ O 的内接正( n+4)边形的一边,求△ ACD的面积.【剖析】(1)由 AC=BD知+ = +,得=,依据OD⊥AC知=,从而得= =,即可知∠ AOD=∠DOC=∠BOC=60°,利用AF=AOsin∠ AOF可得答案;(2)连结 BC,设 OF=t,证 OF 为△ ABC中位线及△ DEF≌△ BEC得 BC=DF=2t,由 DF=1﹣ t 可得 t=,即可知BC=DF=,既而求得EF= AC=,由余切函数定义可得答案;( 3)先求出 BC、 CD、 AD 所对圆心角度数,从而求得BC=AD=、OF=,从而依据三角形面积公式计算可得.【解答】解:(1)∵ OD⊥AC,∴= ,∠ AFO=90°,又∵ AC=BD,∴=,即+ = +,∴= ,∴= = ,∴∠ AOD=∠DOC=∠ BOC=60°,∵AB=2,∴ AO=BO=1,∴ AF=AOsin∠AOF=1× = ,则AC=2AF= ;( 2)如图 1,连结 BC,∵AB为直径, OD⊥AC,∴∠AFO=∠C=90°,∴ OD∥ BC,∴∠ D=∠ EBC,∵DE=BE、∠ DEF=∠ BEC,∴△DEF≌△BEC(ASA),∴ BC=DF、EC=EF,又∵ AO=OB,∴ OF是△ ABC的中位线,设 OF=t,则BC=DF=2t,∵DF=DO﹣ OF=1﹣ t,∴1﹣ t=2t,解得: t= ,则 DF=BC= 、AC===,∴EF= FC= AC= ,∵OB=OD,∴∠ ABD=∠D,则 cot∠ABD=cot∠D= ==;( 3)如图 2,∵BC是⊙ O 的内接正 n 边形的一边, CD是⊙ O 的内接正( n+4)边形的一边,∴∠ BOC= 、∠ AOD=∠COD= ,则+2×=180,解得: n=4,∴∠ BOC=90°、∠ AOD=∠ COD=45°,∴BC=AC= ,∵∠ AFO=90°,∴OF=AOcos∠AOF= ,则 DF=OD﹣OF=1﹣,∴ S△ACD= AC?DF= ××(1﹣)=.【评论】本题主要考察圆的综合题,解题的重点是掌握圆周角和圆心角定理、中位线定理、全等三角形的判断与性质及三角函数的应用等知识点.。
(完整版)上海市2018年中考数学试题及解析
hing at a time and All things in their being are good for somethin
2018 年上海市中考数学试卷
参考答案与试题解析
一、选择题(本大题共 6 题,每题 4 分,满分 24 分。下列各题的四个选项中,
有且只有一个选项是正确的)
1.(4 分)下列计算 ﹣ 的结果是( )
25.(14 分)已知⊙O 的直径 AB=2,弦 AC 与弦 BD 交于点 E.且 OD⊥AC,垂足 为点 F.
(1)如图 1,如果 AC=BD,求弦 AC 的长; (2)如图 2,如果 E 为弦 BD 的中点,求∠ABD 的余切值; (3)联结 BC、CD、DA,如果 BC 是⊙O 的内接正 n 边形的一边,CD 是⊙O 的内 接正(n+4)边形的一边,求△ACD 的面积.
hing at a time and All things in their being are good for somethin
在这组数据中,29 出现的次数最多, ∴这组数据的众数是 29, 故选:D. 5.(4 分)已知平行四边形 ABCD,下列条件中,不能判定这个平行四边形为矩 形的是( ) A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC 【分析】由矩形的判定方法即可得出答案. 【解答】解:A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个 平行四边形为矩形,正确; B、∠A=∠C 不能判定这个平行四边形为矩形,错误; C、AC=BD,对角线相等,可推出平行四边形 ABCD 是矩形,故正确; D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确; 故选:B. 6.(4 分)如图,已知∠POQ=30°,点 A、B 在射线 OQ 上(点 A 在点 O、B 之间) ,半径长为 2 的⊙A 与直线 OP 相切,半径长为 3 的⊙B 与⊙A 相交,那么 OB 的 取值范围是( )
2018年上海市中考数学试卷-含答案详解
2018年上海市中考数学试卷1. 下列计算√18−√2的结果是( ) A. 4B. 3C. 2√2D. √22. 下列对一元二次方程x 2+x −3=0根的情况的判断,正确的是( ) A. 有两个不相等实数根 B. 有两个相等实数根 C. 有且只有一个实数根D. 没有实数根3. 下列对二次函数y =x 2−x 的图象的描述,正确的是( ) A. 开口向下 B. 对称轴是y 轴C. 经过原点D. 在对称轴右侧部分是下降的4. 据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是( )A. 25和30B. 25和29C. 28和30D. 28和295. 已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( ) A. ∠A =∠BB. ∠A =∠CC. AC =BDD. AB ⊥BC6. 如图,已知∠POQ =30°,点A 、B 在射线OQ 上(点A 在点O 、B 之间),半径长为2的⊙A 与直线OP 相切,半径长为3的⊙B 与⊙A 相交,那么OB 的取值范围是( )A. 5<OB <9B. 4<OB <9C. 3<OB <7D. 2<OB <77. −8的立方根是______.8. 计算:(a +1)2−a 2=______.9. 方程组{x −y =0x 2+y =2的解是______.10. 某商品原价为a 元,如果按原价的八折销售,那么售价是______元.(用含字母a 的代数式表示).11. 已知反比例函数y =k−1x(k 是常数,k ≠1)的图象有一支在第二象限,那么k 的取值范围是______.12. 某校学生自主建立了一个学习用品义卖平台,已知九年级200名学生义卖所得金额的频数分布直方图如图所示,那么20−30元这个小组的组频率是______.13. 从27,π,√3这三个数中选一个数,选出的这个数是无理数的概率为______.14. 如果一次函数y =kx +3(k 是常数,k ≠0)的图象经过点(1,0),那么y 的值随x 的增大而______.(填“增大”或“减小”)15. 如图,已知平行四边形ABCD ,E 是边BC 的中点,联结DE 并延长,与AB 的延长线交于点F.设DA ⃗⃗⃗⃗⃗ =a ⃗ ,DC ⃗⃗⃗⃗⃗ =b ⃗ ,那么向量DF ⃗⃗⃗⃗⃗ 用向量a ⃗ 、b ⃗ 表示为______.16. 通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是______度.17. 如图,已知正方形DEFG 的顶点D 、E 在△ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上.如果BC =4,△ABC 的面积是6,那么这个正方形的边长是______.18. 已知任一平面封闭图形,现在其外部存在一水平放置的矩形,使得矩形每条边都与该图形有至少一个交点,且构成该图形的所有点都在矩形内部或矩形边上,那么就称这个矩形为“该图形的矩形”,且这个矩形的水平长成为该图形的宽,铅直高称为该图形的高.如图,边长为1的菱形的一条边水平放置,已知“该菱形的矩形”的“高”是“宽”的23,则该“菱形的矩形”的“宽”为______.19. 解不等式组:{2x+1>xx+52−x≥1,并把解集在数轴上表示出来.20. 先化简,再求值:(2aa2−1−1a+1)÷a+2a2−a,其中a=√5.21. 如图,已知△ABC中,AB=BC=5,tan∠ABC=34.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求ADDB的值.22. 一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?23. 已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE−BE;(2)连接BF,如果AFBF =DFAD.求证:EF=EP.24. 在平面直角坐标系xOy中(如图).已知抛物线y=−12x2+bx+c经过点A(−1,0)和点B(0,52),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.25. 已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.答案和解析1.【答案】C【解析】解:√18−√2=3√2−√2=2√2.故选:C.先化简,再合并同类项即可求解.考查了二次根式的加减法,关键是熟练掌握二次根式的加减法法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.2.【答案】A【解析】解:∵a=1,b=1,c=−3,∴△=b2−4ac=12−4×(1)×(−3)=13>0,∴方程x2+x−3=0有两个不相等的实数根.故选:A.根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x−3=0有两个不相等的实数根.本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3.【答案】C【解析】【分析】本题考查了二次函数的性质以及二次函数的图象,利用二次函数的性质逐一分析四个选项的正误是解题的关键.A、由a=1>0,可得出抛物线开口向上,选项A不正确;B、根据二次函数的性质可得出抛物线的对称轴为直线x=1,选项B不正确;2C、代入x=0求出y值,由此可得出抛物线经过原点,选项C正确;D 、由a =1>0及抛物线对称轴为直线x =12,利用二次函数的性质,可得出当x >12时,y 随x 值的增大而增大,选项D 不正确. 