2019上海数学初三二模第23题汇编

合集下载

上海市浦东新区2019年中考数学二模试卷含答案解析+【精选五套中考模拟卷】

上海市浦东新区2019年中考数学二模试卷含答案解析+【精选五套中考模拟卷】

上海市浦东新区2019年中考数学二模试卷含答案解析一、选择题:(本大题共6题,每题4分,满分24分)1.2019的相反数是()A.B.﹣2019 C.﹣D.20192.已知一元二次方程x2+3x+2=0,下列判断正确的是()A.该方程无实数解B.该方程有两个相等的实数解C.该方程有两个不相等的实数解D.该方程解的情况不确定3.下列函数的图象在每一个象限内,y随着x的增大而增大的是()A.y=﹣B.y=x2﹣1 C.y= D.y=﹣x﹣14.如果从1、2、3这三个数字中任意选取两个数字,组成一个两位数,那么这个两位数是素数的概率等于()A.B.C.D.5.下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是()A.15,17 B.14,17 C.17,14 D.17,156.如图,△ABC和△AMN都是等边三角形,点M是△ABC的重心,那么的值为()A.B.C.D.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:|﹣1|= .8.不等式x﹣1<2的解集是.9.分解因式:8﹣2x2= .10.计算:3()+2(﹣2)= .11.方程的根是.12.已知函数f(x)=,那么f()= .13.如图,传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,则物体从A 到B所经过的路程为米.14.正八边形的中心角等于度.15.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是.16.已知:⊙O1、⊙O2的半径长分别为2和R,如果⊙O1与⊙O2相切,且两圆的圆心距d=3,则R的值为.17.定义运算“﹡”:规定x﹡y=ax+by(其中a、b为常数),若1﹡1=3,1﹡(﹣1)=1,则1﹡2= .18.在Rt△ABC中,∠ACB=90°,BC=15,AC=20.点D在边AC上,DE⊥AB,垂足为点E,将△ADE沿直线DE翻折,翻折后点A的对应点为点P,当∠CPD为直角时,AD的长是.三、解答题:(本大题共7题,满分78分)19.(10分)计算:2sin45°﹣20190++()﹣1.20.(10分)解方程:.21.(10分)如图,AB是⊙O的弦,C是AB上一点,∠AOC=90°,OA=4,OC=3,求弦AB的长.22.(10分)某工厂生产一种产品,当生产数量不超过40吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示:(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为210万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)23.(12分)如图,已知:四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于点F,∠ECA=∠D (1)求证:△EAC∽△ECB;(2)若DF=AF,求AC:BC的值.24.(12分)如图,二次函数y=ax2﹣4ax+2的图象与y轴交于点A,且过点B(3,6).(1)试求二次函数的解析式及点A的坐标;(2)若点B关于二次函数对称轴的对称点为点C,试求∠CAB的正切值;(3)若在x轴上有一点P,使得点B关于直线AP的对称点B1在y轴上,试求点P的坐标.25.(14分)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB的中点,点E为边AC上的一个动点.联结DE,过点E作DE的垂线与边BC交于点F,以DE,EF为邻边作矩形DEFG.(1)如图1,当AC=8,点G在边AB上时,求DE和EF的长;(2)如图2,若,设AC=x,矩形DEFG的面积为y,求y关于x的函数解析式;(3)若,且点G恰好落在Rt△ABC的边上,求AC的长.参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.2019的相反数是()A.B.﹣2019 C.﹣D.2019【考点】相反数.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:2019的相反数是﹣2019.故选:B.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.已知一元二次方程x2+3x+2=0,下列判断正确的是()A.该方程无实数解B.该方程有两个相等的实数解C.该方程有两个不相等的实数解D.该方程解的情况不确定【考点】根的判别式.【分析】把a=1,b=3,c=2代入判别式△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=3,c=2,∴△=b2﹣4ac=32﹣4×1×2=1>0,∴方程有两个不相等的实数根.故选C.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.3.下列函数的图象在每一个象限内,y随着x的增大而增大的是()A.y=﹣B.y=x2﹣1 C.y= D.y=﹣x﹣1【考点】反比例函数的性质;一次函数的性质;二次函数的性质.【分析】分析四个选项中得函数解析式,根据系数的正负结合各函数的性质即可得出其增减性,由此即可得出结论.【解答】解:A 、y=﹣中k=﹣1<0,∴函数y=﹣的图象在第二、四象限内y 随着x 的增大而增大;B 、y=x 2﹣1中a=1>0,∴函数y=x 2﹣1的图象在第二、三象限内y 随着x 的增大而减小,在第一、四象限内y 随着x 的增大而增大;C 、y=﹣中k=1>0,∴函数y=的图象在第一、三象限内y 随着x 的增大而减小;D 、y=﹣x ﹣1中k=﹣1<0,b=﹣1<0,∴函数y=﹣x ﹣1的图象在第二、三、四象限内y 随着x 的增大而减小.故选A .【点评】本题考查了反比例函数的性质、一次函数的性质以及二次函数的性质,解题的关键是逐项分析四个选项的增减性.本题属于基础题,难度不大,解决该题型题目时,熟悉各函数的性质及各函数的图象是解题的关键.4.如果从1、2、3这三个数字中任意选取两个数字,组成一个两位数,那么这个两位数是素数的概率等于( )A .B .C .D . 【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这个两位数是素数的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,这个两位数是素数的有13,23,31共3种情况,∴这个两位数是素数的概率为: =.故选A .【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.5.下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是()A.15,17 B.14,17 C.17,14 D.17,15【考点】众数;折线统计图;中位数.【分析】根据中位数和众数的概念求解.把数据按大小排列,第4个数为中位数;17℃出现的次最多,为众数.【解答】解:17℃出现了2次,最多,故众数为17℃;共7个数据,从小到大排列为8,9,11,14,15,17,第4个数为14,故中位数为14℃.故选C.【点评】本题为统计题,考查了众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数为数据中出现次数最多的数.6.如图,△ABC和△AMN都是等边三角形,点M是△ABC的重心,那么的值为()A.B.C.D.【考点】三角形的重心.【分析】延长AM交BC于点D,根据△ABC是等边三角形可知AD⊥BC,设AM=2x,则DM=x,利用锐角三角函数的定义用x表示出AB的长,再根据相似三角形的性质即可得出结论.【解答】解:延长AM交BC于点D,∵△ABC是等边三角形,∴AD⊥BC.设AM=2x,则DM=x,∴AD=3x,∴AB===2x.∵△ABC和△AMN都是等边三角形,∴△ABC∽△AMN,∴=()2=()2=.故选B.【点评】本题考查的是三角形的重心,熟知重心到顶点的距离与重心到对边中点的距离之比为2:1是解答此题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:|﹣1|= .【考点】有理数的减法;绝对值.【分析】首先根据有理数的减法法则,求出﹣1的值是多少;然后根据一个负数的绝对值等于它的相反数,求出|﹣1|的值是多少即可.【解答】解:|﹣1|=|﹣|=.故答案为:.【点评】(1)此题主要考查了有理数的减法,要熟练掌握,解答此题的关键是要明确:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).(2)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.8.不等式x﹣1<2的解集是x<3 .【考点】解一元一次不等式.【分析】解不等式x﹣1<2,即可得到不等式x﹣1<2的解集,本题得以解决.【解答】解:x﹣1<2两边同时加1,得x﹣1+1<2+1x<3,故答案为:x<3.【点评】本题考查解一元一次不等式,解题的关键是会解一元一次不等式的方法.9.分解因式:8﹣2x2= 2(2+x)(2﹣x).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式,再根据平方差公式进行分解即可.【解答】解:原式=2(4﹣x2)=2(2+x)(2﹣x).故答案为:2(2+x)(2﹣x).【点评】本题考查的是提取公因式法与公式法的综合运用,熟记平方差公式是解答此题的关键.10.计算:3()+2(﹣2)= ﹣﹣.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:3()+2(﹣2)=3﹣3+2﹣4=﹣﹣.故答案为:﹣﹣.【点评】此题考查了平面向量的运算法则.注意掌握去括号法则是解此题的关键.11.方程的根是x=﹣4 .【考点】无理方程.【分析】9的算术平方根是3,故5﹣x=9,x=﹣4.【解答】解:因为算术平方根的被开方数是非负数,根据题意可得,5﹣x=9,解得:x=﹣4.故本题答案为:x=﹣4.【点评】记准算术平方根的被开方数是非负数这一要求,是解决这类问题的关键.12.已知函数f(x)=,那么f()= 3 .【考点】函数值.【分析】将x=代入计算即可.【解答】解:f()====3.故答案为:3.【点评】本题主要考查的是求函数值,掌握二次根式的性质是解题的关键.13.如图,传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,则物体从A 到B所经过的路程为18 米.【考点】解直角三角形的应用-坡度坡角问题.【分析】直接利用坡角的定义得出AC的长,进而利用勾股定理得出AB的长.【解答】解:∵传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,∴可得:BC=9m,则=,解得:AC=9,则AB===18(m).故答案为:18.【点评】此题主要考查了坡角的定义,根据题意得出AC的长是解题关键.14.正八边形的中心角等于45 度.【考点】正多边形和圆.【分析】根据中心角是正多边形相邻的两个半径的夹角来解答.【解答】解:正八边形的中心角等于360°÷8=45°;故答案为45.【点评】本题考查了正多边形和圆的知识,解题的关键是牢记中心角的定义及求法.15.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是720 .【考点】条形统计图;用样本估计总体.【分析】用所有学生数乘以样本中课外阅读时间不少于6小时的人数所占的百分比即可.【解答】解:估计该校1200名学生一周的课外阅读时间不少于6小时的人数是:1200×=720(人),故答案为:720.【点评】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比.16.已知:⊙O1、⊙O2的半径长分别为2和R,如果⊙O1与⊙O2相切,且两圆的圆心距d=3,则R的值为1或5 .【考点】圆与圆的位置关系.【分析】由于⊙O1与⊙O2相切,则分两圆内切和外切讨论得到R+2=3或R﹣2=3,然后解两个一次方程即可.【解答】解:∵⊙O1与⊙O2相切,∴R+2=3或R﹣2=3,∴R=1或R=5.故答案为1或5.【点评】本题考查了圆与圆的位置关系:设两圆的圆心距为d,两圆半径分别为R、r,当两圆外离⇔d>R+r;两圆外切⇔d=R+r;两圆相交⇔R﹣r<d<R+r(R≥r);两圆内切⇔d=R﹣r(R>r);两圆内含⇔d<R﹣r(R>r).17.定义运算“﹡”:规定x﹡y=ax+by(其中a、b为常数),若1﹡1=3,1﹡(﹣1)=1,则1﹡2= 4 .【考点】解二元一次方程组;有理数的混合运算.【分析】已知等式利用题中的新定义化简为二元一次方程组,求出方程组的解得到a与b的值,即可确定出所求式子的值.【解答】解:根据题中的新定义得:,解得:,则1﹡2=1×2+2×1=2+2=4,故答案为:4【点评】此题考查了解二元一次方程组,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.18.在Rt△ABC中,∠ACB=90°,BC=15,AC=20.点D在边AC上,DE⊥AB,垂足为点E,将△ADE沿直线DE翻折,翻折后点A的对应点为点P,当∠CPD为直角时,AD的长是.【考点】翻折变换(折叠问题).【分析】设AD=x,再根据折叠的性质得∠PDE=∠ADE=90°,∠1=∠A,PD=AD=x,于是可判断点P在边AC上,所以PC=20﹣2x,然后利用等角的余角相等得到∠1=∠3,则∠A=∠3,则可判断Rt△BCP∽Rt△ABC,利用相似比可计算出x.【解答】解:如图,设AD=x,在△ABC中,∠ACB=90°,BC=15,AC=20,∴AB=25,∵DE⊥AB,∴∠AED=∠ACB=90°,∵△ADE沿DE翻折得到△PDE,∴∠PED=∠AED=90°,∠1=∠A,PD=AD=x,∴CD=20﹣x,∵∠CPD=90°,∴∠1+∠2=90°,∠A+∠B=90°,∴∠2=∠B,∴PC=BC=15,∵CD2=CP2+PD2,即(20﹣x)2=152+x2,∴x=,∴AD=.故答案为:.【点评】此题主要考查了图形的翻折变换,以及勾股定理的应用,关键是掌握翻折后哪些线段是对应相等的.三、解答题:(本大题共7题,满分78分)19.(10分)(2019•浦东新区二模)计算:2sin45°﹣20190++()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果.【解答】解:原式=2×﹣1+2+2=1+3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(2019•浦东新区二模)解方程:.【考点】解分式方程;解一元二次方程-因式分解法.【分析】本题的最简公分母是(x+2)(x﹣2).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果需检验.【解答】解:方程两边都乘(x+2)(x﹣2),得x(x﹣2)+(x+2)2=8,x2﹣2x+x2+4x+4=8,整理得x2+x﹣2=0.解得x1=﹣2,x2=1.经检验,x2=1为原方程的根,x1=﹣2是增根(舍去).∴原方程的根是x=1.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解;(2)解分式方程一定注意要代入最简公分母验根.21.(10分)(2019•浦东新区二模)如图,AB是⊙O的弦,C是AB上一点,∠AOC=90°,OA=4,OC=3,求弦AB的长.【考点】垂径定理.【分析】首先过点O作OD⊥AB于D,应用直角三角形的性质和三角函数的求法,求出AD的长度是多少;然后应用垂径定理,求出弦AB的长是多少即可.【解答】解:如图,过点O作OD⊥AB于D,,∵OA2+OC2=AC2,∴AC2=42+32=25,∴AC=5.在Rt△AOC中,cos∠OAC==,在Rt△ADO中,cos∠OAD=,∴==,∴AD=×4=.∵OD⊥AB,∴AB=2AD=2×=.【点评】此题主要考查了垂径定理的应用,直角三角形的性质和三角函数的求法,要熟练掌握.22.(10分)(2019•浦东新区二模)某工厂生产一种产品,当生产数量不超过40吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示:(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为210万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)【考点】一次函数的应用.【分析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)直接利用每吨的成本×生产吨数=总成本为210万元,进而得出等式求出答案.【解答】解:(1)设函数解析式为:y=kx+b,将(0,10),(40,6)分别代入y=kx+b得:,解得:,所以y=﹣x+10(0≤x≤40);(2)由(﹣x+10)x=210,解得:x1=30,x2=70,由于0≤x≤40,所以x=30,答:该产品的生产数量是30吨.【点评】此题主要考查了一次函数的应用,正确利用待定系数法求出一次函数解析式是解题关键.23.(12分)(2019•浦东新区二模)如图,已知:四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于点F,∠ECA=∠D(1)求证:△EAC∽△ECB;(2)若DF=AF,求AC:BC的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由四边形ABCD是平行四边形、∠ECA=∠D可得∠ECA=∠B,∠E为公共角可得△EAC∽△ECB;(2)由CD∥AE、DF=AF可得CD=AE,进而有BE=2AE,根据△EAC∽△ECB得,即: =,可得答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠ECA=∠D,∴∠ECA=∠B,∵∠E=∠E,∴△EAC∽△ECB;(2)∵四边形ABCD是平行四边形,∴CD∥AB,即:CD∥AE∴,∵DF=AF∴CD=AE,∵四边形ABCD是平行四边形,∴AB=CD,∴AE=AB,∴BE=2AE,∵△EAC∽△ECB,∴,∴,即: =,∴.【点评】本题主要考查相似三角形的判定与性质及平行四边形的性质,熟练掌握相似形的对应边成比例和平行四边形的性质是关键.24.(12分)(2019•浦东新区二模)如图,二次函数y=ax2﹣4ax+2的图象与y轴交于点A,且过点B(3,6).(1)试求二次函数的解析式及点A的坐标;(2)若点B关于二次函数对称轴的对称点为点C,试求∠CAB的正切值;(3)若在x轴上有一点P,使得点B关于直线AP的对称点B1在y轴上,试求点P的坐标.【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数图象上点的坐标特征.【分析】(1)把B(3,6)代入y=ax2﹣4ax+2,求出a的值,得到二次函数的解析式,进而求出点A的坐标;(2)先求出抛物线的对称轴,根据对称性得出C点坐标,求出BC=2,AB=5,tan∠CBA=,过点C作CH⊥AB于点H,再求出CH=,AH=,根据正切函数定义即可求出∠CAB的正切值;(3)由AB=AB1=5,从而点B1的坐标为(0,﹣3)或(0,7),设P(x,0)根据PB=PB1,分B1的坐标为(0,﹣3)或(0,7)两种情况利用勾股定理求得x值.【解答】解:(1)∵二次函数y=ax2﹣4ax+2的图象过点B(3,6),∴6=9a﹣12a+2,解得a=﹣,所以二次函数的解析式为y=﹣x2+x+2,∵二次函数y=﹣x2+x+2的图象与y轴交于点A,∴点A的坐标为(0,2);(2)∵y=﹣x2+x+2=﹣(x﹣2)2+,∴对称轴为直线x=2,∵点B(3,6)关于二次函数对称轴的对称点为点C,∴C(1,6),∴BC=2,AB==5,tan∠CBA=,过点C作CH⊥AB于点H,则CH=,BH=,AH=,∴tan∠CAB==;(3)由题意,AB=AB1=5,从而点B1的坐标为(0,﹣3)或(0,7).设P(x,0).①如果点B1(0,7),∵点B关于直线AP的对称点B1在y轴上,∴PB=PB1,即(x﹣3)2+62=x2+72,解得x=﹣,即P(﹣,0);②如果点B1′(0,﹣3),∵点B关于直线AP的对称点B1在y轴上,∴PB=PB1,即(x﹣3)2+62=x2+32,解得x=6,即P(6,0);综上所述,所求点P的坐标为(﹣,0)或(6,0).【点评】本题主要考查待定系数求二次函数解析式、解直角三角形、勾股定理等,求二次函数解析式是基础,构建直角三角形求三角函数值是基本做法,通过勾股定理得出点坐标间联系是关键.25.(14分)(2019•浦东新区二模)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB的中点,点E为边AC上的一个动点.联结DE,过点E作DE的垂线与边BC交于点F,以DE,EF为邻边作矩形DEFG.(1)如图1,当AC=8,点G在边AB上时,求DE和EF的长;(2)如图2,若,设AC=x,矩形DEFG的面积为y,求y关于x的函数解析式;(3)若,且点G恰好落在Rt△ABC的边上,求AC的长.【考点】四边形综合题.【分析】(1)根据勾股定理求出AB,根据相似三角形的判定定理得到△ADE∽△ACB,根据相似三角形的性质求出DE和BG,求出EF;(2)作DH⊥AC于H,根据相似三角形的性质得到y关于x的函数解析式;(3)根据点G在边BC上和点G在边AB上两种情况,根据相似三角形的性质解答.【解答】解:(1)∵∠ACB=90°,BC=6,AC=8,∴AB==10,∵D为斜边AB的中点,∴AD=BD=5,∵DEFG为矩形,∴∠ADE=90°,∴∠ADE=∠C,又∠A=∠A,∴△ADE∽△ACB,∴=,即=,解得,DE=,∵△ADE∽△FGB,∴=,则BG=,∴EF=DG=AB﹣AD﹣BG=;(2)如图2,作DH⊥AC于H,∴DH∥BC,又AD=DB,∴DH=BC=3,∵DH⊥AC,∠C=90°,∠DEF=90°,∴△DHE∽△ECF,∴==,∴EC=2DH=6,EH=x﹣6,∴DE2=32+(x﹣6)2=x2﹣6x+45,∴y=DE•EF=2DE2=x2﹣12x+90,(3)如图3,当点G在边BC上时,∵,DE=3,∴EF=,∴AC=9,如图4,当点G在边AB上时,设AD=DB=a,DE=2b,EF=3b,∵△ADE∽△FGB,∴=,即=,整理得,a2﹣3ab﹣4b2=0,解得,a=4b,a=﹣b(舍去),∴AD=2DE,∵△ADE∽△ACB,∴AC=2BC=12,综上所述,点G恰好落在Rt△ABC的边上,AC的长为9或12.【点评】本题的是矩形的性质、勾股定理的应用、相似三角形的判定和性质、二次函数解析式的求法以及三角形中位线定理,掌握相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键,注意分情况讨论思想的运用.中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上)1. 计算(-4)+6的结果为A.-2 B.2 C.-10 D.22.我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为A.3.5×106B.3.5×107C.35×105D.0.35×1083.下列图形中,是中心对称图形的是A. B. C. D.21·cn·jy·com4.如图,数轴上有四个点M,P,N,Q,若点M,N表示的数互为相反数,则图中表示绝对值最大的数对应的点是A.点M B.点N C.点P D.点Q5.如图是某个几何体的三视图,该几何体是A.三棱柱B.三棱锥C.圆锥D.圆柱6.已知方程3x2-4x-4=0的两个实数根分别为x1,x2.则x1+x2的值为A.4 B.23C.43D.-437.八年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是A.1010202x x-= B.1010202x x-=C.1010123x x-= D.1010123x x-=8.若圆锥的母线长是12,侧面展开图的圆心角是120°,则它的底面圆的半径为A. 2B. 4C. 6D. 89.如图,点A为反比例函数y=8x(x﹥0)图象上一点,点B为反比例函数y=kx(x﹤0)图象上一点,直线AB 过原点O,且OA=2OB,则k的值为QP NM左视图主视图俯视图(第5题)A .2B .4C .-2D .-410=4,BC =6,E 为BC 的中点.将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则△CDF的面积为 A.3.6B. 4.32C. 5.4D. 5.76二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位......置.上) 11.9的算术平方根为 ▲ .12.如图,若AB ∥CD ,∠1=65°,则∠2的度数为 ▲°. 13.分解因式:12a 2-3b 2= ▲ .14.如图,⊙O 的内接四边形ABCD 中,∠BOD =100°,则∠BCD = ▲ °. 15.如图,利用标杆BE 测量建筑物的高度.若标杆BE 的高为1.2m ,测得AB =1.6m ,BC =12.4m ,则楼高CD 为 ▲ m .16.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数 中位数 众数 方差 8.58.38.10.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是 ▲ . 17.将正六边形ABCDEF 放入平面直角坐标系xOy 后,若点A ,B ,E 的坐标分别为(a ,b ),(-3,-1),(-a ,b ),则点D 18. 如图,平面直角坐标系xOy 中,点A 是直线y =33x +433上一动点,将点A 向右 平移1个单位得到点B ,点C (1,0),则 OB +CB 的最小值为 ▲ .三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19. (本小题满分10分)(1)计算(x +y)2-y(2x +y);(第10题)8xy (第9题)(第18题)DCEBA(第15题)(第14题)DCB A 1(第12题)2(2)先化简,再求代数式的值:2221()244a a a a a a +----+÷4a a-,其中a=2.20.(本小题满分9分)近年来,我国很多地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”, 随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表:请根据图表中提供的信息解答下列问题:(1)填空:m = ▲ ,n = ▲ ,扇形统计图中E 组所占的百分比为 ▲ % ; (2)若该市人口约有400万人,请你计算其中持D 组“观点”的市民人数; (3)对于“雾霾”这个环境问题,请用简短的语言发出倡议.21.(本小题满分8分)一个不透明的口袋中装有四个完全相同的小球,把它们分别标号为1,2,3,4.从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,请用列表法或画树形图的方法,求两次摸出的小球上所标数字之和大于4的概率.22.(本小题满分8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BA D =37°,沿AD 方向前进150米到达点C ,测得∠BCD=45°. 求小岛B 到河边公路AD 的距离. (参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)23.(本小题满分8分)如图,⊙O 的直径AB =10,弦AC =6,∠BAC 的平分线交⊙O 于点D ,过点D 作⊙O 的切线交AC 的延长线于点E.求DE 的长.C 10%B A20%DE调查结果扇形统计图BCA(第22题)D24.(本小题满分9分)如果一元一次方程的解是一元一次不等式组的解,那么称该一元一次方程为该不等式组的关联方程.(1)若不等式组122136xx x⎧-<⎪⎨⎪+>-+⎩,的一个关联方程的解是整数,则这个关联方程可以是▲(写出一个即可);(2)若方程3-x=2x,3+x=2(x+12)都是关于x的不等式组22x x mx m<-⎧⎨-⎩,≤的关联方程,试求m的取值范围.25.(本小题满分8分)在△ABC中,AB=AC=2,∠BAC=45º.△AEF是由△ABC绕点A按逆时针方向旋转得到,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF是菱形时,求CD的长.26.(本小题满分10分)请用学过的方法研究一类新函数kyx=(k为常数,k≠0)的图象和性质.(1)在给出的平面直角坐标系中画出函数6yx=的图象(可以不列表);(2)对于函数kyx=,当自变量x的值增大时,函数值y怎样变化?(3)函数kyx=的图象可以经过怎样的变化得到函数2kyx=+的图象?(第25题)FEDCBA27.(本小题满分13分)如图,矩形ABCD 中,AB =4,AD =6,点P 在AB 上,点Q 在DC 的延长线上,连接DP ,QP ,且∠APD =∠QPD ,PQ 交BC 于点G. (1)求证:DQ =PQ ; (2)求AP ·DQ 的最大值;(3)若P 为AB 的中点,求PG 的长.28.(本小题满分13分)已知二次函数y =ax 2+bx +c (c ≠4a ),其图象L 经过点A (-2,0). (1)求证:b 2-4ac >0;(2)若点B (-c2a,b +3)在图象L 上,求b 的值;(3)在(2)的条件下,若图象L 的对称轴为直线x =3,且经过点C (6,-8),点D (0,n )在y 轴负半轴上,直线BD 与OC 相交于点E ,当△ODE 为等腰三角形时,求n 的值.(第27题)数学试题参考答案与评分标准一、选择题(本大题共10小题,每小题3分,共30分.)11. 3 12.6513.3(2a +b)(2a -b)14.13015.10.516.中位数17.(3,-1)18三、解答题(本大题共10小题,共96分.) 19.(本小题满分10分)(1)解:原式=x 2+2xy +y 2-2xy -y 2················· 4分 =x 2 ························· 5分 (2)解:原式=221[](2)(2)4a a aa a a a ----- ··············· 6分 =2(2)(2)(1)(2)4a a a a aa a a +----- ··················· 7分=24(2)4a aa a a --- ························ 8分=21(2)a - ··························· 9分当a =2时,21(2)a -15= ············ 10分 20.(本小题满分9分)(1)80, 100,15; ························· 3分 (2)400×120400=120(万), 答:其中持D 组“观点”的市民人数约为120万人; ········· 6分 (3)根据所抽取样本中持C 、D 两种观点的人数占总人数的比例较大,所以倡议今后的环境改善中严格控制工厂的污染排放,同时市民多乘坐公共汽车, 减少私家车出行的次数. ······················· 9分 21.(本小题满分8分)· 5分 因为所有等可能的结果数共有12种,其中所标数字之和大于4的占8种,·································· 6分所以 P(数字之和大于4)=812=23. ················· 8分22.(本小题满分8分)解:过B作BE⊥CD垂足为E,设BE=x米,·············· 1分在Rt△ABE中,tanA=BEAE,········· 2分AE=BEtanA=BEtan37°=43x,······· 3分在Rt△ABE中,tan∠BCD=BECE,······· 4分CE=BEtan∠BCD=xtan45°=x,······ 5分∵AC=AE-CE,∴43x-x=150解得x=450 ················ 7分答:小岛B到河边公路AD的距离为450米. ·············· 8分23.(本小题满分8分)解:连接OD,过点O作OH⊥AC,垂足为H.··············· 1分由垂径定理得AH=12AC=3.在Rt△A OH中,OH=52-32=4.········· 2分∵DE切⊙O于D,∴OD⊥DE,∠ODE=90°.············ 3分∵AD平分∠BAC,∴∠BAD=∠CAD.∵OA=OD,∴∠BAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC.·········· 5分∴∠E=180°-90°=90°.又OH⊥AC,∴∠OHE=90°,∴四边形ODEH为矩形.·············· 7分∴DE=OH=4.·················· 8分24.(本小题满分9分)(1)x-2=0;(答案不唯一)····················· 3分(2)解方程3-x=2x得x=1,解方程3+x=2(x+12)得x=2,······ 5分解不等式组22x x mx m<-⎧⎨-⎩,≤得m<x≤m+2,·············· 7分∵1,2都是该不等式组的解,(第23题)EBCA(第22题)D。

