运筹:第一章
运筹学重点
第一章线性规划与单纯形法一、本章考情分析:常考题型:选择填空判断计算分值:必考知识点,30分以上,非常重要!二、本章基本内容:1)掌握线性规划的数学模型的标准型;2)掌握线性规划的图解法及几何意义;3)了解单纯形法原理;4)熟练掌握单纯形法的求解步骤;5)能运用大M法与两阶段法求解线性规划问题;6)熟练掌握线性规划几种解的性质及判定定理.三、本章重难点:重点:1)单纯形法求解线性规划问题;2)解的性质;3)线性规划问题建模.难点:1)单纯形法原理的理解;2)线性规划问题建模.四、本章要点精讲:·要点1化标准型·要点2图解法·要点3单纯形法的原理·要点4单纯形法的计算步骤·要点5单纯形法的进一步讨论1)要点1化标准型线性规划的数学模型:Z=CX (C:价值系数) Ax=b (a:工艺或技术系数 b:资源限制)复习思路提示:化标准型按“目标函数—资源限量—约束条件—决策变量”的顺序进行。
2)要点2图解法线性规划解的情况有:唯一最优解、无穷多最优解、无界解、无可行解;3)要点3单纯形法原理解的概念与关系:基:设A是约束方程组的m*n阶系数矩阵(设n>m),其秩为m,B是A 中的一个m*m阶的满秩子矩阵(B≠0的非奇异子矩阵),称 B是线性规划问题的一个基.设除基变量以外的变量称为非基变量。
基解:在约束方程组中,令所有的非基变量=0,可以求出唯一解X。
基可行解:变量非负约束条件的基解.可行基:基可行解的基.几个定理:1线性规划问题的可行解为基可行解的充要条件是X的正分量所对应的系数列向量是线性独立的.2线性规划问题的基可行解X对应线性规划问题可行域(凸集)的顶点.3若线性规划问题有最优解,一定存在一个基可行解是最优解.最优解唯一时,最优解也是基最优解;当最优解不唯一时,最优解不一定是基最优解.基最优解基可行解集解最优解可行解线性规划解的判别:①最优解:全部σj≤ 0,则X(0)为最优解.②唯一最优解:全部σj<0,则X(0)为唯一最优解.③无穷多最优解:全部σj≤0,存在一个非基变量的σ=0,则存在无穷多最优解.④无界解:若有一个非基变量的σ>0,而其对应非基变量的所有系数a′≤0,则具有无界解。
《运筹学》课件 第一章 线性规划
10
解:令
xi=
1, Si被选中
min z= ci xi i 1 10
0, Si没被选中
xi 5
i 1
x1 x8 1 x7 x8 1
称为技术系数
b= (b1,b2, …, bm) 称为资源系数
2、非标准型
标准型
(1)Min Z = CX
Max Z' = -CX
(2)约束条件
• “≤”型约束,加松弛变量;
松弛变量
例如: 9 x1 +4x2≤360
9 x1 +4x2+ x3=360
• “≥”型约束,减松弛变量;
例、将如下问题化为标准型
数据模型与决策 (运筹学)
课程教材:
吴育华,杜纲. 《管理科学基础》,天津大学出版社。
绪论
一、运筹学的产生与发展
运筹学(Operational Research) 直译为“运作研究”。
• 产生于二战时期 • 60年代,在工业、农业、社会等各领域得到广泛应用 • 在我国,50年代中期由钱学森等引入
Min z x1 2x2 3x3
x1 x2 x3 7
s.t
.
x1 x2 x3 3x1 x2 2
x3
2
5
x1, x2 , x3 0
解:令 Min z Max z' (z' z) ,第一个约束加松弛变量x5,
第二个约束减松弛变量x6,得标准型:
Max z' x1 2x2 +3x3
x1 x2 x3 x4 7
s.t .