综上即可得出结论. 【解答】解:A 、∵a =1>0,∴抛物线开口向上,选项A 不正确; B 、∵−b2a=12,∴抛物线的对称轴为直线x =12,选项B 不正确;C 、当x =0时,y =x 2−x =0, ∴抛物线经过原点,选项C 正确;D 、∵a >0,抛物线的对称轴为直线x =12, ∴当x >12时,y 随x 值的增大而增大,选项D 不正确. 故选:C .4.【答案】D【解析】解:对这组数据重新排列顺序得,25,26,27,28,29,29,30, 处于最中间是数是28, ∴这组数据的中位数是28,在这组数据中,29出现的次数最多, ∴这组数据的众数是29, 故选:D .根据中位数和众数的概念解答.本题考查的是中位数、众数的概念,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,一组数据中出现次数最多的数据叫做众数.5.【答案】B【解析】【分析】本题主要考查的是矩形的判定定理.由矩形的判定方法即可得出答案.【解答】解:A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确;故选:B.6.【答案】A【解析】解:设⊙A与直线OP相切时切点为D,连接AD,∴AD⊥OP,∵∠O=30°,AD=2,∴OA=4,当⊙B与⊙A相内切时,设切点为C,如图1,∵BC=3,∴OB=OA+AB=4+3−2=5;当⊙A与⊙B相外切时,设切点为E,如图2,∴OB =OA +AB =4+2+3=9,∴半径长为3的⊙B 与⊙A 相交,那么OB 的取值范围是:5<OB <9, 故选:A .作半径AD ,根据直角三角形30度角的性质得:OA =4,再确认⊙B 与⊙A 相切时,OB 的长,可得结论.本题考查了圆和圆的位置关系、切线的性质、含30°角的直角三角形,熟练掌握圆和圆相交和相切的关系是关键,还利用了数形结合的思想,通过图形确定OB 的取值范围.7.【答案】−2【解析】 【分析】本题主要考查了立方根的概念.如果一个数x 的立方等于a ,即x 的三次方等于a(x 3=a),那么这个数x 就叫做a 的立方根,也叫做三次方根.利用立方根的定义即可求解. 【解答】解:因为(−2)3=−8, 所以−8的立方根是−2. 故答案为:−2.8.【答案】2a +1【解析】解:原式=a 2+2a +1−a 2=2a +1, 故答案为:2a +1原式利用完全平方公式化简,合并即可得到结果.此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.9.【答案】{x 1=−2y 1=−2,{x 2=1y 2=1【解析】解:{x −y =0 ①x 2+y =2 ②②+①得:x 2+x =2, 解得:x =−2或1,把x =−2代入①得:y =−2, 把x =1代入①得:y =1,所以原方程组的解为{x 1=−2y 1=−2,{x 2=1y 2=1,故答案为:{x 1=−2y 1=−2,{x 2=1y 2=1.方程组中的两个方程相加,即可得出一个一元二次方程,求出方程的解,再代入求出y 即可. 本题考查了解高次方程组,能把二元二次方程组转化成一元二次方程是解此题的关键.10.【答案】0.8a【解析】解:根据题意知售价为0.8a 元, 故答案为:0.8a .根据实际售价=原价×折扣10即可得.本题主要考查列代数式,解题的关键是掌握代数式书写规范与数量间的关系.11.【答案】k <1【解析】 【分析】本题考查的是反比例函数的性质,由于反比例函数y =k−1x的图象有一支在第二象限,可得k −1<0,求出k 的取值范围即可. 【解答】解:∵反比例函数y =k−1x的图象有一支在第二象限, ∴k −1<0, 解得:k <1. 故答案为:k <1.12.【答案】0.25【解析】解:20−30元这个小组的组频率是50÷200=0.25, 故答案为:0.25.根据“频率=频数÷总数”即可得.本题主要考查频数分布直方图,解题的关键是掌握频率=频数÷总数.13.【答案】23【解析】【分析】此题考查了概率公式的应用与无理数的定义.此题比较简单,注意用到的知识点为:概率=所求情况数与总情况数之比.由题意可得共有3种等可能的结果,其中无理数有π、√3共2种情况,则可利用概率公式求解.【解答】解:∵在27,π,√3这三个数中,无理数有π,√3这2个,∴选出的这个数是无理数的概率为23,故答案为23.14.【答案】减小【解析】解:∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),∴0=k+3,∴k=−3,∴y的值随x的增大而减小.故答案为:减小.根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.本题考查了一次函数图象上点的坐标特征以及一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.15.【答案】a⃗+2b⃗【解析】解:如图,连接BD,FC,∵四边形ABCD是平行四边形,∴DC//AB,DC=AB.∴△DCE∽△FBE.又E是边BC的中点,∴DE EF =ECEB=11,∴EC=BE,即点E是DF的中点,∴四边形DBFC是平行四边形,∴DC =BF ,故AF =2AB =2DC ,∴DF ⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗ +2DC ⃗⃗⃗⃗⃗ =a ⃗ +2b⃗ . 故答案是:a ⃗ +2b ⃗ .根据平行四边形的判定与性质得到四边形DBFC 是平行四边形,则DC =BF ,故AF =2AB =2DC ,结合三角形法则进行解答.此题考查了平面向量的知识、相似三角形的判定与性质以及平行四边形的性质.注意掌握三角形法则的应用是关键.16.【答案】540【解析】解:从某个多边形的一个顶点出发的对角线共有2条,则将多边形分割为3个三角形. 所以该多边形的内角和是3×180°=540°.故答案为540.利根据题意得到2条对角线将多边形分割为3个三角形,然后根据三角形内角和可计算出该多边形的内角和.本题考查了多边形内角与外角:多边的内角和定理:(n −2)⋅180 (n ≥3)且n 为整数).此公式推导的基本方法是从n 边形的一个顶点出发引出(n −3)条对角线,将n 边形分割为(n −2)个三角形.17.【答案】127【解析】【分析】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在应用相似三角形的性质时,主要利用相似比计算相应线段的长.也考查了正方形的性质.如图,过点A 作AH ⊥BC 交BC 于点H 、交GF 于点M ,先利用三角形面积公式计算出AH =3,设正方形DEFG 的边长为x ,则GF =x ,MH =x ,AM =3−x ,再证明△AGF∽△ABC ,则根据相似三角形的性质得x 4=3−x 3,然后解关于x 的方程即可. 【解答】解:如图,过点A 作AH ⊥BC 交BC 于点H 、交GF 于点M ,∵△ABC的面积是6,BC=4,∴12BC⋅AH=6,∴AH=2×64=3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3−x,∵GF//BC,∴△AGF∽△ABC,∴GF BC =AMAH,即x4=3−x3,解得x=127,即正方形DEFG的边长为127.故答案为:127.18.【答案】1813【解析】解:在菱形上建立如图所示的矩形EAFC,设AF=x,则CF=23x,在Rt△CBF中,CB=1,BF=x−1,由勾股定理得:BC2=BF2+CF2,12=(x−1)2+(23x)2,解得:x=1813或0(舍),则该“菱形的矩形”的“宽”是1813,故答案为:1813.先根据要求画图,设AF=x,则CF=23x,根据勾股定理列方程可得结论.本题考查了新定义、矩形和菱形的性质、勾股定理,理解新定义中矩形的宽和高是关键.19.【答案】解:{2x+1>x①x+52−x≥1②解不等式①得:x>−1,解不等式②得:x≤3,则不等式组的解集是:−1<x≤3,不等式组的解集在数轴上表示为:【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.20.【答案】解:原式=[2a(a+1)(a−1)−a−1(a+1)(a−1)]÷a+2a(a−1)=a+1(a+1)(a−1)⋅a(a−1)a+2=aa+2,当a=√5时,原式=√5√5+2=√5(√5−2)(√5+2)(√5−2)=5−2√5.【解析】先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.21.【答案】解:(1)如图,过点A作AE⊥BC交BC于点E,在Rt△ABE中,tan∠ABC=AEBE =34,AB=5,设AE=3k(k>0),则BE=4k,∴AE2+BE2=AB2,即9k2+16k2=25k2,解得k=1,∴AE=3,BE=4,∴CE=BC−BE=5−4=1,在Rt △AEC 中,根据勾股定理,得AC =√AE 2+EC 2=√32+12=√10;(2)如图,作边BC 的垂直平分线DF ,分别交边BC 于点F 、交边AB 于点D ,连接CD ,∵DF 垂直平分BC ,AB =BC =5,∴BD =CD ,BF =CF =52,∵tan∠DBF =DF BF =tan∠ABC =34,∴DF =158, 在Rt △BFD 中,根据勾股定理得:BD =√BF 2+DF 2=√(52)2+(158)2=258, ∴AD =AB −BD =5−258=158, 则AD BD =158258=35. 【解析】本题考查了解直角三角形,线段垂直平分线的性质以及等腰三角形的性质,熟练掌握勾股定理是解本题的关键.(1)过点A 作AE ⊥BC 交BC 于点E ,在直角三角形ABE 中,利用锐角三角函数定义求出CE 的长,再求出AC 即可;(2)由DF 垂直平分BC ,求出BF 的长,利用锐角三角函数定义求出DF 的长,利用勾股定理求出BD 的长,进而求出AD 的长,即可求出所求.22.