2019年上海各区初三二模数学试卷23题专题汇编(教师版)

2019年上海各区初三二模数学试卷23题专题汇编(教师版)

2019年上海各区初三二模数学试卷23题专题汇编(教师版)崇明23.(本题满分12分,每小题满分各6分)如图7,在直角梯形ABCD 中,90ABC ∠=︒,AD BC ∥,对角线AC 、BD 相交于点O . 过点D 作DE BC ⊥,交AC 于点F . (1)联结OE ,若BE AOEC OF=,求证:OE CD ∥; (2)若AD CD =且BD CD ⊥,求证:AF DFAC OB=. 23.(本题满分12分,每小题满分各6分) 证明(1)∵90ABD ∠=︒,BC DE ⊥∴//AB DE ………………………………………………………………(1分) ∴AO BOOF OD=………………………………………………………………(2分) ∵BE AOEC OF =∴AO BEOF EC=……… ………………………………………………………(2分) ∴//OE CD …………………………………………………………………(1分) (2)∵BC AD //,//AB DE ,∴四边形ABED 为平行四边形 又∵90ABD ∠=︒∴四边形ABED 为矩形 ……………………………………………………(1分) ∴AD BE =,90ADE ∠=︒ 又∵CD BD ⊥∴90BDC BDE CDE ∠=∠+∠=︒︒=∠+∠=∠90BDE ADB ADE∴CDE ADB ∠=∠ …………………………………………………………(1分)AD CD =∴DCA DAC ∠=∠∴()A S A CDF ADO ..∆≅∆…………………………………………………(1分) ∴OD DF =DE AB //ABCDOE F图7∴AF BE ADAC BC BC==…………………………………………………………(1分) ∵BC AD //∴BODFBO OD BC AD ==…………………………………………………………(1分) ∴AF DFAC OB=…………………………………………………………………(1分) 奉贤23.(本题满分12分,每小题满分各6分)已知:如图8,正方形ABCD ,点E 在边AD 上,AF ⊥BE ,垂足为点F ,点G 在线段BF 上,BG=AF .(1)求证:CG ⊥BE ;(2)如果点E 是AD 的中点,联结CF ,求证:CF=CB .23.证明:(1)∵四边形ABCD 是正方形,∴AB BC =.90ABC. ··········· (1分) ∵AF ⊥BE ,∴90FAB FBA ∠+∠=︒.∵90FBA CBG ∠+∠=︒,∴FAB CBG ∠=∠. ································ (1分) 又∵AF BG =,∴△AFB ≅△BGC . ············································· (2分)∴AFB BGC ∠=∠. ······································································· (1分) ∵90AFB ∠=︒,∴90BGC ∠=︒,即CG ⊥BE . ······························· (1分) (2)∵ABF EBA ∠=∠,90AFB BAE ∠=∠=︒,∴△AEB ∽△FAB .∴AE AFAB BF=. ················································· (3分) ∵点E 是AD 的中点,AD AB =,∴12AE AB =.∴12AF BF =.··················· (1分) ∵AF BG =,∴12BG BF =,即FG BG =.············································ (1分) ∵CG ⊥BE ,∴CF CB =. ······························································· (1分)ABCD FG E 图8闵行(本题共2小题,每小题6分,满分12分)如图,已知四边形ABCD 是菱形,对角线BD AC 、相交于点O ,AC BD 2=,过点A 作CD AE ⊥,垂足为点E ,AE 与BD 相交于点F ,过点C 作AC CG ⊥,与AE 的延长线相交于点G . 求证:(1)DOA ACG ∆∆≌;(2)AG DE BD DF ⋅=⋅223.证明:(1)在菱形ABCD 中,AD = CD ,AC ⊥BD ,OB = OD .∴ ∠DAC =∠DCA ,∠AOD = 90°.……………………………(1分) ∵ AE ⊥CD ,CG ⊥AC ,∴ ∠DCA +∠GCE = 90°,∠G +∠GCE = 90°.∴ ∠G =∠DCA .…………………………………………………(1分) ∴ ∠G =∠DAC .…………………………………………………(1分) ∵ BD = 2AC ,BD = 2OD ,∴ AC = OD . ……………………(1分) 在△ACG 和△DOA 中,∵ ∠ACG =∠AOD ,∠G =∠DAC ,AC = OD ,∴ △ACG ≌△DOA . ……………………………………………(2分) (2)∵ AE ⊥CD ,BD ⊥AC ,∴ ∠DOC =∠DEF = 90°.…………(1分) 又∵ ∠CDO =∠FDE ,∴ △CDO ∽△FDE .…………………(1分)∴ CD OD DF DE=.即得 OD DF DE CD ⋅=⋅. ……………………(2分) ∵ △ACG ≌△DOA ,∴ AG = AD = CD . ……………………(1分)又∵ 12OD BD =,∴ 2DF BD DE AG ⋅=⋅.…………………(1分)嘉定23.(本题满分12分,第(1)小题6分、第(2)小题6分)如图6,在矩形ABCD 中,点E 是边AB 的中点,△EBC 沿直线EC 翻折,使B 点落在矩形ABCD 内部的点P 处,联结AP 并延长AP 交CD 于点F ,联结BP 交CE 于点Q . (1)求证:四边形AECF 是平行四边形; (2)如果PE PA =,求证:△APB ≌△EPC .23.(1)证明:由翻折得:EC 垂直平分BP ………………1分∴EQ BQ = ………………1分 ∵点E 为AB 的中点,∴EB AE = ………………1分 ∴EQ 是△ABP 的中位线,∴EC ∥AF ,……………1分 ∵四边形ABCD 是矩形∴AE ∥FC ………………1分 ∴四边形AECF 是平行四边形. ………………1分(2)∵AE ∥FC ,∴EQB APB ∠=∠ ………………1分由翻折得: ︒=∠90EQB ,︒=∠90EPC∴︒=∠=∠90EPC APB ………………1分 由翻折得:EB PE =,BEC PEC ∠=∠∵PE PA =,EB AE = ∴AE PE PA ==∴△AEP 是等边三角形,∴︒=∠=∠60AEP PAB …………1分 ∵︒=∠+∠+∠180BEC PEC AEP∴︒=∠60PEC ………………1分AB DCF PEQ图6∴PEC PAB ∠=∠ ………………1分 ∵PE PA =,∴△APB ≌△EPC ………………1分 黄埔23.(本题满分12分)如图6,已知四边形ABCD ,AD ∥BC ,对角线AC 、BD 交于点O ,DO =BO ,过点C 作CE ∥AC ,交BD 的延长线于点E ,交AD 的延长线于点F ,且满足DCE ACB ∠=∠. (1)求证:四边形ABCD 是矩形; (2)求证:DE ADEF CD=.23. 证明:(1)∵AD ∥BC ,∴AD DOBC BO=, ∵DO =BO ,∴AD BC =,--------------------(2分)∴四边形ABCD 是平行四边形. ------------------------------------------------------------------------(1分) ∵CE ⊥AC ,∴90ACD DCE ∠+∠=︒,∵DCE ACB ∠=∠,∴90ACB ACD ∠+∠=︒,即90BCD ∠=︒,------------------------(2分) ∴四边形ABCD 是矩形. --------------------------------------------------------------------------------------(1分)(2)∵四边形ABCD 是矩形,∴AC BD =,90ADC ∠=︒---------------------------------------(2分)∵AD ∥BC ,∴DE EFBD FC=.--------------------------------------------------------------------------------(1分) ∴DE EFAC FC =,------------------------------------------------------------------------------------------------(1分) ∴DE AC EF FC=,∵90ADC ACF ∠=∠=︒, ∴cot AC ADDAC FC CD∠==,----------------------------------------------------------------------------------(1分) ∴DE AD EF CD =.--------------------------------------------------------------------------------------------------(1分)ABC DEF图6OA B CDO E H F 第23题图金山22. 已知:如图,菱形ABCD 的对角线AC 与BD 相交于点O ,若DBC CAD ∠=∠.(1)求证:ABCD 是正方形.(2)E 是OB 上一点,CE DH ⊥,垂足为H ,DH 与OC 相交于点F ,求证:OF OE =.23.(1)证明:∥四边形ABCD 是菱形,∥BC AD //,DAC BAD ∠=∠2,DBC ABC ∠=∠2; (2分) ∥180=∠+∠ABC DAB ; (1分) ∥DBC CAD ∠=∠;∥ABC BAD ∠=∠, (1分) ∥1802=∠BAD ; ∥90=∠BAD ; (1分) ∥四边形ABCD 是正方形. (1分) (2)证明:∥四边形ABCD 是正方形;∥BD AC ⊥,BD AC =,AC CO 21=,BO DO 21=; (1分) ∥90=∠=∠DOC COB ,DO CO =; (1分) ∥CE DH ⊥,垂足为H ;∥90=∠DHE ,90=∠+∠DEH EDH ; (1分) 又∥90=∠+∠DEH ECO ;∥EDH ECO ∠=∠; (1分) ∥ECO ∆≌FDO ∆; (1分) ∥OF OE =. (1分)普陀23.(本题满分12分)已知:如图10,在四边形ABCD 中,AD BC <,点E 在AD 的延长线上, ACE BCD ∠=∠,EC ED EA =⋅2. (1)求证:四边形ABCD 为梯形; (2)如果EC ABEA AC=,求证:AB ED BC =⋅2.23.证明:(1)∵ ACE BCD ∠=∠,∴DCE BCA ∠=∠. ········································· (1分)∵EC ED EA =⋅2,∴ED ECEC EA=. ······················································ (1分) 又∵E ∠是公共角,∴△EDC ∽△ECA . ·············································· (1分) ∴DCE CAE ∠=∠. ········································································· (1分) ∴BCA CAE ∠=∠.∴AD ∥BC . ·················································································· (1分) ∵AD BC <,∴AB 与CD 不平行.∴四边形ABCD 是梯形. ····································································· (1分) (2)∵△EDC ∽△ECA .∴EC CDEA AC =. ∵EC AB EA AC=,∴AB DC =.··························································· (1分) ∴四边形ABCD 是等腰梯形. ···························································· (1分) ∴B DCB ∠=∠. ··········································································· (1分) ∵AD ∥BC .∴EDC DCB ∠=∠.图10A BCD E∴EDC B ∠=∠.∵ECD ACB ∠=∠,∴△EDC ∽△ABC . ········································ (1分) ∴ED DCAB BC=. ··············································································· (1分) ∴AB ED BC =⋅2. ······································································ (1分) 徐汇22. (本题满分(12分),第(1)题满分6分,第(2)小题满分6分) 如图,已知梯形ABCD 中,E AC AB BC AD ,,=∥是边BC 上的点,且CAD AED ∠=∠,DE 交AC 于点F(1) 求证:DAF ABE ∽△△(2) 当EC AE FC AC ⋅=⋅时,求证:BE AD = 23. :(1)BC AD // ACB CAD ∠=∠∴ AC AB = ACB B ∠=∠∴ 又CAD AED ∠=∠CAD AED ACB B ∠=∠=∠=∠∴ 又CED AED BAE B ∠+∠=∠+∠ CED BAE ∠=∠∴又BC AD // CED ADF ∠=∠∴ ADF BAE ∠=∠∴ CAD ABE ∠=∠ ABE ∆∴相似于DAF ∆(2)由(1)知ABE ∆∴相似于DAF ∆AF BE AD AB =∴AFADBE AB =∴ BC AD // FC AF EC AD =∴FCECAF AD =∴ FC ECBE AB =∴ 由(1)知:CED BAE CED B ∠=∠∠=∠,ABE ∆∴相似于ECF ∆ FC BE EC AB =∴ FCEC BE AB =∴ EC AE FC AC ⋅=⋅ FCECAE AC =∴AEAC BE AB =∴ 又AC AB = AE BE =∴ BAE B ∠=∠∴又AED B ∠=∠ AED BAE ∠=∠∴DE AB //∴ 又BC AD //∴四边形ABED 是平行四边形 BE AD =∴杨浦1、 (本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图,在ABC 中,AB=BC ,∠ABC=90°,点D 、E 分别是AB 、BC 的中点,点F 、G 是边AC 的三等分点,DF 、EG 的延长线相交于H ,联结HA 、HC 求证:(1)四边形FBGH 是菱形 (2)四边形ABCH 是正方形23.证明(1):∵点F 、G 是边AC 的三等分点,∴F 、G 分别是AG 、CF 的中点, ∵点D 是AB 的中点,∴DF //BG ,即FH //BG . ........................ (2分)同理: GH // BF . ........................................................................... (1分) ∴四边形FBGH 是平行四边形. .................................................. (1分) ∵AB =BC ,∴∠BAC =∠ACB .∵点F 、G 是边AC 的三等分点,∴AF =CG .∴△ABF ≌△CBG . ∴BF =BG. .................................................... (1分) ∴平行四边形FBGH 是菱形. ....................................................... (1分)证明(2)联结BH ,交FG 于点O ,∵四边形FBGH 是平行四边形,∴OB =OH ,OF =OG . ............ (2分) ∵AF =CG ,∴OA =OC . ................................................................. (1分) ∴四边形ABCH 是平行四边形. .................................................. (1分) ∵∠ABC =90°,∴平行四边形ABCH 是矩形. .......................... (1分)∵AB =BC ,∴矩形ABCH 是正方形. (1分)长宁23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图5,平行四边形ABCD 的对角线BD AC 、交于点O ,点E 在边CB 的延长线上,且︒=∠90EAC ,EC EB AE ⋅=2. (1)求证:四边形ABCD 是矩形;(2)延长AE DB 、交于点F ,若AC AF =,求证:BF AE =.23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵EC EB AE ⋅=2 ∴AEEB EC AE =又 ∵CEA AEB ∠=∠ ∴AEB ∆∽CEA ∆ (2分) ∴EAC EBA ∠=∠∵︒=∠90EAC ∴︒=∠90EBA (1分) 又 ∵︒=∠+∠180CBA EBA ∴︒=∠90CBA (1分) ∵四边形ABCD 是平行四边形∴四边形ABCD 是矩形 (1分)(2)∵ AEB ∆∽CEA ∆ ∴ AC AB AE BE = 即 ACAE AB BE = , ECA EAB ∠=∠ (2分)∵四边形ABCD 是矩形 ∴BD AC =又 ∵BD OB 21=, AC OC 21= ∴OC OB = ∴ECA OBC ∠=∠ 又 ∵OBC EBF ∠=∠ ECA EBA ∠=∠ ∴EAB EBF ∠=∠又∵F F ∠=∠ ∴EBF ∆∽BAF ∆ (3分)∴AB BE AF BF = ∴ACAEAF BF =(1分) ∵AC AF = ∴AE BF = (1分)图5AB CDE FO宝山23.(本题满分12分,第(1)、第(2)小题满分各6分)如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,联结AP 并延长AP 交CD 于F 点, (1)求证:四边形AECF 为平行四边形;(2)如果P A=PC ,联结BP ,求证:∥APB ≅∥EPC .第23题图23.(1)证明:由折叠得到EC 垂直平分BP , ………………1分 设EC 与BP 交于Q ,∥BQ=EQ ………………1分 ∥E 为AB 的中点, ∥AE =EB , ………………1分 ∥EQ 为∥ABP 的中位线,∥AF ∥EC , ………………2分 ∥AE ∥FC , ∥四边形AECF 为平行四边形; ………………1分 (2)∥AF ∥EC ,∥∥A PB =∥EQB =90° ………………1分由翻折性质∥E PC =∥EBC =90°,∥PEC =∥BEC ………………1分 ∥E 为直角∥APB 斜边AB 的中点,且AP =EP ,∥∥AEP 为等边三角形 , ∥BAP =∥AEP =60°, ………………1+1分︒=︒-︒=∠=∠60260180CEB CEP ………………1分 在∥ABP 和∥EPC 中, ∥BAP =∥CEP ,∥APB=∥E PC ,AP =EP ∥∥ABP ∥∥EPC (AAS ), ………………1分松江23.(本题满分12分,每小题各6分)如图,已知□ABCD 中,AB=AC ,CO ⊥AD ,垂足为点O ,延长CO 、BA 交于点E ,联结DE . (1)求证:四边形ACDE 是菱形;(2)联结OB ,交AC 于点F ,如果OF=OC ,求证:22AB BF BO =⋅.23.证明:(1)∵四边形ABCD 是平行四边形∴AB ∥DC ,AB=DC ………………………………………………………………(1分) ∵AB=AC ,∴AC=DC ……………………………………………………………(1分) ∵CO ⊥AD ,∴AO=DO …………………………………………………………(1分) ∵EO AOCO DO=,∴EO=CO ………………………………………………………(1分) ∴四边形ACDE 是平行四边形……………………………………………………(1分) ∵AC=DC ,∴四边形ACDE 是菱形……………………………………………(1分) (2)∵ OF=OC ,∴∠OFC=∠OCF ……………………………………………(1分) ∵AE=AC ,∴∠OCF=∠BEO∵∠OFC=∠BF A ,∴∠BF A=∠BEO …………………………………………(1分) ∵∠ABF=∠OBE …………………………………………………………………(1分) ∴△BF A ∽△BEO ,∴AB BFBO BE=………………………………………………(1分) ∴AB ·BE=BF ·BO ,∵AE=AC=AB ,∴BE=2AB ………………………………(1分) ∴22AB BF BO =⋅………………………………………………………………(1分)(第23题图)OECBA静安22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)已知:如图5,在矩形ABCD 中,过AC 的中点M 作EF ⊥AC , 分别交AD 、BC 于点E 、F . (1)求证:四边形AECF 是菱形; (2)如果2CD BF BC =⋅,求∠BAF 的度数.22.(本题满分10分,第(1)小题5分,第(2)小题5分) 证明:(1)∵四边形ABCD 为矩形,∴AD //BC , ∴∠1=∠2...........................................(1分)∵点M 为AC 的中点,∴AM =CM .在△AME 与△CMF 中,12AM CM AME CMF ∠=∠⎧⎪=⎨⎪∠=∠⎩..............................................(1分) ∴△AME ≌△CMF ...........................................(1分) ∴AE =CF .∴四边形AECF 为平行四边形. ·································································· (1分) 又∵EF ⊥AC ,∴平行四边形AECF 为菱形. ····································································· (1分) (2)∵2CD BF BC =⋅,∴CD BC BF CD =.又∵四边形ABCD 为矩形,∴AB =CD ,∴AB BC BF AB =. ··········································································· (1分)又∵∠ABF =∠CBA ,∴△ABF ∽△CBA . ·················································································· (1分) ∴∠2=∠3. ···························································································· (1分) ∵四边形AECF 为菱形,∴∠1=∠4,即∠1=∠3=∠4. ····································································· (1分) ∵四边形ABCD 为矩形, ∴∠BAD =∠1+∠3+∠4=90°,∴即∠1=30°. ······················································································· (1分)图5CFEDA BM图5CF EDA B M 124323.(本题满分12分,第(1)小题满分8分,第(2)小题满分4分)已知:如图6,△ABC 内接于⊙O ,AB ﹦AC ,点E 为弦AB 的中点,AO 的延长线交BC 于点D ,联结ED .过点B 作BF ⊥DE 交AC 于点F .(1)求证:∠BAD ﹦∠CBF ; (2)如果OD ﹦DB .求证:AF =BF .证明:(1)∵AB ﹦AC , ∴AB AC =. ........................(1分)∵直线AD 经过圆心O , ..................................................(1分) ∴AD ⊥BC ,BD=CD . ....................................................(1分) ∵点E 为弦AB 的中点, ∴DE 是△ABC 的中位线. ∴DE ∥AC . ......................................................................(1分) ∵BF ⊥DE ,∴∠1=90°, ∴∠2=90°.......................................................................(1分) ∴∠CBF +∠ACB ﹦90°.∵AB ﹦AC ,∴∠ABC ﹦∠ACB , .....................................(1分)∴∠CBF +∠ABC ﹦90°..................................................(1分)又∵AD ⊥BC ,∴∠BAD +∠ABC ﹦90°,∴∠BAD ﹦∠CBF ..............................................................(1分)(2)联结OB .∵AD ⊥BC ,OD ﹦DB ,∴△ODB 是等腰直角三角形........................................................................................................(1分)∴∠BOD ﹦45°. ∵OB=OA ,∴∠OBA ﹦∠OAB .∵∠BOD ﹦∠OBA +∠OAB ,∴∠BAO=12∠BOD=22.5°. .....................................................................................................(1分)∵AB=AC ,且AD ⊥BC , ∴∠BAC=2∠BAO=45°. ∵∠2=90°,即BF ⊥AC ,∴在△ABF 中,∠ABF =180904545--=,................................................................................(1分)图6BCDEF OA· 图6 B C DE F O A·12OE第23题图 C A B D F∴∠ABF =∠BAC ,∴AF =BF ..........................................................................................................................................(1分) 虹口23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在□ABCD 中,AC 与BD 相交于点O ,过点B 作BE ∥AC ,联结OE 交BC 于点F ,点F 为BC 的中点.(1)求证:四边形AOEB 是平行四边形;(2)如果∠OBC =∠E ,求证:=BO OC AB FC ⋅⋅.23.(1)证明:∵BE ∥AC ∴OC CFBE BF=∵点F 为BC 的中点 ∴CF=BF ∴OC=BE ∵四边形ABCD 是平行四边形 ∴AO=CO ∴AO=BE∵BE ∥AC ∴四边形AOEB 是平行四边形(2)证明:∵四边形AOEB 是平行四边形 ∴∠BAO =∠E ∵∠OBC =∠E ∴∠BAO =∠OBC∵∠ACB =∠BCO ∴△COB ∽△CBA ∴BO BC AB AC =∵四边形ABCD 是平行四边形 ∴AC =2OC ∵点F 为BC 的中点 ∴BC =2FC ∴BO FC AB OC= 即=BO OC AB FC⋅⋅青浦23.(本题满分12分,第(1)、(2)小题,每小题6分)已知:如图9,在菱形ABCD 中,AB =AC ,点E 、F 分别在边AB 、BC 上,且AE =BF ,CE 与AF 相交于点G . (1)求证:∠FGC =∠B ;(2)延长CE 与DA 的延长线交于点H ,求证:.23.证明:(1)∵四边形ABCD 是菱形, ∴AB =BC . ··········································································· (1分)∵AB =AC ,∴AB =BC =AC ,∴∠B =∠BAC =60°. ··························· (1分) 在△EAC 与△FBA 中,∵EA =FB ,∠EAC =∠FBA ,AC =BA , ∴△EAC ≌△FBA , ································································ (1分) ∴∠ACE =∠BAF ,·································································· (1分) ∵∠BAF+∠F AC =60°,∴∠ACE +∠F AC =60°,∴∠FGC =60°, ······· (1分) ∴∠FGC =∠B . ····································································· (1分) (2)∵四边形ABCD 是菱形,∴∠B =∠D ,AB =DC ,AB //DC , ················································ (1分) ∴∠BEC =∠HCD , ································································· (1分) ∴△BEC ∽△DCH , ······························································· (1分)∴=BE ECDC CH, ····································································· (1分) ∴⋅=⋅BE CH EC DC .∵AB =AC ,∴CD =AC , ··························································· (1分) ∵△EAC ≌△FBA , ∴EC =F A ,∴⋅=⋅BE CH AF AC . ························································· (1分)BE CH AF AC ⋅=⋅GF EDA BC图9。

