大学物理光的干涉和衍射

合集下载

大学物理中的波动光学光的衍射和干涉现象

大学物理中的波动光学光的衍射和干涉现象

大学物理中的波动光学光的衍射和干涉现象大学物理中的波动光学:光的衍射和干涉现象波动光学是大学物理中的一门重要课程,研究光的传播与干涉、衍射、偏振等现象。

其中,光的衍射和干涉是波动光学中的两个重要现象。

本文将对光的衍射和干涉进行详细讨论和解析,并探讨其在实际应用中的重要性。

一、光的衍射现象光的衍射是指光通过狭缝或障碍物后的传播过程中,光波的干涉和折射产生的现象。

当光波通过一个狭缝时,光波会在狭缝的边缘发生弯曲,进而产生波动的干涉效应。

这个过程称为光的衍射。

光的衍射现象在日常生活中有各种各样的应用。

例如,CD、DVD 和蓝光碟等光盘的读写原理就是基于光的衍射现象。

光的衍射也被广泛应用于显微镜、望远镜和天文学的观测中,使我们能够更清晰地观察微观和宇宙中的远处物体。

二、光的干涉现象光的干涉是指两个或多个光波相互叠加产生干涉的现象。

当两束或多束光波相遇时,它们会发生叠加干涉现象,形成交替出现明暗的干涉条纹。

这种现象称为光的干涉。

光的干涉现象在很多实验中都有应用。

例如,杨氏双缝干涉实验就是利用光的干涉现象来观察和研究波的性质。

干涉技术还被广泛应用于光学测量、图像处理和激光干涉等领域。

干涉技术的应用使得我们可以实现高精度测量、光栅分析和光学干涉计等。

三、衍射与干涉的区别与联系尽管光的衍射和干涉是两个不同的现象,但它们之间有着紧密的联系。

首先,光的衍射和干涉都是由于光波的波动性质而产生的。

其次,它们都是波动光学中干涉和折射效应的体现。

不同之处在于,光的干涉是多个光波相互叠加产生的干涉现象,而光的衍射是光通过狭缝或障碍物后的波动干涉和弯曲现象。

此外,光的干涉通常需要明确的相位差和干涉构成条件,而光的衍射则更多地受到波长、狭缝尺寸和物体形状的影响。

无论是光的衍射还是干涉,在物理学的研究和实际应用中都起着重要的作用。

无论是在光学器件设计、成像技术还是光学测量中,都需要充分理解和应用这些光学现象。

同时,通过对光的干涉和衍射的研究,我们可以更深入地了解光与物质相互作用、光的传播特性和波动性质等问题,有助于推动光学科学和技术的发展。

大学物理中的光的干涉与衍射光的干涉与衍射现象

大学物理中的光的干涉与衍射光的干涉与衍射现象

大学物理中的光的干涉与衍射光的干涉与衍射现象大学物理中的光的干涉与衍射光的干涉与衍射现象是大学物理中一个重要且有趣的研究课题。

这些现象揭示了光的波动性质,以及波动性对光的传播与相互作用的影响。

本文将系统地介绍光的干涉与衍射现象,并探讨其在物理学与现实生活中的应用。

一、光的干涉现象光的干涉是指两列或多列光波相互叠加形成的明暗条纹图案。

常见的干涉现象包括杨氏双缝干涉、杨氏单缝干涉、牛顿环等。

1.1 杨氏双缝干涉杨氏双缝干涉是光的干涉现象中最典型的实验之一。

它利用一束光通过两狭缝后产生的明暗交替的干涉条纹来说明光的波动性质。

当光线经过两条狭缝时,由于来自不同狭缝的光波具有相位差,它们会相互干涉,形成一系列明暗相间的条纹。

1.2 杨氏单缝干涉杨氏单缝干涉是光的干涉现象中较为简单的一种。

它是通过单个狭缝产生的衍射效应,导致在观察屏幕上出现明暗相间的条纹。

单缝干涉通常用于分析光的波长和狭缝大小之间的关系。

1.3 牛顿环牛顿环是一种非常有趣的干涉现象。

它是由一片凸透镜与平面玻璃片之间的空气薄膜所形成的。

当光线垂直照射到凸透镜与平面玻璃片之间的空气薄膜时,由于空气薄膜的厚度不均匀,光线在不同厚度处产生不同的相位差,从而形成一系列明暗相间的圆环。

二、光的衍射现象光的衍射是指光通过物体的边缘或孔径时发生偏离直线传播的现象。

常见的衍射现象包括夫琅禾费衍射、菲涅耳衍射等。

2.1 夫琅禾费衍射夫琅禾费衍射是一种通过窄缝衍射的现象。

当一束平行光通过一个窄缝时,光波会在缝口处发生衍射,形成一系列明暗相间的条纹。

这种衍射现象的强度分布与缝口的大小和光波的波长有关。

2.2 菲涅耳衍射菲涅耳衍射是一种通过物体边缘衍射的现象。

当一束平行光照射到物体的边缘时,光波会在物体边缘发生衍射,从而形成明暗相间的衍射图样。

菲涅耳衍射常用于分析物体的形状和边缘的特性。

三、光的干涉与衍射在应用中的意义光的干涉与衍射现象在科学研究和实际应用中具有重要意义。

光的衍射和干涉

光的衍射和干涉

光的衍射和干涉光的衍射和干涉是光学中的两个重要现象。

光的衍射是指光通过一个小孔或者通过一些细小物体时,光线会在这些物体周围散射,形成强度分布不均的光斑。

而光的干涉是指两束或者多束光线相遇时会产生干涉现象,使得光斑中的光强分布受到相位差干涉的影响而出现明暗条纹。

一、光的衍射光的衍射是光线经过障碍物或通过小孔时发生的一种现象。

当光线通过一个小孔时,其波前从小孔的缝隙处发散开来,光线在后面会出现干涉和衍射现象,然后形成亮暗交替,大小不同但形状相似的同心光环。

光的衍射现象是经典物理学中的典型现象,它是交换场理论的实验基础之一。

衍射现象的重要性体现在它的应用方面,如夹杂,光学显微镜,不同小孔和棱镜等。

1.夹杂夹杂是一种利用衍射现象来将物体的图像转化为光学干涉图的技术。

夹杂的原理是将透明的物体置于两片衬有点源的透明玻璃片之间,通过光的衍射现象得到物体的图像。

2.光学显微镜光学显微镜是由光学物镜和目镜组成的一种仪器。

它的工作原理是通过在物镜处形成的放大像来实现物体的观测。

光学显微镜的物镜具有极高的光学分辨率,可以观测到在分辨率下的小细节,是生物科学和医学研究中必不可少的仪器。

3.小孔和棱镜小孔作为光的衍射现象的重要载体,被广泛应用于光学、电子学等领域。