x1 x2 3x1
x3 x2
x5 2 2x3 5
x1 , , x5 0
运筹学-第一章-单纯形法基本原理
X ( 0) ( x1 , x2 ,, xm ,0,0,...,0)T (b1 , b2 ,......,bm ,0,0,...,0)T
0
0
0
单纯形法基本原理
2、基变换 定义:两个基可行解称为相邻的,如果它们之间变换 且仅变换一个基变量。 初始基可行解的前m个为基变量,
X
凸集
顶点
凸集
不是凸集
顶点:如果凸集C中不存在任何两个不同的点X1,X2,使X 成为这两个点连线上的一个点
单纯形法基本原理
定理1:若线性规划问题存在可行解,则该问题的可行域是 凸集。 定理2:线性规划问题的基可行解X对应可行域(凸集)的顶 点。 定理3:若问题存在最优解,一定存在一个基可行解是最优 解。(或在某个顶点取得)
的左边变成一个单位矩阵,
b (b1 a1 j ,.,bl 1 al 1 j , , bl 1 al 1 j ,.,bm am1 j , ) ( x1 , x2 ,..., xl 1 , x j , xl 1 ,..., xm )
X
(1)
T
与X
( 0)
是相邻的基可行解。
M M bm 0 L
M M
M M
L 1 am,m1 L L 00
M , M amn m
bi 其中: i a kj 0 a kj
j c j ci aij c j z j
单纯形法的计算步骤
例1.12 用单纯形法求下列线性规划的最优解
max Z 3 x1 4 x 2 2 x1 x 2 40 x1 3 x 2 30 x , x 0 1 2
xi0 aij 0, aij 0,取值无限,
运筹学第1章-线性规划
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。
(MBA课程)管理运筹学:第一章 绪论
广西大学 王中昭 制作
例如
某工厂每生产一单位产品I可获利50元, 每生产一单位产品Ⅱ可获利100 元,问工 厂应分别生产多少个产品Ⅰ和产品Ⅱ才能 使工厂获利最多? 目标函数: max Z=50x1+100x2, 除外还要满足的资源约束条件: x1+x2≤300, 2 x1+x2≤400, x2≤250, x1≥0, x2≥0.
6.财务和会计。这里涉及到预测、贷款、成
本分析、定价、证券管理、现金管理,使用较 多的运筹学方法为:统计分析、数学规划、决 策分析等。
另外,运筹学还成功地应用于设备维修、更 新和可靠性、项目的选择与评价;工程优化设 计;信息系统的设计与管理以及各种城市紧急 服务系统的设计与管理上。比较典型的应用实 例见P5。
表中为运输单价 A1 B1 6 B2 4 B3 6 产量(件) 200
广西大学 王中昭 制作
A2
销量
6 150
5 150
5 200
300
广西大学 王中昭 制作
五、存贮模型
存贮论是研究在各种供应与需求 的条件下,应当在什么时候, 提出 多大的订货批量来补充存贮,使得订 购费、库存费以及缺货所带来的损失 的费用的总和为最小等问题。(在其
其二是:由于电子计算机尤其是微机迅猛地 发展和广泛的应用,一些复杂的和大型的模型得 到解决。使得运筹学的方法论能成功地及时地解 决大量经济管理中的决策问题,为运筹学的进一 步发展提供了更广阔的空间。 数学规划的发展历程: 1947年,美国数学家丹捷格提出了求解线性 规划问题的单纯形法,这恐怕是在运筹学发展史 上最辉煌的一笔。是运筹学算法的一次革命。在 后来研究上还发明其它求解线性规划的方法,如 前苏联科学家发明的内点法、印度科学家发明的 K算法等。 1949年,创立线性规划理论;1951年,创立非 线性规划理论;1954年,建立网络流理论,同年, 提出对偶单纯形法;1958年,创立整数规划。
《运筹学》管理运筹学1
目标函数
z = 50 x1 + 100 x2
在 z = x2 (x2 = z 斜率为0 ) 到 z = x1 + x2 (x2 = -x1 + z 斜率为-1 )之间时,
原最优解 x1 = 50,x2= 100 仍是最优解。
• 一般情况:
z = c1 x1 + c2 x2 写成斜截式 x2 = - (c1 / c2 ) x1 + z / c2
x2 + s3 = 250
x1 , x2 , s1 , s2 , s3 ≥ 0
对于最优解 x1 =50 x2 = 250 , s1 = 0 s2 =50 s3 = 0
说明:生产50单位甲产品和250单位乙产品将消耗完所有可能的设备台时
数及原料B,但对原料A则还剩余50千克。
解的性质:
1 线性规划的最优解如果存在,则必定有一个顶点(极点)是最优解; 2 有的线性规划问题存在无穷多个最优解的情况; 3 有的线性规划问题存在无有限最优解的情况,也称无解; 4 有的线性规划问题存在无可行解的情况。
• 作业:P24---6,பைடு நூலகம்,8
16
第三章 线性规划问题的计算机求解(1)