2019年上海各区初三二模数学试卷24题专题汇编(学生版)

2019年上海各区初三二模数学试卷24题专题汇编(学生版)

2019年上海各区初三二模数学试卷24题专题汇编(学生版)题型一:特殊四边形【思路点拨】按已知线段是边还是对角线分类,梯形可以按已知边分别为底分类 根据边平行或相等的条件列方程求解(2019崇明区)24.(本题满分12分,每小题满分各4分)如图8,抛物线2y x bx c =++交x 轴于点(1,0)A 和点B ,交y 轴于点(0,3)C . (1)求抛物线的解析式;(2)在抛物线上找出点P ,使PC PO =,求点P 的坐标;(3)将直线AC 沿x 轴的正方向平移,平移后的直线交y 轴于点M ,交抛物线于点N . 当四边形ACMN 为等腰梯形时,求点M 、N 的坐标.题型二:面积+三角比【思路点拨】求某个角的三角比时:① 所求角在直角三角形中,直接求② 所求角不在直角三角形中时,等角的转化或构造直角三角形(构造时一般要借助题目中的特殊度数,如30°、45°或60°) (2019奉贤区)24.(本题满分12分,每小题满分各4分) 如图9,已知平面直角坐标系,抛物线22yax bx与轴交于点A (-2,0)和点B (4,0) .xOy xA B COyx备用图(1)求这条抛物线的表达式和对称轴;(2)点C 在线段OB 上,过点C 作CD ⊥x 轴,垂足为点C ,交抛物线与点D ,E 是BD 中点,联结CE 并延长,与y 轴交于点F .①当D 恰好是抛物线的顶点时,求点F 的坐标; ②联结BF ,当△DBC 的面积是△BCF 面积的32时,求点C 的坐标.(2019闵行区)24.(本题共3小题,每小题各4分,满分12分)已知抛物线c bx x ++-=2y 经过点()0,1A 、()03,B ,且与y 轴的公共点为点C . (1)求抛物线的解析式,并求出点C 的坐标;(2)求ACB ∠的正切值;(3)点E 为线段AC 上一点,过点E 作BC EF ⊥,垂足为点F ,如果41=BF EF ,求BCE ∆的面积 图9OABxy(2019普陀区)24.(本题满分12分)在平面直角坐标系xOy 中,直线243y x m =-+(0)m >与x 轴、y 轴分别交于点A 、B 如图11所示,点C 在线段AB 的延长线上,且2AB BC =. (1)用含字母m 的代数式表示点C 的坐标;(2)抛物线21103y x bx =-++经过点A 、C ,求此抛物线的表达式;(3)在第(2)题的条件下,位于第四象限的抛物线上,是否存在这样的点P :使2PAB OBC S S =△△,如果存在,求出点P 的坐标,如果不存在,试说明理由.题型三:相似【思路点拨】相似分类思路:①一般可以找到一组固定相等的角① 边分类-相等角的两边(利用的是两边对于成比例且夹角相等) ② 角分类-若上述比例式中的边没法表示时,可按角继续分类(2019松江)24、如图,抛物线c x ax y ++=42过点A (6,0)、B (3,23),与y 轴交于点C ,联结AB 并延长,交y 轴于点D.图11xyO AB11(1)求该抛物线的表达式; (2)求△ADC 的面积;(3)点P 在线段AC 上,如果△OAP 和△DCA 相似,求点P 的坐标.题型四:已知角等或特殊角求坐标【思路点拨】本题思路:1、 直接利用相等角的正余切值相等,或者直接利用相等角证相似2、 整角转化,整个角转化成其他的角等,再找正余切或相似3、 通过角度的和差或共享角找其他角等 (2019宝山)24、如图,已知对称轴为直线1-=x 的抛物线32++=bx ax y 与x 轴交于A 、B 两点,与y 轴交于C 点,其中A (1,0).(1)求点B 的坐标及此抛物线的表达式;(2)点D 为y 轴上一点,若直线BD 和直线BC 的夹角为15°,求线段CD 的长度;(3)设点P 为抛物线的对称轴1-=x 上的一个动点,当△BPC 为直角三角形时,求点P 的坐标.(2019嘉定区)24、在平面直角坐标系xOy 中,如图,抛物线n x mx y +-=22(n m 、是常数)经过点A (﹣2,3)、B (﹣3,0),与y 轴的交点为点C. (1)求此抛物线的表达式;(2)点D 为y 轴上一点,若直线BD 和直线BC 的夹角为15°,求线段CD 的长度; (3)设点P 为抛物线的对称轴上的一个动点,当△BPC 为直角三角形时,求点P 的坐标.(2019黄浦区)24.(本题满分12分)如图7,已知抛物线2y ax bx c=++经过原点()0,0O 、()2,0A ,直线2y x =经过抛物线的顶点B ,点C 是抛物线上一点,且位于对称轴的右侧,联结BC 、OC 、AB ,过点C 作CE ∥x 轴,分别交线段OB 、AB 于点E 、F .(1)求抛物线的表达式;(2)当BC CE =时,求证:BCE ∆∥ABO ∆;OxyAB CEF(3)当CBA BOC ∠=∠时,求点C 的坐标.(2019徐汇区)24. (本题满分(12分),第(1)题满分4分,第(2)小题满分4分,第(3)小题4分)如图,在平面直角坐标系xoy 中,抛物线c bx x y ++-=241与直线321-=x y 分别交于x 轴、y 轴上的C B 、两点,设该抛物线与x 轴的另一个交点为点A ,顶点为点D ,联结CD 交x 轴交于点E (1)求抛物线的表达式及点D 的坐标 (2)求DCB ∠的正切值(3)如图点F 在y 轴上,且,DCB DBA FBC ∠+∠=∠求点F 的坐标(2019杨浦区)24(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)已知开口向下的抛物线222y ax ax =-+与y 轴交于点A ,顶点为B ,对称轴与x 轴交于点C ,点A 与点D 关于对称轴对称,直线BD 与x 轴交于点M ,直线AB 与直线OD 交于点N , (1)求点D 的坐标(2)求点M 的坐标(用含a 的式子表示)(3)当点N 在第一象限,且∠OMB=∠ONA 时,求a 的值【题型五】其他(2019金山)22. 已知:抛物线c bx x y ++-=2,经过点()2,1--A ,()10,B .(1)求抛物线的关系式及顶点P 的坐标.(2)若点B '与点B 关于x 轴对称,把(1)中的抛物线向左平移m 个单位,平移后的抛物线经过点B ',设此时抛物线顶点为点P '. ①求B B P ''∠的大小.②把线段B P ''以点B '为旋转中心顺时针旋转120,点P '落在点M 处,设点N 在(1)中的抛物线上,当B MN '∆的面积等于36时,求点N 的坐标.xy–1–2–3–41234–1–2–3–41234OxyO 第24题图(2019长宁区)24.(本题满分12分,每小题4分)如图6,已知在平面直角坐标系xOy 中,抛物线c bx x y ++=294经过原点,且与x 轴相交于点A ,点A 的横坐标为6,抛物线顶点为点B .(1)求这条抛物线的表达式和顶点B 的坐标;(2)过点O 作AB OP //,在直线OP 上点取一点Q ,使得OBA QAB ∠=∠,求点Q 的坐标;(3)将该抛物线向左平移)0(>m m 个单位,所得新抛物线与y 轴负半轴相交于点C 且顶点仍然在第四象限,此时点A 移动到点D 的位置,4:3:=DB CB ,求m 的值.1 y1 x O(2019静安)24、在平面直角坐标系xOy 中(如图),已知抛物线)0(2≠++=a c bx ax y 经过原点,与x 轴的另一个交点为A ,顶点为P (﹣3,4).(1)求这条抛物线表达式;(2)将该抛物线向右平移,平移后的新抛物线顶点为Q ,它与y 轴交点为B ,联结PB 、PQ ,设点B 的纵坐标为m ,用含m 的代数式表示∠BPQ 的正切值;(3)联结AP ,在(2)的条件下,射线PB 平均∠APQ ,求点B 到直线AP 的距离.。

上海市各区2019届中考数学二模试卷精选汇编综合计算专题

上海市各区2019届中考数学二模试卷精选汇编综合计算专题

综合计算宝山区、嘉定区21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在梯形ABCD 中,AD ∥BC ,︒=∠90BAD ,AD AC =. (1)如果BAC ∠︒=∠-10BCA ,求D ∠的度数; (2)若10=AC ,31cot =∠D ,求梯形ABCD 的面积.21.解:(1)∵AD ∥BC∴CAD BCA ∠=∠ …………………1分 ∵BAC ∠︒=∠-10BCA∴BAC ∠︒=∠-10CAD …………………1分 ∵︒=∠90BAD∴BAC ∠︒=∠+90CAD∴︒=∠40CAD …………………1分 ∵AD AC =∴D ACD ∠=∠ …………………1分 ∵︒=∠+∠+∠180CAD D ACD∴︒=∠70D …………………1分(2) 过点C 作AD CH ⊥,垂足为点H ,在Rt △CHD 中,31cot =∠D ∴31cot ==∠CH HD D …………………………1分 设x HD =,则x CH 3=,∵AD AC =,10=AC ∴x AH -=10在Rt △CHA 中,222AC CH AH =+ ∴22210)3()10(=+-x x∴2=x ,0=x (舍去)∴2=HD …………1分 ∴6=HC ,8=AH ,10=AD ………………1分 ∵︒=∠=∠90CHD BAD ∴AB ∥CH∵AD ∥BC ∴四边形ABCH 是平行四边形 ∴8==AH BC ………1分 ∴梯形ABCD 的面积546)810(21)(21=⨯+=⨯+=CH BC AD S ………1分 图4DCB A图4DCBAH21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE∴1=k , ∴55==k AE , 1313==k AB (2分)(2)过点D 作DF ⊥BC ,垂足为点F ∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE // ∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分)∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分)ADB第21题图21.(本题满分10分,第(1)、(2)小题满分各5分)已知圆O 的直径12AB =,点C 是圆上一点,且30ABC ∠=︒,点P 是弦BC 上一动点, 过点P 作PD OP ⊥交圆O 于点D . (1)如图1,当PD AB ∥时,求PD 的长; (2)如图2,当BP 平分OPD ∠时,求PC 的长.21.(本题满分10分,每小题5分)(1)解:联结OD∵直径12AB = ∴6OB OD == ……………………………………1分∵PD OP ⊥ ∴90DPO =︒∠∵PD AB ∥ ∴180DPO POB +=︒∠∠ ∴90POB =︒∠ ……1分 又∵30ABC =︒∠,6OB =∴30OP OB tan =︒= ………………………………………………1分 ∵在Rt POD △中,222PO PD OD += ……………………………1分∴2226PD +=∴PD =……………………………………………………………1分 (2)过点O 作OH BC ⊥,垂足为H ∵OH BC ⊥∴90OHB OHP ==︒∠∠ ∵30ABC =︒∠,6OB =∴132OH OB ==,30BH OB cos =︒= ……………………2分 (第21题图1)ABOPCD (第21题图2)OABDPC∵在⊙O 中,OH BC ⊥∴CH BH ==……………………………………………………1分 ∵BP 平分OPD ∠ ∴1452BPO DPO ==︒∠∠ ∴453PH OH cot =︒= ……………………………………………1分∴3PC CH PH =-= ………………………………………1分奉贤区21.(本题满分10分,每小题满分各5分)已知:如图6,在△ABC 中,AB =13,AC=8,135cos =∠BAC ,BD ⊥AC ,垂足为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F .(1) 求EAD ∠的余切值; (2) 求BFCF的值. 21、(1)56; (2)58; 黄浦区21.(本题满分10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =23, AD ∶DB =1∶2.(1)求△ABC 的面积; (2)求CE ∶DE.21. 解:(1)由AB =AC =6,AH ⊥BC ,图6ABCD EF得BC =2BH .—————————————————————————(2分) 在△ABH 中,AB =6,cosB =23,∠AHB =90°, 得BH =2643⨯=,AH=————————————(2分) 则BC =8,所以△ABC 面积=182⨯=——————————————(1分)(2)过D 作BC 的平行线交AH 于点F ,———————————————(1分)由AD ∶DB =1∶2,得AD ∶AB =1∶3, 则31CE CH BH AB DE DF DF AD ====. ——————————————(4分) 金山区21.(本题满分10分,每小题5分)如图5,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为F .(1)求证:AF=BE ;(2)如果BE ∶EC=2∶1,求∠CDF 的余切值.21.解:(1)∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∠B =90°,∴∠DAF=∠AEB ,……………………………………………………………………(1分) ∵AE=BC ,DF ⊥AE ,∴AD=AE ,∠ AFD=∠EBA=90°,………………………(2分) ∴△ADF ≌△EAB ,∴AF =EB ,………………………………………………………(2分) (2)设BE =2k ,EC =k ,则AD =BC =AE =3k ,AF =BE =2k ,…………………………(1分)∵∠ADC =90°,∠AFD =90°,∴∠CDF +∠ADF =90°,∠DAF +∠ADF =90°, ∴∠CDF =∠DAF …………………………………………………………………(2A BCDFE图5分)在Rt △ADF 中,∠AFD =90°,DF=∴cot ∠CDF =cot ∠DAF=AF DF ==.………………………………(2分) 静安区21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)已知:如图,边长为1的正方形ABCD 中,AC 、DB 交于点H .DE 平分∠ADB ,交AC 于点E .联结BE 并延长,交边AD 于点F . (1)求证:DC =EC ; (2)求△EAF 的面积.21.(本题满分10分, 第(1)小题5分,第(2)小题5分)解:(1)∵正方形ABCD ,∴DC=BC=BA=AD , ∠BAD =∠ADC =∠DCB =∠CBA =90°AH=DH=CH=BH , AC ⊥BD ,∴∠ADH =∠HDC =∠DCH =∠DAE = 45°. …………(2分) 又∵DE 平分∠AD B ∴∠ADE =∠EDH∵∠DAE +∠ADE =∠DEC , ∠EDH +∠HDC =∠EDC …………(1分) ∴∠EDC =∠DEC …………(1分) ∴DC =EC …………(1分) (2)∵正方形ABCD ,∴AD ∥BC , ∴△AFE ∽△CBE ∴2)(ECAE S S CEB AEF =∆∆ ………………………………(1分)第21题图第21题图∵AB=BC=DC=EC =1,AC =2,∴AE =12- …………………………(1分) Rt △BHC 中, BH =22BC =22, ∴在△BEC 中,BH ⊥EC , 4222121=⨯⨯=∆BEC S ……………………(2分) ∴2)12(42-=∆AEF S , ∴4423)223(42-=-⨯=∆AEF S …………(1分) 闵行区21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)已知一次函数24y x =-+的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内作直角三角形ABC ,且∠BAC = 90o,1tan 2ABC ∠=(1)求点C 的坐标;(2)在第一象限内有一点M (1,m ),且点M 与点C 位于直线AB 的同侧,使得ABC ABM S S ∆∆=2求点M 的坐标.21.解:(1)令0y =,则240x -+=,解得:2x =,∴点A 坐标是(2,0).令0x =,则4y =,∴点B 坐标是(0,4).………………………(1分) ∴AB 1分) ∵90BAC ∠=,1tan 2ABC ∠=,∴AC = 过C 点作CD ⊥x 轴于点D ,易得OBA DAC ∆∆∽.…………………(1分) ∴2AD =,1CD =,∴点C 坐标是(4,1).………………………(1分) (2)11522ABC S AB AC ∆=⋅=⨯.………………………………(1分) ∵2ABM ABC S S ∆∆=,∴52ABM S ∆=.……………………………………(1分)∵(1M ,)m ,∴点M 在直线1x =上;令直线1x =与线段AB 交于点E ,2ME m =-;……………………(1分)分别过点A 、B 作直线1x =的垂线,垂足分别是点F 、G ,∴AF +BG = OA = 2;……………………………………………………(1分)∴111()222ABM BME AME S S S ME BG ME AF ME BG AF ∆∆=+=⋅+⋅=+1152222ME OA ME =⋅=⨯⨯=…………………(1分) ∴52ME =,522m -=,92m =,∴(1M ,92).……………………(1分) 普陀区21.(本题满分10分)如图7,在Rt △ABC 中,90C ∠=,点D 在边BC 上,DE ⊥AB ,点E 为垂足,7AB =,45DAB ∠=,3tan 4B =. (1)求DE 的长; (2)求CDA ∠的余弦值. 21.解:(1)∵DE ⊥AB ,∴︒=∠90DEA又∵45DAB ∠=,∴AE DE =. ················ (1分) 在Rt △DEB 中,︒=∠90DEB ,43tan =B ,∴43=BE DE . ······ (1分) 设x DE 3=,那么x AE 3=,x BE 4=.∵7AB =,∴743=+x x ,解得1=x . ·············· (2分) ∴3=DE . ·························· (1分) (2) 在Rt △ADE 中,由勾股定理,得23=AD . ··········· (1分)同理得5=BD . ························ (1分) 在Rt △ABC 中,由43tan =B ,可得54cos =B .∴528=BC . ···· (1分) ∴53=CD . ·························· (1分)∴102cos ==∠AD CD CDA . ··················· (1分)A BCDE 图7即CDA ∠青浦区21. (本题满分10分,第(1)、(2)小题,每小题5分)如图5,在Rt △ABC 中,∠C =90°,AC=3,BC =4,∠ABC 的平分线交边AC 于点D ,延长BD 至点E ,且BD=2DE ,联结AE . (1)求线段CD 的长; (2)求△ADE 的面积.21.解:(1)过点D 作DH ⊥AB ,垂足为点H . ··············· (1分)∵BD 平分∠ABC ,∠C =90°,∴DH = DC =x , ······················· (1分) 则AD =3-x .∵∠C =90°,AC=3,BC =4,∴AB =5. ············· (1分) ∵sin ∠==HD BCBAC AD AB, ∴435=-x x , ······················· (1分) ∴43=x . ························· (1分) (2)1141052233=⋅=⨯⨯=ABDSAB DH . ·············· (1分) ∵BD=2DE , ∴2==ABD ADES BDSDE, ···················· (3分) ∴1015323=⨯=ADES. ··················· (1分) 松江区21.(本题满分10分, 每小题各5分)如图,已知△ABC 中,∠B =45°,1tan 2C =,BC =6.(1)求△ABC 面积;(2)AC 的垂直平分线交AC 于点D ,交BC 于ED A图5AB点E. 求DE 的长.21.(本题满分10分, 每小题各5分) 解:(1)过点A 作AH ⊥BC 于点H …………1分 在Rt ABC ∆中,∠B =45°设AH =x ,则BH =x ………………………………1分 在Rt AHC ∆中,1tan 2AH C HC == ∴HC=2x ………………………………………………………1分 ∵BC =6∴x+2x =6 得x =2∴AH =2…………………………………………………………1分 ∴162ABC S BC AH ∆=⋅⋅=……………………………………1分(2)由(1)得AH =2,CH =4在Rt AHC∆中,AC =2分∵DE 垂直平分AC ∴12CD AC =ED ⊥AC …………………………………………………1分 在Rt EDC ∆中,1tan 2ED C CD ==……………………………1分 ∴DE =………………………………………………1分 徐汇区21. 如图,在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =,AD 平分BAC ∠交BC 于点D .(1)求tan DAB ∠;(2)若⊙O 过A 、D 两点,且点O 在边AB 上,用(第21题图)DACBE尺规作图的方法确定点O的位置并求出的⊙O半径.(保留作图轨迹,不写作法)杨浦区21、(本题满分10分,第(1)小题满分3分,第(2)小题满分7分)已知,如图5,在梯形ABCD中,DC//AB, AD=BC, BD平分∠ABC,∠A=600求:(1)求∠CDB的度数(2)当AD=2时,求对角线BD的长和梯形ABCD的面积。