如果要从集中的光源中形成狭窄而平行的光源,可以采用折射和缝隙的方法来实现。

此外,小孔也被用于相对弱的光学仪器中,如普通的CCD相机、光学望远镜、放大镜以及太阳望远镜等。

棱镜也可以用于光的衍射。

当光线进入棱镜中时,会发生角散射,之后随着光的衍射,形成彩虹般的光带。

棱镜经常用于光学实验室的光谱仪中,可以通过衍射来测量物质成分,从而实现给定物体的光谱分析。

二、光的干涉光的干涉是指两束或多束光线相遇时会产生干涉现象,使得光斑中的光强分布受到相位差干涉的影响而出现明暗条纹。

光的干涉现象是一种典型的波动性质,其基本原理与光线的本质不同,可以通过光的相位变化来产生干涉现象。

光的干涉是物理学中非常重要的现象,广泛应用于科学研究和工业生产中。

大学物理实验光的干涉与衍射实验分析

大学物理实验光的干涉与衍射实验分析

大学物理实验光的干涉与衍射实验分析学生在大学物理课程中经常会进行光的干涉与衍射实验,通过这些实验可以深入理解光的波动性质和光的性质与现象之间的关系。

本文将对大学物理实验中的光的干涉与衍射实验进行分析。

在光的干涉与衍射实验中,通常会使用光源、干涉仪器和光屏等设备。

实验的目的是通过干涉和衍射现象来观察光的波动性质和探究光的干涉与衍射规律。

在光的干涉实验中,常用的实验装置是双缝干涉仪。

实验中,光源发出的光经过准直器后,通过一个开有两个缝的屏幕进行干涉。

当光通过缝隙后,会形成一系列的光束。

这些光束在远离缝隙的地方相交并干涉产生明暗的干涉条纹。

干涉条纹的出现是由于光的波动性质引起的。

当两束波长相同的光线相遇时,它们会相互干涉。

如果两束光线相位差为整数倍的波长,它们将会相长叠加,形成明亮的干涉条纹;如果两束光线相位差为半整数倍的波长,它们将会相消干涉,形成暗的干涉条纹。

干涉条纹的出现可以帮助我们研究光的干涉规律。

通过测量干涉条纹的间距和颜色可以确定光的波长以及其他有关光的性质的参数。

干涉条纹的间距与波长、两缝间距、观察屏与光源的距离等因素有关。

与干涉实验类似,光的衍射实验也是通过射入光源的光线在障碍物或孔径边缘上发生衍射现象来观察和研究光的性质。

衍射是指光波在通过孔隙或边缘时的偏离传播方向的现象。

在光的衍射实验中,通常会使用单缝衍射仪进行实验。

实验中,光源发出的光线通过一狭缝射入,屏幕上会观察到一系列明暗相间的衍射条纹。

衍射条纹的出现是由于光的波动性质所致。

光的衍射实验可以帮助我们了解光的波动性质和衍射规律。

通过观察和测量衍射条纹的形状和距离,可以确定光的波长和其他有关光的性质的参数。

衍射条纹的形状和间距与光波的入射角度、孔径大小、光波波长等因素有关。

总结起来,大学物理实验中的光的干涉与衍射实验是一种通过观察和研究光的干涉与衍射现象来探究光的波动性质和光学性质的实验方法。

通过实验装置的搭建和干涉衍射条纹的观察与测量,可以得到光的波长和其他相关性质的参数。

光的干涉与衍射的现象与公式

光的干涉与衍射的现象与公式

光的干涉与衍射的现象与公式在物理学中,光的干涉与衍射是两种常见的光现象,它们具有不同的特点和应用。

本文将探讨光的干涉与衍射的基本概念、现象以及相关的公式。

一、光的干涉现象与公式光的干涉是指两束或多束光波相遇时产生的相互作用。

干涉可以分为干涉条纹的产生和干涉的条件两个方面。

1. 干涉条纹的产生当两条相干光波相遇时,它们会相互干涉形成一系列的亮暗条纹,称为干涉条纹。

这是因为两束光波以相同的频率、相同的相位或相干长度相遇,其光强的叠加会出现干涉现象。

2. 干涉的条件光的干涉需要满足以下几个条件:a. 光源必须是相干光源,即光波的频率和相位相同。

b. 光波的干涉路径差应小于波长的一半。

关于干涉现象的描述和分析,我们可以使用以下公式:1. 干涉条纹的宽度公式干涉条纹的宽度可以通过以下公式计算:Δx = λL/d其中,Δx表示干涉条纹的宽度,λ为入射光波的波长,L为光源到屏幕的距离,d为狭缝或介质的厚度。

2. 杨氏双缝干涉公式杨氏双缝干涉公式描述了双缝干涉条纹的位置和间距:y = mλD/d其中,y表示干涉条纹的位置,m为干涉级数,λ为光的波长,D为两缝到屏幕的距离,d为两缝的间距。

3. 薄膜干涉公式薄膜干涉是指光线穿过薄膜发生的干涉现象,可以用以下公式描述:2nt = (m + 1/2)λ其中,n为薄膜的折射率,t为薄膜的厚度,m为暗纹的干涉级数,λ为入射光的波长。

二、光的衍射现象与公式光的衍射是当光波通过一个小孔或物体的边缘时,会发生弯曲和弥散的现象。

衍射的大小与光的波长和衍射物体的尺寸相关。

1. 衍射公式光的衍射可以使用弗能尔衍射公式来进行描述:a sinθ = mλ其中,a为衍射孔的尺寸,θ为衍射角,m为衍射级数,λ为入射光的波长。

2. 单缝衍射公式单缝衍射是一种常见的衍射现象,可以通过以下公式来计算条纹的位置和间距:y = mλL/a其中,y表示条纹的位置,m为衍射级数,λ为入射光的波长,L为光源到屏幕的距离,a为衍射孔的宽度。

“大学物理实验:光的衍射与干涉实验设计与解析”

“大学物理实验:光的衍射与干涉实验设计与解析”

大学物理实验:光的衍射与干涉实验设计与解析引言很多人对光的性质和现象都很感兴趣。

在物理学的研究中,光的衍射与干涉是非常重要的实验之一。

这些实验不仅能帮助我们理解光的本质,还可以揭示光的波动性质和粒子性质之间的关系。

本文将围绕光的衍射与干涉实验进行设计与解析。

实验设计实验目的•理解光的波动性质和衍射与干涉现象•熟悉使用光学仪器进行实验操作•学习实验数据的测量和处理方法实验仪器和材料•激光或单色光源•狭缝光栅或双缝装置•平面镜或反射镜•透镜或凸透镜实验步骤1.准备工作•确保实验室环境光线较暗,以便观察光的衍射与干涉现象更清晰。