【答案】解:(1)设该一次函数解析式为y =kx +b ,将(150,45)、(0,60)代入y =kx +b 中,{150k +b =45b =60,解得:{k =−110b =60, ∴该一次函数解析式为y =−110x +60. (2)当y =−110x +60=8时,解得x =520.即行驶520千米时,油箱中的剩余油量为8升.530−520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【解析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式,再根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,此题得解.本题考查一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,根据点的坐标利用待定系数法求出一次函数解析式是解题的关键.23.【答案】证明:(1)∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABE和△DAF中{∠BEA=∠AFD ∠1=∠3AB=DA,∴△ABE≌△DAF,∴BE=AF,∴EF=AE−AF=AE−BE;(2)如图,∵AFBF =DFAD,而AF=BE,∴BE BF =DFAD,∴BE DF =BFAD,∴Rt△BEF∽Rt△DFA,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE ⊥EP ,∴EF =EP .【解析】(1)利用正方形的性质得AB =AD ,∠BAD =90°,根据等角的余角相等得到∠1=∠3,则可判断△ABE≌△DAF ,则BE =AF ,然后利用等线段代换可得到结论;(2)利用AF BF =DF AD 和AF =BE 得到BE DF =BF AD ,则可判定Rt △BEF∽Rt △DFA ,所以∠4=∠3,再证明∠4=∠5,然后根据等腰三角形的性质可判断EF =EP .本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.也考查了全等三角形的判定与性质和正方形的性质.24.【答案】解:(1)把A(−1,0)和点B(0,52)代入y =−12x 2+bx +c 得{−12−b +c =0c =52,解得{b =2c =52, ∴抛物线解析式为y =−12x 2+2x +52; (2)∵y =−12(x −2)2+92,∴C(2,92),抛物线的对称轴为直线x =2,如图,设CD =t ,则D(2,92−t), ∵线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处,∴∠PDC =90°,DP =DC =t ,∴P(2+t,92−t),把P(2+t,92−t)代入y =−12x 2+2x +52得−12(2+t)2+2(2+t)+52=92−t , 整理得t 2−2t =0,解得t 1=0(舍去),t 2=2,∴线段CD 的长为2;(3)P 点坐标为(4,52),D 点坐标为(2,52), ∵抛物线平移,使其顶点C(2,92)移到原点O 的位置, ∴抛物线向左平移2个单位,向下平移92个单位,而P 点(4,52)向左平移2个单位,向下平移92个单位得到点E ,∴E 点坐标为(2,−2),设M(0,m),当m >0时,12⋅(m +52+2)⋅2=8,解得m =72,此时M 点坐标为(0,72); 当m <0时,12⋅(−m +52+2)⋅2=8,解得m =−72,此时M 点坐标为(0,−72); 综上所述,M 点的坐标为(0,72)或(0,−72).【解析】(1)利用待定系数法求抛物线解析式;(2)利用配方法得到y =−12(x −2)2+92,则根据二次函数的性质得到C 点坐标和抛物线的对称轴为直线x =2,如图,设CD =t ,则D(2,92−t),根据旋转性质得∠PDC =90°,DP =DC =t ,则P(2+t,92−t),然后把P(2+t,92−t)代入y =−12x 2+2x +52得到关于t 的方程,从而解方程可得到CD 的长;(3)P 点坐标为(4,52),D 点坐标为(2,52),利用抛物线的平移规律确定E 点坐标为(2,−2),设M(0,m),当m >0时,利用梯形面积公式得到12⋅(m +52+2)⋅2=8当m <0时,利用梯形面积公式得到12⋅(−m +52+2)⋅2=8,然后分别解方程求出m 即可得到对应的M 点坐标.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和旋转的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.25.【答案】解:(1)∵OD ⊥AC ,∴AD⏜=CD ⏜,∠AFO =90°, 又∵AC =BD ,∴AC⏜=BD ⏜,即AD ⏜+CD ⏜=CD ⏜+BC ⏜, ∴AD⏜=BC ⏜, ∴AD⏜=CD ⏜=BC ⏜, ∴∠AOD =∠DOC =∠BOC =60°,∵AB =2,∴AO =BO =1,∴AF=AOsin∠AOF=1×√32=√32,则AC=2AF=√3;(2)如图1,连接BC,∵AB为直径,OD⊥AC,∴∠AFO=∠C=90°,∴OD//BC,∴∠D=∠EBC,∵DE=BE、∠DEF=∠BEC,∴△DEF≌△BEC(ASA),∴BC=DF、EC=EF,又∵AO=OB,∴OF是△ABC的中位线,设OF=t,则BC=DF=2t,∵DF=DO−OF=1−t,∴1−t=2t,解得:t=13,则DF=BC=23、AC=√AB2−BC2=√22−(23)2=4√23,∴EF=12FC=14AC=√23,∵OB=OD,∴∠ABD=∠D,则cot∠ABD=cot∠D=DFEF=23√23=√2;(3)如图2,∵BC 是⊙O 的内接正n 边形的一边,CD 是⊙O 的内接正(n +4)边形的一边,∴∠BOC =360n 、∠AOD =∠COD =360n+4,则360n +2×360n+4=180,解得:n =4,∴∠BOC =90°、∠AOD =∠COD =45°,∴BC =AC =√2,∵∠AFO =90°,∴OF =AOcos∠AOF =√22,则DF =OD −OF =1−√22, ∴S △ACD =12AC ⋅DF =12×√2×(1−√22)=√2−12.【解析】(1)由AC =BD 知AD⏜+CD ⏜=CD ⏜+BC ⏜,得AD ⏜=BC ⏜,根据OD ⊥AC 知AD ⏜=CD ⏜,从而得AD⏜=CD ⏜=BC ⏜,即可知∠AOD =∠DOC =∠BOC =60°,利用AF =AOsin∠AOF 可得答案; (2)连接BC ,设OF =t ,证OF 为△ABC 中位线及△DEF≌△BEC 得BC =DF =2t ,由DF =1−t 可得t =13,即可知BC =DF =23,继而求得EF =14AC =√23,由余切函数定义可得答案; (3)先求出BC 、CD 、AD 所对圆心角度数,从而求得BC =AD =√2、OF =√22,从而根据三角形面积公式计算可得.本题主要考查圆的综合题,解题的关键是掌握圆周角和圆心角定理、中位线定理、全等三角形的判定与性质及三角函数的应用等知识点.。
真题2018年上海市初中毕业数学统一学业考试
真题2018年上海市初中毕业统一学业考试数学试卷含答案考生注意: 1.本试卷共25题.2.试卷满分150分,考试时间100分钟.3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分) 1.的结果是( )A. 4B.3C.D.2.下列对一元二次方程230x x +-=根的情况的判断,正确的是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.有且只一个实数根 D.没有实数根 3.下列对二次函数2y x x =-的图像的描述,正确的是( ) A.开口向下 B.对称轴是y 轴C.经过原点D.在对称轴右侧部分是下降的4.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29.那么这组数据的中位数和众数分别是( )A.25和30B.25和29C.28和30D.28和29 A.A B ∠=∠ B. A C ∠=∠ C. AC BD = D. AB BC ⊥6.如图1,已知30POQ ∠=︒,点A 、B 在射线OQ 上(点A 在点O 、B 之间),半径长为2的A 与直线OP 相切,半径长为3的B 与A 相交,那么OB 的取值范围是( )A. 59OB <<B. 49OB <<C. 37OB <<D. 2二、填空题(本大题共12题,每题4分,满分48分) 7. -8的立方根是 . 8. 计算:22(1)a a +-= .9.方程组202x y x y -=⎧⎨+=⎩的解是 .10.某商品原价为a 元,如果按原价的八折销售,那么售价是 元(用含字母a 的代数式表示). 11.已知反比例函数1k y x-=(k 是常数,1k ≠)的图像有一支在第二象限,那么k 的取值范围是 .12.某学校学生自主建立了一个学习用品义卖平 台,已知九年级200名学生义卖所得金额分布 直方图如图2所示,那么20-30元这个小组的组频率是 . 13.从2,,7π选出的这个数是无理数的概率为 .14.如果一次函数3y kx =+(k 是常数,0k ≠)的图像经过点(1,0),那么y 的值随着x 的增大而 (填“增大”或“减小”)15.如图3,已知平行四边形ABCD ,E 是边BC 的中点,联结DE 并延长,与AB 的延长线交于点F ,设DA =a ,DC =b ,那么向量DF 用向量a b 、表示为 . 16.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题,如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 度. 17.