• 管理运筹学软件1.0版使用说明:(演示例1) 一、系统的进入与退出:
1、在WINDOWS环境下直接运行main.exe文件,或者在DOS下UCDOS中文平台环 境下运行,也可直接运行各可执行程序。
2、退出系统的方法可以在主菜单中选退出项,也可按Ctrl+Break键直接退出。 3、在WINDOWS环境下直接运行软件,如果出现乱码,那是因为启用了全屏幕方
s.t. a11 x1 + a12 x2 + … + a1n xn ≤ ( =, ≥ )b1 a21 x1 + a22 x2 + … + a2n xn ≤ ( =, ≥ )b2 …… …… am1 x1 + am2 x2 + … + amn xn ≤ ( =, ≥ )bm x1 ,x2,… ,xn ≥ 0
运筹学完整版
绪论
国际上运筹学的思想可追溯到1914年,当时的 兰彻斯特提出了军事运筹学的作战模型。1917年, 丹麦工程师埃尔朗在研究自动电话系统中通话线路 与用户呼叫的数量关系问题时,提出了埃尔朗公式, 研究了随机服务系统中的系统排队与系统拥挤问题。 存储论的最优批量公式是( Operations Research )
第一章
运
决
筹
胜
帷 幄之
绪论
千
里
中
之
外
Introduction
绪论
本章主要内容: (1)运筹学简述 (2)运筹学的主要内容 (3)本课程的教材及参考书 (4)本课程的特点和要求 (5)本课程授课方式与考核 (6)运筹学在经济管理中的应用
绪论
绪论
绪论
20世纪50年代中期,钱学森、许国志等教授在国内全面介 绍和推广运筹学知识,1956年,中国科学院成立第一个运筹学研 究室,1957年运筹学运用到建筑和纺织业中,1958年提出了图上 作业法,山东大学的管梅谷教授提出了“中国邮递员问题”, 1970年,在华罗庚教授的直接指导下,在全国范围内推广统筹方 法和优选法。
1978年11月,在成都召开了全国数学年会,对运筹学的理论 与应用研究进行了一次检阅,1980年4月在山东济南正式成立了 “中国数学会运筹学会”,1984年在上海召开了“中国数学会运 筹学会第二届代表大会暨学术交流会”,并将学会改名为“中国 运筹学会”。
绪论
运筹学的发展趋势
成熟的学科分支向纵深发展 新的研究领域产生 与新的技术结合 与其他学科的结合加强 传统优化观念不断变化
x1 0xn 0
n
简写为: max(min)Z cj xj j1
n
aij xj ( ) bi (i 1 2m)
运筹学 第一章 线性规划 清华
① ② ③
x2
②
Q3 Q2
Q4
③
3
①
o
4 Q1
x1
*
6
首先取z = 0,然后,使z逐 渐增大,直至找到最优解所对 应的点。
x2
②
Q3
Q4
③
Q2(4,2)
3
①
*
4 Q1
x1
可见,在Q2点z取到最大值。 因此, Q2点所对应的解为最优解。 Q2点坐标为(4,2)。 即: x1 = 4,x2 = 2
5
1.2 图解法 eg. eg. [eg.3]用图解法求eg.1。 max z = 2x1 + 3x2 1x1 + 2x2 ≤ 8 4x1 ≤ 16 4x2 ≤ 12 x1 ,x2 ≥ 0 解: (1)建立x1 - x2坐标; x (2)约束条件的几何表示; (3)目标函数的几何表示; z = 2x1 + 3x2
15
1.4 线性规划解的概念 设线性规划为 max z = CX ① AX = b ② X≥0 ③ 矩阵, (A为行满秩矩阵) A为m × n矩阵, n > m, Rank A = m (A为行满秩矩阵) 为行满秩矩阵 1、可行解:满足条件②、③的X; 可行解:满足条件② 2、最优解:满足条件①的可行解; 最优解:满足条件①的可行解; 条件 子矩阵, 则称B 3、基:取B为A中的m × m子矩阵,Rank B = m,则称B为线性 中的m 规划问题的一个基。 规划问题的一个基。 取B = (P1,P2,,Pm) ,P Pj = (a1j,a2j,,amj)T ,a 则称x1,x2,,xm为基变量,其它为非基变量。 则称x ,x 为基变量,其它为非基变量。
运筹学:第1章 线性规划 第3节 对偶问题与灵敏度分析
s.t.
4x1 3x1
5x2 200 10x2 300
x1, x2 0
9x1 4x2 360
s.t.
34xx11
5x2 10 x
200 2 300
3x1 10x2 300
x1, x2 0
则D为
min z 360y1 200y2 300y3 300y4
9 y1 4 y2 3y3 3y4 7 s.t.4 y1 5y2 10 y3 10 y4 12
amn xn bm ym xn 0
机会成本 a1 j y1 a2 j y2 aij yi amj ym
表示减少一件产品所节省的可以增加的利润
(3)对偶松弛变量的经济解释——产品的差额成本
机会成本
利润
min w b1 y1 b2 y2 bm ym
a11 y1
st
a12
y1
a1n y1
max z CX
(P)
AX b
s
.t
.