•仔细检查实验仪器和材料,确保其正常工作。

2.光的衍射实验•将激光或单色光源放置在适当的位置上,发射一束光。

•在光路中插入一块狭缝光栅或双缝装置,确保光通过缝隙或双缝进入后继光路。

•使用平面镜或反射镜调整光的入射角度,使得光线垂直射向屏幕或检测器。

•观察光经光栅或双缝后形成的衍射图样,并记录实验数据。

3.光的干涉实验•将激光或单色光源放置在适当的位置上,发射一束光。

•分别在两个不同位置上插入狭缝光栅或双缝装置。

•使用平面镜或反射镜调整光的入射角度,使得光线垂直射向屏幕或检测器。

•观察光经光栅或双缝后形成的干涉图样,并记录实验数据。

4.光的衍射与干涉实验的变化•改变光源的颜色或波长,观察衍射与干涉图样的变化。

•改变光栅或双缝的尺寸或间距,观察衍射与干涉图样的变化。

•改变光的入射角度,观察衍射与干涉图样的变化。

实验解析光的衍射当光通过一个狭缝或障碍物时,由于波的传播性质,光会沿着波前进行弯曲传播,从而形成衍射。

衍射现象可以解释为光波经过狭缝或障碍物后,波前形状的变化。

•单缝衍射•当光通过一个狭缝时,会形成中央亮度最大,两侧逐渐减弱的衍射图样。

这是由于波在狭缝中的弯曲传播导致的。

•衍射图样的大小取决于狭缝的尺寸,狭缝越窄,衍射图样越大。

•狭缝光栅衍射•狭缝光栅是由许多平行狭缝组成的光学元件。

什么是光的干涉和衍射

什么是光的干涉和衍射

什么是光的干涉和衍射?光的干涉和衍射是光波通过物体或孔径时发生的两种常见现象。

干涉是指两个或多个光波相互叠加形成明暗条纹的现象,而衍射是指光波在通过边缘或孔径时发生弯曲和扩散的现象。

以下是对光的干涉和衍射的详细解释和应用指导:光的干涉:光的干涉是指两个或多个光波相互叠加形成明暗条纹的现象。

干涉可以分为两种类型:构造干涉和破坏干涉。

1. 构造干涉:构造干涉是指两个或多个光波的相位差满足特定条件时形成明亮或暗淡的干涉条纹。

当两个波峰或两个波谷相遇时,它们会相长叠加,形成明亮的干涉条纹;当波峰和波谷相遇时,它们会相消叠加,形成暗淡的干涉条纹。

2. 破坏干涉:破坏干涉是指两个或多个光波的相位差没有特定条件时,叠加形成的干涉条纹没有明亮或暗淡的特征。

破坏干涉产生的干涉条纹没有规律可循,呈现出一种均匀分布的暗亮交错的图案。

光的干涉可以通过以下几个方面来解释:1. 干涉现象解释:干涉现象可以通过光的波动理论解释。

当两个或多个光波相遇时,它们会在空间中叠加形成干涉条纹。

根据叠加原理,相长叠加会增强光的强度,形成明亮的条纹;相消叠加会减弱光的强度,形成暗淡的条纹。

2. 干涉条纹特性:干涉条纹的特性取决于光波的相位差。

相位差的大小和性质决定了干涉条纹的亮度、间距和形状。

常见的干涉现象包括杨氏双缝干涉、杨氏单缝干涉、牛顿环干涉等。

3. 干涉的应用:干涉在物理学和工程学中有广泛的应用。

例如,干涉仪器如迈克尔逊干涉仪和扫描隧道显微镜可以用于测量长度、表面形貌和纳米级物体的检测。

干涉也用于光学薄膜的设计和制备、光学图案的显示和光学通信等领域。

光的衍射:光的衍射是指光波通过边缘或孔径时发生弯曲和扩散的现象。

衍射可以分为两种类型:菲涅尔衍射和菲涅耳-基尔霍夫衍射。

1. 菲涅尔衍射:菲涅尔衍射是指光波通过一个有限大小的孔径或边缘时发生的衍射现象。

当光波通过孔径或边缘时,它会弯曲和扩散,形成衍射图样。

菲涅尔衍射的特点是近场衍射,即孔径或边缘与观察点的距离很近。

大学物理中的光的干涉与衍射问题

大学物理中的光的干涉与衍射问题

大学物理中的光的干涉与衍射问题在大学物理中,光的干涉与衍射是一个非常重要的课题。

干涉和衍射现象是光的波动性质所导致的,它们对于我们理解光的本质和物质的性质起到了关键的作用。

本文将详细介绍光的干涉与衍射问题,以及相关的实验和应用。

一、干涉现象干涉是指两束或多束光波相互叠加产生的明暗相间的干涉条纹的现象。

干涉现象的产生需要满足两个条件:一是光源是相干光源,二是光的传播路径存在差异。

1. 条纹的产生当两束相干光波相遇时,会在空间中形成干涉条纹。

这些干涉条纹的产生可以通过弗朗霍夫衍射公式来解释,该公式描述了光通过一个狭缝时的衍射现象。

2. 干涉条纹的特征干涉条纹具有明暗相间的特征,这是因为光波的干涉会导致光的增强和相消干涉。

光的增强会使得干涉条纹出现明亮区域,而光的相消干涉则会导致干涉条纹出现暗区。

二、衍射现象衍射是指光波传播时发生弯曲和障碍物附近出现干涉效应的现象。

衍射现象的产生需要满足光波传播经过障碍物或者经过狭缝。

1. 衍射的产生光的衍射现象可以由基尔霍夫衍射公式来解释,该公式描述了光波传播经过一个孔径时所发生的衍射现象。

2. 衍射的特征衍射现象会导致光波的扩散,使得光的传播区域扩大。

衍射还会导致光的强度分布不均匀,形成明暗相间的衍射图案,这一特征是衍射现象的重要标志。

三、实验与应用光的干涉与衍射是许多实验和应用领域的基础。

以下是一些与干涉与衍射相关的实验和应用:1. 杨氏干涉实验杨氏干涉实验是用来观察干涉现象的经典实验之一。

通过在两面平行的玻璃板之间引入光源和接收屏,可以观察到明暗相间的干涉条纹。

2. 双缝干涉实验双缝干涉实验是观察干涉现象的经典实验之一。

通过在光源前放置两个狭缝,可以观察到通过狭缝后形成的干涉条纹。

这个实验不仅可以用来验证光的波动性质,还可以用来测量光的波长等重要参数。

3. 衍射光栅衍射光栅是一种利用光的衍射现象来实现光谱分析和波长测量的装置。

它由许多平行的狭缝构成,通过光的衍射,可以将不同波长的光分散成明暗相间的衍射光谱。

光的衍射和干涉

光的衍射和干涉

光的衍射和干涉光的衍射和干涉是光学中重要的现象,它们揭示了光波传播过程中的一些特性和规律。

在这篇文章中,我将详细介绍光的衍射和干涉的原理、特点以及实际应用。

一、光的衍射光的衍射是光波通过障碍物或通过缝隙时出现的现象。

它是由于光波的传播性质导致的,具有以下几个特点:1. 衍射现象的解释:根据惠更斯原理,每一个点都可以看作是次波源,当光波经过障碍物或缝隙时,波前会发生弯曲并向前传播,进而使光的传播方向发生改变,形成一片衍射图样。