如图4,已知正方形DEFG 的顶点D 、E 在ABC ∆的边BC 上,顶点G 、F 分别在边AB 、AC 上,如果BC =4,ABC ∆的面积是6,那么这个正方形的边长是 .y金额(元)图218.对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图5),那么这个矩形水平方向的边长称为该图形的宽,铅垂方向的边长称为该矩形的高, 如图6,菱形ABCD 的边长为1,边AB 水平放置,如果该菱形的高是宽的23,那么它的宽的值是 . 三、解答题(共7题,满分78分)19.解不等式组:21512x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.图4图3 图5图620.先化简,再求值:2221211a a a a a a+⎛⎫-÷ ⎪-+-⎝⎭,其中a =.21.如图7,已知ABC ∆中,AB =BC =5,3tan 4ABC ∠=. (1)求AC 的长;(2)设边BC 的垂直平分线与边AB 的交点为D ,求ADBD的值.CBA图722.一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图像如图8所示.(1)求y 关于x 的函数关系式(不需要写定义域);(2)已知当油箱中剩余油量为8升时,该汽车会开始提示加油,在此行驶过程中,行驶了500千米时,司机发现离前方最近的加油站还有30千米路程,在开往加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?23.已知:如图9,正方形ABCD 中,P 是边BC 上一点,BE AP ⊥,DF AP ⊥.垂足分别是点E 、F.(1)求证:EF =AE -BE ; (2)联结BF ,若AF DFBF AD=,求证:EF =EP . DA 图824.在平面直角坐标系xOy 中(如图10),已知抛物线解析式212y x bx c =-++经过点A (-1,0)和点5(0,)2B ,顶点为点C. 点D 在其对称轴上且位于点C 下方,将线段DC 绕点D 顺时针方向旋转90︒,点C 落在抛物线上的点P 处. (1)求抛物线的表达式; (2)求线段CD 的长度;(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8图1025. 已知O 的直径AB =2,弦AC 与弦BD 交于点E ,且OD AC ⊥,垂足为点F.(1)如图11,如果AC =BD ,求弦AC 的长;(2)如图12,如果E 为弦BD 的中点,求ABD ∠的余切值; (3)联结BC 、CD 、DA ,如果BC 是O 的内接正n 边形的一边,CD 是O 的内接正(n+4)边形的一边,求ACD ∆的面积.OFEDCBAOF EDCBA2018年上海中考数学试卷参考答案2018中考数学试卷专家点评重视数学理解关注理性思考着眼学科素养6月17日下午,2018年上海市初中毕业统一学业考试数学科目顺利开考。
2018上海中考数学试题及答案word
2018上海中考数学试题及答案word2018年上海中考数学试题及答案一、选择题(本大题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填入题后的括号内。
)1. 以下哪个数是无理数?A. 22/7B. √2C. 0.33333...D. 3.14答案:B2. 已知x=1是方程ax+b=0的解,且a≠0,则下列说法正确的是:A. a+b=0B. ab=0C. a-b=0D. a-b≠0答案:B3. 若a,b,c是等差数列,则下列等式正确的是:A. 2b=a+cB. 2a=b+cC. 2c=a+bD. 2a=c+b答案:A4. 函数y=x^2-6x+8的图象开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A5. 已知抛物线y=ax^2+bx+c(a≠0)的顶点坐标为(2,-1),则下列说法正确的是:A. a>0B. b=-4aC. c=4a+1D. a+b+c=-1答案:D6. 将下列各数从小到大排列,正确的顺序是:-2,-√2,0,√2,2A. -2<-√2<0<√2<2B. -2<0<-√2<√2<2C. -2<-√2<√2<0<2D. -2<0<√2<-√2<2答案:A二、填空题(本大题共12小题,每小题4分,共48分。
)7. 一个数的相反数是-5,这个数是____5____。
8. 计算:(-3)^2 = ____9____。
9. 已知一个角的补角是120°,则这个角是____60°____。
10. 计算:√(16) = ____4____。
11. 计算:(1/2)^3 = ____1/8____。
12. 已知一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是____11或13____。
13. 已知一个直角三角形的两条直角边长分别为3和4,那么这个三角形的斜边长是____5____。
2018年上海市中考数学试卷(含答案)
2018年上海市初中毕业统一学业考试数学试卷一、选择题(本大题共6题,每题4分,满分24分) 1.的结果是( )A. 4B.3C.D.2.下列对一元二次方程230x x +-=根的情况的判断,正确的是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.有且只一个实数根 D.没有实数根 3.下列对二次函数2y x x =-的图像的描述,正确的是( ) A.开口向下 B.对称轴是y 轴C.经过原点D.在对称轴右侧部分是下降的4.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29.那么这组数据的中位数和众数分别是( )A.25和30B.25和29C.28和30D.28和295.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( ) A.A B ∠=∠ B. A C ∠=∠ C. AC BD = D. AB BC ⊥6.如图1,已知30POQ ∠=︒,点A 、B 在射线OQ 上(点A 在点O 、B 之间),半径长为2的A e 与直线OP 相切,半径长为3的B e 与A e 相交,那么OB 的取值范围是( ) A. 59OB << B. 49OB << C. 37OB << D. 2二、填空题(本大题共12题,每题4分,满分48分) 7. -8的立方根是 . 8. 计算:22(1)a a +-= .9.方程组202x y x y -=⎧⎨+=⎩的解是 .10.某商品原价为a 元,如果按原价的八折销售,那么售价是 元(用含字母a 的代数式表示). 11.已知反比例函数1k y x-=(k 是常数,1k ≠)的图像有一支在第二象限,那么k 的取值范围是 .12.某学校学生自主建立了一个学习用品义卖平 台,已知九年级200名学生义卖所得金额分布 直方图如图2所示,那么20-30元这个小组 的组频率是 . 13.从2,,7π这三个数中任选一个数,选出的这个数是无理数的概率为 .14.如果一次函数3y kx =+(k 是常数,0k ≠)的图像经过点(1,0),那么y 的值随着x 的增大而 (填“增大”或“减小”)15.如图3,已知平行四边形ABCD ,E 是边BC 的中点,联结DE 并延长,与AB 的延长线交于点F ,设DA=a ,DC =b ,那么向量DF u u u r 用向量a b r r、表示为 . 16.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题,如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 度.17.如图4,已知正方形DEFG 的顶点D 、E 在ABC ∆的边BC 上,顶点G 、F 分别在边AB 、AC 上,如果BC =4,ABC ∆的面积是6,那么这个正方形的边长是 .18.对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图5),那么这个矩形水平方向的边长称为该图形的宽,铅垂方向的边长称为该矩形的高, 如图6,菱形ABCD 的边长为1,边AB 水平放置,如果该菱形的高是宽的23,那么它的宽的值是 .三、解答题(共7题,满分78分)19.解不等式组:21512x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.y金额(元)图2图4图3 图5图620.先化简,再求值:2221211aa a a a a +⎛⎫-÷ ⎪-+-⎝⎭,其中5a =.21.如图7,已知ABC ∆中,AB =BC =5,3tan 4ABC ∠=. (1)求AC 的长;(2)设边BC 的垂直平分线与边AB 的交点为D ,求ADBD的值.22.一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图像如图8所示.(1)求y 关于x 的函数关系式(不需要写定义域);(2)已知当油箱中剩余油量为8升时,该汽车会开始提示加油,在此行驶过程中,行驶了500千米时,司机发现离前方最近的加油站还有30千米路程,在开往加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?图8CBA图723.已知:如图9,正方形ABCD 中,P 是边BC 上一点,BE AP ⊥,DF AP ⊥.垂足分别是点E 、F. (1)求证:EF =AE -BE ; (2)联结BF ,若AF DFBF AD=,求证:EF =EP .图9PFEDCBA24.在平面直角坐标系xOy 中(如图10),已知抛物线解析式212y x bx c =-++经过点A (-1,0)和点5(0,)2B ,顶点为点C. 点D 在其对称轴上且位于点C 下方,将线段DC 绕点D 顺时针方向旋转90︒,点C落在抛物线上的点P 处. (1)求抛物线的表达式; (2)求线段CD 的长度;(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8,求点M 的坐标.图1025. 已知O e 的直径AB =2,弦AC 与弦BD 交于点E ,且OD AC ⊥,垂足为点F. (1)如图11,如果AC =BD ,求弦AC 的长;(2)如图12,如果E 为弦BD 的中点,求ABD ∠的余切值;(3)联结BC 、CD 、DA ,如果BC 是O e 的内接正n 边形的一边,CD 是O e 的内接正(n+4)边形的一边,求ACD ∆的面积.图12图11 备用图OF EDCB A OFEDCBA2018年上海中考数学试卷参考答案2018中考数学试卷专家点评重视数学理解关注理性思考着眼学科素养6月17日下午,2018年上海市初中毕业统一学业考试数学科目顺利开考。