X
0
(D)
min w Yb
s.t.
YA C Y 0
• (2)然后按照(D)、(P)式写出其对偶
例:写出下面线性规划的对偶规划模型:
max z 2x1 3x2
min w 3 y1 5y2 1y3
x1 2x2 3 y1 0
s.t.
2xx11
例如,在前面的练习中已知
max z 2.5x1 x2 的终表为
3x1 5x2 15 s.t.5x1 2x2 10
x1, x2 0
0 x3 9 2.5 x1 2
0 19 1 - 3
5
5
1
2
0
1
5
运筹学第1章
(第三版)《运筹学》教材编写组编清华大学出版社运筹学第1章线性规划与单纯形法第1节线性规划问题及其数学模型二.线性规划与目标规划第1章线性规划与单纯形法第2章对偶理论与灵敏度分析第3章运输问题第4章目标规划第1章线性规划与单纯形法第1节线性规划问题及其数学模型第2节线性规划问题的几何意义第3节单纯形法第4节单纯形法的计算步骤第5节单纯形法的进一步讨论第6节应用举例第1节线性规划问题及其数学模型•1.1 问题的提出•1.2 图解法•1.3 线性规划问题的标准形式•1.4 线性规划问题的解的概念第1节线性规划问题及其数学模型线性规划是运筹学的一个重要分支。
线性规划在理论上比较成熟,在实用中的应用日益广泛与深入。
特别是在电子计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了。
从解决技术问题的最优化设计到工业、农业、商业、交通运输业、军事、经济计划和管理决策等领域都可以发挥作用。
它已是现代科学管理的重要手段之一。
解线性规划问题的方法有多种,以下仅介绍单纯形法。
1.1 问题的提出从一个简化的生产计划安排问题开始例1某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表1-1所示。
资源产品ⅠⅡ拥有量设备 1 2 8台时原材料A40 16kg原材料B0 4 12kg续例1该工厂•每生产一件产品Ⅰ可获利2元,•每生产一件产品Ⅱ可获利3元,•问应如何安排计划使该工厂获利最多?如何用数学关系式描述这问题,必须考虑称它们为决策变量。
产品的数量,分别表示计划生产设II I,,21x x ∙12416482212121≤≤≤+∙x ;x ;x x ,x ,x 这是约束条件。
即有量的限制的数量多少,受资源拥生产021≥∙x ,x ,即生产的产品不能是负值这是目标。
最大如何安排生产,使利润,∙数学模型⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0124164823221212121x ,x x x x x :x x z max 约束条件目标函数例2. 简化的环境保护问题靠近某河流有两个化工厂(见图1-1),流经第一化工厂的河流流量为每天500万立方米,在两个工厂之间有一条流量为每天200万立方米的支流。
运筹学第一章
30
1.1.3解的概念
概念: 1、可行解:满足所有约束条件的解。 2、可行域:即可行解的集合。所有约束条件的交 集,也就是各半平面的公共部分。满足所有约 束条件的解的集合,称为可行域。 3、凸集:集合内任意两点的连线上的点均属于这 个集合。如:实心球、三角形。线性规划的可 行域是凸集。
OR1
OR1
27
线性规划图解法例题
(无界解)
max z x 2 y x y 1 2 x 4 y 3 x 0, y 0
OR1
28
线性规划图解法例题
(无解)
min z x 2 y x y 2 2 x 4 y 3 x 0, y 0
请问该 医院至 少需要 多少名 护士?
5
例题2建模
目标函数:min Z=x1+x2+x3+x4+x5+x6 约束条件: x1+x2 ≥70
x2+x3 ≥60 x3+x4 ≥ 50 x4+x5 ≥20 x5+x6 ≥30 非负性约束:xj ≥0,j=1,2,…6
OR1
6
例题3:运输问题
三个加工棉花的加工厂,并且有三个仓库供应棉花,各 供应点到各工厂的单位运费以及各点的供应量与需求量 分别如下表所示:问如何运输才能使总的运费最小?