2. 衍射现象和波的性质:光的衍射现象是波动理论的基础之一,它表明光既具有粒子性也具有波动性。

光的衍射可以解释成光波遇到障碍物或缝隙时,波的传播方式发生变化,使得光波产生相干叠加,形成衍射图样。

3. 衍射的主要因素:衍射现象的主要影响因素包括光源和障碍物的物理性质,例如光波的波长、缝隙的大小和形状等。

此外,对于单缝和双缝衍射,缝隙间距也是一个重要的因素。

二、光的干涉光的干涉是指两个或多个光波相互叠加产生的干涉现象。

干涉可以分为构造干涉和破坏性干涉两种类型:1. 构造干涉:当两个或多个光波在空间中彼此相遇时,相位差会产生变化,使得光波的叠加形成明暗相间的干涉条纹。

这种干涉现象可用来测量波长、薄膜的厚度以及介质的折射率等。

2. 破坏性干涉:当两个光波相遇时,它们的相位差可以使两个波相互抵消,导致干涉的破坏。

这种干涉现象可以应用于光学消隐、抗反射等方面。

三、光的衍射和干涉的应用1. 衍射光栅:衍射光栅是利用光的衍射原理制成的光学元件,广泛应用于分光仪、激光器、光存储器等领域。

衍射光栅通过有序的线性排列,使光波发生衍射,从而实现波长的分离和波形的调制。

2. 干涉仪:干涉仪是利用光的干涉原理制成的仪器,用于测量光学薄膜的厚度、介质的折射率、表面形貌等。

常见的干涉仪包括迈克尔逊干涉仪、杨氏双缝干涉仪等。

3. 光的外延技术:光的外延技术是一种利用光的衍射和干涉原理在晶体生长过程中控制晶体结构和性质的技术。

光学习题课(大学物理A2)

光学习题课(大学物理A2)

(三)光的偏振性 马吕斯定律
1.自然光和偏振光 包含了各个方向的光振动,没有哪一个方向的光 振动会占优势,这样的光叫自然光。 自然光经过某些物质的反射、折射或吸收后,可 能保留某一方向的光振动,称为线偏振光或者完全 偏振光。若一个方向光振动较与之相垂直方向上的 光振动占优势,则称为部分偏振光。
2.马吕斯定律 光强为 I 0 的线偏振光,当其偏振方向与检偏器 偏振化方向的夹角为 时,则透射过检偏器后的 透 I I 0 cos2 射光强为 该式称为马吕斯定律
8.折射率为1.60的两块标准平面玻璃板之间形成一个劈形膜 (劈尖角 很小)。用波长 600 nm 的单色光垂直入射,产 生等候干涉条纹。加入在劈形膜内充满 n 1.40 液体时的相邻 明纹间距比劈形膜内是空报时的间距缩小 l 0.5mm ,那么劈 尖角 应是多少?
【分析】利用劈尖干涉中相邻条纹的间距l 2n和题给出条件可求出 解 劈形膜内为空气时 劈形膜内为液体时 则由 得
光学习题课
干涉、衍射、偏振、双折射
一、内容小结
(一)光的干涉
1.相干光 (1)相干条件:同频率、同振动方向、相位差恒 定; (2)获得相干光方法:分波阵面、分振幅 2.光程与光程差 光程:=nr ;光程差:=n2r2-n1r1 3.半波损失 光从光疏介质向光密介质入射,反射光有的相位 突变,相当光程增加或减少/2,称半波损失。
4.杨氏双缝干涉 劳埃德镜 光程差:r =r2-r1dsin dsin=k, k=0,1,2…… 明条纹 dsin=(2k+1)/2, 暗条纹 条纹特点: 均匀明暗相间,白光照射为彩色条纹,但 中央条纹仍为白色。
r1
几何关系:D d
d

D
x r2

光的衍射和干涉的异同

光的衍射和干涉的异同

光的衍射和干涉的异同
光的衍射和干涉是光学中的重要现象,它们都涉及到光的波动性质,但也有一些明显的不同之处。

相同之处:
1.衍射和干涉都是光的波动性的表现。

在这两种现象中,光被视为一种波,它可以像水波
一样传播并受到障碍物的干扰。

2.衍射和干涉都需要特定的实验装置或条件来实现。

例如,在干涉实验中,通常需要分束
器、反射镜和干涉仪等设备;而在衍射实验中,可能需要狭缝、透镜或衍射光栅等。

不同之处:
1.产生原因不同:衍射是由于光波在传播过程中遇到障碍物或孔洞时发生的弯曲或绕射现
象;而干涉则是由于两束或多束相干光波的叠加而产生的加强或减弱的现象。

2.表现形式不同:衍射通常表现为光斑的扩大或缩小,以及在障碍物边缘产生的明暗相间
的条纹;干涉则表现为明暗相间的干涉条纹或彩色条纹,通常出现在两束相干光波的叠加区域。

3.应用不同:衍射在日常生活和科学实验中有着广泛的应用,如全息摄影、光学测距等;
干涉则在精密测量、光学仪器和激光技术等领域有重要应用,如干涉仪、激光干涉仪等。

4.对光源的要求不同:衍射实验中对光源的相干性要求相对较低,普通光源如白炽灯或日
光灯即可实现;而干涉实验中则需要较高相干性的光源,如激光或经过适当处理的单色光等。