上海市各区2019届中考数学二模试卷精选汇编几何证明专题

上海市各区2019届中考数学二模试卷精选汇编几何证明专题

几何证明专题宝山区、嘉定区23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,在正方形ABCD 中,点M 是边BC 上的一点(不与B 、C 重合),点N 在CD 边的延长线上,且满足︒=∠90MAN ,联结MN 、AC ,MN 与边AD 交于点E .(1)求证;AN AM =;(2)如果NAD CAD ∠=∠2,求证:AE AC AM ⋅=2.23.证明:(1)∵四边形ABCD 是正方形∴AD AB =,︒=∠=∠=∠=∠90BCD ADC B BAD ……1分 ∴︒=∠+∠90MAD MAB ∵︒=∠90MAN∴︒=∠+∠90MAD NAD ∴NAD MAB ∠=∠………1分 ∵︒=∠+∠180ADC ADN ∴︒=∠90ADN ……1分 ∴ADN B ∠=∠……………………1分 ∴△ABM ≌△ADN ………………………1分 ∴AN AM = ……………………………1分(2)∵四边形ABCD 是正方形 ∴AC 平分BCD ∠和BAD ∠ ∴︒=∠=∠4521BCD BCA ,︒=∠=∠=∠4521BAD CAD BAC ……1分∵NAD CAD ∠=∠2 ∴︒=∠5.22NAD∵NAD MAB ∠=∠ ∴︒=∠5.22MAB ………1分 ∴︒=∠5.22MAC ∴︒=∠=∠5.22NAE MAC ∵AN AM =,︒=∠90MAN ∴︒=∠45ANE∴ANE ACM ∠=∠…………………1分 ∴△ACM ∽△ANE …………1分 ∴ANACAE AM =……1分图6图6∵AN AM =∴AE AC AM ⋅=2…………1分长宁区23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点G 、F ,且AGGF BEAD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵BC AD // ∴BG DG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分)∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分) 崇明区23.(本题满分12分,第(1)、(2)小题满分各6分)如图,AM 是ABC △的中线,点D 是线段AM 上一点(不与点A 重合).DE AB ∥交ACDEFGB第23题图EBC 于点K ,CE AM ∥,联结AE .(1)求证:AB CMEK CK=; (2)求证:BD AE =.23.(本题满分12分,每小题6分) (1)证明:∵DE AB ∥∴ ABC EKC =∠∠ ……………………………………………………1分∵CE AM ∥∴ AMB ECK =∠∠ ……………………………………………………1分∴ABM EKC △∽△ ……………………………………………………1分 ∴AB BMEK CK=………………………………………………………1分 ∵ AM 是△ABC 的中线∴BM CM = ………………………………………………………1分∴AB CMEK CK=………………………………………………………1分 (2)证明:∵CE AM ∥ ∴DE CMEK CK =………………………………………………………2分 又∵AB CMEK CK=∴DE AB = ………………………………………………………2分 又∵DE AB ∥∴四边形ABDE 是平行四边形 …………………………………………1分 ∴BD AE = ………………………………………………………1分奉贤区23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD ,DC ∥AB ,对角线AC 平分∠BCD , 点E 在边CB 的延长线上,EA ⊥AC ,垂足为点A .ACD B(1)求证:B是EC的中点;2,(2)分别延长CD、EA相交于点F,若EC=DCAC⋅求证:FC:=.ACAD:AF黄浦区23.(本题满分12分)如图,点E、F分别为菱形ABCD边AD、CD的中点.(1)求证:BE=BF;(2)当△BEF为等边三角形时,求证:∠D=2∠A.23. 证:(1)∵四边形ABCD为菱形,∴AB=BC=AD=CD,∠A=∠C,——————————————————(2分)又E、F是边的中点,∴AE=CF,——————————————————————————(1分)∴△ABE≌△CBF———————————————————————(2分)∴BE=BF. ——————————————————————————(1分)(2)联结AC、BD,AC交BE、BD于点G、O. ——————————(1分)∵△BEF是等边三角形,∴EB=EF,又∵E、F是两边中点,∴AO =12AC =EF =BE .——————————————————————(1分) 又△ABD 中,BE 、AO 均为中线,则G 为△ABD 的重心, ∴1133OG AO BE GE ===, ∴AG =BG ,——————————————————————————(1分) 又∠AGE =∠BGO ,∴△AGE ≌△BGO ,———— ——————————————————(1分)∴AE =BO ,则AD =BD ,∴△ABD 是等边三角形,—— —————————————————(1分) 所以∠BAD =60°,则∠ADC =120°,即∠ADC =2∠BAD . ——— ——————————————————(1分)金山区23.(本题满分12分,每小题6分)如图7,已知AD 是△ABC 的中线, M 是AD 的中点, 过A 点作AE ∥BC ,CM 的延 长线与AE 相交于点E ,与AB 相交于点F . (1)求证:四边形AEBD 是平行四边形; (2)如果AC =3AF ,求证四边形AEBD 是矩形.23.证明:(1)∵AE //BC ,∴∠AEM =∠DCM ,∠EAM =∠CDM ,……………………(1分)又∵AM=DM ,∴△AME ≌△DMC ,∴AE =CD ,…………………………(1分) ∵BD=CD ,∴AE =BD .……………………………………………………(1分) ∵AE ∥BD ,∴四边形AEBD 是平行四边形.……………………………(2分)E AFM BD图7C(2)∵AE //BC ,∴A F A EF B B C=.…………………………………………………(1分) ∵AE=BD=CD ,∴12AF AE FB BC ==,∴AB=3AF .……………………………(1分)∵AC=3AF ,∴AB=AC ,…………………………………………………………(1分)又∵AD 是△ABC 的中线,∴AD ⊥BC ,即∠ADB =90°.……………………(1分) ∴四边形AEBD 是矩形.……………………………………………………(1分)静安区23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分) 已知:如图,在平行四边形ABCD 中, AC 、DB 交于点E , 点F 在BC 的延长线上,联结EF 、DF ,且∠DEF =∠ADC . (1)求证:DBABBF EF =; (2)如果DF AD BD ⋅=22,求证:平行四边形ABCD 是矩形.23.(本题满分12分,第(1)小题6分,第(2)小题6分) 证明:(1)∵平行四边形ABCD ,∴AD //BC ,AB //DC∴∠BAD +∠ADC =180°,……………………………………(1分) 又∵∠BEF +∠DEF =180°, ∴∠BAD +∠ADC =∠BEF +∠DEF ……(1分) ∵∠DEF =∠ADC ∴∠BAD =∠BEF , …………………………(1分) ∵AB //DC , ∴∠EBF =∠ADB …………………………(1分) ∴△ADB ∽△EBF ∴DBABBF EF = ………………………(2分) (2) ∵△ADB ∽△EBF ,∴BFBEBD AD =, ………………………(1分) 在平行四边形ABCD 中,BE =ED =BD 21∴221BD BE BD BF AD =⋅=⋅ C第23题图ABDEFCAB第23题图DE F∴BF AD BD ⋅=22, ………………………………………(1分) 又∵DF AD BD ⋅=22∴DF BF =,△DBF 是等腰三角形 …………………………(1分) ∵DE BE =∴FE ⊥BD , 即∠DEF =90° …………………………(1分) ∴∠ADC =∠DEF =90° …………………………(1分) ∴平行四边形ABCD 是矩形 …………………………(1分) 闵行区23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)如图,已知在△ABC 中,∠BAC =2∠C ,∠BAC 的平分线AE 与∠ABC 的平分线BD 相交于点F ,FG ∥AC ,联结DG . (1)求证:BF BC AB BD ⋅=⋅; (2)求证:四边形ADGF 是菱形.23.证明:(1)∵AE 平分∠BAC ,∴∠BAC =2∠BAF =2∠EAC .∵∠BAC =2∠C ,∴∠BAF =∠C =∠EAC .…………………………(1分) 又∵BD 平分∠ABC ,∴∠ABD =∠DBC .……………………………(1分) ∵∠ABF =∠C ,∠ABD =∠DBC ,∴ABF CBD ∆∆∽.…………………………………………………(1分) ∴AB BFBC BD=.………………………………………………………(1分) ∴BF BC AB BD ⋅=⋅.………………………………………………(1分) (2)∵FG ∥AC ,∴∠C =∠FGB ,∴∠FGB =∠FAB .………………(1分)∵∠BAF =∠BGF ,∠ABD =∠GBD ,BF =BF ,∴ABF GBF ∆∆≌.∴AF =FG ,BA =BG .…………………………(1分) ∵BA =BG ,∠ABD =∠GBD ,BD =BD ,∴ABD GBD ∆∆≌.∴∠BAD =∠BGD .……………………………(1分) ∵∠BAD =2∠C ,∴∠BGD =2∠C ,∴∠GDC =∠C ,∴∠GDC =∠EAC ,∴AF ∥DG .……………………………………(1分) 又∵FG ∥AC ,∴四边形ADGF 是平行四边形.……………………(1分) ∴AF =FG .……………………………………………………………(1分) ∴四边形ADGF 是菱形.……………………………………………(1分)ABEGCFD(第23题图)普陀区23.(本题满分12分)已知:如图9,梯形ABCD 中,AD ∥BC ,DE ∥AB ,DE 与对角线AC 交于点F ,FG ∥AD ,且FG EF =.(1)求证:四边形ABED 是菱形; (2)联结AE ,又知AC ⊥ED ,求证:212AE EF ED =.23.证明:(1)∵ AD ∥BC ,DE ∥AB ,∴四边形ABED 是平行四边形. ····· (2分)∵FG ∥AD ,∴FG CFAD CA=. ··················· (1分) 同理 EF CFAB CA= . ························ (1分) 得FG AD =EFAB∵FG EF =,∴AD AB =. ···················· (1分) ∴四边形ABED 是菱形. ····················· (1分) (2)联结BD ,与AE 交于点H .∵四边形ABED 是菱形,∴12EH AE =,BD ⊥AE . ········ (2分) 得90DHE ∠= .同理90AFE ∠=.∴DHE AFE ∠∠=. ······················· (1分) 又∵AED ∠是公共角,∴△DHE ∽△AFE . ············ (1分) ∴EH DEEF AE=. ························· (1分) ∴212AE EF ED =. ······················ (1分) 青浦区AB C DEFG图923.(本题满分12分,第(1)、(2)小题,每小题6分)如图7,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点M ,点E 在边 BC 上,且 DAE DCB ∠=∠,联结AE ,AE 与BD 交于点F .(1)求证:2DM MF MB =⋅; (2)联结DE ,如果3BF FM =,求证:四边形ABED 是平行四边形.23.证明:(1)∵AD //BC ,∴∠=∠DAE AEB , ·············· (1分)∵∠=∠DCB DAE ,∴∠=∠DCB AEB , ········· (1分) ∴AE //DC , ························ (1分) ∴=FM AMMD MC. ····················· (1分) ∵AD //BC ,∴=AM DMMC MB, ················ (1分) ∴=FM DMMD MB, ····················· (1分) 即2=⋅MD MF MB .(2)设=FM a ,则=3BF a ,=4BM a . ············· (1分)由2=⋅MD MF MB ,得24=⋅MD a a ,∴2=MD a , ······················· (1分) ∴3==DF BF a . ····················· (1分) ∵AD //BC ,∴1==AF DFEF BF, ················ (1分) ∴=AF EF , ······················· (1分) ∴四边形ABED 是平行四边形. ················ (1分)松江区23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)如图,已知梯形ABCD 中,AB ∥CD ,∠D =90°,BE 平分∠ABC ,交CD 于点E ,F 是AB 的中点,联结AE 、EF ,且AE ⊥BE .求证:(1)四边形BCEF 是菱形;(2)2BE AE AD BC ⋅=⋅.MFE DBA图7(第23题图)ACD EB23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分) 证明:(1) ∵BE 平分∠ABC ,∴∠ABE =∠CBE …………………………………………………1分 ∵AE ⊥BE ∴∠AEB =90° ∵F 是AB 的中点 ∴12EF BF AB ==………………………………………………1分 ∴∠FEB =∠FBE …………………………………………………1分 ∴∠FEB =∠CBE …………………………………………………1分 ∴EF ∥BC …………………………………………………1分 ∵AB ∥CD∴四边形BCEF 是平行四边形…………………………1分 ∵EF BF =∴四边形BCEF 是菱形……………………………………1分 (2) ∵四边形BCEF 是菱形, ∴BC =BF ∵12BF AB =∴AB =2BC ………………………………………………1分 ∵ AB ∥CD ∴ ∠DEA =∠EAB ∵ ∠D =∠AEB∴ △EDA ∽△AEB ………………………………………2分∴AD AEBE AB = …………………………………………1分 ∴ BE ·AE =AD ·AB∴ 2BE AE AD BC ⋅=⋅…………………………………1分 徐汇区23. 在梯形ABCD 中,AD ∥BC ,AB CD =,BD BC =,点E 在对角线BD 上,且(第23题图)FACD EB∠=∠.DCE DBC=;(1)求证:AD BE⊥,(2)延长CE交AB于点F,如果CF AB⋅=⋅.求证:4EF FC DE BD杨浦区23、(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图7,在□ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且∠AGE=∠CGN。

2019上海数学初三二模第23题汇编

2019上海数学初三二模第23题汇编

证明题专题1.如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,联结AP 并延长AP 交CD 于F 点, (1)求证:四边形AECF 为平行四边形;(2)如果PA PC =,联结BP ,求证:APC EPC ∆≅∆第23题图【答案】(1)由折叠得到EC 垂直平分BP , ………………1分 设EC 与BP 交于Q ,∴BQ EQ = ………………1分 ∵E 为AB 的中点, ∴AE EB =, ………………1分 ∴EQ 为△ABP 的中位线,∴AF ∥EC , ………………2分 ∵AE ∥FC , ∴四边形AECF 为平行四边形; ………………1分 (2)∵AF ∥EC ,∴90APB EQB ∠=∠=︒ ………………1分 由翻折性质90EPC EBC ∠=∠=︒,PEC BEC ∠=∠ ………………1分 ∵E 为直角△ABP 斜边AB 的中点,且=AP EP ,∴△AEP 为等边三角形 , 60BAP AEP ∠=∠=︒, ………………1+1分︒=︒-︒=∠=∠60260180CEB CEP ………………1分在△ABP 和△EPC 中, BAP CEP ∠=∠, APB EPC ∠=∠,AP EP = ∴APC EPC ∆≅∆(AAS ), ………………1分 2.如图7,在直角梯形ABCD 中,90ABC ∠=︒,AD BC ∥,对角线AC 、BD 相交于点O .过点D 作DE BC ⊥,交AC 于点F . (1)联结OE ,若BE AOEC OF=,求证:OE CD ∥; (2)若AD CD =且BD CD ⊥,求证:AF DFAC OB=.【答案】(1)∵90ABD ∠=︒,BC DE ⊥∴//AB DE ………………………………………………………………(1分)∴AO BOOF OD = ………………………………………………………………(2分) ∵BE AOEC OF =∴AO BEOF EC =……… ………………………………………………………(2分)∴//OE CD …………………………………………………………………(1分) (2)∵BC AD //,//AB DE , ∴四边形ABED 为平行四边形 又∵90ABD ∠=︒∴四边形ABED 为矩形 ……………………………………………………(1分) ∴AD BE =,90ADE ∠=︒ 又∵CD BD ⊥∴90BDC BDE CDE ∠=∠+∠=︒ ︒=∠+∠=∠90BDE ADB ADE∴CDE ADB ∠=∠ …………………………………………………………(1分)AD CD =Q∴DCA DAC ∠=∠∴()A S A CDF ADO ..∆≅∆…………………………………………………(1分) ∴OD DF =DE AB //Θ∴AF BE ADAC BC BC ==…………………………………………………………(1分) ∵BC AD //∴BO DFBO OD BC AD ==…………………………………………………………(1分) ∴AF DFAC OB =…………………………………………………………………(1分) 3.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,若DBC CAD ∠=∠.(1)求证:ABCD 是正方形.(2)E 是OB 上一点,CE DH ⊥,垂足为H ,DH 与OC 相交于点F ,求证:OF OE =.【答案】(1)证明:∵四边形ABCD 是菱形,∴BC AD //,DAC BAD ∠=∠2,DBC ABC ∠=∠2………………………………..(2分)∴ο180=∠+∠ABC DAB …………………………………….(1分) ∵DBC CAD ∠=∠;∴ABC BAD ∠=∠……………………………(1分)∴ο1802=∠BAD ; ∴ο90=∠BAD ……………………………………1分) ∴四边形ABCD 是正方形………………………………………(1分) (2)证明:∵四边形ABCD 是正方形;∴BD AC ⊥,BD AC =,AC CO 21=,BO DO 21=…………………………………(1分)∴ο90=∠=∠DOC COB ,DO CO =………………………………………(1分) ∵CE DH ⊥,垂足为H ;∴ο90=∠DHE ,ο90=∠+∠DEH EDH ……………………………………………(1分)又∵ο90=∠+∠DEH ECO ;∴EDH ECO ∠=∠……………………………………………(1分) ∴ECO ∆≌FDO ∆………………………………………………(1分) ∴OF OE =……………………………………………(1分)4.已知:如图6,在直角梯形ABCD 中,AD BC P ,DC BC ⊥,AB AD =,AM BD ⊥,垂足为点M ,联结CM 并延长,交线段AB 于点N 求证:(1)ABD BCM ∠=∠ (2)..BC BN CN DM = 【答案】(1)∵AB AD =,AM BD ⊥∴M 是BD 中点,ABD ADB ∠=∠ ∵DC BC ⊥ ∴BM CM DM == ∴MBC MCB ∠=∠ ∵AD BC P ∴ADB DBC ∠=∠ ∴ABD BCM ∠=∠(2)∵ABD BCM ∠=∠,BNM BNM ∠=∠∴BNM CNB ∆∆: ∴BC CNBM BN=∵DM BM = ∴BC CNDM BN=∴..BC BN CN DM =5.已知:如图8,正方形ABCD ,点E 在边AD 上,AF BE ⊥,垂足为点F ,点G 在线段BF 上,BG AF =.(1)求证:CG BE ⊥;(2)如果点E 是AD 的中点,联结CF ,求证:CF CB =.【答案】(1)∵四边形ABCD 是正方形,∴AB BC =.90ABC??. ········· (1分) ∵AF ⊥BE ,∴90FAB FBA ∠+∠=︒.∵90FBA CBG ∠+∠=︒,∴FAB CBG ∠=∠. ······························ (1分) 又∵AF BG =,∴△AFB ≅△BGC . ············································ (2分) ∴AFB BGC ∠=∠. ····································································· (1分) ∵90AFB ∠=︒,∴90BGC ∠=︒,即CG ⊥BE . ····························· (1分) (2)∵ABF EBA ∠=∠,90AFB BAE ∠=∠=︒,∴△AEB ∽△FAB .∴AE AFAB BF=. ··············································· (3分) ABCDFG E图8∵点E 是AD 的中点,AD AB =,∴12AE AB =.∴12AF BF =. ················ (1分) ∵AF BG =,∴12BG BF =,即FG BG =.·········································· (1分) ∵CG ⊥BE ,∴CF CB =. ····························································· (1分)6. 如图5,平行四边形ABCD 的对角线BD AC 、交于点O ,点E 在边CB 的延长线上,且︒=∠90EAC ,EC EB AE ⋅=2. (1)求证:四边形ABCD 是矩形;(2)延长AE DB 、交于点F ,若AC AF =,求证:BF AE =.【答案】证明:(1)∵EC EB AE ⋅=2 ∴AEEB EC AE =又 ∵CEA AEB ∠=∠ ∴AEB ∆∽CEA ∆ (2分) ∴EAC EBA ∠=∠∵︒=∠90EAC ∴︒=∠90EBA (1分)又 ∵︒=∠+∠180CBA EBA ∴︒=∠90CBA (1分) ∵四边形ABCD 是平行四边形∴四边形ABCD 是矩形 (1分)(2)∵ AEB ∆∽CEA ∆ ∴ AC AB AE BE = 即 ACAE AB BE = , ECA EAB ∠=∠ (2分)∵四边形ABCD 是矩形 ∴BD AC = 又 ∵BD OB 21=, AC OC 21= 图5AB CDEF O∴OC OB = ∴ECA OBC ∠=∠ 又 ∵OBC EBF ∠=∠ ECA EBA ∠=∠ ∴EAB EBF ∠=∠又 ∵F F ∠=∠ ∴EBF ∆∽BAF ∆ (3分) ∴AB BE AF BF = ∴ACAEAF BF =(1分) ∵AC AF = ∴AE BF = (1分)7.如图,已知梯形ABCD 中,AD BC P , AB AC =,E 是边BC 上的点,且AED CAD ∠=∠, DE 交AC 于点F .(1) 求证:ABE DAF ∆∆:;(2) 当..AC FC AE EC =时,求证:AD BE =.【答案】(1)∵AD ∥BC ,∴∠CAD =∠ACB .∵AB =AC ,∴∠B =∠ACB ,∴∠CAD =∠B ∵∠AED =∠CAD ,∴∠B =∠AED∵∠AEC =∠B +∠BAE ,即∠AED +∠DEC =∠B +∠BAE , ∴∠BAE =∠DEC .BE(第23题图)在△AEB 与△EFC 中,B ACEBAE DEC∠=∠⎧⎨∠=∠⎩,∴AEB EFC ∆∆:.∵AD ∥BC ,∴DAF EFC ∆∆: ∴ABE DAF ∆∆:.(2) ∵AEB EFC ∆∆:,∴AB BEEC CF=即AB CF EC BE ⋅=⋅ ∵=AC CF AE EC AB AC ⋅=⋅且,∴AE=BE . ∴∠B =∠BAE∵∠BAE =∠FEC ,∴∠B =∠FEC . ∴AB ∥DE∵AD ∥BC ,∴四边形ABED 是平行四边形 ∴AD =BE .8.如图,已知□ABCD 中,AB=AC ,CO ⊥AD ,垂足为点O ,延长CO 、BA 交于点E ,联结DE .(1)求证:四边形ACDE 是菱形;(2)联结OB ,交AC 于点F ,如果OF=OC , 求证:22AB BF BO =⋅.【答案】证明:(1)∵四边形ABCD 是平行四边形∴AB ∥DC ,AB=DC ………………………………………………………………(1分) ∵AB=AC ,∴AC=DC ……………………………………………………………(1分)∵CO ⊥AD ,∴AO=DO …………………………………………………………(1分) ∵EO AOCO DO=,∴EO=CO ………………………………………………………(1分) ∴四边形ACDE 是平行四边形……………………………………………………(1分) ∵AC=DC ,∴四边形ACDE 是菱形……………………………………………(1分) (2)∵ OF=OC ,∴∠OFC=∠OCF ……………………………………………(1分) ∵AE=AC ,∴∠OCF=∠BEO∵∠OFC=∠BF A ,∴∠BF A=∠BEO …………………………………………(1分) ∵∠ABF=∠OBE …………………………………………………………………(1分) ∴△BF A ∽△BEO ,∴AB BFBO BE=………………………………………………(1分) ∴AB ·BE=BF ·BO ,∵AE=AC=AB ,∴BE=2AB ………………………………(1分) ∴22AB BF BO =⋅………………………………………………………………(1分)9.已知:如图10,在四边形ABCD 中,AD BC <,点E 在AD 的延长线上, ACE BCD ∠=∠,EC ED EA =⋅2. (1)求证:四边形ABCD 为梯形;(2)如果EC ABEA AC=,求证:AB ED BC =⋅2.【答案】(1)∵ ACE BCD ∠=∠,∴DCE BCA ∠=∠. ····························· (1分)图10A BCD E∵EC ED EA =⋅2,∴ED ECEC EA=. ···················································· (1分) 又∵E ∠是公共角,∴△EDC ∽△ECA . ············································ (1分) ∴DCE CAE ∠=∠. ······································································· (1分) ∴BCA CAE ∠=∠.∴AD ∥BC . ················································································ (1分) ∵AD BC <,∴AB 与CD 不平行.∴四边形ABCD 是梯形. ··································································· (1分) (2)∵△EDC ∽△ECA .∴EC CDEA AC=. ∵EC ABEA AC=,∴AB DC =. ························································· (1分) ∴四边形ABCD 是等腰梯形. ·························································· (1分) ∴B DCB ∠=∠. ········································································· (1分) ∵AD ∥BC .∴EDC DCB ∠=∠. ∴EDC B ∠=∠.∵ECD ACB ∠=∠,∴△EDC ∽△ABC . ······································ (1分) ∴ED DCAB BC=. ············································································· (1分) ∴AB ED BC =⋅2. ···································································· (1分)10.如图6,在矩形ABCD 中,点E 是边AB 的中点,△EBC 沿直线EC 翻折,使B 点落在矩形ABCD 内部的点P 处,联结AP 并延长AP 交CD 于点F ,联结BP 交CE 于点Q .(1)求证:四边形AECF 是平行四边形; (2)如果PE PA =,求证:△APB ≌△EPC .【答案】(1)证明:由翻折得:EC 垂直平分BP ………………1分∴EQ BQ = ………………1分∵点E 为AB 的中点,∴EB AE = ………………1分 ∴EQ 是△ABP 的中位线,∴EC ∥AF ,……………1分 ∵四边形ABCD 是矩形∴AE ∥FC ………………1分 ∴四边形AECF 是平行四边形. ………………1分(2)∵AE ∥FC ,∴EQB APB ∠=∠ ………………1分由翻折得: ︒=∠90EQB ,︒=∠90EPC∴︒=∠=∠90EPC APB ………………1分 由翻折得:EB PE =,BEC PEC ∠=∠∵PE PA =,EB AE =ABD CFP E Q图6 ABD CFP E Q图6∴AE PE PA ==∴△AEP 是等边三角形,∴︒=∠=∠60AEP PAB …………1分 ∵︒=∠+∠+∠180BEC PEC AEP∴︒=∠60PEC ………………1分 ∴PEC PAB ∠=∠ ………………1分 ∵PE PA =,∴△APB ≌△EPC ………………1分11.如图,在□ABCD 中,AC 与BD 相交于点O ,过点B 作BE ∥AC ,联结OE 交BC 于点F ,点F 为BC 的中点.(1)求证:四边形AOEB 是平行四边形;(2)如果∠OBC =∠E ,求证:=BO OC AB FC ⋅⋅.【答案】(1)证明:∵BE ∥AC ∴OC CFBE BF=∵点F 为BC 的中点 ∴CF=BF ∴OC=BE ∵四边形ABCD 是平行四边形 ∴AO=CO ∴AO=BE∵BE ∥AC ∴四边形AOEB 是平行四边形(2)证明:∵四边形AOEB 是平行四边形 ∴∠BAO =∠E ∵∠OBC =∠E ∴∠BAO =∠OBC∵∠ACB =∠BCO ∴△COB ∽△CBA ∴BO BCAB AC =∵四边形ABCD 是平行四边形 ∴AC =2OC ∵点F 为BC 的中点 ∴BC =2FC ∴BO FCAB OC= 即=BO OC AB FC⋅⋅12.已知:如图6,△ABC 内接于⊙O ,AB ﹦AC ,点E 为弦AB 的中点,AO 的延长线交BC 于点D ,联结ED .过点B 作BF ⊥DE 交AC 于点F .(1)求证:∠BAD ﹦∠CBF ; (2)如果OD ﹦DB .求证:AF =BF .【答案】证明:(1)∵AB ﹦AC , ∴»»AB AC =. ........................(1分) ∵直线AD 经过圆心O , ..................................................(1分) ∴AD ⊥BC ,BD=CD . ....................................................(1分) ∵点E 为弦AB 的中点,图6BCDEF OA·BCDEFO A· 12∴DE是△ABC的中位线.∴DE∥AC.......................................................................(1分)∵BF⊥DE,∴∠1=90°,∴∠2=90°.......................................................................(1分)∴∠CBF+∠ACB﹦90°.∵AB﹦AC,∴∠ABC﹦∠ACB, .....................................(1分)∴∠CBF+∠ABC﹦90°..................................................(1分)又∵AD⊥BC,∴∠BAD+∠ABC﹦90°,∴∠BAD﹦∠CBF..............................................................(1分)(2)联结OB.∵AD⊥BC,OD﹦DB,∴△ODB是等腰直角三角形...................................................................(1分)∴∠BOD﹦45°.∵OB=OA,∴∠OBA﹦∠OAB.∵∠BOD﹦∠OBA+∠OAB,∠BOD=22.5°.............................................................(1分)∴∠BAO=12∵AB=AC,且AD⊥BC,∴∠BAC=2∠BAO=45°.∵∠2=90°,即BF⊥AC,o o o o,..........................................................(1分)∴在△ABF中,∠ABF=180904545--=∴∠ABF=∠BAC,∴AF=BF.......................................................................................................(1分)13.如图6,已知四边形ABCD ,AD ∥BC ,对角线AC 、BD 交于点O ,DO =BO ,过点C作CE ⊥AC ,交BD 的延长线于点E ,交AD 的延长线于点F ,且满足DCE ACB ∠=∠.(1)求证:四边形ABCD 是矩形;(2)求证:DE ADEF CD=.【答案】证明:(1)∵AD ∥BC ,∴AD DOBC BO=, ∵DO =BO ,∴AD BC =,---(2分) ∴四边形ABCD 是平行四边形. ---------------------------------------------------------------(1分) ∵CE ⊥AC ,∴90ACD DCE ∠+∠=︒,∵DCE ACB ∠=∠,∴90ACB ACD ∠+∠=︒,即90BCD ∠=︒,-------------------(2分) ∴四边形ABCD 是矩形. -----------------------------------------------------------------------(1分)(2)∵四边形ABCD 是矩形,∴AC BD =,90ADC ∠=︒-----------------------(2分) ∵AD ∥BC ,∴DE EFBD FC=.------------------------------------------------------------(1分) ∴DE EFAC FC=,------------------------------------------------------------------------------(1分) ∴DE ACEF FC=,∵90ADC ACF ∠=∠=︒, ∴cot AC ADDAC FC CD∠==,-----------------------------------------------------------(1分) ∴DE ADEF CD=.----------------------------------------------------------------------------(1分)14.已知:如图,在△ABC 中,AB =BC ,∠ABC =90°,点D 、E 分别是边AB 、BC 的中点,点F 、G 是边AC 的三等分点,DF 、EG 的延长线相交于点H ,联结HA 、HC . 求证:(1)四边形FBGH 是菱形; (2)四边形ABCH 是正方形.【答案】证明(1):∵点F 、G 是边AC 的三等分点,∴F 、G 分别是AG 、CF 的中点, ∵点D 是AB 的中点,∴DF //BG ,即FH //BG . ........................ (2分)同理: GH // BF . ........................................................................... (1分) ∴四边形FBGH 是平行四边形. .................................................. (1分) ∵AB =BC ,∴∠BAC =∠ACB .∵点F 、G 是边AC 的三等分点,∴AF =CG .∴△ABF ≌△CBG . ∴BF =BG. ...................................................... (1分) ∴平行四边形FBGH 是菱形. ....................................................... (1分)证明(2)联结BH ,交FG 于点O ,∵四边形FBGH 是平行四边形,∴OB =OH ,OF =OG . ............ (2分) ∵AF =CG ,∴OA =OC . ................................................................. (1分) ∴四边形ABCH 是平行四边形. .................................................. (1分)(第23题图)ADHECFG∵∠ABC =90°,∴平行四边形ABCH 是矩形. ............................ (1分) ∵AB =BC ,∴矩形ABCH 是正方形. ........................................... (1分)15.如图,已知四边形ABCD 是菱形,对角线AC 、BD 相交于点O ,BD = 2AC .过点A 作AE ⊥CD ,垂足为点E ,AE 与BD 相交于点F .过点C 作CG ⊥AC ,与AE 的延长线相交于点G .求证:(1)△ACG ≌△DOA ;(2)2DF BD DE AG ⋅=⋅.【答案】证明:(1)在菱形ABCD 中,AD = CD ,AC ⊥BD ,OB = OD .∴ ∠DAC =∠DCA ,∠AOD = 90°.……………………………(1分) ∵ AE ⊥CD ,CG ⊥AC ,∴ ∠DCA +∠GCE = 90°,∠G +∠GCE = 90°.∴ ∠G =∠DCA .…………………………………………………(1分) ∴ ∠G =∠DAC .…………………………………………………(1分) ∵ BD = 2AC ,BD = 2OD ,∴ AC = OD . ……………………(1分) 在△ACG 和△DOA 中,∵ ∠ACG =∠AOD ,∠G =∠DAC ,AC = OD ,∴ △ACG ≌△DOA . ……………………………………………(2分)ABCDOE GF (第23题)(2)∵ AE ⊥CD ,BD ⊥AC ,∴ ∠DOC =∠DEF = 90°.…………(1分) 又∵ ∠CDO =∠FDE ,∴ △CDO ∽△FDE .…………………(1分)∴CD ODDF DE=.即得 OD DF DE CD ⋅=⋅. ……………………(2分) ∵ △ACG ≌△DOA ,∴ AG = AD = CD . ……………………(1分) 又∵ 12OD BD =,∴ 2DF BD DE AG ⋅=⋅.…………………(1分) 16.已知:如图9,在菱形ABCD 中,AB =AC ,点E 、F 分别在边AB 、BC 上,且AE =BF ,CE 与AF 相交于点G . (1)求证:∠FGC =∠B ;(2)延长CE 与DA 的延长线交于点H ,求证:.【答案】证明:(1)∵四边形ABCD 是菱形,∴AB =BC . ······································································ (1分)∵AB =AC ,∴AB =BC =AC ,∴∠B =∠BAC =60°. ······················ (1分) 在△EAC 与△FBA 中,∵EA =FB ,∠EAC =∠FBA ,AC =BA ,∴△EAC ≌△FBA , ····························································· (1分) ∴∠ACE =∠BAF ,····························································· (1分) ∵∠BAF+∠F AC =60°,∴∠ACE +∠F AC =60°,∴∠FGC =60°, ·· (1分) ∴∠FGC =∠B . ································································ (1分) (2)∵四边形ABCD 是菱形,BE CH AF AC ⋅=⋅GF EDA BC图9∴∠B =∠D ,AB =DC ,AB //DC , ··········································· (1分) ∴∠BEC =∠HCD , ···························································· (1分) ∴△BEC ∽△DCH , ·························································· (1分) ∴=BE ECDC CH, ································································ (1分) ∴⋅=⋅BE CH EC DC .∵AB =AC ,∴CD =AC , ······················································ (1分) ∵△EAC ≌△FBA , ∴EC =F A ,∴⋅=⋅BE CH AF AC . ···················································· (1分)。