OR1
14
总
结
从以上 5 个例子可以看出,它们都属于优化问题,它们 的共同特征: 1 、每个问题都用一组决策变量表示某一方案;这组决 策变量的值就代表一个具体方案,一般这些变量取值是 非负的。 2 、存在一定的约束条件,这些约束条件可以用一组线 性等式或线性不等式来表示。 3 、都有一个要求达到的目标,它可用决策变量的线性 函数(称为目标函数)来表示。按问题的不同,要求目 标函数实现最大化或最小化。 满足以上三个条件的数学模型称为线性规划的数学模型。
运筹学 第01章 线性规划问题
线性规划建模步骤
设定决策变量 明确约束条件并用决策变量的线性等式或 不等式表示 用变量的线性函数表示要达到的目标,并 确定是求极小还是求极大 根据变量的物理性质确定变量是否具有非 负性 注:其中最关键是设定决策变量这一步
生产计划问题(1)
某工厂用三种原料生产三种产品,已知的 条件如下表所示,试制订总利润最大的日 生产计划
线性规划问题解的有关概念(2)
基本解:令模型中所有非基变量的值等于零后,由 模型的约束方程组得到的一组解。 基本可行解:满足非负条件的基本解称为基本可行 解。 可行基:对应于基本可行解的基称为可行基。 退化解:基本可行解的非零分量个数小于m时,称 为退化解。 最优基:若对应于基B的基本可行解X是线性规划的 最优解,则称B为线性规划的最优基
人员安排问题(1)
医院护士24小时值班,不同时段需要的护 士人数不等(见下表)。每个护士每天连 续值班8小时,在各时段开始时上班。问最 少需要多少护士?
序号 1 2 3 4 时段 06—10 10—14 14—18 18—22 最少人数 60 70 60 50
5 6
22—02 02—06
20 30
人员安排问题(2)
设xj为第j时段开始值班的护士人数
目标函数为:使人数最少,则有
min f ( X ) x1 x2 x3 x4 x5 x6 x6 x1 60 x x 70 1 2 x2 x3 60 s.t. x3 x4 50 x x 20 5 4 x5 x6 30 x1 , x2 , x3 , x4 , x5 , x6 0且为整数
运筹学
第一章 线性规划问题
本章重点
线性规划建模 线性规划的图解法 线性规划的标准形式 单纯形法 两阶段法 大M法
运筹学第一章
3.线性规划问题的标准形式 线性规划问题的标准形式 max z =- x1-2x2 -3x3 2 x1’+x2 +(x3’ - x3” )+ x4 = 9 3 x1’ +x2 +2 (x3’ - x3” ) –x5 = 4 st. -4 x1’ +2x2 +3 (x3’ - x3” ) =6 x1’ ≥ 0, x2 ≥0, x3’ ≥0 x3” ≥0
例1-1-2 ---1 min z = x1+2x2 +3x3 ﹣2 x1+x2 +x3 ≤9 st. ﹣3 x1+x2 +2x3 ≥ 4
4 x1-2x2 - 3x3 =﹣6
x1 ≤0, x2 ≥0, x3 无约束。 (1)min z = x1+2x2 +3x3 令Z=-Z’ min Z=min(-z ’)=max z ’
第一章 讲解内容
第一节: 第一节:线性规划问题及其数学模型 第二节: 第二节:线性规划问题的几何意义 第三节:单纯形法 第三节: 第四节: 第四节:单纯形法的计算过程 第五节: 第五节:单纯形法的进一步讨论 第六节: 第六节:应用案例
第一章 线性规划问题及其数学模型 1. 问题的提出 2.图解法(重点) 3. 线性规划问题的标准形式 4.线性规划问题的解的概念(重点、难点)
运筹学第一章 1.5 线性规划的应用
例、 营养问题
要求制定一个既经济又合乎健康标准的食谱
一个简单的例子: 一个简单的例子: 现准备采购甲、乙两种食品,表中给 现准备采购甲、乙两种食品, 出了已知价格及相关的营养成分。 出了已知价格及相关的营养成分。最右栏 给出了按营养学标准每人每天的最低需要 量。问应如何采购食品才能在保证营养要 求的前提下花费最省? 求的前提下花费最省?
(二) 合理下料问题
在加工业中,经常遇到这类问题。 在加工业中,经常遇到这类问题。 问题的一般提法是: 问题的一般提法是:已知某种尺寸的棒 料或板材, 料或板材,需要将其切割成一定数量既 定规格的几种零件毛坯, 定规格的几种零件毛坯,问应如何选取 合理的下料方法, 合理的下料方法,使得既满足对截出毛 坯的数量要求, 坯的数量要求,又使所用的原材料最少 或废料最少)? (或废料最少)?