综上所述,光的衍射和干涉虽然都是光的波动性的表现,但它们产生的原因、表现形式、应用以及对光源的要求等方面存在明显的差异。

了解这些异同点有助于更好地理解这两种现象的本质和应用。

大学物理基础知识光的干涉与衍射现象

大学物理基础知识光的干涉与衍射现象

大学物理基础知识光的干涉与衍射现象光的干涉与衍射现象光的干涉和衍射现象是大学物理基础知识中的重要内容。

本文将介绍光的干涉和衍射的基本概念、原理以及实际应用。

一、光的干涉现象光的干涉是指两个或多个光波相遇时发生的现象。

干涉可以是构成性干涉(增强光强)或破坏性干涉(减弱或抵消光强)。

干涉现象可以通过光的波动性解释。

1. 干涉光的波动模型根据互相干涉的光波的波函数,可以使用叠加原理对光的干涉进行数学描述。

干涉是由于波峰与波峰相遇或波谷与波谷相遇而形成的,这种相遇会产生干涉图案。

2. 干涉的光程差干涉的关键参数是光程差,它是指两束相干光的传播路径的差值。

当光程差为整数倍的波长时,会出现构成性干涉;当光程差为半整数倍的波长时,会出现破坏性干涉。

3. 干涉的类型干涉现象可分为两种类型:薄膜干涉和双缝干涉。

薄膜干涉是指光线在介质的两个表面之间反射、透射产生的干涉现象;双缝干涉是指光通过两个相隔较近的缝隙后形成的干涉现象。

二、光的衍射现象光的衍射是指光线通过小孔或物体的边缘时发生的现象,光波会向周围扩散形成衍射图样。

衍射现象可以通过光的波动性解释。

1. 衍射光的波动模型光通过一个小孔或物体的边缘时,光波会发生弯曲,并在周围空间中形成散射波。

这些散射波的叠加就会形成衍射图样。

2. 衍射的特点衍射的特点是衍射波传播范围广,可以绕过物体的边缘,进入遮挡区域。

衍射图样的大小与孔径或物体边缘大小有关,小孔或细缝会产生较宽的衍射图样,大孔或宽缝会产生较窄的衍射图样。

3. 衍射的应用光的衍射现象在实际应用中具有广泛的意义,例如天文学中使用的干涉仪、显微镜的分辨率提升、光学存储器的读写操作等。

三、光的干涉与衍射的应用光的干涉与衍射现象不仅仅是基础学科的内容,也有着广泛的实际应用。

1. 干涉与衍射在光学仪器中的应用干涉仪是利用光的干涉现象进行测量和分析的仪器,如干涉计和迈克尔逊干涉仪等。

衍射仪是利用光的衍射现象进行实验和观测的仪器,如杨氏双缝干涉实验装置和夫琅禾费衍射装置等。

光的衍射和干涉现象

光的衍射和干涉现象

光的衍射和干涉现象光是一种电磁波,当光通过或与物体相互作用时,会产生一系列的现象,其中包括衍射和干涉现象。

衍射是指光通过一个小孔或绕过物体时发生的偏离直线传播的现象,而干涉则是指两个或多个光波相遇,形成明暗相间的干涉条纹的现象。

一、光的衍射现象衍射现象是光通过一个小孔或绕过一个物体时出现的。

当光通过一个小孔时,它会呈现出弯曲的传播路径,形成圆形的光斑。

这种现象可以用惠更斯-菲涅耳原理来解释。

根据这个原理,每个波前上的每一个点都可以看作是一种次级波源,所有次级波源总体产生的波将形成扩散波。

当这些扩散波相互干涉时,就会产生衍射现象。

另外,当光波通过一个窄缝或更复杂的物体时,也会发生衍射。

这是因为光波会被物体的边缘或者缝隙限制,在通过时会扩散开来。

这种衍射现象使得物体的边缘模糊,即出现了衍射边缘。

二、光的干涉现象干涉是指两个或多个光波相遇并产生干涉的现象。

干涉可以是构成干涉条纹的光的相干叠加,也可以是产生明暗相间的干涉图案。

1. 杨氏双缝干涉实验杨氏双缝干涉实验是描述干涉现象的经典实验之一。

两个相距较远的狭缝,当光波通过它们后,形成了一系列亮度变化的干涉条纹。

这些条纹由光的相长和干涉造成,形成了若干区域,交替出现亮暗相间的明纹和暗纹。

2. 干涉薄膜干涉薄膜是干涉现象的另一个重要应用。

当光波从一个介质进入到另一个介质时,由于介质的折射率不同,光波会发生折射。

如果在这两个介质之间存在一个薄膜,光波从上一介质向下一介质传播时还会发生反射。

当反射光波与折射光波相遇时,会产生干涉,形成一系列的明暗相间的颜色。

三、光的衍射和干涉的应用光的衍射和干涉现象在许多实际应用中有着重要的作用。

1. 光学仪器衍射光栅是一种利用衍射现象制造的光学元件,它可以将光波进行衍射,使不同波长的光发生不同的偏移角度,从而实现光的分光。

光纤光栅则用于调制光纤的光传输性能,通过在光纤中引入周期性的折射率变化,可以实现滤波、分光等功能。

2. 拓扑人工电磁材料光的衍射和干涉现象也被应用于拓扑人工电磁材料的研究中。

大学物理光的干涉和衍射

大学物理光的干涉和衍射
路程折算为真空中的路程来研究。这就避免了波长随 媒质变化而带来的困难。
7
2.光程差—两束光光程之差
s1
r1
n1
p
n2 s2
r2
=n1r1- n2r2
图20-1
p
s1 s2
S1p= r1 S2p= r2
= (r1-e1 +n1e1) - (r2-e2 +n2e2) 图20-2
8
3.两束光干涉的强弱取决于光程差,而不是几 何路程之差
解 凡是求解薄膜问题应先求出两反射光线的光 程差。对垂直入射,i =0,于是
反 2e
n22 n12sin2i
+ 半 = 2en2
(0, )
2
无反射意味着反射光出现暗纹,所以
e 1.25 1.50
1

2en2
(k
) 2
(k=0,1,2,……)
n2=1.25(薄膜的折射率);要e最小,k =0
e =1200Å=1.2×10-7m
这对讨论光经过几种媒质后的相干叠加问题,是很不 方便的。为此引入光程的概念。
6
n=c/
= /n
1.光程
设经时间t,光在折射率为n媒质中通过的几何
路程为r,则nr称为光程。
显然,光程 nr=n t =c t 。
光程的物理意义: 光程等于在相同的时间内光在 真空中通过的路程。
引入光程概念后,就能将光在媒质中通过的几何
代入:d=0.25mm, L=500mm, 2=7×10-4mm , 1= 4 ×10-4mm得:
x =1.2mm 18
例题20-2 将双缝用厚e、折射率分别为n1=1.4、 n2=1.7的透明薄膜盖住,发现原中央明级处被第五级 亮纹占据,如图20-5所示。所用波长=6000Å,问:原中