2019年4月上海虹口区九年级初三二模数学试卷及参考答案(word版)

2019年4月上海虹口区九年级初三二模数学试卷及参考答案(word版)

2019年上海市虹口区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.] 1.32()a 的计算结果为A .5a ;B .6a ;C .8a ;D .9a . 2.方程13x -= 的解为A .4x =;B .7x =;C .8x =;D .10x =.3.已知一次函数(3)3y a x =-+,如果y 随自变量x 的增大而增大,那么a 的取值范围为A .3a <;B .3a >;C .3a <-;D .3a >-.4.下列事件中,必然事件是A .在体育中考中,小明考了满分;B .经过有交通信号灯的路口,遇到红灯;C .抛掷两枚正方体骰子,点数和大于1;D .四边形的外角和为180度. 5.正六边形的半径与边心距之比为A .1:3;B .3:1;C .3:2;D .2:3.6.如图,在△ABC 中,AB =AC ,BC=4,tan B =2,以AB 的中点D 为圆心,r 为半径作⊙D ,如果点B 在⊙D 内,点C 在⊙D 外,那么r 可以取 A .2; B .3;C .4;D .5.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.计算:12-= ▲ .8. 在数轴上,表示实数25-的点在原点的 ▲ 侧(填“左”或“右”). 9.不等式24x ->- 的正整数解为 ▲ .10.如果关于x 的方程2690kx x -+=有两个相等的实数根,那么k 的值为 ▲ . 11.如果反比例函数的图像经过(1,3),那么该反比例函数的解析式为 ▲ . 12.如果将抛物线22y x =向左平移3个单位,那么所得新抛物线的表达式为 ▲ .13. 一个不透明的袋中装有4个白球和若干个红球,这些球除颜色外其他都相同,摇匀后随机摸出一个球,如果摸到白球的概率为0.4,那么红球有 ▲ 个.A CD 第6题图B①② 14. 为了了解初三毕业班学生一分钟跳绳次数的情况,某校抽取了一部分初三毕业生进行一分钟跳绳次数的测试,将所得数据进行处理,共分成4组,频率分布表(不完整)如下表所示.如果次数在110次(含110次)以上为达标,那么估计该校初三毕业生一分钟跳绳次数的达标率约为 ▲ .第14题表15.已知两圆外切,圆心距为7,其中一个圆的半径为3,那么另一个圆的半径长为 ▲ .16.如图,AD ∥BC ,BC =2AD ,AC 与BD 相交于点O ,如果AO a =u u u r r ,OD b =u u u r r,那么用a r 、b r 表示向量AB u u u r是 ▲ . 17.我们知道,四边形不具有稳定性,容易变形.一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把1cos α的值叫做这个平行四边形的变形度.如图,矩形ABCD 的面积为5,如果变形后的平行四边形A 1B 1C 1D 1的面积为3,那么这个平行四边形的变形度为 ▲ .18.如图,在矩形ABCD 中,AB =6,点E 在边AD 上且AE =4,点F 是边BC 上的一个动点,将四边形ABFE 沿EF 翻折,A 、B 的对应点A 1、B 1与点C 在同一直线上,A 1B 1与边AD 交于点G ,如果DG =3,那么BF 的长为 ▲ .三、解答题(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:35(2)242m m m m -÷+---,其中23m =-.20.(本题满分10分)解方程组:22560,312.x xy y x y ⎧--=⎨-=⎩第17题图ABC D D 1A 1B 1C 1C第18题图ABDE21.(本题满分10分,第(1)小题3分,第(2)小题7分)如图,在锐角△ABC中,小明进行了如下的尺规作图:①分别以点A、B 为圆心,以大于12AB的长为半径作弧,两弧分别相交于点P、Q ;②作直线PQ分别交边AB、BC于点E、D.(1)小明所求作的直线DE是线段AB的▲;(2)联结AD,AD=7,sin∠DAC17=,BC=9,求AC的长.22.(本题满分10分,第(1)小题6分,第(2)小题4分)甲、乙两组同时加工某种零件,甲组每小时加工80件,乙组加工的零件数量(件)与时间(小时)为一次函数关系,部分数据如下表所示.x(小时)2 4 6y(件)50 150 250(1)求y与x之间的函数关系式;(2)甲、乙两组同时生产,加工的零件合在一起装箱,每满340件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在□ABCD中,AC与BD相交于点O,过点B作BE∥AC,联结OE交BC于点F,点F为BC的中点.(1)求证:四边形AOEB是平行四边形;(2)如果∠OBC =∠E,求证:=BO OC AB FC⋅⋅.OE 第23题图CABDFC 第21题图DBAEPQE 第25题图CABD QFPG24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在平面直角坐标系xOy 中,抛物线2+8y ax bx =+与x 轴相交于点A (-2,0)和点B (4,0),与y 轴相交于点C ,顶点为点P .点D (0,4)在OC 上,联结BC 、BD . (1)求抛物线的表达式并直接写出点P 的坐标; (2)点E 为第一象限内抛物线上一点,如果△COE 与△BCD 的面积相等,求点E 的坐标; (3)点Q 在抛物线对称轴上,如果△BCD ∽△CPQ ,求点Q 的坐标.25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)如图,AD ∥BC ,∠ABC =90°,AD =3,AB =4,点P 为射线BC 上一动点,以P 为圆心,BP 长为半径作⊙P ,交射线BC 于点Q ,联结BD 、AQ 相交于点G ,⊙P 与线段BD 、AQ 分别相交于点E 、F .(1)如果BE=FQ ,求⊙P 的半径;(2)设BP=x ,FQ=y ,求y 关于x 的函数关系式,并写出x 的取值范围; (3)联结PE 、PF ,如果四边形EGFP 是梯形,求BE 的长.第24题图 xB O CD A y P2019年上海市虹口区中考数学二模试卷参考答案一、选择题(本大题共6题,每题4分,满分24分)1.B 2.D 3.A 4.C 5.D 6.B二、填空题本大题共12题,每题4分,满分48分)7.12 8.左9.x =1 10.1 11.3y x= 12.22+3y x =() 13.6 14.92%15.4 16.2a b -r r 17. 5418.8-三、解答题(本大题共7题,满分78分)19.解:原式=2345()222m m m m ---÷--()3222(3)(3)m m m m m --=⋅-+-()12(+3)m =-当3m =时, 原式=4-20.解:由①得,60x y -=或+0x y =将它们与方程②分别组成方程组,得: 60,312.x y x y -=⎧⎨-=⎩ +0,312.x y x y =⎧⎨-=⎩分别解这两个方程组, 得原方程组的解为1124,4;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=-⎩.(代入消元法参照给分)21.解:(1)垂直平分线(或中垂线) (2)过点D 作DF ⊥AC ,垂足为点F∵DE 是线段AB 的垂直平分线 ∴AD =BD =7 ∴2CD BC BD =-=在Rt △ADF 中,1sin 717DF AD DAC =⋅∠=⨯=在Rt △ADF中,AF ==同理,CF =∴AC =22.解:(1)设y 与x 之间的函数关系式为(0)y kx b k =+≠把(2,50)(4,150)代入 得50=2,1504.k b k b +⎧⎨=+⎩解得=50,=50.k b -⎧⎨⎩ ∴y 与x 之间的函数关系式为5050y x =-. (2)设经过x 小时恰好装满第1箱根据题意得805050340x x +-= ∴3x = 答:经过3小时恰好装满第1箱.23.(1)证明:∵BE ∥AC ∴OC CFBE BF=∵点F 为BC 的中点 ∴CF=BF ∴OC=BE ∵四边形ABCD 是平行四边形 ∴AO=CO ∴AO=BE∵BE ∥AC ∴四边形AOEB 是平行四边形(2)证明:∵四边形AOEB 是平行四边形 ∴∠BAO =∠E ∵∠OBC =∠E ∴∠BAO =∠OBC∵∠ACB =∠BCO ∴△COB ∽△CBA ∴BO BC AB AC =∵四边形ABCD 是平行四边形 ∴AC =2OC ∵点F 为BC 的中点 ∴BC =2FC ∴BO FC AB OC= 即=BO OC AB FC⋅⋅24.解:(1)把点A (-2,0)和点B (4,0)代入2+8y ax bx =+得0428,01648.a b a b =-+⎧⎨=++⎩ 解得1,2.a b =-⎧⎨=⎩∴228y x x =-++ ∴P (1,9)(2)可得点C (0,8)设E (2,28x x x -++)(x >0) 根据题意COE BCD S S =V V∴1144822x⨯⨯=⨯⋅ 解得2x =E (2,8) (3)设点M 为抛物线对称轴上点P 下方一点可得tan ∠CPM =tan ∠ODB =1 ∴∠CPM =∠ODB=45°∴点Q 在抛物线对称轴上且在点P 的上方 ∴∠CPQ =∠CDB =135° ∵△BCD ∽△CPQ ①CP PQ CD BD=∴4=解得2PQ =∴点Q (1,11)②CP PQ BD CD =4PQ = 解得1PQ =∴点Q (1,10)综上所述,点Q (1,11)或(1,10)25.(1)∵BE=FQ ∴∠BPE =∠FPQ∵PE=PB ∴∠EBP =12(180°-∠EPB ) 同理∠FQP =12(180°-∠FPQ ) ∴∠EBP=∠FQP ∵AD ∥BC ∴∠ADB =∠EBP ∴∠FQP =∠ADB ∴tan ∠FQP =tan ∠ADB =43设⊙P 的半径为r∴4432r = 解得r =32∴⊙P 的半径为32(2)过点P 作PM ⊥FQ ,垂足为点M在Rt △ABQ 中,cos AQB ∠==在Rt △PQM 中,2cos QM PQ AQB =∠∵PM ⊥FQ ∴FQ =2QM 2=∴y =(2506x <≤) (3)设BP=x①EP ∥AQ∴∠EPB =∠AQB ∴tan ∠EPB =tan ∠AQB可求得tan ∠EPB =247∴24472x = 解得712x = ∴67510BE x ==②PF ∥BD∴∠DBC =∠FPQ ∴tan ∠DBC =tan ∠FPQ 过点F 作FN ⊥PQ ,垂足为点N 可得35PN x =,45FN x =∴25QN x =FQ =2= 解得x =1∴6655BE x == 综上所述710BE =或65。

上海市2019年初三下学期数学二模汇编:25题压轴题(K12教育文档)

上海市2019年初三下学期数学二模汇编:25题压轴题(K12教育文档)

上海市2019年初三下学期数学二模汇编:25题压轴题(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(上海市2019年初三下学期数学二模汇编:25题压轴题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为上海市2019年初三下学期数学二模汇编:25题压轴题(word版可编辑修改)的全部内容。

上海市2019年中考数学二模汇编:25题压轴题闵行25.(本题共3小题,其中第(1)小题各4分,第(2)、(3)小题各5分,满分14分)如图1,点P 为∠MAN 的内部一点.过点P 分别作PB ⊥AM 、PC ⊥AN ,垂足分别为点B 、C .过点B 作BD ⊥CP ,与CP 的延长线相交于点D .BE ⊥AP ,垂足为点E .(1)求证:∠BPD =∠MAN ;(2)如果sin MAN ∠=,AB =BE = BD ,求BD 的长;(3)如图2,设点Q 是线段BP 的中点.联结QC 、CE ,QC 交AP 于点F .如果 ∠MAN = 45°,且BE // QC ,求PQF CEFS S ∆∆的值.宝山25.(本题满分14分,第(1)、第(2)小题满分各4分,第(3)小题满分6分)如图已知: AB 是圆O 的直径,AB=10,点C 为圆O 上异于点A 、B 的一点,点M 为弦BC 的中点. (1)如果AM 交OC 于点E ,求OE:CE 的值; (2)如果AM ⊥OC 于点E ,求∠ABC 的正弦值;(3)如果AB :BC=5:4,D 为BC 上一动点,过D 作DF ⊥OC ,交OC 于点H ,与射线BO 交于圆内MN A B CDP(图1)EE M(图2)ANQFPCDB探究一:设BD=x,FO=y,求y关于x的函数解析式及其定义域.探究二:如果点D在以O为圆心,OF为半径的圆上,写出此时BD的长度.崇明25.(本题满分14分,其中第(1)、(2)小题满分各4分,第(3)小题满分6分)如图9,在梯形ABCD中,AD BC∥,8AB DC==,12BC=,3cos5C=,点E为AB边上一点,且2BE=.点F是BC边上的一个动点(与点B、点C不重合),点G在射线CD上,且EFG B∠=∠.设BF的长为x,CG的长为y.(1)当点G在线段DC上时,求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当以点B为圆心,BF长为半径的⊙B与以点C为圆心,CG长为半径的⊙C相切时,求线段BF的长;(3)当CFG△为等腰三角形时,直接写出线段BF的长.DAG奉贤25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图10,已知△ABC ,AB3BC,∠B =45°,点D 在边BC 上,联结AD , 以点A 为圆心,AD 为半径画圆,与边AC 交于点E ,点F 在圆A 上,且AF ⊥AD .(1)设BD 为x ,点D 、F 之间的距离为y ,求y 关于x 的函数解析式,并写出定义域; (2)如果E 是DF 的中点,求:BD CD 的值;(3)联结CF ,如果四边形ADCF 是梯形,求BD 的长 .金山25. 如图,在ABC Rt ∆中, 90=∠C ,16=AC cm,20=AB cm ,动点D 由点C 向点A 以每秒cm 1速度在边AC 上运动,动点E 由点C 向点B 以每秒cm 34速度在边BC 上运动,若点D ,点E 从点C 同时出发,运动t 秒(0>t ),联结DE .(1)求证:DCE ∆∽BCA ∆.图10ABCDE第25题备用图①当⊙P 与边AB 相切时,求t 的值.②在点D 、点E 运动过程中,若⊙P 与边AB 交于点F 、G (点F 在点G 左侧),联结CP 并延长CP 交边AB 于点M ,当PFM ∆与CDE ∆相似时,求t 的值。

2019年上海中考二模真题数学松江区参考答案

2019年上海中考二模真题数学松江区参考答案

2019年松江区初中毕业生学业模拟考试初三数学参考答案及评分说明一、选择题:1.B ; 2.C ; 3.B ; 4.A ; 5.D ; 6.C .二、填空题:7.6;8.()()222-+a a b ;9.1=x ;10.12<≤-x ;11.>;12.23+=x y ;13.8;14.28;15.60;16.2+;17.12;18.3.三、解答题:19.解:原式=324132333-+-+-+………………………………(8分)=2……………………………………………………………………(2分)20.解:由②得13=-y x ,13-=-y x …………………………………(4分)则原方程组化为⎩⎨⎧=-=+1362y x y x⎩⎨⎧-=-=+1362y x y x ……………………………(2分) 解这两个方程组得原方程组的解为⎩⎨⎧==14y x ⎪⎪⎩⎪⎪⎨⎧==57516y x ……………………(4分)∴原方程组的解为⎩⎨⎧==14y x ⎪⎪⎩⎪⎪⎨⎧==57516y x21.解:∵AB ∥CD ,∴∠ABD =∠CDB …………………………………………(1分) ∵AB ∥CD ,BC ⊥AB ,∴BC ⊥CD ………………………………………………(1分) ∵AD ⊥BD ,∴∠ADB=∠BCD=90°……………………………………………(1分) ∴∠A =∠DBC ……………………………………………………………………(1分) 在Rt △ADB 中,ABBDA =sin ……………………………………………………(1分) ∵BD =6,sin A =32,∴AB=9……………………………………………………(1分) 在Rt △BCD 中,BDDCDBC =∠sin ……………………………………………(1分) ∵32sin sin ==∠A DBC ,∴DC=4…………………………………………(1分) ∴52=BC ……………………………………………………………………(1分) ∴()()51352942121=⨯+=⋅+=BC AB DC S ABCD 梯形………………(1分)22.(1)设y 与x 之间的函数解析式为()0≠+=k b kx y ……………………(1分) ∵函数图像过(10,0),(0,600) ∴⎩⎨⎧==+600010b b k …………………………………………………………………(1分)解得⎩⎨⎧=-=60060b k ……………………………………………………………………(1分)∴60060+-=x y ………………………………………………………………(1分) (2)设小军用了t 分钟追上小明………………………………………………(1分) 由题意得60(t +3)=60×1.5t ……………………………………………………(3分) 解得t =6……………………………………………………………………………(1分)()60600360=++⨯-=t y (米)……………………………………………(1分)答:小军用了6分钟追上小明,此时他们距离体育中心60米.23.证明:(1)∵四边形ABCD 是平行四边形∴AB ∥DC ,AB=DC ………………………………………………………………(1分) ∵AB=AC ,∴AC=DC ……………………………………………………………(1分) ∵CO ⊥AD ,∴AO=DO …………………………………………………………(1分) ∵EO AOCO DO=,∴EO=CO ………………………………………………………(1分) ∴四边形ACDE 是平行四边形……………………………………………………(1分) ∵AC=DC ,∴四边形ACDE 是菱形……………………………………………(1分) (2)∵ OF=OC ,∴∠OFC=∠OCF ……………………………………………(1分) ∵AE=AC ,∴∠OCF=∠BEO∵∠OFC=∠BF A ,∴∠BF A=∠BEO …………………………………………(1分) ∵∠ABF=∠OBE …………………………………………………………………(1分) ∴△BF A ∽△BEO ,∴AB BFBO BE=………………………………………………(1分) ∴AB ·BE=BF ·BO ,∵AE=AC=AB ,∴BE=2AB ………………………………(1分) ∴22AB BF BO =⋅………………………………………………………………(1分)24.解:(1)∵抛物线经过点A (6,0)、B (3,32) ∴3624039122a c a c ++=⎧⎪⎨++=⎪⎩…………(1分)解得126a c ⎧=-⎪⎨⎪=-⎩……………………(1分)∴抛物线的表达式为21462y x x =-+-………………………………………(1分)(2)过点B 作BE ⊥x 轴,垂足为E ,∵A (6,0)、B (3,32) ∴OA=6,OE=3,32BE =,∵BE ∥y 轴 ∴BE AEDO AO =……………………………………………………………………(1分) ∴3326DO =,∴DO=3……………………………………………………………(1分) ∵C (0,-6),∴DC=9……………………………………………………………(1分) ∴27692121=⨯⨯=⋅=∆OA DC S ADC ………………………………………(1分)(3)∵A (6,0),C (0,-6),∴OA=OC ,∴∠OAC=∠OCA=45°………(1分) ∵△OAP 和△DCA 相似,∴AO AP CD CA =或AO APCA CD=……………………(2分) 过点P 作PF ⊥x 轴,垂足为F ① 当AO AP CD CA =时,69=AP =,则AF=PF=4,∴OF=2 ∴P (2,—4)……………………………………………………………………(1分) ② 当AO AP CA CD =9AP=,2AP =则92AF PF == ,∴32OF = ∴P 39(,)22-………………………………………………………………………(1分)25.解:(1)联结OA ……………………………………………………………(1分) 设OA=OB=r ,∵BC=16,∴OC=16-r …………………………………………(1分) ∵在Rt △ABC 中,∠ACB=90°,AC=24∴(()22216r r +-=………………………………………………………(1分)解得r=9……………………………………………………………………………(1分) ∴OB=9(2)联结OP ,交AB 于点E ,过点P 作PF ⊥CB ,垂足为F ∵P 是弧AB 的中点,OP 过圆心∴OP ⊥AB …………………………………………………(1分)∴∠PFO=∠BEO=90°,∴∠OPF=∠EBO ……………(1∵∠PFO=∠BCA=90°,∴△PFO ∽△BCA∴AC OF BC PF BA PO ==………………………………(1分) ∵AC=24,BC=16,AB=212∴26=PF ,3=OF ……………………………(1∴CF=10 ∴tan PF PCB CF ∠===1分) (3)过点O 作OH ⊥PB ,垂足为H ,联结OA ∵BA 平分∠PBC ,∴∠PBA=∠CBA ∵OA=OB ,∴∠OBA=∠OAB∴∠PBA=∠OAB ,∴OA ∥BD ………………………(1分)∴CBCOBD OA =,∵OA=9,CO=7,CB=16 ∴BD=7144……………………………………………(1分)∵∠ACO=∠OHB=90°,∠AOC=∠HBO ,OA=OB ∴△ACO ≌△OHB∴OC=BH=7……………………………………………(1分) ∵OD 过圆心,∴PH=BH ,∴PB=14………………(1分) ∴746=PD ……………………………………………(1分) DHP·(第25题图)OBCA。