产品计划问题有关信息表
单位 产品 所需 资源 资源 产 品
A1
A2
L
An
可供应资源
B1 B2 M Bm
a11 a21 L am1
a12 a21 L am2
L L L L
a1n a2n L amn
b1 b2 M bm
单位产品所得利润
c1
c2
L
cn
设出产品的计划数, 可列出这类问 设出产品的计划数 , 题的数学模型如下: 题的数学模型如下:
注意——Z是非线性表达式! 是非线性表达式! 注意 是非线性表达式
Y ① 引入一个新变量 ,
处 理
令 Y=
8 x + 10 x + 16 x + + 21x32 11 21 31 6 x12 15 x 22 min , 2 3
运筹学第一章
第一章、 线性规划和单纯形法1.1 线性规划的概念一、线性规划问题的导出1.(引例) 配比问题——用浓度为45%和92%的硫酸配置100t 浓度为80%的硫酸。
取45%和92%的硫酸分别为x1和x2t,则有: 求解二元一次方程组得解。
目的相同,但有5种不同浓度的硫酸可选(30%,45%,73%,85%,92%)会出现什么情况?设取这5种硫酸分别为 x1、x2、x3、x4、x5 t, 则有: ⎩⎨⎧⨯=++++=++++1008.092.085.073.045.03.01005432154321x x x x x x x x x x 请问有多少种配比方案?为什么?哪一种方案最好?假设5种硫酸价格分别为:400,700,1400,1900,2500元/t ,则有:2.生产计划问题如何制定生产计划,使三种产品总利润最大?考虑问题:⎩⎨⎧⨯=+=+1008.092.045.01002121x x x x ⎪⎩⎪⎨⎧=≥⨯=++++=++++++++=5,,2,1,01008.092.085.073.045.03.0100..250019001400700400543215432154321 j x x x x x x x x x x x t s x x x x x MinZ j(1)何为生产计划?(2)总利润如何描述?(3)还要考虑什么因素?(4)有什么需要注意的地方(技巧)?(5)最终得到的数学模型是什么?二、线性规划的定义和数学描述(模型)1.定义:对于求取一组变量xj (j =1,2,......,n),使之既满足线性约束条件,又使具有线性表达式的目标函数取得极大值或极小值的一类最优化问题称为线性规划问题,简称线性规划。
2.配比问题和生产计划问题的线性规划模型的特点:用一组未知变量表示要求的方案,这组未知变量称为决策变量;存在一定的限制条件,且为线性表达式;有一个目标要求(最大化,当然也可以是最小化),目标表示为未知变量的线性表达式,称之为目标函数; 对决策变量有非负要求。
运筹学第一章第1-5节(新)a
第六节
如何学习运筹学课程
1.学习运筹学一定要注重理论联系实际,紧密 结合工商企业的实际管理工作和问题。 掌握运筹学的基本概念、基本理论和基本 的计算技术后,要把重点放在如何把管理中的 决策问题定量化、模型化,然后借助计算机技 术去求得需要的答案。(软件) 2.在学习过程中,应该多向自己提问,如一个 方法的实质是什么,为什么这样做,怎么做等。
解:设A厂每天处理的污水量为x1万立方米 ,B 厂每天处理的污水量为x2万立方米。 因此在A厂到B厂之间应有: (2- x1)/500 ≤ 2/1000 河流经过B厂之后有: [0.8(2 - x1 )+(1.4 - x2 )]/700 ≤ 2/1000 每个工厂的最大排放量为:x1≤2,x2≤1.4 目标函数为两厂用于污水处理的总费用: z=1000x1+800x2
C c1 , c2
(1.3a) (1.3b) (1.3c)
a1 j x1 b1 a2 j x2 b2 . . . X ; Pj ( j 1,2,..., n); b . . . . . . x b a n m mj
绪
论
第一节 运筹学(Operations Research或OR) 及其发展简史
运筹学的定义: 1.英国运筹学会 运筹学是运用科学的方法来解决工业、 商业、民政和国防等部门有关人力、机器、 物资、资金等大系统的指挥和管理中出现的 复杂问题的一种方法,其目的是帮助主管人 员科学地对方针和行动进行决策。