大学物理中的光的干涉与衍射实验

大学物理中的光的干涉与衍射实验

大学物理中的光的干涉与衍射实验光的干涉与衍射是大学物理中重要的实验内容之一,通过这些实验可以对光的性质和行为进行深入理解和研究。

在本文中,我们将探讨大学物理中光的干涉与衍射实验的原理、实验装置以及实验结果的分析和讨论。

一、实验原理光波具有波动性质,当多个光波相遇时,会发生干涉和衍射现象。

干涉是指两个或多个光波叠加时相互加强或减弱的现象。

衍射是指光通过小孔或有限宽度的缝隙时,光波会朝不同方向进行传播和散射的现象。

二、实验装置1. 干涉实验装置:a. 光源:使用可调节亮度的激光器、白炽灯或单色光源作为实验光源。

b. 分束器:将光源发出的光分为两束,一束经过待测样品,另一束作为参比光。

c. 样品:可以是透明薄片、玻璃表面或光栅等,通过调节样品的位置与角度来改变干涉条纹。

d. 探测器:通常使用屏幕或光敏器件来观察和记录干涉条纹。

2. 衍射实验装置:a. 光源:使用单色光源,如激光器、氢光灯等。

b. 衍射元件:可以是单缝、双缝、光栅等,通过调节衍射元件的参数来改变衍射现象。

c. 探测器:使用屏幕、光敏器件等来观察和记录衍射图样。

三、实验结果与分析1. 干涉实验:干涉实验可以观察到干涉条纹,干涉条纹的形状和间距与样品的性质有关。

根据干涉条纹的形状和变化可以推断出光的波长、样品的厚度或折射率等参数。

2. 衍射实验:衍射实验会产生衍射图样,衍射图样的形状和尺寸与衍射元件的特性有关。

通过对衍射图样的观察和分析,可以推断出光的波长、衍射元件的尺寸和缝隙宽度等参数。

四、实验应用与意义光的干涉与衍射实验不仅在物理学研究中有重要应用,也在实际生活和工程中起到关键作用。

干涉现象广泛应用于激光干涉测量、光学仪器的校正和定位等方面;衍射现象被用于光学显微镜、天文望远镜、光栅光谱仪等。

总之,大学物理中的光的干涉与衍射实验是一项重要的实验内容,通过实验可以更加深入地了解光的性质和行为。

实验装置的选择和调整以及对实验结果的观察和分析,都对于理解和应用光的干涉与衍射具有重要意义。

大学物理易考知识点光的衍射和干涉现象

大学物理易考知识点光的衍射和干涉现象

大学物理易考知识点光的衍射和干涉现象光的衍射和干涉现象是大学物理中的重要知识点之一。

在学习光学的过程中,了解和掌握这两个现象对于理解光的特性和应用具有重要的作用。

本文将从衍射和干涉的基本概念入手,逐步深入介绍光的衍射和干涉现象的原理、实验现象以及应用领域,以帮助读者全面了解和掌握该知识点。

一、光的衍射现象衍射现象是光通过一个孔或者绕过一个障碍物后产生的一系列干涉、衍射的现象叠加而形成的。

它是光学中的一种特殊光的传播现象。

在描述光的衍射现象时,我们常使用的两个重要概念是波前和波束。

1.1 波前波前是指波动源上的相位相同的点的集合。

在准直光束通过一个圆孔或者一个狭缝时,处在物面上的波前就是入射光的等相位面,可以看作是一个球面。

而当光通过孔或绕过一个障碍物后,波前则变成了以孔或障碍物边缘点为波面球心的球面。

1.2 波束波束是指由入射光经过衍射或干涉后形成的光的集合,也可以理解为一束弯曲的光。

根据衍射程度的不同,波束可以表现出强度分布的变化,形成明暗纹或者彩色光斑。

以上是光的衍射现象的基本概念,接下来我们将介绍一些重要的衍射现象和光学实验。

二、菲涅尔衍射和菲涅尔透射菲涅尔衍射是指光通过狭缝、小孔或者小斑点时,在屏幕上产生明暗相间、辐射状的光斑。

而菲涅尔透射是指光通过透明媒介接触到其他物体表面时也会出现类似的现象。

2.1 菲涅尔衍射菲涅尔衍射的典型实验是通过一条宽度很小的矩形狭缝,在遥远处放置一个屏幕,观察到在屏幕上形成一系列狭缝衍射条纹。

这些条纹是由于光线在通过缝隙后,发生了衍射现象叠加而形成的。

2.2 菲涅尔透射菲涅尔透射是指光通过光学元件(如透镜、棱镜等)后,通过散斑的方式发生了衍射现象。

通过观察透射光的特征,我们可以对光学元件的表面粗糙程度和光学性能有所了解。

接下来我们将介绍光的干涉现象。

三、光的干涉现象干涉现象是指两个或多个波动的光线相遇时产生的光强的相互作用。

干涉现象的产生需要两个条件:首先是波源发出的两个波动光线要干涉;其次是这两个波动的光线要有一定的相位差。

光的衍射与干涉

光的衍射与干涉

光的衍射与干涉光的衍射和干涉是光学中重要的现象,它们揭示了光的波动性质和波动光学的基本原理。

本文将介绍光的衍射和干涉的基本概念、特点以及应用。

一、光的衍射光的衍射是指光通过孔径较小的障碍物或通过物体的边缘时,光波会发生弯曲,波前的形状和传播方向改变的现象。

这种现象可以用赫歇尔原理来解释,即光的每个点可以看作是一个次波源。

光波在经过障碍物或物体边缘时,这些次波源发出的光波会与其他次波源相干叠加,形成复杂的波纹。

光的衍射具有以下特点:1. 衍射现象只在光的波动性情况下发生,表明光既具有粒子性又具有波动性。

2. 衍射是一种波动现象,具有干涉的特性,可以产生明暗交替的干涉条纹。

3. 衍射受到波长和孔径大小的影响,较小的孔径会产生更显著的衍射效应。

光的衍射在实际应用中有许多重要的应用,例如:1. 衍射光栅:利用衍射光栅的特性可以进行光谱分析、光学仪器中的波长测量等。

2. 衍射成像:光的衍射现象可以用于显微镜、天文望远镜等成像设备中,提高图像的分辨率和清晰度。

二、光的干涉光的干涉是指两束或多束光波相遇时,根据波的相干性原理产生明暗交替的干涉条纹的现象。

根据光的相位差,干涉现象可以分为构造性干涉和破坏性干涉两种。

构造性干涉是指光波相遇产生的相位差为整数倍波长时,波峰与波峰、波谷与波谷相重叠,达到增强干涉的效果,形成明亮的条纹。

例如杨氏双缝干涉实验和牛顿环干涉实验。

破坏性干涉是指光波相遇产生的相位差为半整数倍波长时,波峰与波谷相重叠,相位互相抵消,形成暗的条纹。

例如杨氏双缝干涉实验中央的暗条纹和牛顿环干涉实验中心的暗环。

光的干涉在科学研究和实际应用中有许多重要的应用,例如:1. 干涉测量:利用光的干涉现象可以进行精密的长度、角度和折射率等测量。

2. 干涉光栅:干涉光栅是一种重要的光学元件,广泛应用于光学光谱仪、激光衍射等领域。

3. 干涉图案:双缝干涉和薄膜干涉等干涉图案可以用于测量光的相干性、波长和形状等。