2018中考上海数学试卷与答案
2018年上海市初中毕业生统一学业考试数学试卷<满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.TWz813WuTC一、选择题:<本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.下列式子中,属于最简二次根式的是< )<A)错误!; <B)错误!; <C)错误!; <D)错误!.TWz813WuTC2.下列关于x的一元二次方程有实数根的是< )<A)210x+=;<B)210x x++=;<C)210x x-+=;<D)210x x--=.3.如果将抛物线22y x=+向下平移1个单位,那么所得新抛物线的表达式是< )<A)2(1)2y x=-+;<B)2(1)2y x=++; <C)21y x=+;<D)23y x=+.4.数据 0,1,1,3,3,4 的中位线和平均数分别是< )<A) 2和2.4 ; <B)2和2 ; <C)1和2;5.如图1,已知在△ABC中,点D、E、F分别是边AB、AC、DE∥BC,EF∥AB,且AD∶DB = 3∶5,那么CF∶CB等于<<A) 5∶8 ; <B)3∶8 ; <C) 3∶5 ; <D)2∶6.在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是< )<A)∠BDC =∠BCD;<B)∠ABC =∠DAB;<C)∠ADB =∠DAC;<D)∠AOB=∠BOC.TWz813WuTC二、填空题:<本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.因式分解:21a- = _____________.8.不等式组1023xx x->⎧⎨+>⎩的解集是____________.图19.计算:23b aa b⨯= ___________.10.计算:2 (─b > + 3b = ___________. 11.已知函数 ()231x f x =+,那么f = __________. 12.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e 的概率为___________.TWz813WuTC 13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图2所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为___________.TWz813WuTC 14.在⊙O 中,已知半径长为3,弦AB 长为4F 、C BF = CE ,AC .<程 x <千M )之间是一次函数关系,其图像如图4所示,那么到达乙地时邮箱剩余油量是__________升.TWz813WuTC 17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为__________.TWz813WuTC 18.如图5,在△ABC 中,AB AC =,8BC =, tan C = 错误! 沿直线l 翻折后,点B 落在边AC 的中点处,直线l 与边BC 那么BD 的长为__________.三、解答题:<本大题共7题,满分78分)<本大题共7题,19~22题10分,23、24题12分,25题14分,满分48分) [将下列各题的解答过程,做在答题纸的相应位置上] 190111()2π--+ .20.解方程组: 22220x y x xy y -=-⎧⎨--=⎩.21.已知平面直角坐标系xoy <如图6),直线 12y x =过第一、二、三象限,与y 轴交于点B ,点A <2,1联结AO ,△AOB 的面积等于1. <1)求b 的值;图2(千米)(升)图4 图5<2)如果反比例函数k y x=<k 是常量,0k ≠) 的图像经过点A ,求这个反比例函数的解读式.22.某地下车库出口处“两段式栏杆”如图7-1所示,点A 是栏杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆AEF 升起后的位置如图7-2所示,其示意图如图7-3所示,其中AB ⊥BC ,TWz813WuTC EF ∥BC ,0143EAB ∠=, 1.2AB AE ==M ,求当车辆经过时,栏杆EF 段距离地面的高度<即直线EF 上任意一点到直线BC 的距离).<结果精确到0.1M ,栏杆宽度忽略不计参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75.)TWz813WuTC 23.如图8,在△ABC 中,0=90ABC ∠, B A ∠>∠,点D 为边AB 的中点,DE BC ∥交AC于点E ,CF AB ∥交DE 的延长线于点F .<1)求证:DE EF =;<2)联结CD ,过点D 作DC 的垂线交CF 的 延长线于点G ,求证:B A DGC ∠=∠+∠.24.如图9,在平面直角坐标系xoy 中,顶点为M 的抛物线2(0y ax bx a =+>)经过点A 和x 轴正半轴上的点B ,AO OB == 2,0120AOB ∠=.<1)求这条抛物线的表达式; <2)联结OM ,求AOM ∠的大小;<3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图8图7-1图7-2图7-3AEFAEFA EFBC25.在矩形ABCD 中,点P 是边AD 上的动点,联结BP ,线段BP 的垂直平分线交边BC 于点Q ,垂足为点M ,联结QP <如图10).已知13AD =,5AB =,设AP x BQ y ==,. <1)求y 关于x 的函数解读式,并写出x 的取值范围;<2)当以AP 长为半径的⊙P 和以QC 长为半径的⊙Q 外切时,求x 的值;<3)点E 在边CD 上,过点E 作直线QP 的垂线,垂足为F ,如果4EF EC ==,求x 的值.备用图beibeiyo申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
2018年上海中考数学试卷(含答案)
8.不等式组 ⎨的解集是____________. 2x + 3 > x2018 年上海市初中毕业生统一学业考试数学试卷(满分 150 分,考试时间 100 分钟)一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)1.下列式子中,属于最简二次根式的是()(A ) 9; (B ) 7 ; (C ) 20 ; (D )1 3.2.下列关于 x 的一元二次方程有实数根的是()(A ) x 2 + 1 = 0 ;(B ) x 2 + x + 1 = 0 ;(C ) x 2 - x + 1 = 0 ;(D ) x 2 - x - 1 = 0 .3.如果将抛物线 y = x 2 + 2 向下平移 1 个单位,那么所得新抛物线的表达式是()(A ) y = ( x -1)2 + 2 ;(B ) y = ( x + 1)2 + 2 ;(C ) y = x 2 + 1 ;(D ) y = x 2 + 3 .4.数据 0,1,1,3,3,4 的中位线和平均数分别是()(A ) 2 和 2.4 ;(B )2 和 2 ; (C )1 和 2;(D )3 和 2.5.如图 △1,已知在 ABC 中,点 D 、E 、F 分别是边 AB 、AC 、BC 上的点,AD EDE ∥BC ,EF ∥AB ,且 AD ∶DB = 3∶5,那么 CF ∶CB 等于()(A ) 5∶8 ;(B )3∶8 ; (C ) 3∶5 ; (D )2∶5.B F图 1C6.在梯形 ABCD 中,AD ∥BC ,对角线 AC 和 BD 交于点 O ,下列条件中, 能判断梯形 ABCD 是等腰梯形的是()(A )∠BDC =∠BCD ;(B )∠ABC =∠DAB ;(C )∠ADB =∠DAC ;(D )∠AOB =∠BOC .二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)7.因式分解: a 2 - 1 = _____________.⎧ x -1 > 0⎩图 4x (千米)乙 丙 18.如图 ,在△5 ABC 中, AB = AC , BC = 8 , tan C = ,如果将△ ABC9.计算: 3b 2 a⨯ = ___________.a b10.计算:2 ( a ─ b ) + 3 b = ___________.11.已知函数 f(x ) =3 x 2 + 1,那么 f ( 2)= __________.12.将“定理”的英文单词 theorem 中的 7 个字母分别写在 7 张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母 e 的概率为___________.13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图2 所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为___________.y (升)人数A803.55040 F30 BCE2.5图2甲 丁图 3DO 160 24014.