实验一一元线性回归
《计量经济学》eviews实验报告一元线性回归模型详解
计量经济学》实验报告一元线性回归模型-、实验内容(一)eviews基本操作(二)1、利用EViews软件进行如下操作:(1)EViews软件的启动(2)数据的输入、编辑(3)图形分析与描述统计分析(4)数据文件的存贮、调用2、查找2000-2014年涉及主要数据建立中国消费函数模型中国国民收入与居民消费水平:表1年份X(GDP)Y(社会消费品总量)200099776.339105.72001110270.443055.42002121002.048135.92003136564.652516.32004160714.459501.02005185895.868352.62006217656.679145.22007268019.493571.62008316751.7114830.12009345629.2132678.42010408903.0156998.42011484123.5183918.62012534123.0210307.02013588018.8242842.82014635910.0271896.1数据来源:二、实验目的1.掌握eviews的基本操作。
2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。
三、实验步骤(简要写明实验步骤)1、数据的输入、编辑2、图形分析与描述统计分析3、数据文件的存贮、调用4、一元线性回归的过程点击view中的Graph-scatter-中的第三个获得在上方输入Isycx回车得到下图DependsntVariable:Y Method:LeastSquares□ate:03;27/16Time:20:18 Sample:20002014 Includedobservations:15VariableCoefficientStd.Errort-StatisticProb.C-3J73.7023i820.535-2.1917610.0472X0416716 0.0107S838.73S44 a.ooao R-squared0.991410 Meandependentwar119790.2 AdjustedR.-squared 0.990750 S.D.dependentrar 7692177 S.E.ofregression 7J98.292 Akaike infocriterion20.77945 Sumsquaredresid 7;12E^-08 Scliwarz 匚「爬伽20.37386 Loglikelihood -1&3.3459Hannan-Quinncriter. 20.77845 F-statistic 1I3&0-435 Durbin-Watsonstat0.477498Prob(F-statistic)a.oooooo在上图中view 处点击view-中的actual ,Fitted ,Residual 中的第一 个得到回归残差打开Resid 中的view-descriptivestatistics 得到残差直方图/icw Proc Qtjject PrintN^me FreezeEstimateForecastStatsResids凹Group:UNIIILtD Worktile:UN III LtLJ::Unti1DependentVariablesMethod;LeastSquares□ate:03?27/16Time:20:27Sample(adjusted):20002014Includedobservations:15afteradjustmentsVariable Coefficient Std.Errort-Statistic ProtJ.C-3373.7023^20.535-2.191761 0.0472X0.4167160.01075S38.735440.0000R-squared0.991410 Meandependeniwar1-19790.3 AdjustedR-squa.red0990750S.D.dependentvar 76921.77 SE.ofregre.ssion 7J98.292 Akaike infacriterion20.77945 Sumsquaredresid 7.12&-0S Schwarzcriterion 20.S73S6 Laglikelihood -153.84&9Hannan-Quinncrite匚20.77545 F-statistic1I3&0.435Durbin-Watsonstat 0.477498 ProbCF-statistic) a.ooaooo在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图roreestYFM J訓YForea空巾取且:20002015 AdjustedSErmpfe:2000231i mskJddd obaerratire:15Roof kter squa red Error理l%2Mean/^oLteError畐惯啟iJean Afe.PereersErro r5.451SSQThenhe鼻BI附GKWCE口.他腐4Prop&niwi□ooooooVactaree Propor^tori0.001^24G M『倚■底Props^lori09®475在上方空白处输入lsycs…之后点击proc中的forcase根据公式Y。
计量经济学上机实验
计量经济学上机实验上机实验一:一元线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参数估计并进行检验上机步骤:中国内地2011年中国各地区城镇居民每百户计算机拥有量和人均总收入一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y X2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y X2.相关图:键入命令 SCAT Y X 散点图:趋势图:上机结果:Yˆ11.958+0.003X=s (βˆ) 5.6228 0.0002t (βˆ) 2.1267 11.9826prob 0.0421 0.00002=0.831 R2=0.826 FR=143.584 prob(F)=0.0000上机实验二:多元线性回归模型实验目的:多元回归模型的建立、比较与筛选,掌握基本的操作要求并能根据理论对分析结果进行解释实验内容:对线性回归模型进行参数估计并进行检验上机步骤:商品的需求量与商品价格和消费者平均收入趋势图:散点图:上机结果:i Yˆ=132.5802-8.878007X1-0.038888X2s (βˆ) 57.118 4.291 0.419t (βˆ) 2.321 -2.069 -0.093prob 0.0533 0.0773 0.9286 R2=0.79 R2=0.73 F =13.14 prob(F)=0.00427三:非线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参上机步骤:我国国有独立核算工业企业统计资料一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y L K2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y K L2.