总结光的衍射和干涉是光学中重要的现象,揭示了光的波动性质和波动光学的基本原理。

光的衍射与干涉

光的衍射与干涉

光的衍射与干涉光的衍射和干涉是光学中重要的现象,它们有许多实际应用,如显微镜、激光、天文学、光学仪器等。

在本文中,我们将讨论光的衍射和干涉的概念、原理、公式和应用等方面。

一、光的衍射光的衍射是指当光通过一条比它小几个波长的缝隙或者遇到一些不同介质的边缘时,光波的传播方向发生改变和扩散的现象。

光波的衍射是一种波的干涉现象,是波动光学的基本内容之一。

光的衍射现象可以用夫琅和费衍射公式来描述:sinθ=λ/d其中,θ为光的入射角和衍射角的夹角,λ为光波长,d为衍射缝或衍射孔的宽度。

公式表明,当衍射缝或衍射孔的宽度越小,衍射角度越大,衍射效应越明显。

光的衍射还可以通过杨氏双缝实验来进行直观的观察和理解。

当光通过两个紧密排列的缝隙时,会形成一系列明暗条纹,这些条纹之间的距离是波长的整数倍。

这个实验可以直观地证明波动理论和干涉现象。

光的衍射在工业和科学中有许多的应用。

例如,它可以被用于检查材料的缺陷,如纺织品、玻璃和塑料。

此外,光的衍射现象在制造和建筑测量、辐射治疗和显微术中也有广泛的应用。

二、光的干涉光的干涉是指光波在不同相位的情况下相遇时会产生干涉现象。

光的干涉分为构造性干涉和破坏性干涉两种。

构造性干涉是指光波在相遇时相位差为整数倍,此时两个波的振幅叠加会增强,产生亮条纹。

而破坏性干涉则是相位差为奇数倍,此时两个波的振幅叠加会相互抵消,产生暗条纹。

光的干涉又可以根据干涉环的形状分为同心圆环、椭圆、螺旋形等。

光的干涉也可以通过杨氏双缝实验来进行观察和研究。

该实验采用两个狭缝来产生两条光线,这两条光线在屏幕上会产生明暗相间的干涉条纹。

此外,马吕斯干涉仪、薄膜干涉、布儒斯特角等都是光学干涉的常见现象和实验。

干涉现象有广泛的应用,如激光模式,激光干涉仪,表面测量,显微镜和干涉投影等。

其中,激光干涉测量是利用激光干涉原理进行高精度和非接触性测量常用的方法之一。

三、光的衍射与干涉之间的关系光的衍射和干涉都是波动光学的重要现象。

光的干涉和衍射现象知识点总结

光的干涉和衍射现象知识点总结

光的干涉和衍射现象知识点总结在物理学中,光的干涉和衍射是光波传播过程中的重要现象,它们揭示了光的波动性和干涉衍射的特性。

本文将对光的干涉和衍射的知识点进行总结。

一、干涉现象光的干涉是指两个或多个波面相遇时,相互作用所产生的干涉条纹现象。

干涉现象有以下几个关键的知识点。

1. 干涉的条件干涉的条件包括:一、光的相干性,即光源必须是相干光源;二、光的波长,波长越短,干涉现象越明显;三、光线的几何等效性,即光线要满足几何光学近似;四、光线的调制,通过改变光程差来调制干涉现象。

2. 干涉的类型干涉可以分为两种类型:一是构造性干涉,即两个波峰或两个波谷相遇时叠加,增强了光的强度;二是破坏性干涉,即波峰和波谷相遇时叠加,相互抵消,使光的强度减弱。

3. 干涉的应用干涉现象广泛应用于科学研究和技术领域。

例如在光学干涉仪中,通过干涉现象可以测量物体的微小位移;在薄膜干涉中,可以根据干涉现象来测量薄膜的厚度;在光栅干涉中,可以通过干涉现象来分析光的频率分布等。

二、衍射现象光的衍射是光波通过一个或多个孔或缝时出现的波的分散现象。

衍射现象有以下几个关键的知识点。

1. 衍射的条件衍射的条件包括:一、波长要与衍射孔或缝的大小相当;二、光的波前要垂直于衍射孔或缝。

2. 衍射的特征衍射现象主要表现为波前的扩散和干涉的分布。

衍射通过各种物体产生不同的衍射图样,例如单缝衍射、双缝衍射、光栅衍射等。

3. 衍射的应用衍射现象在光学中具有重要的应用价值。

例如在光学显微镜中,通过衍射现象可以提高显微镜的分辨率;在光学望远镜中,衍射现象可以减小望远镜的像差,提高成像质量;在激光中,衍射现象可以使激光束扩散。

三、干涉与衍射的关系干涉和衍射是紧密相关的现象,它们都是光波的性质导致的。

干涉实质上是波的叠加和相长干涉的结果,而衍射是波的传播过程中发生的波前扩散现象。

在一些特殊情况下,干涉和衍射现象可以同时发生,相互影响,产生特殊的干涉衍射现象,例如夫琅禾费衍射现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
2
R2
2d

2
(2k 1)

d2
d1
d r
O
R1
2 (k 0,1,2,)
2 2
r4 r4 k 4, 2d 4 R1 R2
R2 102.8 cm
例14 当把折射率为n=1.40的薄膜放入迈克耳孙干涉仪的一 臂时,如果产生了7.0条条纹的移动,求薄膜的厚度。(已知 钠光的波长为 = 589.3 nm) 解:
2(n 1)t k
k t 2(n 1)
7 589.3 109 m 5.154 6 m 2(1.4 1)
t
光的衍射
3.单缝的夫琅禾费衍射
以垂直入射为例
半波带法
2 2
2
9 2R(d e) Rλ( k) 2
(2)
d max 2
由明纹条件
2d
kmax

2 2 4.5 4
max
2k


λ 1 d k 2 3)条纹向外侧移动
d
A
B
例11. 在牛顿环装置中,如果平玻璃由冕牌玻璃(n1=1.50) 和火石玻璃(n2=1.75)组成,透镜由冕牌玻璃组成,而 透镜与平玻璃间充满二硫化碳(n3=1.62)。试说明在单 色光垂直入射时反射光的的干涉图样是怎样的?
2n2d

2
k
2n2d k 1 2
取 k = 1,2,3代入上式,分别得
1 4n2 d 1700 nm
4 2 n2 d 567 nm 3 4 3 n2 d 341 nm 5
红外线 黄光! 紫外线
例7. 平面单色光垂直照射在厚度均匀的油膜上,油膜覆盖在玻 璃板上。所用光源波长可以连续变化,观察到500 nm与700 nm波长的光在反射中消失。油膜的折射率为1.30,玻璃折射 率为1.50,求油膜的厚度。
从第5 级开始干涉条纹变得无法分辨。
本题完
例3 用很薄的云母片覆盖在杨氏双缝实验中的一条缝上,原 来屏上的零级明纹处成为第七级明纹,问云母片的厚度为多少? (若入射光的波长为550nm,云母片的折射率为1.58。) 练习十六三、1 解:第1步:计算两束相干光的光程 差(o处)。设云母片厚度为e ,则