在⊙ O 中,已知半径长为 3,弦 AB 长为 4,那么圆心 O 到 AB 的距离为___________.15.如图 3,在△ ABC 和△ DEF 中,点 B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ ABC ≌△ DEF ,这个添加的条件可以是____________.(只需写一个,不添加辅助线)16.李老师开车从甲地到相距 240 千米的乙地,如果邮箱剩余油量 y (升)与行驶里程 x (千米)之间是一次函数关系,其图像如图 4 所示,那么到达乙地时邮箱剩余油量是__________升.17.当三角形中一个内角 α 是另一个内角 β 的两倍时,我们称此三角形为“特征三角形”,其中 α 称为“特征角”.如果一个“特征三角形”的“特征角”为 100°,那么这个“特征三角形”的最小内角的度数为__________.32沿直线 l 翻折后,点 B 落在边 AC 的中点处,直线 l 与边 BC 交于点 D ,那么 BD 的长为__________.BA图 5C三、解答题:(本大题共 7 题,满分 78 分)(本大题共 7 题,19~22 题 10 分,23、24 题 12 分,25 题 14 分,满分 48 分)19.计算: 8 +12 - 1 - π 0 + ( )-1 .2⎧图 7-1图 7-2图 7-320.解方程组: ⎨ x - y =-2⎩ x 2 - xy - 2 y 2 = 0.21.已知平面直角坐标系 xoy (如图 6),直线 y = 1x + b 经过第一、二、三象限,与 y 轴交于点 B ,2点 A (2, t )在这条直线上,联结 AO ,△ AOB 的面积等于 1.(1)求 b 的值;y(2)如果反比例函数 y = k x( k 是常量, k ≠ 0 )1的图像经过点 A ,求这个反比例函数的解析式.O 1图 6x22.某地下车库出口处“两段式栏杆”如图7-1 所示,点 A 是栏杆转动的支点,点 E 是栏杆两段的连接点.当车辆经过时,栏杆 AEF 升起后的位置如图 7-2 所示,其示意图如图 7-3 所示,其中 AB ⊥ BC ,EF ∥ BC , ∠EAB = 1430, AB = AE = 1.2 米,求当车辆经过时,栏杆 EF 段距离地面的高度(即直线EF 上任意一点到直线 BC 的距离).(结果精确到 0.1 米,栏杆宽度忽略不计参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75.)EFE FAE FAABC23.如图△8,在ABC中,∠ACB=90,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)联结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.AD E F B C图824.如图9,在平面直角坐标系xoy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=1200.(1)求这条抛物线的表达式;(2)联结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.yAO BM图9x25.在矩形ABCD中,点P是边AD上的动点,联结BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,联结QP(如图10).已知AD=13,AB=5,设AP=x,BQ=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.A P D A DMB QC B C备用图图10。
2018年上海中考数学试卷(解析版)
2018年上海中考数学试卷(解析版)学校:________班级:________姓名:________学号:________一、单选题(共6小题)1.下列计算A.4﹣的结果是()B.3C.2D.2.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根C.有且只有一个实数根B.有两个相等实数根D.没有实数根3.下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的4.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30B.25和29C.28和30D.28和295.已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC6.如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB的取值范围是()k (A .5<OB <9B .4<OB <9C .3<OB <7D .2<OB <7二、填空题(共 12 小题)7.﹣8 的立方根是 ﹣ .8.计算:(a +1)2﹣a 2=.9.方程组 的解是 .10.某商品原价为 a 元,如果按原价的八折销售,那么售价是 元.(用含字母 a 的代数式表示).11.已知反比例函数 y = (k 是常数,k ≠1)的图象有一支在第二象限,那么 k 的取值范围是 .12.某校学生自主建立了一个学习用品义卖平台,已知九年级 200 名学生义卖所得金额的频数分布直方图如图所示,那么 20﹣30 元这个小组的组频率是.13.从 ,π,这三个数中选一个数,选出的这个数是无理数的概率为 .14.如果一次函数 y =kx +3(k 是常数, ≠0)的图象经过点(1,0),那么 y 的值随 x 的增大而 . 填“增大”或“减小”)15.如图,已知平行四边形A BCD,E是边BC的中点,联结D E并延长,与AB的延长线交于点F.设,=,那么向量用向量、表示为.=16.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是度.17.如图,已知正方形D EFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=△4,ABC的面积是6,那么这个正方形的边长是.18.对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该图形的高.如图2,菱形ABCD的边长为1,边AB水平放置.如果该菱形的高是宽的,那么它的宽的值是.三、解答题(共7小题)19.解不等式组:,并把解集在数轴上表示出来.20.先化简,再求值:(﹣)÷,其中a=.21.如图,已知△ABC中,AB=BC=5,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.22.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?23.已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)连接BF,如果=.求证:EF=EP.24.在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.25.已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.2018年上海中考数学试卷(解析版)参考答案一、单选题(共6小题)1.【分析】先化简,再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【知识点】二次根式的加减法2.【分析】根据方程的系数结合根的判别式,即可得出=△13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【解答】解:∵a=1,b=1,c=﹣3,∴=△b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根.故选:A.【知识点】根的判别式3.【分析】A、由a=1>0,可得出抛物线开口向上,选项A不正确;B、根据二次函数的性质可得出抛物线的对称轴为直线x=,选项B不正确;C、代入x=0求出y值,由此可得出抛物线经过原点,选项C正确;D、由a=1>0及抛物线对称轴为直线x=,利用二次函数的性质,可得出当x>时,y随x值的增大而增大,选项D不正确.综上即可得出结论.【解答】解:A、∵a=1>0,∴抛物线开口向上,选项A不正确;B、∵﹣=,∴抛物线的对称轴为直线x=,选项B不正确;C、当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;D、∵a>0,抛物线的对称轴为直线x=,∴当x>时,y随x值的增大而增大,选项D不正确.故选:C.【知识点】二次函数的图象、二次函数的性质4.【分析】根据中位数和众数的概念解答.【解答】解:对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选:D.【知识点】中位数、众数5.【分析】由矩形的判定方法即可得出答案.【解答】解:A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确;故选:B.【知识点】平行四边形的性质、矩形的判定6.【分析】作半径AD,根据直角三角形30度角的性质得:OA=4,再确认⊙B与⊙A相切时,OB的长,可得结论.【解答】解:设⊙A与直线OP相切时切点为D,连接AD,∴AD⊥OP,∵∠O=30°,AD=2,∴OA=4,当⊙B与⊙A相内切时,设切点为C,如图1,∵BC=3,∴OB=OA+AB=4+3﹣2=5;当⊙A与⊙B相外切时,设切点为E,如图2,∴OB=OA+AB=4+2+3=9,∴半径长为3的⊙B与⊙A相交,那么OB的取值范围是:5<OB<9,故选:A.【知识点】圆与圆的位置关系、直线与圆的位置关系、切线的性质二、填空题(共12小题)7.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【知识点】立方根8.