线性规划问题数学模型的一般形式: 求目标函数: max(或min) z=c1x1 +c2x2 +…+ cnxn (1.1a) 满足约束条件: s.t. a11x1+ a12x2 +…+ a1nxn ≤ (=或≥ ) b1 a21x1+ a22x2 +…+ a2nxn ≤ (=或≥ ) b2 (1.1b) . . . . . . am1x1+ am2x2 +…+ amnxn ≤ (=或≥ )bm x1 ,x2 , …, xn ≥0 (1.1c)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章:绪论
例2:生产计划问题 设某工厂有m种资源A1,A2,…...Am,数量分别为
a1,a2,……am ,用这些资源生产有k种产品B1,B2,…...Bk ,每生产一单位Bj的产品需要消耗资源Ai的量为aij,合 同规定,产品Bj的量不少于dj,已知Bj的单价为Cj,问 如何安排生产才能既履行合同又使收入最多。
xk
② |f(xk+1)-f(xk)|〈ε或 f (xk1) f (xk )
f (xk )
③ ||▽f(xk)||=||gK||〈ε
第一章:绪论
三、一维搜索
沿某一已知的方向,求目标函数的极值。一般的一维搜索 的方法很多,常用的有试探法(“成功—失败”、斐波那契法 (分数法)、黄金分割法(0.618法))、插值法(抛物线插值、 三次插值法等)、微积分中的求根法(切线法、平分法等)、 不精确的一维搜索。
数值方法:一般是通过用某种模式一步一步搜索并 不断改进解的过程来求解
第一章:绪论
2、运筹学的数学模型
例1:运输问题 设有m个水泥厂A1,A2,…...Am,年产量分别为 a1,a2,……am ,有k个城市B1,B2,…...Bk用这些水泥厂生 产的水泥,年需求量为b1,b2,……bk,已知由Ai到Bj每吨 水泥的运价为Cij,假设产销平衡,试设计一个调运方 案既满足需求又运费最省。
• 首先要考虑是否请咨询公司进行市场研究?考虑该 公司有关市场研究成功率。咨询公司研究结果所提 供的信息为:对设立新分店的方案是赞成还是反对。
• 根据历史资料结合原来估计的先验概率,可以得到: 如将来赢利,咨询公司给出赞成或反对的概率是多 少?
• 将是否进行市场研究作为第一级决策,咨询公司赞成或反对 作为决策后的两种状态。在原来决策树基础上,增加一级决 策,构成增广决策树。
时间
库存控制系统
(二)固定间隔期系统 就是订货间隔期都是固定量
库存量
Q1 Q1
t
订货间隔期
Q2 Q2
LT
t
t
目标库存量 时间
库存控制系统
(三)最大最小系统
固定间隔期系统不需要随时检查库存量,到了固定间隔期,各 种不同的物资可以同时订货。这样简化了管理,也节约了订货费。 不同物资的目标库存量可以不同。固定间隔期系统的缺点是不论库 存水平降得多还是少,都要按期订货,当库存水平很高时,订货量 是很少的。订货也是不必要的。为了克服这个缺点,出现了最大最 小系统。
梯度为▽f(Xk)=gk
由泰勒公式
f(Xk+αPk)=f(Xk)+αgKT.Pk+0(α)
当 αgKT.Pk<0 时, f(Xk+αPk)<f(Xk), 所以.Pk是f(x)在
Xk处的一个下降方向。所以称gKT.Pk<0的方向Pk为f(x)在
Xk的下降方向
定义:已知区域D ∈ Rn,Xk ∈D对于向量Pk≠0,若 存在实数ã>0,使得任意的α ∈(0, ã )有Xk+αPk ∈D , 则称Pk为Xk点关于区域D的可行方向
x1 x2
vs
x3
x4
x5
y1 y2
y3
vt
y4
y5
第一章:绪论
运筹问题的一般数学模型为:
min(max) s f (X )
st
hi gj
(X (X
) )
0 0
i 1,2......,m j 1,2,......,p
其中:X=(X1,X2,……,Xn)T∈Rn是n维向量又称
为决策变量,f(X)为目标函数,gj(X),hi(X)为约束函数
单件工时 零
时.件
件 J1
J2
J3
J4
J5
J6
机床
代 号
A
21
4
7
13
16
6
B
4
7
20
5
10 14
(2)非流水型排序问题—(单件作业排序问题)
问题的描述:
对于一般的单件作业排序问题,要描述一道工序,要用3 个参数:I、J、K表示。I表示工件代号,J表示工序号,K表示 完成工件I的第J道工序的机器的代号。因此,可以用(I,J,K) 来表示工件I的第J道工序是在机器K上进行的这样一件事。于 是,可以用加工描述矩阵的形式来描述所有工件的加工。
设生产Bj产品的数量Xj,则问题化为求解如下模型
第一章:绪论
k
max s c j x j
j 1
k
aij x j ai
i 1,2......,m
j1 st x j d j j 1,2,......,k
x j 0且为整数 j 1,2.....k.