2n sin
2
。所以,波长
4 7
2nl sin 2 1.4 0.25 10 10 7.0 10 m
(2) 总共的明纹数为
L 3.5 N 14 l 0.25
例10. 柱面平凹透镜 A,曲率半径为R,放在平玻璃片 B上, 如图所示。现用波长为的平行单色光自上方垂直往下照射, 观察A和B间空气薄膜的反射光的干涉条纹。设空气膜的最 大厚度2。 (1)求明纹极大位置与凹透镜 中心线的距离r ; (2)共能看到多少条明纹; (3)若将玻璃片B向下平移, 条纹如何移动?
5)当线光源S平行于双缝移动时,由于光通过双缝时已有光程差,干涉 条纹将发生移动,中央明条纹不再在双缝的中垂线上,光源向下(或 向上)移动时,干涉条纹将向反方向平移。
6)当线光源S向双缝屏移近时,对屏上的干涉条纹的位置和间距并无影响, 但明条纹的光强因通过双缝的光强变化而发生相应的变化。 7)当线光源S逐渐增宽时,我们可以把具有一定宽度的面光源S看作是 由无数个互不相干的线光源组成的,每个线光源各自在屏幕上形成自己 的干涉条纹。由于各线光源的位置不同,它们在屏幕的各套干涉条纹将 会错开。我们所观测到的干涉条纹,就是由所有各套干涉条纹的光强非 相干叠加而成的。光源的宽度越大,各套条纹之间错开也越大,即每级 条纹所占的范围越大,总的干涉条纹越模糊。当两边缘线光源的干涉条 纹错开一级时,整个屏上将是均匀的光强分布,再也看不到干涉条纹了。 要想看到干涉条纹,必须考虑光源的宽度。理论上给出光源的极限宽 度为 R 0 其中R为双缝离光源的距离, d为双缝的间距。实验中通常取 d 0 所以逐渐加宽线光源s的后果是使条纹逐渐模糊直至消失。
光程差
2.1 等倾干涉 2.2 等厚干涉
2e n n sin i
2 2 2 1 2
入射角相同的光束构成一条等倾干涉条纹 平行光垂直入射时光程差
2n2e

2n2

2
薄膜厚度相等的点构成一条等厚干涉条纹, 薄膜厚度变化不同,形成不同的干涉图样。 相邻条纹处薄膜厚度差 等厚干涉之一:劈尖
条纹向中心收缩,说明零级条 纹在边缘,待测半径大于标准 件,需要磨边缘。
例13 已知标准平凸透镜 R1=102.3 cm,入射光 =583.9 nm,测得第4条暗环(k=4)的半径 r4=2.25 cm,求待测凹面镜 的半径 R2。
r r 解: d d1 d 2 2 R1 2 R2
(r2 e ) ne r1
第2步:应用相干条件
s1
r1
d M
2k 2
(明)
s2
9
r2 r1
D
o

550 10 6 ek 7 6.6 10 (m) (1.58 1) (n 1) 本题完
例4. 在双缝干涉实验装置中,屏幕到双缝的距离D远大于 双缝之间的距离d,对于钠黄光( λ 589.3nm ),产生的 干涉条纹,相邻两明条纹的角距离(即相邻两明条纹对 双缝中心处的张角)为 0.20 (1)对于什么波长的光,这个双缝装置所得相邻两条纹的 角距离比用钠黄光测得的角距离大10%? (2)假想将此装置浸入水中(水的折射率n=1.33),用 钠黄光垂直照射时,相邻两明条纹的角距离有多大?
l sin

D
5.746 10 (mm)
2
本题完
例9. 放在空气中一劈尖的折射率为1.4,劈尖的夹角为104rad,在某一单色光的垂直照射下,可测得两条相邻明 纹的间距为0.25cm,试求: (1)此单色光在空气中的波长; (2)如果此劈尖长为3.5cm,总共可产生多少条明纹?
解:(1) 劈尖的条纹间隔为 l
解: 2n1d (2k 1)
1
2 2 , 2n1d (2k 1) 2
1 2k , 1 500 5 2 2k 1 700 7
(2k 1)
n1 n2
k 3
d
1
9 7 500 10 2 6.73 10 7 m 2n1 4 1.30
解:(1) 干涉条纹间距 x
相邻两明条纹的角距离 可见,角距离与波长成正比,所以 1 10%
D x d D D d
D d
(1 10%) 589.3 1.1 648.2(nm)
(2) 装置浸入水中时,水中的光波长为 角距离与波长成正比,所以

2
r
R
A
B
A
解: 2d

(1)明条纹极大位置处的空气膜厚度为
2 2 2d (2k 1) 2 2
2k

k=1,2,3…明纹极大 k=0,1,2,3…暗纹极小
λ 1 e k 2 2
明纹极大位置与凹透镜中心线的距离r:


2R(d e)(d e) r R R (d e)
4
例2 在杨氏双缝实验中,用钠光灯作为光源 (=589.3nm),D=1m。 (1)若双缝间距d=2mm时,试求干涉条纹间距; (2)如人眼能分辨的干涉条纹间距为0.15mm,现用人眼 直接观察干涉条纹,要能观察到干涉条纹,双缝的最大间 距d为多少?P135例题12-6
解:
D 1 589.3 10 4 x 2.95 10 (m) 3 2 10 d
9
D 1 589.3 10 3 d 3.93 10 (m) 3 x 0.15 10
9
本题完
例2 在杨氏双缝实验中,采用加有蓝绿色滤光片的白光光源, 其波长范围为=100nm,平均波长为=490nm,试估算从第几 级开始,条纹将变得无法分辨? P135例题12-7 解:根据题意
2 1 100(nm )
1 2 (1 2 ) 490(nm )
蓝、绿两种光第k 级的明纹位置分别为
D1 x1 k d
D2 x2 k d
绿色第k级明纹位置大于等于兰色第k+1级明纹位置时,变得模糊不清
2 1
k
k 1
D2 D D D k (k 1) 1 k 1 d d d d 440 1 1 2 k 4.4 100
1 n


n

1 0.20 0.15 n 1.33
例5. 一射电望远镜的天线设在湖岸上,距湖面高度为h,对岸 地平线上方有一恒星正在升起,恒星发出波长为λ的电磁波。 求:当天线测得第1级干涉极大时恒星所在的角位置。
解: 由几何关系,并考虑到在水面反射 时存在着半波损失
e
e l sin
牛顿环
r r e 2R e 2R
明(暗)纹半径
2
2
rk kR
(k 0,1, 2...) 暗
(k 1, 2,3...) 明
(2k 1) R rk 2
例1.在杨氏双缝实验装置中,试描述在下列情况下 干涉条纹将如何变化? 1)当两缝的间距增大时 2)当双缝的宽度增大时 3)当把一条缝稍稍加宽时 4)当遮住一条缝时 5)当线光源S平行于双缝移动时 6)当线光源S向双缝屏移近时 7)当线光源S逐渐增宽时
例 8 . = 58 9 . 3 n m , L = 2 8 . 8 8 0 m m , 3 0 条 明 纹 间 的 距 离 为 4.295mm,求直径D 。P147例题12-9
相关文档
最新文档