【分析】原式利用完全平方公式化简,合并即可得到结果.【解答】解:原式=a2+2a+1﹣a2=2a+1,故答案为:2a+1【知识点】完全平方公式9.【分析】方程组中的两个方程相加,即可得出一个一元二次方程,求出方程的解,再代入求出y即可.【解答】解:②+①得:x2+x=2,解得:x=﹣2或1,把x=﹣2代入①得:y=﹣2,把x=1代入①得:y=1,所以原方程组的解为,,,.故答案为:【知识点】高次方程10.【分析】根据实际售价=原价×即可得.【解答】解:根据题意知售价为0.8a元,故答案为:0.8a.【知识点】列代数式这三个数中,无理数有 π,11.【分析】由于反比例函数 y =可.【解答】 解:∵反比例函数 y =的图象有一支在第二象限,可得 k ﹣1<0,求出 k 的取值范围即的图象有一支在第二象限,∴k ﹣1<0, 解得 k <1.故答案为:k <1.【知识点】反比例函数的性质、反比例函数的图象12.【分析】 根据“频率=频数÷总数”即可得.【解答】 解:20﹣30 元这个小组的组频率是 50÷200=0.25,故答案为:0.25.【知识点】频数(率)分布直方图13.【分析】由题意可得共有 3 种等可能的结果,其中无理数有 π、共 2 种情况,则可利用概率公式求解.【解答】 解:∵在 ,π,这 2 个,∴选出的这个数是无理数的概率为 ,故答案为: .【知识点】无理数、概率公式14.【分析】根据点的坐标利用一次函数图象上点的坐标特征可求出 k 值,再利用一次函数的性质即可 得出结论.【解答】 解:∵一次函数 y =kx +3(k 是常数,k ≠0)的图象经过点(1,0),∴0=k +3, ∴k =﹣3,∴y 的值随 x 的增大而减小. 故答案为:减小.【知识点】一次函数的性质、一次函数图象上点的坐标特征15.【分析】根据平行四边形的判定与性质得到四边形 DBFC 是平行四边形,则 DC =BF ,故 AF =2AB =2DC ,结合三角形法则进行解答.【解答】 解:如图,连接 BD ,FC ,∵四边形 ABCD 是平行四边形, ∴DC ∥AB ,DC =AB . ∴△DCE ∽△FBE . 又 E 是边 BC 的中点,∴= = ,∴EC =BE ,即点 E 是 DF 的中点, ∴四边形 DBFC 是平行四边形, ∴DC =BF ,故 AF =2AB =2DC ,∴=+=+2=+2.故答案是:+2.【知识点】平行四边形的性质、*平面向量16.【分析】利根据题意得到2条对角线将多边形分割为3个三角形,然后根据三角形内角和可计算出该多边形的内角和.【解答】解:从某个多边形的一个顶点出发的对角线共有2条,则将多边形分割为3个三角形.所以该多边形的内角和是3×180°=540°.故答案为540.【知识点】三角形内角和定理、多边形的对角线、多边形内角与外角17.【分析】作AH⊥BC于H,交GF于M,如图,先利用三角形面积公式计算出AH=3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3﹣△x,再证明AGF∽△ABC,则根据相似三角形的性质得=,然后解关于x的方程即可.【解答】解:作AH⊥BC于H,交GF于M,如图,∵△ABC的面积是6,∴BC•AH=6,∴AH==3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3﹣x,∵GF∥BC,∴△AGF∽△ABC,∴=,即=,解得x=,即正方形DEFG的边长为故答案为..【知识点】相似三角形的判定与性质、正方形的性质18.【分析】先根据要求画图,设矩形的宽AF=x,则CF=x,根据勾股定理列方程可得结论.【解答】解:在菱形上建立如图所示的矩形EAFC,设AF=x,则CF=x,在△Rt CBF中,CB=1,BF=x﹣1,由勾股定理得:BC2=BF2+CF2,,解得:x=或0(舍),即它的宽的值是故答案为:.,【知识点】菱形的性质、矩形的性质三、解答题(共7小题)19.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解不等式①得:x>﹣1,解不等式②得:x≤3,则不等式组的解集是:﹣1<x≤3,不等式组的解集在数轴上表示为:【知识点】解一元一次不等式组、在数轴上表示不等式的解集20.【分析】先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=[=•﹣]÷=,当a=原式=时,==5﹣2.【知识点】分式的化简求值21.【分析】(1)过A作AE⊥BC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求.【解答】解:(1)作A作AE⊥BC,在△Rt ABE中,tan∠ABC=∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,=,AB=5,在△Rt AEC中,根据勾股定理得:AC=(2)∵DF垂直平分BC,∴BD=CD,BF=CF=,=;∵tan∠DBF=∴DF=,=,在△Rt BFD中,根据勾股定理得:BD==,∴AD=5﹣则=.=,【知识点】解直角三角形、等腰三角形的性质、线段垂直平分线的性质22.【分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式,再根据一次函数图象上点的坐标特征即可求出剩余油量为5升时行驶的路程,此题得解.【解答】解:(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,,解得:,∴该一次函数解析式为y=﹣x+60.(2)当y=﹣x+60=8时,解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【知识点】一次函数的应用23.【分析】(1)利用正方形的性质得AB=AD,∠BAD=90°,根据等角的余角相等得到∠1=∠3,则可判断△ABE≌△DAF,则BE=AF,然后利用等线段代换可得到结论;(2)利用=和AF=BE得到=,则可判定△Rt BEF∽△Rt DF A,所以∠4=∠3,再证明∠4=∠5,然后根据等腰三角形的性质可判断EF=EP.【解答】证明:(1)∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABE和△DAF中,∴△ABE≌△DAF,∴BE=AF,∴EF=AE﹣AF=AE﹣BE;(2)如图,∵而AF=BE,=,∴∴==,,∴△Rt BEF∽△Rt DF A,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE⊥EP,∴EF=EP.•【知识点】正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质24.【分析】(1)利用待定系数法求抛物线解析式;(2)利用配方法得到 y =﹣ (x ﹣2)2+ ,则根据二次函数的性质得到 C 点坐标和抛物线的对称轴为直线 x =2,如图,设 CD =t ,则 D (2,﹣t ),根据旋转性质得∠PDC=90°,DP =DC =t ,则 P (2+t , ﹣t ),然后把 P (2+t , ﹣t )代入 y =﹣ x 2+2x +得到关于 t 的方程,从而解方程可得到 CD 的长;(3)P 点坐标为(4, ),D 点坐标为(2, ),利用抛物线的平移规律确定 E 点坐标为(2,﹣2),设 M (0,m ),当 m >0 时,利用梯形面积公式得到 •(m+ +2)•2=8 当m <0 时,利用梯形面积公式得到 (﹣m+ +2)•2=8,然后分别解方程求出 m 即可得到对应的 M 点坐标.【解答】 解:(1)把 A (﹣1,0)和点 B (0, )代入 y =﹣ x 2+bx +c 得,解得 ,∴抛物线解析式为 y =﹣ x 2+2x + ;(2)∵y =﹣ (x ﹣2)2+ ,∴C (2, ),抛物线的对称轴为直线 x =2,如图,设 CD =t ,则 D (2, ﹣t ),∵线段 DC 绕点 D 按顺时针方向旋转 90°,点 C 落在抛物线上的点 P 处, ∴∠PDC =90°,DP =DC =t ,∴P (2+t , ﹣t ),把 P (2+t , ﹣t )代入 y =﹣ x 2+2x + 得﹣ (2+t )2+2(2+t )+ = ﹣t ,整理得 t 2﹣2t =0,解得 t 1=0(舍去),t 2=2, ∴线段 CD 的长为 2;(3)P 点坐标为(4, ),D 点坐标为(2, ),∵抛物线平移,使其顶点C(2,)移到原点O的位置,∴抛物线向左平移2个单位,向下平移个单位,而P点(4,)向左平移2个单位,向下平移个单位得到点E,∴E点坐标为(2,﹣2),设M(0,m),当m>0时,•(m++2)•2=8,解得m=,此时M点坐标为(0,);当m<0时,•(﹣m++2)•2=8,解得m=﹣,此时M点坐标为(0,﹣);综上所述,M点的坐标为(0,)或(0,﹣).【知识点】二次函数综合题25.【分析】(1)由AC=BD知+=+,得=,根据OD⊥AC知=,从而得==,即可知∠AOD=∠DOC=∠BOC=60°,利用AF=AOsin∠AOF可得答案;(2)连接BC,设OF=t,证OF为△ABC中位线及△DEF≌△BEC得BC=DF=2t,由DF=1﹣t可得t=,即可知BC=DF=,继而求得EF=AC=义可得答案;,由余切函数定(3)先求出BC、CD、AD所对圆心角度数,从而求得BC=AD=据三角形面积公式计算可得.