2019年上海各区初三二模数学试卷19--21题专题汇编(学生版)

2019年上海各区初三二模数学试卷19--21题专题汇编(学生版)

2019年上海各区初三二模数学试卷19--21题专题汇编(学生版)静安区19.(本题满分10分)计算:12241)1-++-20.(本题满分10分)解方程组:226,3100.x yx xy yì-=ïí+-=ïî21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)一个水库的水位在某段时间内持续上涨,表2记录了连续5小时内6个时间点的水位高度,其中x表示时间,y表示水位高度.(1)通过观察数据,请写出水位高度y与时间x的函数解析式(不需要写出定义域);(2)据估计,这种上涨规律还会持续,并且当水位高度达到8米时,水库报警系统会自动发出警报.请预测再过多久系统会发出警报.表2嘉定区19.(本题满分10分)计算:220)3(60tan 21)21()2018(π-+︒+-+--.20.(本题满分10分)解方程:21224162+--+=-x x x x .21.(本题满分10分,第(1)小题5分、第(2)小题5分)如图4,在△ABC 中,AD 是边BC 上的高,点E 是边AC 的中点,11=BC ,12=AD ,四边形DFGH 是边长为4的正方形,其中点F 、G 、H 分别在AD 、AB 、BC 上.(1)求BD 的长度; (2)求EDC ∠cos 的值.普陀区19.(本题满分10分)计算:312019212sin 60227(1)2-⎛⎫︒-+--- ⎪⎝⎭.20.(本题满分10分)解方程:242193x x x =--+.AG B HD F EC图421.(本题满分10分)如图8,已知点D 、E 分别在△ABC 的边AB 和AC 上,DE //BC ,13DE BC =,△ADE 的面积等于3.(1)求△ABC 的面积; (2)如果9BC =,且2cot 3B =,求AED ∠的正切值. 徐汇区19.(本题满分10分)计算:()()12831233-+-+---20.(本题满分10分)解方程组:22222021,.x xy y x xy y ⎧--=⎪⎨++=⎪⎩A BCDE图8BO CAABCDE第21题图21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,已知⊙O 的弦AB 长为8,延长AB 至C ,且BC =12AB , tanC =12. 求:(1)⊙O 的半径;(2)点C 到直线AO 的距离.金山区19. 计算:()()()1212312283-++-++.20. 解方程:142212=---x xx .21. 已知:如图,在ABC Rt ∆中,ο90=∠ACB ,D 是边AB 的中点,CB CE =,5=CD ,53sin =∠ABC .求:(1)BC 的长. (2)E tan 的值.(第21题图)崇明19.(本题满分10分)先化简,再求值:2221(1)121a a a a a a +-÷+---+,其中a =.20.(本题满分10分)解方程组224;20.x y x xy y +=⎧⎨+-=⎩21.(本题满分10分,每小题满分各5分)①② 如图5,已知ABC △中,6AB =,30B ∠=︒,3tan 2ACB ∠=. (1)求边AC 的长;(2)将ABC △沿直线l 翻折后点B 与点A 重合, 直线l 分别与边AB 、BC 相交于点D 、E ,求BEEC的值.虹口区19.(本题满分10分) 先化简,再求值:35(2)242m m m m -÷+---,其中23m =-.20.(本题满分10分)解方程组:22560,312.x xy y x y ⎧--=⎨-=⎩21.(本题满分10分,第(1)小题3分,第(2)小题7分)如图,在锐角△ABC 中,小明进行了如下的尺规作图:①分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧分别相交于点P 、Q ;②作直线PQ 分别交边AB 、BC 于点E 、D . (1)小明所求作的直线DE 是线段AB 的 ▲ ; (2)联结AD ,AD=7,sin ∠DAC 17=,BC =9,求AC 的长.ABC图5C第21题图DBAEPQ黄浦区19.(本题满分10分)计算: ()()133tan 60cos3271301902-+--︒-︒.20.(本题满分10分)解方程:22161242x x x x +-=--+.21.(本题满分10分)如图4,已知O e 是ABC ∆的外接圆,圆心O 在ABC ∆的外部,4AB AC ==,43BC =,求O e 的半径.ABCO图4青浦19.(本题满分10分)计算:.20.(本题满分10分)解方程组:21.(本题满分10分,第(1)、(2)小题,每小题5分)如图7,在△ABC 中,∠C =90°,AB 的垂直平分线分别交边BC 、AB 于点D 、E ,联结AD . (1)如果∠CAD ∶∠DAB =1∶2,求∠CAD 的度数; (2)如果AC =1,,求∠CAD 的正弦值.①② 22602 1.x xy y x y ⎧+-=⎨+=⎩;EDABC图7宝山19.(本题满分10分)计算:202)3(30cot 21)2019(21π-+︒+--+⎪⎭⎫ ⎝⎛-.21.(本题满分10分)解方程:214162++-x x =22-+x x21.(本题满分10分,第(1)、第(2)小题满分各5分)如图已知:△ABC 中,AD 是边BC 上的高、E 是边AC 的中点, BC =11,AD =12,DFGH 为边长为4的正方形,其中点F 、G 、H 分别在AD 、AB 、BC 上.(1)求BD 的长度; (2)求cos ∠EDC 的值.第21题图松江19.(本题满分10分) 计算:()()121227+3116+23---+20.(本题满分10分) 解方程组:2226691x y x xy y +=⎧⎨-+=⎩21.(本题满分10分)在梯形ABCD 中,AB ∥CD ,BC ⊥AB ,且AD ⊥BD ,BD =6,sin A =32,求梯形ABCD 的面积.②① (第21题图)CBAD图6DCB AEF奉贤19.(本题满分10分)先化简,再求值:22693111x x x x x x x -+--?--+,其中2x =20.(本题满分10分) 解方程组:226,320.x y x xy y +=⎧⎨-+=⎩21.(本题满分10分,每小题5分)如图6,已知梯形ABCD 中,AD//BC ,∠ABC=90°,BC =2AB =8,对角线AC 平分∠BCD ,过点D 作DE ⊥AC ,垂足为点E ,交边AB 的延长线于点F ,联结CF . (1)求腰DC 的长; (2)求∠BCF 的余弦值.闵行19.(本题满分10分)先化简,再求值:2214422x x xx x x x-÷-++++,其中21x=-.20.(本题满分10分)解不等式组:62442133x xx x->-⎧⎪⎨≥-⎪⎩,,并把解集在数轴上表示出来.21.(本题共2小题,每小题5分,满分10分)如图,在△ABC中,AB = AC,BC = 10,5cos13ABC∠=,点D是边BC的中点,点E在边AC上,且23AEAC=,AD与BE相交于点F.求:(1)边AB的长;(2)EFBF的值.-1-2012(第20题图)AB C(第21题图)EDF杨浦19.(本题满分10分)计算:2301(3)()(32)4cos3023--+--︒+.20.(本题满分10分)已知关于x ,y 的二元一次方程组2213ax by a x b y ab +=⎧⎨-=+⎩,的解为11.x y =⎧⎨=-⎩,求a 、b 的值.21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)已知在梯形ABCD 中,AD //BC ,AB =BC ,DC ⊥BC ,且AD =1,DC =3,点P 为边AB 上一动点,以P 为圆心,BP 为半径的圆交边BC 于点Q . (1)求AB 的长;(2)当BQ 的长为409时,请通过计算说明圆P 与直线DC 的位置关系.长宁19.(本题满分10分)A BCD Q.P先化简,再求值:)44(24222-+÷+-x x xx x ,其中3=x .20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧≤--->- 1223)1(3)6(2 . ,x x x x ,并把解集在数轴上表示出来.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在Rt ABC ∆中,︒=∠90ACB ,4=AC ,3=BC ,点D 是边AC 的中点,BD CF ⊥,垂足为点F ,延长CF 与边AB 交于点E . 求:(1)ACE ∠的正切值; (2)线段AE 的长.43 2 10 -4 -3 -2 -1 图4ACBD E F。

2019年上海各区初三二模数学试卷23题专题汇编(学生版)

2019年上海各区初三二模数学试卷23题专题汇编(学生版)

2019年上海各区初三二模数学试卷23题专题汇编(学生版)崇明23.(本题满分12分,每小题满分各6分)如图7,在直角梯形ABCD 中,90ABC ∠=︒,AD BC ∥,对角线AC 、BD 相交于点O . 过点D 作DE BC ⊥,交AC 于点F . (1)联结OE ,若BE AOEC OF=,求证:OE CD ∥; (2)若AD CD =且BD CD ⊥,求证:AF DFAC OB=.ABCDOE F图7奉贤23.(本题满分12分,每小题满分各6分)已知:如图8,正方形ABCD ,点E 在边AD 上,AF ⊥BE ,垂足为点F ,点G 在线段BF 上,BG=AF .(1)求证:CG ⊥BE ;(2)如果点E 是AD 的中点,联结CF ,求证:CF=CB .ABCD FG E 图8闵行(本题共2小题,每小题6分,满分12分)如图,已知四边形ABCD 是菱形,对角线BD AC 、相交于点O ,AC BD 2=,过点A 作CD AE ⊥,垂足为点E ,AE 与BD 相交于点F ,过点C 作AC CG ⊥,与AE 的延长线相交于点G . 求证:(1)DOA ACG ∆∆≌;(2)AG DE BD DF ⋅=⋅2嘉定23.(本题满分12分,第(1)小题6分、第(2)小题6分)如图6,在矩形ABCD 中,点E 是边AB 的中点,△EBC 沿直线EC 翻折,使B 点落在矩形ABCD 内部的点P 处,联结AP 并延长AP 交CD 于点F ,联结BP 交CE 于点Q . (1)求证:四边形AECF 是平行四边形; (2)如果PE PA ,求证:△APB ≌△EPC .AB DCF PEQ图6黄埔23.(本题满分12分)如图6,已知四边形ABCD,AD∥BC,对角线AC、BD交于点O,DO=BO,过点C作CE∥AC,交BD的延长线于点E,交AD的延长线于点F,且满足DCE ACB∠=∠.(1)求证:四边形ABCD是矩形;(2)求证:DE ADEF CD=.AB CDEF图6OA B CD OE HF 第23题图金山22. 已知:如图,菱形ABCD 的对角线AC 与BD 相交于点O ,若DBC CAD ∠=∠.(1)求证:ABCD 是正方形.(2)E 是OB 上一点,CE DH ⊥,垂足为H ,DH 与OC 相交于点F ,求证:OF OE =.普陀23.(本题满分12分)已知:如图10,在四边形ABCD 中,AD BC <,点E 在AD 的延长线上, ACE BCD ∠=∠,EC ED EA =⋅2. (1)求证:四边形ABCD 为梯形; (2)如果EC ABEA AC=,求证:AB ED BC =⋅2.图10A BCD E徐汇22. (本题满分(12分),第(1)题满分6分,第(2)小题满分6分) 如图,已知梯形ABCD 中,E AC AB BC AD ,,=∥是边BC 上的点,且CAD AED ∠=∠,DE 交AC 于点F(1) 求证:DAF ABE ∽△△(2) 当EC AE FC AC ⋅=⋅时,求证:BE AD =杨浦1、(本题满分12分,第(1)小题6分,第(2)小题6分)V中,AB=BC,∠ABC=90°,点D、E分别是AB、BC的中点,已知:如图,在ABC点F、G是边AC的三等分点,DF、EG的延长线相交于H,联结HA、HC求证:(1)四边形FBGH是菱形(2)四边形ABCH是正方形长宁23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图5,平行四边形ABCD 的对角线BD AC 、交于点O ,点E 在边CB 的延长线上,且︒=∠90EAC ,EC EB AE ⋅=2. (1)求证:四边形ABCD 是矩形;(2)延长AE DB 、交于点F ,若AC AF =,求证:BF AE =.图5 AB C DE FO宝山23.(本题满分12分,第(1)、第(2)小题满分各6分)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,联结AP并延长AP交CD于F点,(1)求证:四边形AECF为平行四边形;(2)如果P A=PC,联结BP,求证:∥APB≅∥EPC.第23题图松江23.(本题满分12分,每小题各6分)如图,已知□ABCD 中,AB=AC ,CO ⊥AD ,垂足为点O ,延长CO 、BA 交于点E ,联结DE . (1)求证:四边形ACDE 是菱形;(2)联结OB ,交AC 于点F ,如果OF=OC , 求证:22AB BF BO =⋅.(第23题图)O EBA22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)已知:如图5,在矩形ABCD 中,过AC 的中点M 作EF ⊥AC , 分别交AD 、BC 于点E 、F . (1)求证:四边形AECF 是菱形; (2)如果2CD BF BC =⋅,求∠BAF 的度数.23.(本题满分12分,第(1)小题满分8分,第(2)小题满分4分)已知:如图6,△ABC 内接于⊙O ,AB ﹦AC ,点E 为弦AB 的中点,AO 的延长线交BC 于点D ,联结ED .过点B 作BF ⊥DE 交AC 于点F .(1)求证:∠BAD ﹦∠CBF ; (2)如果OD ﹦DB .求证:AF =BF .图5CFEDA BM图6BCDEF OA·OE 第23题图CABD F虹口23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在□ABCD中,AC与BD相交于点O,过点B作BE∥AC,联结OE交BC于点F,点F为BC的中点.(1)求证:四边形AOEB是平行四边形;(2)如果∠OBC =∠E,求证:=BO OC AB FC⋅⋅.青浦23.(本题满分12分,第(1)、(2)小题,每小题6分)已知:如图9,在菱形ABCD 中,AB =AC ,点E 、F 分别在边AB 、BC 上,且AE =BF ,CE 与AF 相交于点G . (1)求证:∠FGC =∠B ;(2)延长CE 与DA 的延长线交于点H ,求证:.BE CH AF AC ⋅=⋅GF EDA BC图9。

(完整版)上海市2019年初三中考数学二模汇编_23题几何证明

(完整版)上海市2019年初三中考数学二模汇编_23题几何证明

上海市2019年中考二模数学汇编:23题几何证明 闵行 23.(本题共2小题,每小题6分,满分12分)如图,已知四边形ABCD 是菱形,对角线AC 、BD 相交于点O ,BD = 2AC .过点A 作AE ⊥CD ,垂足为点E ,AE 与BD 相交于点F .过点C 作CG ⊥AC ,与AE 的延长线相交于点G . 求证:(1)△ACG ≌△DOA ;(2)2DF BD DE AG ⋅=⋅.宝山23.(本题满分12分,第(1)、第(2)小题满分各6分)如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,联结AP 并延长AP 交CD 于F 点, (1)求证:四边形AECF 为平行四边形;(2)如果PA=PC ,联结BP ,求证:△APB ≅△EPC .ABCDOE GF(第23题图)A B CDOE H F第23题图23.(本题满分12分,每小题满分各6分)如图7,在直角梯形ABCD 中,90ABC ∠=︒,AD BC ∥,对角线AC 、BD 相交于点O . 过点D 作DE BC ⊥,交AC 于点F . (1)联结OE ,若BE AOEC OF=,求证:OE CD ∥; (2)若AD CD =且BD CD ⊥,求证:AF DFAC OB=. 奉贤23.(本题满分12分,每小题满分各6分)已知:如图8,正方形ABCD ,点E 在边AD 上,AF ⊥BE ,垂足为点F ,点G 在线段BF 上,BG=AF .(1)求证:CG ⊥BE ;(2)如果点E 是AD 的中点,联结CF ,求证:CF=CB . 金山22. 已知:如图,菱形ABCD 的对角线AC 与BD 相交于点O ,若DBC CAD ∠=∠.(1)求证:ABCD 是正方形.(2)E 是OB 上一点,CE DH ⊥,垂足为H ,DH 与OC 相交于点F ,求证:OF OE =.ABCDOE F图7ABCD FGE 图823.(本题满分12分)已知:如图10,在四边形ABCD 中,AD BC <,点E 在AD 的延长线上, ACE BCD ∠=∠,EC ED EA =⋅2. (1)求证:四边形ABCD 为梯形; (2)如果EC ABEA AC=,求证:AB ED BC =⋅2. 杨浦23. 已知:在ABC 中,AB=BC ,∠ABC=90°,点D 、E 分别是边AB 、BC 的中点,点F 、G 是边AC 的三等分点,DF 、EG 的延长线相交于点H ,联结HA 、HC. 求证:(1)四边形FBGH 是菱形;(2)四边形ABCH 是正方形.长宁23.(本题满分12分,第(1)小题5分,第(2)小题7分)图10A BCD E如图5,平行四边形ABCD 的对角线BD AC 、交于点O ,点E 在边CB 的延长线上,且︒=∠90EAC ,EC EB AE ⋅=2. (1)求证:四边形ABCD 是矩形;(2)延长AE DB 、交于点F ,若AC AF =,求证:BF AE =. 黄浦嘉定23.静安图5AB CDE FO松江徐汇答案 闵行23.证明:(1)在菱形ABCD 中,AD = CD ,AC ⊥BD ,OB = OD .∴ ∠DAC =∠DCA ,∠AOD = 90°.……………………………(1分) ∵ AE ⊥CD ,CG ⊥AC ,∴ ∠DCA +∠GCE = 90°,∠G +∠GCE = 90°.∴ ∠G =∠DCA .…………………………………………………(1分) ∴ ∠G =∠DAC .…………………………………………………(1分) ∵ BD = 2AC ,BD = 2OD ,∴ AC = OD . ……………………(1分) 在△ACG 和△DOA 中,∵ ∠ACG =∠AOD ,∠G =∠DAC ,AC = OD ,∴ △ACG ≌△DOA . ……………………………………………(2分) (2)∵ AE ⊥CD ,BD ⊥AC ,∴ ∠DOC =∠DEF = 90°.…………(1分) 又∵ ∠CDO =∠FDE ,∴ △CDO ∽△FDE .…………………(1分)∴ CD OD DF DE=.即得 OD DF DE CD ⋅=⋅. ……………………(2分) ∵ △ACG ≌△DOA ,∴ AG = AD = CD . ……………………(1分)又∵ 12OD BD =,∴ 2DF BD DE AG ⋅=⋅.…………………(1分)宝山23.(1)证明:由折叠得到EC 垂直平分BP , ………………1分 设EC 与BP 交于Q ,∴BQ=EQ ………………1分 ∵E 为AB 的中点, ∴AE =EB , ………………1分 ∴EQ 为△ABP 的中位线,∴AF ∥EC , ………………2分 ∵AE ∥FC , ∴四边形AECF 为平行四边形; ………………1分 (2)∵AF ∥EC ,∴∠A PB =∠EQB =90° ………………1分由翻折性质∠E PC =∠EBC =90°,∠PEC =∠BEC ………………1分 ∵E 为直角△APB 斜边AB 的中点,且AP =EP ,∴△AEP 为等边三角形 , ∠BAP =∠AEP =60°, ………………1+1分︒=︒-︒=∠=∠60260180CEB CEP ………………1分 在△ABP 和△EPC 中, ∠BAP =∠CEP ,∠APB=∠E PC ,AP =EP ∴△ABP ≌△EPC (AAS ), ………………1分 崇明23.(本题满分12分,每小题满分各6分) 证明(1)∵90ABD ∠=︒,BC DE ⊥∴//AB DE ………………………………………………………………(1分)∴AO BOOF OD=………………………………………………………………(2分) ∵BE AOEC OF =∴AO BEOF EC=……… ………………………………………………………(2分) ∴//OE CD …………………………………………………………………(1分) (2)∵BC AD //,//AB DE ,∴四边形ABED 为平行四边形 又∵90ABD ∠=︒∴四边形ABED 为矩形 ……………………………………………………(1分) ∴AD BE =,90ADE ∠=︒ 又∵CD BD ⊥∴90BDC BDE CDE ∠=∠+∠=︒︒=∠+∠=∠90BDE ADB ADE∴CDE ADB ∠=∠ …………………………………………………………(1分)AD CD =∴DCA DAC ∠=∠∴()A S A CDF ADO ..∆≅∆…………………………………………………(1分) ∴OD DF =DE AB // ∴AF BE AD AC BC BC==…………………………………………………………(1分) ∵BC AD //∴BODFBO OD BC AD ==…………………………………………………………(1分) ∴AF DFAC OB=…………………………………………………………………(1分) 奉贤22.证明:(1)∵四边形ABCD 是正方形,∴AB BC =.90ABC. ············· (1分) ∵AF ⊥BE ,∴90FAB FBA ∠+∠=︒.∵90FBA CBG ∠+∠=︒,∴FAB CBG ∠=∠. ·········································· (1分) 又∵AF BG =,∴△AFB ≅△BGC . ···························································· (2分) ∴AFB BGC ∠=∠. ····························································································· (1分) ∵90AFB ∠=︒,∴90BGC ∠=︒,即CG ⊥BE . ··········································· (1分) (2)∵ABF EBA ∠=∠,90AFB BAE ∠=∠=︒,∴△AEB ∽△FAB .∴AE AFAB BF=. ································································· (3分) ∵点E 是AD 的中点,AD AB =,∴12AE AB =.∴12AF BF =.·························· (1分) ∵AF BG =,∴12BG BF =,即FG BG =.·························································· (1分) ∵CG ⊥BE ,∴CF CB =. ···················································································· (1分)金山23.(1)证明:∵四边形ABCD 是菱形,∴BC AD //,DAC BAD ∠=∠2,DBC ABC ∠=∠2; (2分) ∴ 180=∠+∠ABC DAB ; (1分) ∵DBC CAD ∠=∠;∴ABC BAD ∠=∠, (1分) ∴ 1802=∠BAD ; ∴ 90=∠BAD ; (1分) ∴四边形ABCD 是正方形. (1分) (2)证明:∵四边形ABCD 是正方形;∴BD AC ⊥,BD AC =,AC CO 21=,BO DO 21=; (1分) ∴ 90=∠=∠DOC COB ,DO CO =; (1分) ∵CE DH ⊥,垂足为H ;∴ 90=∠DHE , 90=∠+∠DEH EDH ; (1分) 又∵ 90=∠+∠DEH ECO ; ∴EDH ECO ∠=∠; (1分)∴ECO ∆≌FDO ∆; (1分) ∴OF OE =. (1分)普陀 23.证明:(1)∵ ACE BCD ∠=∠,∴DCE BCA ∠=∠. ······················································ (1分)∵EC ED EA =⋅2,∴ED ECEC EA=. ······································································· (1分) 又∵E ∠是公共角,∴△EDC ∽△ECA . ····························································· (1分) ∴DCE CAE ∠=∠. ································································································· (1分) ∴BCA CAE ∠=∠.∴AD ∥BC . ············································································································· (1分) ∵AD BC <,∴AB 与CD 不平行.∴四边形ABCD 是梯形. ··························································································· (1分)(2)∵△EDC ∽△ECA .∴EC CDEA AC =. ∵EC AB EA AC=,∴AB DC =.·············································································· (1分) ∴四边形ABCD 是等腰梯形. ··············································································· (1分) ∴B DCB ∠=∠.··································································································· (1分) ∵AD ∥BC .∴EDC DCB ∠=∠. ∴EDC B ∠=∠.∵ECD ACB ∠=∠,∴△EDC ∽△ABC . ····················································· (1分) ∴ED DCAB BC=. ········································································································ (1分) ∴AB ED BC =⋅2. ····························································································· (1分) 杨浦23.(1)证明略 (2)证明略 长宁 23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵EC EB AE ⋅=2 ∴AEEB EC AE =又 ∵CEA AEB ∠=∠ ∴AEB ∆∽CEA ∆ (2分) ∴EAC EBA ∠=∠∵︒=∠90EAC ∴︒=∠90EBA (1分) 又 ∵︒=∠+∠180CBA EBA ∴︒=∠90CBA (1分) ∵四边形ABCD 是平行四边形∴四边形ABCD 是矩形 (1分)(2)∵ AEB ∆∽CEA ∆ ∴ AC AB AE BE = 即 ACAE AB BE = , ECA EAB ∠=∠ (2分)∵四边形ABCD 是矩形 ∴BD AC =又 ∵BD OB 21=, AC OC 21= ∴OC OB = ∴ECA OBC ∠=∠ 又 ∵OBC EBF ∠=∠ ECA EBA ∠=∠ ∴EAB EBF ∠=∠又∵F F ∠=∠ ∴EBF ∆∽BAF ∆(3分)∴ABBEAF BF =∴ACAEAF BF =(1分)∵AC AF =∴AE BF = (1分) 黄浦嘉定静安松江徐汇。