排序问题通常表述为有n项生产任务,在m个设备(生 产单位)上加工,通常包括两类:(1) 流水型m×n 排序问题 (2) 非流水型m×n排序问题 例3:A,B两台机床,加工6种零件,单件工时如下, 求最优排序。
对于D的内点,则任意的向量Pk都是可行方向。若 Xk为D的边界点,则有的方向可行,有的方向不可行。
第一章:绪论
设函数f(X)在D ∈ Rn内有定义,对于向量Pk,若它 既是f(X)在Xk处的下降方向,又是在该点处关于域D的 可行方向,则称Pk是函数f(X)在Xk处的可行下降方向。
最优化问题的一般算法: ①给定初始点X0 ,令K=0; ②确定Xk处的可行下降方向Pk ;
由于X*为未知的,所以只有全局收敛的算法才有 意义,但局部收敛是全局收敛分析的基础。一个好的 算法必是快速收敛的。收敛速度的快慢有收敛比度量。
第一章:绪论
收敛比的定义:设序列{XK}收敛于X*,而且
lim xk1 x *
k xk x * β为收敛比
若0<β<1,则称序列{XK}为线性收敛的。
设Ai调往Bj的水泥为Xij吨,则问题化为求解如下模型
第一章:绪论
mk
min s
cij xij
i1 j1
k
xij ai i 1,2......,m
j 1
st
m
xij bj j 1,2,......,k
i1
xij 0 i 1,2,.....m. , j 1,2......k
若β=0, 则称序列{XK}为超线性收敛的。
定义: 设序列{XK}收敛于X*,若对于某个实数P
≥ 1,有
lim
k
xk1 x * xk x * p
,0
则称序列{XK}为P阶收敛的。
第一章:绪论
对于一个算法,还要给出某种终止准则。
常用的终止准则有以下几种:
① ||XK+1-XK||〈ε或
xk1 xk
f(X*) ≤f(x)(或f(X*) ≥ f(x) ) 则称X*为最优化问题的整体最优解 定义3:若X* ∈ D, 对于一切X∈ D 恒有 f(X*) <f(x)(或f(X*) > f(x) ) 则称X*为最优化问题的严格整体最优解
第一章:绪论
定义4:若X* ∈ D,存在X*的某邻域Nε(X*),使得对于一切X∈ D ∩ Nε(X*), 恒有
一般情况下,很难求出整体最优解,只能求出局部最优 解。
最优解X*对应的目标函数值f(X*) 为最优值,常用f*表 示。
第一章:绪论
定义6:在n维线性空间Rn中,定义实函数||X||,使其满 足以下三个条件:
(1)对任意X ∈Rn有||X|| ≥ 0,当且仅当X=0时,||X||=0 (2)对任意X ∈Rn及实数α有|| αx||=| α|*||x|| (3)对任意X,Y ∈Rn有||X.Y|| ≤ ||X||+||Y|| 则称函数||X||为Rn上的向量范数
加工描述矩阵D的每一行描述一个工件的加工,每一列的 工序号相同。
(2)非流水型排序问题—(单件作业排序问题)
例4:有两个单件作业,其加工描述矩阵D和加工时间矩阵T分别如上. 求:最优排序
D 21,,11,,31
1,2,3 2,2,1
12,3,3,2,2
T 32
4 4
51
库存控制系统 任何库存控制系统都必须回答以下三个问题:
第一章: 绪论
第六章: 决策技术
第二章: 无约束最优化方法
第三章:
有约束最优 化方法
第五章: 图与网络技术
多目标优化方法 第四章:
第七章: 对策技术
第八章: 排队论
第九章: 马尔可夫
第一章:绪论
一、运筹学问题的数学模型与基本概念
1、运筹学的工作步骤
(1)提出和形成问题 (2)建立模型 (3)求解模型 (4)解的检验 (5)解的控制 (6) 解的实施
第一章:绪论
3、运筹学的基本概念: 定义1:满足约束条件的X值称为可行解,或可行
点或容许解。 全体可行解构成的集合为可行域记为D。
D={x|hi(X) ≥0,i=1,2,……m,gj(X)=0,j=1,2,……,p,x ∈ Rn}。 若hi(定X义),2:gj(若X)X为*连∈续D函,数对,于则一D切为X闭∈集D。恒有
f(X*) ≤f(x)(或f(X*) ≥ f(x) ) 则称X*为最优化问题的局部最优解 定义5:若X* ∈ D,存在X*的某邻域Nε(X*),使得对于一切X∈ D ∩ Nε(X*), 恒有 f(X*)<f(x)(或f(X*) > f(x) ) 则称X*为最优化问题的严格局部最优解
结论:整体最优解一定是局部最优解,局部最优解不一定是 整体最优解。
(1)隔多长时间检查一次库存量?
(2)何时提出补充订货?
(3)每次订货多少?
根据以上三个问题的回答方式不同,可以分为 3种典型的库存控制系统
(一)固定量系统
(二)固定间隔期系统
(三)最大最小系统
库存控制系统