【解答】解:(1)∵OD⊥AC,∴=,∠AFO=90°,又∵AC=BD,、OF=,从而根∴=,即+=+,∴∴==,=,∴∠AOD=∠DOC=∠BOC=60°,∵AB=2,∴AO=BO=1,∴AF=AOsin∠AOF=1×则AC=2AF=;(2)如图1,连接BC,=,∵AB为直径,OD⊥AC,∴∠AFO=∠C=90°,∴OD∥BC,∴∠D=∠EBC,∵DE=BE、∠DEF=∠BEC,∴△DEF≌△BEC(ASA),∴BC=DF、EC=EF,又∵AO=OB,∴OF是△ABC的中位线,设OF=t,则BC=DF=2t,∵DF=DO﹣OF=1﹣t,∴1﹣t=2t,解得:t=,则DF=BC=、AC===,∴EF=FC=AC=,∵OB=OD,∴∠ABD=∠D,则cot∠ABD=cot∠D===;(3)如图2,∵BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,=∴∠BOC =则+2× 、∠AOD =∠COD ==180,,解得:n =4,∴∠BOC =90°、∠AOD =∠COD =45°, ∴BC =AC = , ∵∠AFO =90°,∴OF =AOcos ∠AOF =则 DF =OD ﹣OF =1﹣,,∴△S ACD AC •DF = ×【知识点】圆的综合题×(1﹣ )= .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a 2018 年上海市初中毕业统一学业考试数学试卷考生注意:1. 本试卷共 25 题.2. 试卷满分 150 分,考试时间 100 分钟 .3. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.4. 除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共 6 题,每题 4 分,满分 24 分)1. 计算 18 2 的结果是()A . 4B. 3C. 222D.22. 下列对一元二次方程xx 30 根的情况的判断,正确的是()A . 有两个不相等的实数根 B. 有两个相等的实数根C. 有且只一个实数根 D. 没有实数根23. 下列对二次函数y xx 的图像的描述,正确的是()A . 开口向下 B. 对称轴是 y 轴C. 经过原点D. 在对称轴右侧部分是下降的4. 据统计,某住宅楼 30 户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29. 那么这组数据的中位数和众数分别是()A . 25 和 30B. 25 和 29C. 28 和 30D. 28 和 295. 已知平行四边形 ABCD ,下列条件中,不能判定这个平行四边形为矩形的是()A .A BB.A C C. AC BD D. AB BCPOQ 306. 如图 1,已知,点 A 、B 在射线 OQ 上(点 A 在点 O 、B 之间),半径长为 2A 与直线 OP 相切,半径长为 3 的B 与 A 相交,那么 OB 的取值范围是()的PA . 5OB9B. 4OB 9 C. 3OB 7 D. 2OB 7OQA B二、填空题(本大题共12 题,每题 4 分,满分 48 分)7. -8 的立方根是 .22图 18. 计算: (a1)= .x y的解是 .9. 方程组x2y 210. 某商品原价为 a 元,如果按原价的八折销售,那么售价是元(用含字母 a 的(关注微信公众号,获取更多免费资源)、代数式表示) .k 1y11. 已知反比例函数(k 是常数, k 1 )的图像有一支在第二象限,那么k 的取值x范围是 .人数y12. 某学校学生自主建立了一个学习用品义卖平台,已知九年级 200 名学生义卖所得金额分布80直方图如图 2 所示,那么 20-30 元这个小组的组频率是 .50230,, 3 这三个数中任选一个数,13. 从710x选出的这个数是无理数的概率为 .图 2O1020304050金额(元)14. 如果一次函数 y kx 3(k 是常数, k 0)的图像经过点( 1,0),那么 y 的值随着 x的增大而(填“增大”或“减小”)15. 如图 3,已知平行四边形 ABCD ,E 是边 BC 的中点,联结 DE 并延长,与 AB 的延长线交于点 F ,设 DA =a ,DC =b ,那么向量 DF 用向量 a b 表示为 .16. 通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题,如果从某个多边形的一个顶点出发的对角线共有2 条,那么该多边形的内角和是度.17. 如图 4,已知正方形 DEFG 的顶点 D 、E 在 ABC 的边 BC 上,顶点 G 、F 分别在边 AB 、AC 上,如果 BC =4, ABC 的面积是 6,那么这个正方形的边长是.ADCDCGFE CABEA BB FD图 3图 4图 6图 518. 对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图5),那么这个矩形水平方向的边长称为该图形的宽,铅垂方向的边长称为该矩形的高,如图 6,菱形 ABCD 的边长为 1,边 AB 水平放置,2如果该菱形的高是宽的,那么它的宽的值是 .3三、解答题(共 7 题,满分 78 分)2x 1x,并把解集在数轴上表示出来.19. 解不等式组:x 5x 12-4O 123-3-2-14112a 1a 2,其中 a 5 .20. 先化简,再求值:a2a a2a3ABC21. 如图 7,已知 ABC 中, AB =BC =5,tan .4(1)求 AC 的长;(2)设边 BC 的垂直平分线与边 AB 的交点为 D ,求 AD 的值.ABDBC图 722. 一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图像如图8 所示.(1)求 y 关于 x 的函数关系式(不需要写定义域) ;(2)已知当油箱中剩余油量为8 升时,该汽车会开始提示加油, 在此行驶过程中, 行驶了 500千米时,司机发现离前方最近的加油站还有30 千米路程,在开往加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?图 823. 已知:如图 9,正方形 ABCD 中,P 是边 BC 上一点, BE AP , DF AP . 垂足分别是点 E、F.(1)求证: EF=AE-BE;DF(2)联结 BF,若 AF,求证: EF=EP.ABF AD DFEB CP图 91224. 在平面直角坐标系 xOy 中(如图 10),已知抛物线解析式y x bx c 经过点 A(-251,0)和点B(0,) ,顶点为点 C. 点 D 在其对称轴上且位于点 C 下方,将线段 DC 绕点 D 2顺时针方向旋转 90 ,点 C 落在抛物线上的点 P 处.(1)求抛物线的表达式;(2)求线段 CD 的长度;(3)将抛物线平移,使其顶点 C 移到原点 O 的位置,这时点 P 落在点 E 的位置,如果点 M在 y 轴上,且以 O、D、E、M 为顶点的四边形面积为8,求点 M 的坐标 .yO x图 10O 的直径 AB =2,弦 AC 与弦 BD 交于点 E,且 OD AC ,垂足为点 F.25. 已知(1)如图 11,如果 AC =BD,求弦 AC 的长;(2)如图 12,如果 E 为弦 BD 的中点,求ABD 的余切值;(3)联结 BC、CD、DA ,如果 BC 是 O 的内接正 n 边形的一边, CD 是 O 的内接正 ( n+4)边形的一边,求ACD 的面积 .D DC CE EF FBA A BO OA BO图 11图 12备用图2018 年上海中考数学试卷参考答案2018 中考数学试卷专家点评重视数学理解 关注理性思考 着眼学科素养6 月 17 日下午, 2018 年上海市初中毕业统一学业考试数学科目顺利开考。
市教育考试院邀请了三林中学北校杨正家、虹口区教师进修学院胡军、嘉定区教育学院孙琪斌、青浦区重固中学宋伟倩等专家对本次数学试卷进行了评析。
与会专家表示, 2018 年上海市初中毕业统一学业考试数学试卷以《2018 年上海市初中数学课程终结性评价指南》和《上海市初中数学学科教学基本要求》为依据,试卷结构合理,区分度适切,有效考查了学生的数学核心素养,全卷体现了以下特点:关注基础 重视通性通法2018 年上海中考数学试卷知识覆盖面广,结构稳定, 重视对基础知识、 基本技能的考查,部分试题源于教材,没有偏题、怪题,突出了重点知识的考查,符合教学实际。
如第19 题考查了不等式组的基本解法,第20 题考查了分式的基本运算,第21 题考查了基本几何计算。
试卷重视基本数学思想方法的考查。
如第 24 题各小题的设计梯度合理, 层层递进,由易到难。
第( 1) 题“求这条抛物线的表达式” ,考查待定系数法这一基本的数学方法; 第( 2) 题“求线段CD 的长”考查数形结合的思想方法; 第( 3) 题“求点 M 的坐标”,立足图形运动,考查学生的空间观念以及分类讨论的思想。
联系实际 突出数学应用试卷注重数学知识与现实生活的联系,考查学生在实际生活中分析问题、解决问题的能力。
如选择题第 4 题以居民垃圾分类为素材, 要求学生找出相关数据中的中位数和众数; 第 12题以某校学生自主建立学习用品义卖平台为素材,要求学生根据义卖所得金额的频数分布直方图,求“ 20- 30 元这个小组的组频率” ; 第 22 题用汽车在行驶过程中油箱用油量和行驶路程之间的函数关系来求解相关问题等,这些试题的背景取材来自现实生活,渗透环保意识,弘扬助人精神,富有亲切感,让学生在解题的同时,感受数学在生活中的广泛运用,体现了学科育人价值。
关注理解 凸显理性思考试卷注重阅读理解能力、探究性学习能力,引导学生抓住数学本质、数学规律来解决问题。
如第 25 题中,“求弦 AC 的长”对同圆或等圆中的弦、弧、圆心角三者之间关系的理解是问题解决的关键 ;“求∠ ABD 的余切值” 需要学生联系基本图形, 将所求的余切值转换为相关线段之间的关系, 考查了知识间的联系和转换;“求△ ACD 的面积” 需要学生理解正多边形的相关概念,通过数形结合建立方程,运用代数方法解决几何问题。
这类试题较好体现了对数学理性思考的关注。
引导教学 着眼核心能力试卷着眼于学生数学核心能力的培育,如数学表达、运算求解、推理论证、空间想象、数据处理等能力均在试卷中有所体现,对课堂教学起到了较好的引导作用,引导课堂教学关注思维过程与方法,用数学的方式观察、思考、表达、解决所面对的问题。
如第23 题是一道几何证明题,改编自教材,考查逻辑推理能力,培养思维和表达的严密性。