2019年沪教版中考模拟上海市静安区中考数学二模试卷 含解析

2019年沪教版中考模拟上海市静安区中考数学二模试卷 含解析

2019年上海市静安区中考数学二模试卷一、选择题1.下列二次根式中,与3是同类二次根式的是()A.6B.9C.13D.182.计算(1)(1)a a---的结果是()A.21a-B.21a-C.221a a-+D.221a a-+-3.函数2(0)y xx=->的图象位于()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,在同一平面内,将边长相等的正方形、正五边形的一边重合,那么1∠的大小是( )A.8︒B.15︒C.18︒D.28︒5.小明和小丽暑期参加工厂社会实践活动,师傅将他们工作第一周每天生产的合格产品的个数整理成如表1两组数据.那么关于他们工作第一周每天生产的合格产品个数,下列说法中正确的是()小明26778小丽23488A.小明的平均数小于小丽的平均数B.两人的中位数相同C.两人的众数相同D.小明的方差小于小丽的方差6.下列说法中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的矩形是正方形C.顺次联结矩形各边中点所得四边形是正方形D .正多边形都是中心对称图形二、填空题:(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】7.计算:24a a=g . 8.如果x x有意义,那么x 的取值范围是 . 9.方程:13x -=的解为 .10.如果关于x 的二次三项式24x x m -+在实数范围内不能分解因式,那么m 的取值范围是 .11.某商店三月份的利润是25000元,要使五月份的利润达到36000元,假设每月的利润增长率相同,那么这个相同的增长率是 .12.已知正比例函数2y x =-,那么y 的值随x 的值增大而 .(填“增大”或“减小” )13.从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是 .14.为了解某校九年级男生1000米跑步的水平情况,从中随机抽取部分男生进行测试,并把测试成绩分为D 、C 、B 、A 四个等次绘制成如图所示的不完整的统计图,那么扇形统计图中表示C 等次的扇形所对的圆心角的度数为 度.15.已知ABC ∆中,G 是ABC ∆的重心,则ABG ABC S S ∆∆= . 16.已知在ABC ∆中,90C ∠=︒,2AC BC ==,如果以点C 为圆心的圆与斜边AB 有且只有一个交点,那么C e 的半径是 .17.如图,在平行四边形ABCD 中,点E 、F 是AB 的三等分点,点G 是AD 的中点,联结EC 、FG 交于点M .已知AB a =u u u r r ,BC b =u u u r r ,那么向量MC =u u u u r .(用向量a r ,b r 表示).18.如图,在平面直角坐标系xOy 中,已知(23A ,0),(0,6)B ,(0,2)M .点Q 在直线AB 上,把BMQ ∆沿着直线MQ 翻折,点B 落在点P 处,联结PQ .如果直线PQ 与直线AB 所构成的夹角为60︒,那么点P 的坐标是 .三、解答题:(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.计算:1224(21)|1232-+-+.20.解方程组:2263100x y x xy y -=⎧⎨+-=⎩21.一个水库的水位在某段时间内持续上涨,表格中记录了连续5小时内6个时间点的水位高度,其中x 表示时间,y 表示水位高度. x (小时)0 1 2 3 4 5 ⋯y (米) 3 3.3 3.6 3.9 4.2 4.5 ⋯(1)通过观察数据,请写出水位高度y 与时间x 的函数解析式(不需要写出定义域);(2)据估计,这种上涨规律还会持续,并且当水位高度达到8米时,水库报警系统会自动发出警报.请预测再过多久系统会发出警报.22.已知:如图,在矩形ABCD 中,过AC 的中点M 作EF AC ⊥,分别交AD 、BC 于点E 、F .(1)求证:四边形AECF 是菱形;(2)如果2CD BF BC =g ,求BAF ∠的度数.23.已知:如图,ABC ∆内接于O e ,AB AC =,点E 为弦AB 的中点,AO 的延长线交BC 于点D ,联结ED .过点B 作BF DE ⊥交AC 于点F .(1)求证:BAD CBF ∠=∠;(2)如果OD DB =.求证:AF BF =.24.在平面直角坐标系xOy 中(如图7),已知抛物线2(0)y ax bx c a =++≠经过原点,与x 轴的另一个交点为A ,顶点为(3,4)P -.(1)求这条抛物线表达式;(2)将该抛物线向右平移,平移后的新抛物线顶点为Q ,它与y 轴交点为B ,联结PB 、PQ .设点B 的纵坐标为m ,用含m 的代数式表示BPQ ∠的正切值;(3)连接AP ,在(2)的条件下,射线PB 平分APQ ∠,求点B 到直线AP 的距离.25.已知:如图8,梯形ABCD 中,//AD BC ,2AD =,6AB BC CD ===.动点P 在射线BA 上,以BP 为半径的P e 交边BC 于点E (点E 与点C 不重合),联结PE 、PC .设BP x =,PC y =.(1)求证://PE DC ;(2)求y 关于x 的函数解析式,并写出定义域;(3)联结PD ,当PDC B ∠=∠时,以D 为圆心半径为R 的D e 与P e 相交,求R 的取值范围.2019年上海市静安区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列二次根式中,与3是同类二次根式的是( ) A .6 B .9C .13D .18 【解答】解:与3是同类二次根式的是13, 故选:C .2.计算(1)(1)a a ---的结果是( )A .21a -B .21a -C .221a a -+D .221a a -+-【解答】解:原式222()11a a =--=-,故选:A .3.函数2(0)y x x=->的图象位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【解答】解:函数2(0)y x x=->的图象位于第四象限. 故选:D .4.如图,在同一平面内,将边长相等的正方形、正五边形的一边重合,那么1∠的大小是( )A .8︒B .15︒C .18︒D .28︒【解答】解:Q 正五边形的内角的度数是1(52)1801085⨯-⨯︒=︒, 又Q 正方形的内角是90︒,11089018∴∠=︒-︒=︒;故选:C.5.小明和小丽暑期参加工厂社会实践活动,师傅将他们工作第一周每天生产的合格产品的个数整理成如表1两组数据.那么关于他们工作第一周每天生产的合格产品个数,下列说法中正确的是()A.小明的平均数小于小丽的平均数B.两人的中位数相同C.两人的众数相同D.小明的方差小于小丽的方差【解答】解:A、小明的平均数为(26778)56++++÷=,小丽的平均数为++++÷=,故本选项错误;(23488)55B、小明的中位数为7,小丽的中位数为4,故本选项错误;C、小明的众数为7,小丽的众数为8,故本选项错误;D、小明的方差为4.4,小丽的方差为6.4,小明的方差小于小丽的方差,故原题说法正确;故选:D.6.下列说法中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的矩形是正方形C.顺次联结矩形各边中点所得四边形是正方形D.正多边形都是中心对称图形【解答】解:A对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直的矩形是正方形,所以B选项正确;C、顺次联结矩形各边中点所得四边形是菱形,所以C选项错误;D、边数为偶数的正多边形都是中心对称图形,所以D选项错误.故选:B.二、填空题:(本大题共12题,每题4分,满分48分)【在答题纸相应题号后的空格内直接填写答案】7.计算:24g6a.a a=【解答】解:24246a a a a +==g .故答案为:6a .8有意义,那么x 的取值范围是 0x > . 【解答】解:由题意可知:00x x ⎧⎨≠⎩…,解得:0x >,故答案为:0x >.93=的解为 10 .【解答】解: 两边平方得:19x -=,移项得:10x =.故本题答案为: 10 .10.如果关于x 的二次三项式24x x m -+在实数范围内不能分解因式,那么m 的取值范围是 4m > .【解答】关于x 的二次三项式24x x m -+在实数范围内不能分解因式,就是对应的二次方程240x x m -+=无实数根,∴△2(4)41640m m =--=-<,4m ∴>.故答案为:4m >.11.某商店三月份的利润是25000元,要使五月份的利润达到36000元,假设每月的利润增长率相同,那么这个相同的增长率是 20% .【解答】解:设每月的利润增长率为x ,依题意,得:225000(1)36000x +=,解得:10.220%x ==,2 2.2x =-(不合题意,舍去).故答案为:20%.12.已知正比例函数2y x =-,那么y 的值随x 的值增大而 减小 .(填“增大”或“减小” )【解答】解:因为正比例函数2y x =-中的20k =-<,所以y 的值随x 的值增大而 减小.故答案是:减小.13.从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是 14 . 【解答】解:从0,1,2,3这四个数字中任取3个数有0、1、2;0、1、3;0、2、3;1、2、3四种等可能的结果数,所以取得的3个数中不含2的概率14=. 故答案为14. 14.为了解某校九年级男生1000米跑步的水平情况,从中随机抽取部分男生进行测试,并把测试成绩分为D 、C 、B 、A 四个等次绘制成如图所示的不完整的统计图,那么扇形统计图中表示C 等次的扇形所对的圆心角的度数为 72 度.【解答】解:扇形统计图中表示C 等次的扇形所对的圆心角的度数为:8360721230%︒⨯=︒÷, 故答案为:72.15.已知ABC ∆中,G 是ABC ∆的重心,则ABG ABCS S ∆∆= 13 . 【解答】解:设ABC ∆边AB 上的高为h ,G Q 是ABC ∆的重心, ABG ∴∆边AB 上的高为13h , ∴11123132ABGABC AB h S S AB h ∆∆==g g . 故答案为:13.16.已知在ABC ∆中,90C ∠=︒,2AC BC ==,如果以点C 为圆心的圆与斜边AB 有且只有一个交点,那么C e 的半径是 2 .【解答】解:Q 在ABC ∆中,90C ∠=︒,2AC BC ==, Q 以点C 为圆心的圆与斜边AB 有且只有一个交点,CD AB ∴⊥,1122222CD AB ∴==⨯=, 即C e 的半径是2故答案为:2.17.如图,在平行四边形ABCD 中,点E 、F 是AB 的三等分点,点G 是AD 的中点,联结EC 、FG 交于点M .已知AB a =u u u r r ,BC b =u u u r r ,那么向量MC =u u u u r 5596a b +r r .(用向量a r ,b r 表示).【解答】解:如图,延长FG 交CD 的延长线于H .Q 四边形ABCD 是平行四边形,//AB CH ∴,∴1AF AG DH DG==, AF DH ∴=,设AE EF FB a ===,则3AB CD a ==,2AF DH a ==,5CH a =,//EF CH Q , ∴15EM EF CM CH ==, 56CM CE ∴=, Q 23EC EB BC a b =+=+u u u r u u u r u u u r r r , ∴555696MC EC a b ==+u u u u r u u u r r r , 故答案为5596a b +r r . 18.如图,在平面直角坐标系xOy 中,已知(23A ,0),(0,6)B ,(0,2)M .点Q 在直线AB 上,把BMQ ∆沿着直线MQ 翻折,点B 落在点P 处,联结PQ .如果直线PQ 与直线AB 所构成的夹角为60︒,那么点P 的坐标是 (23,4)或(0,2)-或(23-,0) .【解答】解:(23A Q ,0),(0,6)B ,(0,2)M ,23OA ∴=,6OB =,2OM =,4BM OB OM =-=,tan 323OB BAO OA ∴∠===, 60BAO ∴∠=︒,90AOB ∠=︒Q ,30ABO ∴∠=︒,243AB OA ∴==,Q 直线PQ 与直线AB 所构成的夹角为60︒,120PQB ∴∠=︒或60PQB ∠=︒,(1)当120PQB ∠=︒时,分两种情况:①如图1所示:延长PQ 交OB 于点N ,则60BQN ∠=︒,90QNB ∴∠=︒,即QN BM ⊥,由折叠得:4BM MP ==,BQM PQM ∠=∠,120PQB ∠=︒Q ,120BQM PQM ∴∠=∠=︒,60BQN MQN ∴∠=∠=︒,QN BM ⊥Q , 122BN NM BM ∴===, 在Rt PNM ∆中,22224223NP MP NM =-=-=,4ON OM NM =+=,P ∴点的坐标为:(23,4);②如图2所示:QM OB ⊥,BM MP =,422OP PM OM BM OM =-=-=-=,P ∴点的坐标为:(0,2)-;(2)当60PQB ∠=︒时,如图3所示:Q 点与A 点重合,由折叠得:43AB AP ==,432323OP AP OA =-=-=,P ∴点的坐标为:(23-,0);综上所述:P 点的坐标为:(23,4)或(0,2)-或(23-,0).三、解答题:(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.计算:1224(21)|1232-+-+.【解答】解:原式1(2122)(32)214=++-+- 132232212=+-+ 5322=+. 20.解方程组:2263100x y x xy y -=⎧⎨+-=⎩【解答】解:2263100x y x xy y -=⎧⎨+-=⎩①② 由②得:(2)(5)0x y x y -+=原方程组可化为:620x y x y -=⎧⎨-=⎩或650x y x y -=⎧⎨+=⎩解得:11126x y =⎧⎨=⎩,2251x y =⎧⎨=-⎩. ∴原方程组的解为11126x y =⎧⎨=⎩,2251x y =⎧⎨=-⎩. 21.一个水库的水位在某段时间内持续上涨,表格中记录了连续5小时内6个时间点的水位高度,其中x 表示时间,y 表示水位高度.(1)通过观察数据,请写出水位高度y 与时间x 的函数解析式(不需要写出定义域);(2)据估计,这种上涨规律还会持续,并且当水位高度达到8米时,水库报警系统会自动发出警报.请预测再过多久系统会发出警报.【解答】解:(1)设y 与x 之间的函数解析式为y kx b =+,3 3.3b k b =⎧⎨+=⎩,得0.33k b =⎧⎨=⎩, 即y 与x 之间的函数解析式为0.33y x =+;(2)把8y =,代入0.33y x =+,得80.33x =+,解得,503x =, 5035533-=, 答:再过353小时后系统会发出警报. 22.已知:如图,在矩形ABCD 中,过AC 的中点M 作EF AC ⊥,分别交AD 、BC 于点E 、F .(1)求证:四边形AECF 是菱形;(2)如果2CD BF BC =g ,求BAF ∠的度数.【解答】(1)证明:Q 四边形ABCD 为矩形,//AD BC ∴,12∴∠=∠,Q 点M 为AC 的中点,AM CM ∴=.在AME ∆与CMF ∆中12AM CMAME CMF ∠=∠⎧⎪=⎨⎪∠=∠⎩()AME CMF ASA ∴∆≅∆,ME MF ∴=.∴四边形AECF 为平行四边形,又EF AC ⊥Q ,∴平行四边形AECF 为菱形;(2)解:2CD BF BC =Q g , ∴CD BC BF CD=, 又Q 四边形ABCD 为矩形,AB CD ∴=, ∴AB BC BF AB= 又ABF CBA ∠=∠Q ,ABF CBA ∴∆∆∽,23∴∠=∠,Q 四边形AECF 为菱形,14∴∠=∠,即134∠=∠=∠,Q 四边形ABCD 为矩形,13490∴∠=∠+∠+∠=︒,BAD∠=︒.∴即13023.已知:如图,ABC∆内接于O=,点E为弦AB的中点,AO的延长线交BCe,AB AC于点D,联结ED.过点B作BF DE⊥交AC于点F.(1)求证:BAD CBF∠=∠;(2)如果OD DB=.=.求证:AF BF【解答】(1)证明:如图1所示:Q,ABC C∴∠=∠,=AB ACQ直线AD经过圆心O,=,AD BC∴⊥,BD CDQ点E为弦AB的中点,∴是ABCDE∆的中位线.∴,//DE AC⊥Q,BF DEBPD∴∠=︒,90∴∠=︒,BFC90∴∠+∠=︒.CBF ACB90=Q,AB AC∴∠=∠,ABC ACB∴∠+∠=︒,CBF ABC90又AD BCQ,⊥∴∠+∠=︒,90BAD ABCBAD CBF ∴∠=∠;(2)证明:连接OB .如图2所示:AD BC ⊥Q ,OD DB =,ODB ∴∆是等腰直角三角形,45BOD ∴∠=︒.OB OA =Q ,OBA OAB ∴∠=∠.BOD OBA OAB ∠=∠+∠Q , 122.52BAO BOD ∴∠=∠=︒, AB AC =Q ,且AD BC ⊥,245BAC BAO ∴∠=∠=︒.290∠=︒Q ,即BF AC ⊥,∴在ABF ∆中,904545ABF ∠=︒-︒=︒,ABF BAC ∴∠=∠,AF BF ∴=.24.在平面直角坐标系xOy 中(如图7),已知抛物线2(0)y ax bx c a =++≠经过原点,与x 轴的另一个交点为A ,顶点为(3,4)P -.(1)求这条抛物线表达式;(2)将该抛物线向右平移,平移后的新抛物线顶点为Q ,它与y 轴交点为B ,联结PB 、PQ .设点B 的纵坐标为m ,用含m 的代数式表示BPQ ∠的正切值;(3)连接AP ,在(2)的条件下,射线PB 平分APQ ∠,求点B 到直线AP 的距离.【解答】解:(1)设抛物线表达式为:2(3)4(0)y a x a =++≠把(0,0)O 代入得49a =-, ∴抛物线的表达式:24(3)49y x =-++. (2)设PQ 与y 轴交点为H .(3,4)P -Q ,(0,)B m ,3PH ∴=,4BH m =-,在Rt PBH ∆中,4tan 3BH m BPQ PH -∠==. 故BPQ ∠的正切值为:43m -.(3)设PB 与x 轴交于点M .由(1)得点A 坐标为(6,0)-.又(3,4)P -,5AP ∴=.Q 射线PB 平分APQ ∠,APB BPQ ∴∠=∠.//PQ x Q 轴,AMP BPQ ∴∠=∠,AMP APB ∴∠=∠,5AP AM ∴==,(1,0)M ∴-.设直线PB 为(0)y kx b k =+≠,把点(3,4)P -,(1,0)M -代入,得:22y x =-, ∴点B 为(0,2)-.44(2)6BH m ∴=-=--=.Q 射线PB 平分APQ ∠,BH PQ ⊥,∴点B 到直线AP 的距离为6.25.已知:如图8,梯形ABCD 中,//AD BC ,2AD =,6AB BC CD ===.动点P 在射线BA 上,以BP 为半径的P e 交边BC 于点E (点E 与点C 不重合),联结PE 、PC .设BP x =,PC y =.(1)求证://PE DC ;(2)求y 关于x 的函数解析式,并写出定义域;(3)联结PD ,当PDC B ∠=∠时,以D 为圆心半径为R 的D e 与P e 相交,求R 的取值范围.【解答】(1)Q 证明:梯形ABCD ,AB CD =,B DCB ∴∠=∠,PB PE =Q ,B PEB ∴∠=∠,DCB PEB ∴∠=∠,//PE CD ∴;(2)解:分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、G . Q 梯形ABCD 中,//AD BC ,AF BC ⊥,DG BC ⊥,PH BC ⊥, ∴四边形ADGF 是矩形,//PH AF ,2AD =Q ,6BC DC ==,2BF FG GC ∴===,在Rt ABF ∆中,AF ===//PH AF Q , ∴PH BP BHAF AB BF ==62x BH ==,PH ∴=,13BH x =, 163CH x ∴=-,在Rt PHC ∆中,PC =y ∴=y =,(3)解:作//EM PD 交DC 于M .//PE DC Q ,∴四边形PDME 是平行四边形.PE DM x ∴==,即6MC x =-,PD ME ∴=,PDC EMC ∠=∠,又PDC B ∠=∠Q ,B DCB ∠=∠,DCB EMC PBE PEB ∴∠=∠=∠=∠.PBE ECM ∴∆∆∽,∴PB BE EC MC=,即232663xxxx=--,解得:185x=,即125BE=,1218655PD EC∴==-=,当两圆外切时,PPD r R=+,即0R=(舍去);当两圆内切时,PPD r R=-,即1R=(舍去),2365R=;即两圆相交时,365R<<.。

上海市各区2019届中考数学二模试卷精选汇编(8套,Word版,含答案)

上海市各区2019届中考数学二模试卷精选汇编(8套,Word版,含答案)
由△DPH与△AOB相似,易知∠AOB=∠PHD=90°,
所以 或 ,————————————(2分)
解得: 或 ,
所以点P的坐标为(5,8), .————————————————(1分)
金山区
24.(本题满分12分,每小题4分)
平面直角坐标系xOy中(如图8),已知抛物线 经过点A(1,0)和B(3,0),
(2)当CB平分∠DCO时,求 的值.
黄浦区
24.(本题满分12分)
已知抛物线 经过点A(1,0)和B(0,3),其顶点为D.
(1)求此抛物线的表达式;
(2)求△ABD的面积;
(3)设P为该抛物线上一点,且位于抛物线对称轴
右侧,作PH⊥对称轴,垂足为H,若△DPH与△AOB相
似,求点P的坐标.
24.解:(1)由题意得: ,———————————————————(2分)
奉贤区
24.(本题满分12分,每小题满分各4分)
已知平面直角坐标系 (如图8),抛物线 与 轴交于点A、B(点A在点B左侧),与 轴交于点C,顶点为D,对称轴
为直线,过点C作直线的垂线,垂足为点E,联结DC、BC.
(1)当点C(0,3)时,
①求这条抛物线的表达式和顶点坐标;
②求证:∠DCE=∠BCE;
24.解:(1)∵直线 的经过点
∴ ……………………1分
∴ ………………………………1分
∵直线 的经过点
∴ ……………………1分
∴ …………………………………………1分
(2)由可知点 的坐标为
∵抛物线 经过点 、

∴ ,
∴抛物线 的表达式为 …………………1分
∴抛物线 的顶点坐标为 ……………1分

2019年上海市闵行区中考数学二模试卷含答案解析+【精选五套中考模拟卷】

2019年上海市闵行区中考数学二模试卷含答案解析+【精选五套中考模拟卷】
∴BF=5.
又∵cos∠ABC= ,
∴BC=13,CF= =12.
∵AD=CF=12,AB=12,
∴BD= =12 .
∵△ABE沿BE翻折得到△PBE,
故答案为:8.
14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设 = , = ,那么 = ﹣ (用 、 的式子表示).
【解答】解:∵四边形ABCD是矩形,
∴AB=CD,AB∥CD,AD=BC,AD∥BC,
∴ = = , = = ,
∵AE=2DE,
∴ = ,
∵ = + .
∴ = ﹣ ,
∴k>0,
∴它的图象的两个分支分别在第一、三象限.
故选:A.
4.(4分)有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )
A.平均数B.中位数C.众数D.方差
【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.
12.(4分)某十字路口的交通信 号灯每分钟红灯亮30秒,绿灯亮25 秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.
13.(4分)已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为.
14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设 = , = ,那么 =(用 、 的式子表示).
A.平均数B.中位数C.众数D.方差
5.(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是( )
A.当AB=BC时,四边形ABC D是菱形

2019~2020学年上海市徐汇区九年级二模数学试卷及参考答案

2019~2020学年上海市徐汇区九年级二模数学试卷及参考答案

2019~2020学年上海市徐汇区九年级二模数学试卷(时间:100分钟,满分150分)一、选择题(本大题共6题,每题4分,满分24分) 1. 下列实数中,有理数是( )(A )2π; (B ; (C )227; (D . 2. 下列二次根式中,最简二次根式是( )(A ;(B(C(D .3. 下列方程中,有实数根的是( )(A )210x +=;(B )210x -=;(C 1-;(D )101x =-. 4. 关于抛物线223y x x =-+-的判断,下列说法正确的是( )(A )抛物线的开口方向向上;(B )抛物线的对称轴是直线1x =-; (C )抛物线对称轴左侧部分是下降的;(D )抛物线顶点到x 轴的距离是2.5. 如果从货船A 测得小岛B 在货船A 的北偏东30︒方向500米处,那么从小岛B 看货船A的位置,此时货船A 在小岛B 的( ) (A )南偏西30︒方向500米处;(B )南偏西60︒方向500米处;(C )南偏西30︒方向米处;(D )南偏西60︒方向米处.6. 下列命题中,假命题的是( )(A )顺次联结任意四边形四边中点所得的四边形是平行四边形; (B )顺次联结对角线相等的四边形四边中点所得的四边形是菱形; (C )顺次联结对角线互相垂直的四边形四边中点所得的四边形是矩形; (D )顺次联结两组邻边互相垂直的的四边形四边中点所得的四边形是矩形.二、填空题(本大题共12题,每题4分,满分48分) 7. 计算:11a b-=___________. 8. 分解因式:223m m +-=___________. 9. 方程组2220;5.x y x y -=⎧⎨+=⎩的解是___________. 10. 已知正比例函数(0)y kx k =≠的函数值y 随着自变量x 的值增大而减小,那么符合条件的正比例函数可以是___________.(只需写出一个)11. 如果关于x 的方程2340x x m ++=有两个相等的实数根,那么m 的值是___________. 12. 已知直线(0)y kx b k =+≠与x 轴和y 轴的交点分别是(1,0)和(0,2)-,那么关于x 的不等式0kx b +<的解集是___________.13. 如果从长度分别为2、4、6、7的四条线段中随机抽取三条线段,那么抽取的三条线段能构成三角形的概率是___________.14. 如图,在ABC △中,点D 在边AC 上,已知ABD △和BCD △的面积比是2:3,AB a =u u u r r,AC b =u u u r r ,那么向量BD =u u u r___________.(用含向量a r ,b r 的式子表示) 15. 如图,⊙O 的弦AB 和直径CD 交于点E ,且CD 平分AB .已知8AB =,2CE =,那么⊙O 的半径长是___________.第14题图 第15题图16. 已知某种盆花,若每盆植3株时,则平均每株盈利4元;若每盆增加1株,则平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?如果设每盆多植x 株,那么可以列出的方程式______________________.17. 已知正三角形ABC 的半径长为R ,那么ABC △的周长是___________.(用含R 的式子表示) 18. 如图,在ABCD 中,3AD =,5AB =,4sin 5A =,将ABCD 绕着点B 顺时针旋转(090)θθ︒<<︒后,点A 的对应点是点'A ,联结'A C ,如果'A C BC ⊥,那么cos θ的值是___________.第18题图三、解答题(本大题共7题,满分78分) 19. (本题满分10分)1222cos303-︒+.解不等式组:3(2)4;71.33x xxx-->--⎧⎪-⎨--≤⎪⎩,并将解集在数轴上表示出来.21.(本题满分10分)在抗击冠状病毒的日子里,上海全市学生积极响应号召开展“停课不停学”的线上学习活动,某中学为了解全校1200名学生一周内平均每天进行在家体育锻炼时间的情况,随机调查了该校100名学生一周内平均每天进行在家体育锻炼时间的情况,结果如下表:完成下列问题:(1)根据上述统计表中的信息,可知这100名学生一周内平均每天进行在家体育锻炼时间的众数是________分,中位数是_________分;(2)小李根据上述统计表中的信息,制作了如下频数分布表和频数分布直方图(不完整),那么:①频数分布表中m=________,n=_________;②请补全频数分布直方图;(3)请估计该学校平均每天在家体育锻炼时间不少于35分钟的学生大约有_______人.如图,抛物线223y ax ax =-+与x 轴交于点(1,0)A -和B ,与y 轴交于点C ,顶点为点D .(1)求抛物线的表达式、点B 和点D 的坐标;(2)将抛物线223y ax ax =-+向右平移后所得新抛物线经过原点O ,点B 、D 的对应点分别是'B 、'D ,联结'B C 、''B D 、'CD ,求''CB D △的面积.23. (本题满分12分)已知:如图,在ABCD 中,点E 、F 、G 、H 分别在边AB 、BC 、CD 、DA 上,BE DG =,BF DH =.(1)求证:四边形EFGH 是平行四边形;(2)当AB BC =,且BE BF =时,求证:四边EFGH 是矩形.备用图如图,已知直线22y x=+与x轴交于点A,与y轴交于点C,矩形ACBE的顶点B在第一象限的反比例函数myx=的图像上,过点B作BF OC⊥,垂足为F,设OF t=.(1)求ACO∠的正切值;(2)求点B的坐标(用含t的式子表示)(3)已知直线22y x=+与反比例函数myx=的图像都经过第一象限的点D,联结DE,如果DE x⊥轴,求m的值.如图,在梯形ABCD中,AD//BC,5AB CD AD===,4cos5B=,点O是边BC上的动点,以OB为半径的⊙O与射线BA和边BC分别交于点E和点M,联结AM,作CMN BAM∠=∠,射线MN与边AD,射线CD分别交于点F、N.(1)当点E为边AB中点时,求DF的长;(2)分别联结AN、MD,当AN//MD时,求MN的长;(3)将⊙O绕着点M旋转180︒得到⊙'O,如果以点N为圆心的⊙N与⊙O和⊙'O 内切,求⊙O的半径长.备用图2019~2020学年上海市徐汇区九年级二模数学试卷参考答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明题专题1.如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,联结AP 并延长AP 交CD 于F 点, (1)求证:四边形AECF 为平行四边形;(2)如果PA PC =,联结BP ,求证:APC EPC ∆≅∆第23题图【答案】(1)由折叠得到EC 垂直平分BP , ………………1分 设EC 与BP 交于Q ,∴BQ EQ = ………………1分 ∵E 为AB 的中点, ∴AE EB =, ………………1分 ∴EQ 为△ABP 的中位线,∴AF ∥EC , ………………2分 ∵AE ∥FC , ∴四边形AECF 为平行四边形; ………………1分 (2)∵AF ∥EC ,∴90APB EQB ∠=∠=︒ ………………1分 由翻折性质90EPC EBC ∠=∠=︒,PEC BEC ∠=∠ ………………1分 ∵E 为直角△ABP 斜边AB 的中点,且=AP EP ,∴△AEP 为等边三角形 , 60BAP AEP ∠=∠=︒, ………………1+1分︒=︒-︒=∠=∠60260180CEB CEP ………………1分在△ABP 和△EPC 中, BAP CEP ∠=∠, APB EPC ∠=∠,AP EP = ∴APC EPC ∆≅∆(AAS ), ………………1分 2.如图7,在直角梯形ABCD 中,90ABC ∠=︒,AD BC ∥,对角线AC 、BD 相交于点O .过点D 作DE BC ⊥,交AC 于点F .(1)联结OE ,若BE AO EC OF=,求证:OE CD ∥; (2)若AD CD =且BD CD ⊥,求证:AF DFAC OB=.【答案】(1)∵90ABD ∠=︒,BC DE ⊥∴//AB DE ………………………………………………………………(1分)∴AO BOOF OD = ………………………………………………………………(2分) ∵BE AOEC OF =∴AO BEOF EC = ……… ………………………………………………………(2分) ∴//OE CD …………………………………………………………………(1分) (2)∵BC AD //,//AB DE , ∴四边形ABED 为平行四边形 又∵90ABD ∠=︒∴四边形ABED 为矩形 ……………………………………………………(1分) ∴AD BE =,90ADE ∠=︒ 又∵CD BD ⊥∴90BDC BDE CDE ∠=∠+∠=︒ ︒=∠+∠=∠90BDE ADB ADE∴CDE ADB ∠=∠ …………………………………………………………(1分)AD CD =∴DCA DAC ∠=∠∴()A S A CDF ADO ..∆≅∆…………………………………………………(1分) ∴OD DF =DE AB //∴AF BE AD AC BC BC ==…………………………………………………………(1分)∵BC AD //∴BO DFBO OD BC AD ==…………………………………………………………(1分) ∴AF DFAC OB =…………………………………………………………………(1分) 3.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,若DBC CAD ∠=∠.(1)求证:ABCD 是正方形.(2)E 是OB 上一点,CE DH ⊥,垂足为H ,DH 与OC 相交于点F ,求证:OF OE =.【答案】(1)证明:∵四边形ABCD 是菱形,∴BC AD //,DAC BAD ∠=∠2,DBC ABC ∠=∠2………………………………..(2分)∴180=∠+∠ABC DAB …………………………………….(1分) ∵DBC CAD ∠=∠;∴ABC BAD ∠=∠……………………………(1分)∴1802=∠BAD ; ∴90=∠BAD ……………………………………1分) ∴四边形ABCD 是正方形………………………………………(1分) (2)证明:∵四边形ABCD 是正方形;∴BD AC ⊥,BD AC =,AC CO 21=,BO DO 21=…………………………………(1分)∴90=∠=∠DOC COB ,DO CO =………………………………………(1分)∵CE DH ⊥,垂足为H ;∴90=∠DHE ,90=∠+∠DEH EDH ……………………………………………(1分)又∵90=∠+∠DEH ECO ;∴EDH ECO ∠=∠……………………………………………(1分) ∴ECO ∆≌FDO ∆………………………………………………(1分) ∴OF OE =……………………………………………(1分)4.已知:如图6,在直角梯形ABCD 中,AD BC ,DC BC ⊥,AB AD =,AM BD ⊥,垂足为点M ,联结CM 并延长,交线段AB 于点N 求证:(1)ABD BCM ∠=∠ (2)..BC BN CN DM = 【答案】(1)∵AB AD =,AM BD ⊥∴M 是BD 中点,ABD ADB ∠=∠ ∵DC BC ⊥ ∴BM CM DM == ∴MBC MCB ∠=∠ ∵AD BC ∴ADB DBC ∠=∠ ∴ABD BCM ∠=∠(2)∵ABD BCM ∠=∠,BNM BNM ∠=∠ ∴BNM CNB ∆∆∴BC CNBM BN =∵DM BM = ∴BC CNDM BN=∴..BC BN CN DM =5.已知:如图8,正方形ABCD ,点E 在边AD 上,AF BE ⊥,垂足为点F ,点G 在线段BF 上,BG AF =.(1)求证:CG BE ⊥;(2)如果点E 是AD 的中点,联结CF ,求证:CF CB =.【答案】(1)∵四边形ABCD 是正方形,∴AB BC =.90ABC. ········· (1分) ∵AF ⊥BE ,∴90FAB FBA ∠+∠=︒.∵90FBA CBG ∠+∠=︒,∴FAB CBG ∠=∠. ······························ (1分) 又∵AF BG =,∴△AFB ≅△BGC . ············································ (2分) ∴AFB BGC ∠=∠. ····································································· (1分) ∵90AFB ∠=︒,∴90BGC ∠=︒,即CG ⊥BE . ····························· (1分) (2)∵ABF EBA ∠=∠,90AFB BAE ∠=∠=︒,∴△AEB ∽△FAB .∴AE AFAB BF=. ··············································· (3分) ∵点E 是AD 的中点,AD AB =,∴12AE AB =.∴12AF BF =. ················ (1分) ∵AF BG =,∴12BG BF =,即FG BG =.·········································· (1分) ∵CG ⊥BE ,∴CF CB =. ····························································· (1分)6. 如图5,平行四边形ABCD 的对角线BD AC 、交于点O ,点E 在边CB 的延长线上,且︒=∠90EAC ,EC EB AE ⋅=2. (1)求证:四边形ABCD 是矩形;(2)延长AE DB 、交于点F ,若AC AF =,求证:BF AE =.【答案】证明:(1)∵EC EB AE ⋅=2 ∴AEEB EC AE =又 ∵CEA AEB ∠=∠ ∴AEB ∆∽CEA ∆ (2分) ∴EAC EBA ∠=∠A BCDFG E 图8图5AB CDE FO∵︒=∠90EAC ∴︒=∠90EBA (1分) 又 ∵︒=∠+∠180CBA EBA ∴︒=∠90CBA (1分) ∵四边形ABCD 是平行四边形∴四边形ABCD 是矩形 (1分)(2)∵ AEB ∆∽CEA ∆ ∴ AC AB AE BE = 即 ACAE AB BE = , ECA EAB ∠=∠ (2分)∵四边形ABCD 是矩形 ∴BD AC = 又 ∵BD OB 21=, AC OC 21= ∴OC OB = ∴ECA OBC ∠=∠ 又 ∵OBC EBF ∠=∠ ECA EBA ∠=∠ ∴EAB EBF ∠=∠又 ∵F F ∠=∠ ∴EBF ∆∽BAF ∆ (3分) ∴AB BE AF BF = ∴ACAE AF BF =(1分) ∵AC AF = ∴AE BF = (1分)7.如图,已知梯形ABCD 中,AD BC , AB AC =,E 是边BC 上的点,且AED CAD ∠=∠, DE 交AC 于点F .(1) 求证:ABEDAF ∆∆;(2) 当..AC FC AE EC =时,求证:AD BE =.【答案】(1)∵AD ∥BC ,∴∠CAD =∠ACB .∵AB =AC ,∴∠B =∠ACB ,∴∠CAD =∠B ∵∠AED =∠CAD ,∴∠B =∠AED∵∠AEC =∠B +∠BAE ,即∠AED +∠DEC =∠B +∠BAE , ∴∠BAE =∠DEC .BE(第23题图)在△AEB 与△EFC 中,B ACEBAE DEC∠=∠⎧⎨∠=∠⎩,∴AEB EFC ∆∆.∵AD ∥BC ,∴DAF EFC ∆∆∴ABEDAF ∆∆.(2) ∵AEB EFC ∆∆,∴AB BEEC CF=即AB CF EC BE ⋅=⋅ ∵=AC CF AE EC AB AC ⋅=⋅且,∴AE=BE . ∴∠B =∠BAE∵∠BAE =∠FEC ,∴∠B =∠FEC . ∴AB ∥DE∵AD ∥BC ,∴四边形ABED 是平行四边形 ∴AD =BE .8.如图,已知□ABCD 中,AB=AC ,CO ⊥AD ,垂足为点O ,延长CO 、BA 交于点E ,联结DE .(1)求证:四边形ACDE 是菱形;(2)联结OB ,交AC 于点F ,如果OF=OC , 求证:22AB BF BO =⋅.【答案】证明:(1)∵四边形ABCD 是平行四边形∴AB ∥DC ,AB=DC ………………………………………………………………(1分) ∵AB=AC ,∴AC=DC ……………………………………………………………(1分) ∵CO ⊥AD ,∴AO=DO …………………………………………………………(1分) ∵EO AOCO DO=,∴EO=CO ………………………………………………………(1分) ∴四边形ACDE 是平行四边形……………………………………………………(1分) ∵AC=DC ,∴四边形ACDE 是菱形……………………………………………(1分) (2)∵ OF=OC ,∴∠OFC=∠OCF ……………………………………………(1分) ∵AE=AC ,∴∠OCF=∠BEO∵∠OFC=∠BF A ,∴∠BF A=∠BEO …………………………………………(1分)∵∠ABF=∠OBE …………………………………………………………………(1分) ∴△BF A ∽△BEO ,∴AB BFBO BE=………………………………………………(1分) ∴AB ·BE=BF ·BO ,∵AE=AC=AB ,∴BE=2AB ………………………………(1分) ∴22AB BF BO =⋅………………………………………………………………(1分)9.已知:如图10,在四边形ABCD 中,AD BC <,点E 在AD 的延长线上, ACE BCD ∠=∠,EC ED EA =⋅2. (1)求证:四边形ABCD 为梯形; (2)如果EC ABEA AC=,求证:AB ED BC =⋅2.【答案】(1)∵ ACE BCD ∠=∠,∴DCE BCA ∠=∠. ····························· (1分)∵EC ED EA =⋅2,∴ED ECEC EA=. ···················································· (1分) 又∵E ∠是公共角,∴△EDC ∽△ECA . ············································ (1分) ∴DCE CAE ∠=∠. ······································································· (1分) ∴BCA CAE ∠=∠.∴AD ∥BC . ················································································ (1分) ∵AD BC <,∴AB 与CD 不平行.∴四边形ABCD 是梯形. ··································································· (1分) (2)∵△EDC ∽△ECA .∴EC CDEA AC =. ∵EC AB EA AC=,∴AB DC =. ························································· (1分) ∴四边形ABCD 是等腰梯形. ·························································· (1分) ∴B DCB ∠=∠. ········································································· (1分) ∵AD ∥BC .∴EDC DCB ∠=∠. ∴EDC B ∠=∠.∵ECD ACB ∠=∠,∴△EDC ∽△ABC . ······································ (1分)图10ABCDE∴ED DCAB BC=. ············································································· (1分) ∴AB ED BC =⋅2. ···································································· (1分)10.如图6,在矩形ABCD 中,点E 是边AB 的中点,△EBC 沿直线EC 翻折,使B 点落在矩形ABCD 内部的点P 处,联结AP 并延长AP 交CD 于点F ,联结BP 交CE 于点Q .(1)求证:四边形AECF 是平行四边形; (2)如果PE PA =,求证:△APB ≌△EPC .【答案】(1)证明:由翻折得:EC 垂直平分BP ………………1分∴EQ BQ = ………………1分 ∵点E 为AB 的中点,∴EB AE = ………………1分 ∴EQ 是△ABP 的中位线,∴EC ∥AF ,……………1分 ∵四边形ABCD 是矩形∴AE ∥FC ………………1分 ∴四边形AECF 是平行四边形. ………………1分(2)∵AE ∥FC ,∴EQB APB ∠=∠ ………………1分由翻折得: ︒=∠90EQB ,︒=∠90EPC∴︒=∠=∠90EPC APB ………………1分 由翻折得:EB PE =,BEC PEC ∠=∠∵PE PA =,EB AE = ∴AE PE PA ==∴△AEP 是等边三角形,∴︒=∠=∠60AEP PAB …………1分ABD CFP E Q图6 ABD CFP E Q图6∵︒=∠+∠+∠180BEC PEC AEP∴︒=∠60PEC ………………1分 ∴PEC PAB ∠=∠ ………………1分 ∵PE PA =,∴△APB ≌△EPC ………………1分11.如图,在□ABCD 中,AC 与BD 相交于点O ,过点B 作BE ∥AC ,联结OE 交BC 于点F ,点F 为BC 的中点.(1)求证:四边形AOEB 是平行四边形;(2)如果∠OBC =∠E ,求证:=BO OC AB FC ⋅⋅.【答案】(1)证明:∵BE ∥AC ∴OC CFBE BF=∵点F 为BC 的中点 ∴CF=BF ∴OC=BE∵四边形ABCD 是平行四边形 ∴AO=CO ∴AO=BE∵BE ∥AC ∴四边形AOEB 是平行四边形(2)证明:∵四边形AOEB 是平行四边形 ∴∠BAO =∠E ∵∠OBC =∠E ∴∠BAO =∠OBC∵∠ACB =∠BCO ∴△COB ∽△CBA ∴BO BCAB AC =∵四边形ABCD 是平行四边形 ∴AC =2OC ∵点F 为BC 的中点 ∴BC =2FC ∴BO FCAB OC= 即=BO OC AB FC⋅⋅12.已知:如图6,△ABC 内接于⊙O ,AB ﹦AC ,点E 为弦AB 的中点,AO 的延长线交BC 于点D ,联结ED .过点B 作BF ⊥DE 交AC 于点F .(1)求证:∠BAD ﹦∠CBF ; (2)如果OD ﹦DB .求证:AF =BF .【答案】证明:(1)∵AB ﹦AC , ∴AB AC =. ........................(1分) ∵直线AD 经过圆心O , ..................................................(1分) ∴AD ⊥BC ,BD=CD . ....................................................(1分) ∵点E 为弦AB 的中点,∴DE 是△ABC 的中位线.∴DE ∥AC . ......................................................................(1分) ∵BF ⊥DE ,∴∠1=90°,∴∠2=90°.......................................................................(1分) ∴∠CBF +∠ACB ﹦90°.∵AB ﹦AC ,∴∠ABC ﹦∠ACB , .....................................(1分) ∴∠CBF +∠ABC ﹦90°..................................................(1分) 又∵AD ⊥BC ,∴∠BAD +∠ABC ﹦90°,∴∠BAD ﹦∠CBF ..............................................................(1分) (2)联结OB .∵AD ⊥BC ,OD ﹦DB ,∴△ODB 是等腰直角三角形...................................................................(1分) ∴∠BOD ﹦45°. ∵OB=OA , ∴∠OBA ﹦∠OAB . ∵∠BOD ﹦∠OBA +∠OAB ,∴∠BAO=12∠BOD=22.5°. ............................................................(1分)∵AB=AC ,且AD ⊥BC , ∴∠BAC=2∠BAO=45°. ∵∠2=90°,即BF ⊥AC ,∴在△ABF 中,∠ABF =180904545--=,..........................................................(1分) ∴∠ABF =∠BAC ,∴AF =BF .......................................................................................................(1分)图6BCDEF OA· 图6BCDEFOA· 1213.如图6,已知四边形ABCD ,AD ∥BC ,对角线AC 、BD 交于点O ,DO =BO ,过点C作CE ⊥AC ,交BD 的延长线于点E ,交AD 的延长线于点F ,且满足DCE ACB ∠=∠.(1)求证:四边形ABCD 是矩形; (2)求证:DE ADEF CD=.【答案】证明:(1)∵AD ∥BC ,∴AD DOBC BO=, ∵DO =BO ,∴AD BC =,---(2分) ∴四边形ABCD 是平行四边形. ---------------------------------------------------------------(1分) ∵CE ⊥AC ,∴90ACD DCE ∠+∠=︒,∵DCE ACB ∠=∠,∴90ACB ACD ∠+∠=︒,即90BCD ∠=︒,-------------------(2分) ∴四边形ABCD 是矩形. -----------------------------------------------------------------------(1分)(2)∵四边形ABCD 是矩形,∴AC BD =,90ADC ∠=︒-----------------------(2分) ∵AD ∥BC ,∴DE EFBD FC=.------------------------------------------------------------(1分) ∴DE EFAC FC =,------------------------------------------------------------------------------(1分) ∴DE AC EF FC=,∵90ADC ACF ∠=∠=︒, ∴cot AC ADDAC FC CD∠==,-----------------------------------------------------------(1分) ∴DE AD EF CD=.----------------------------------------------------------------------------(1分)14.已知:如图,在△ABC 中,AB =BC ,∠ABC =90°,点D 、E 分别是边AB 、BC 的中点,点F 、G 是边AC 的三等分点,DF 、EG 的延长线相交于点H ,联结HA 、HC . 求证:(1)四边形FBGH 是菱形; (2)四边形ABCH 是正方形.ADHFG【答案】证明(1):∵点F 、G 是边AC 的三等分点,∴F 、G 分别是AG 、CF 的中点,∵点D 是AB 的中点,∴DF //BG ,即FH //BG . ........................ (2分)同理: GH // BF . ........................................................................... (1分) ∴四边形FBGH 是平行四边形. .................................................. (1分) ∵AB =BC ,∴∠BAC =∠ACB .∵点F 、G 是边AC 的三等分点,∴AF =CG .∴△ABF ≌△CBG . ∴BF =BG. ...................................................... (1分) ∴平行四边形FBGH 是菱形. ....................................................... (1分)证明(2)联结BH ,交FG 于点O ,∵四边形FBGH 是平行四边形,∴OB =OH ,OF =OG . ............ (2分) ∵AF =CG ,∴OA =OC . ................................................................. (1分) ∴四边形ABCH 是平行四边形. .................................................. (1分) ∵∠ABC =90°,∴平行四边形ABCH 是矩形. ............................ (1分) ∵AB =BC ,∴矩形ABCH 是正方形. ........................................... (1分)15.如图,已知四边形ABCD 是菱形,对角线AC 、BD 相交于点O ,BD = 2AC .过点A 作AE ⊥CD ,垂足为点E ,AE 与BD 相交于点F .过点C 作CG ⊥AC ,与AE 的延长线相交于点G .求证:(1)△ACG ≌△DOA ;(2)2DF BD DE AG ⋅=⋅.【答案】证明:(1)在菱形ABCD 中,AD = CD ,AC ⊥BD ,OB = OD .∴ ∠DAC =∠DCA ,∠AOD = 90°.……………………………(1分) ∵ AE ⊥CD ,CG ⊥AC ,(第23题图)ABCDOE GF (第23题)∴ ∠DCA +∠GCE = 90°,∠G +∠GCE = 90°.∴ ∠G =∠DCA .…………………………………………………(1分) ∴ ∠G =∠DAC .…………………………………………………(1分) ∵ BD = 2AC ,BD = 2OD ,∴ AC = OD . ……………………(1分) 在△ACG 和△DOA 中,∵ ∠ACG =∠AOD ,∠G =∠DAC ,AC = OD ,∴ △ACG ≌△DOA . ……………………………………………(2分) (2)∵ AE ⊥CD ,BD ⊥AC ,∴ ∠DOC =∠DEF = 90°.…………(1分) 又∵ ∠CDO =∠FDE ,∴ △CDO ∽△FDE .…………………(1分)∴CD ODDF DE=.即得 OD DF DE CD ⋅=⋅. ……………………(2分) ∵ △ACG ≌△DOA ,∴ AG = AD = CD . ……………………(1分) 又∵ 12OD BD =,∴ 2DF BD DE AG ⋅=⋅.…………………(1分) 16.已知:如图9,在菱形ABCD 中,AB =AC ,点E 、F 分别在边AB 、BC 上,且AE =BF ,CE 与AF 相交于点G . (1)求证:∠FGC =∠B ;(2)延长CE 与DA 的延长线交于点H ,求证:.【答案】证明:(1)∵四边形ABCD 是菱形,∴AB =BC . ······································································ (1分)∵AB =AC ,∴AB =BC =AC ,∴∠B =∠BAC =60°. ······················ (1分) 在△EAC 与△FBA 中,∵EA =FB ,∠EAC =∠FBA ,AC =BA ,∴△EAC ≌△FBA , ····························································· (1分) ∴∠ACE =∠BAF ,····························································· (1分) ∵∠BAF+∠F AC =60°,∴∠ACE +∠F AC =60°,∴∠FGC =60°, ·· (1分) ∴∠FGC =∠B . ································································ (1分) (2)∵四边形ABCD 是菱形,∴∠B =∠D ,AB =DC ,AB //DC , ··········································· (1分) ∴∠BEC =∠HCD , ···························································· (1分)BE CH AF AC ⋅=⋅GF EDA BC图9∴△BEC ∽△DCH , ·························································· (1分) ∴=BE ECDC CH, ································································ (1分) ∴⋅=⋅BE CH EC DC .∵AB =AC ,∴CD =AC , ······················································ (1分) ∵△EAC ≌△FBA , ∴EC =F A ,∴⋅=⋅BE CH AF AC . ···················································· (1分)。

相关文档
最新文档