相关图:键入命令 SCAT Y K L四.估计回归模型:键入命令LS Y C K L上机结果:Y =4047.866K1.262204L-1.227157s (βˆ) 17694.18 0232593 0.759696t (βˆ) 0.228768 5.426669 -1.615325prob 0.8242 0.0004 0.1407R2=0.989758 R2=0.987482 F=434.8689 prob(F)=0.0000上机实验四:异方差实验目的::掌握异方差的检验与调整方法的上机实现实验内容:我国制造工业利润函数行业销售销售行业销售销售实验步骤:一.检验异方差性1.图形分析检验:1) 观察Y、X相关图:SCAT Y X2) 残差分析:观察回归方程的残差图LS Y C X在方程窗口上点击Residual按钮;2. Goldfeld-Quant检验:SORT XSMPL 1 10LS Y C X(计算第一组残差平方和)SMPL 19 28LS Y C X(计算第二组残差平方和)计算F统计量,判断异方差性3.White检验:SMPL 1 28LS Y C X在方程窗口上点击:View\Residual\Test\White Heteroskedastcity 由概率值判断异方差性。
一元线性回归法 excle操作
实验结果:实验一:一元线性回归在Excel中的实现一、实验过程描述1.录入数据打开EXCLE,录入实验数据,B列存放居民货币收入,C列存放居民消费品购买力,如下图所示:2.绘制散点图点击插入——图表——散点图——下一步,选择数据区域如下图:定义表名为消费能力表、X轴为收入、Y轴为购买力,形成生散点图:根据散点图可知,题中两个条件之间存在着线性关系,根据散点图可建立一次回归模型。
3.所需数据的计算一元线性回归系数的计算中,需要用到∑x、∑y、∑2x、∑2y及∑xy 的值,因此按下列步骤求出这些值。
在D2单元格中输入“=B2*B2”,下拉求出所有的值。
同上,在E2单元格中输入”=C2*C2”,在F2单元格中输入“=B2*C2”,依次下拉,得到所有值。
结果如下表所示:在B11单元格中输入“=SUM(B2:B10)”,依次右拉,求出各列的和∑x 、∑y 、∑2x 、∑2y 及∑xy ,依次存在B11,C11,D11,E11,F11.如下图所示:4. 一元线性回归系数的计算:根据系数公式x b y a x x n y x xy n b 22-=--=∑∑∑∑∑)(,在EXCLE 表格中进行计算如下: 在I2单元格中输入一元线性回归系数b 的公式“=(9*F11-B11*C11)/(9*D11-B11*B11)”,在I3单元格中输入系数a 的公式 “ =C11/9-I2*(B11/9)”结果如下图所示:由此得出回归方程:Y=-0.99464X+0.847206二、实验结果分析在进行线性回归分析之前,首先必须依据一定的经济理论、专业知识,对变量间是否存在一定的相关性进行分析。
本题中,应根据实际经验,确定居民货币收入为自变量,居民消费品购买力为因变量。
再次要绘制散点图,观察数据信息是否符合线性要求,在完成上述准备工作后,才能进行线性回归方程的计算。
企业经营决策模拟中一元线性回归分析的实验总结
企业经营决策模拟中一元线性回归分析的实验总结
在企业经营决策模拟中,一元线性回归分析被广泛应用于预测和解释业务相关的变量之间的关系。
通过对实验数据进行回归分析,可以获得许多有价值的结论和洞察力。
以下是一些实验总结的要点:
1. 数据采集与准备:在进行一元线性回归分析实验之前,首先需要收集与研究对象相关的数据。
数据应该是真实可靠的,并且应该具有足够的样本量以确保统计显著性。
2. 变量选择与转换:确定自变量和因变量,自变量是用来预测因变量的变量。
可能需要对数据进行变量转换,例如对数变换或标准化,以确保数据的正态分布性和线性关系。
3. 模型构建与分析:使用拟合优度(R-squared)和显著性检验(F-test)来评估模型的拟合优度。
这些指标可以告诉我们所选模型能够解释多少因变量的变异,以及这种解释的可靠性。
4. 系数解释与预测:线性回归模型提供了变量之间的关系方程,在理解模型中的系数之前,我们应该确保变量之间具有统计显著性。
通过系数解释,我们可以了解自变量的变化对因变量的影响。
5. 模型诊断:在进行一元线性回归分析后,需要对模型进行诊断,以验证模型的假设是否满足。
可以使用残差分析来检查模型的正态分布、同方差性和线性关系等假设。
通过一元线性回归分析实验,我们可以获得对业务变量之间关系的洞察和预测能力。
然而,我们必须谨慎地解释和使用这些结果,并意识到回归模型只能提供相关性,而不是因果关系。
一元回归及检验实验报告
竭诚为您提供优质文档/双击可除一元回归及检验实验报告篇一:一元线性回归模型的参数估计实验报告山西大学实验报告实验报告题目:计量经济学实验报告学院:专业:课程名称:计量经济学学号:学生姓名:教师名称:崔海燕上课时间:一、实验目的:掌握一元线性回归模型的参数估计方法以及对模型的检验和预测的方法。
二、实验原理:1、运用普通最小二乘法进行参数估计;2、对模型进行拟合优度的检验;3、对变量进行显著性检验;4、通过模型对数据进行预测。
三、实验步骤:(一)建立模型1、新建工作文件并保存打开eviews软件,在主菜单栏点击File\new\workfile,输入startdate1978和enddate20XX并点击确认,点击save 键,输入文件名进行保存。
2输入并编辑数据在主菜单栏点击Quick键,选择empty\group新建空数据栏,先输入被解释变量名称y,表示中国居民总量消费,后输入解释变量x,表示可支配收入,最后对应各年分别输入数据。
点击name键进行命名,选择默认名称group01,保存文件。
得到中国居民总量消费支出与收入资料:xY年份19786678.83806.719797551.64273.219807944.24605.5198 184385063.919829235.25482.4198310074.65983.21984115 656745.7198511601.77729.2198613036.58210.9198714627 .788401988157949560.5198915035.59085.5199016525.994 50.9199118939.610375.8199222056.511815.3199325897.3 13004.7199428783.413944.2199531175.415467.919963385 3.717092.5199735956.218080.6199838140.919364.119994 027720989.3200042964.622863.920XX20XX20XX20XX20XX20XX46385.45127457408.164623.17 4580.485623.124370.126243.22803530306.233214.436811 .2注:y表示中国居民总量消费x表示可支配收入3、画散点图,判断被解释变量与解释变量之间是否为线性关系在主菜单栏点击Quick\graph出现对话框,输入“xy”,点击确定。
一元线性回归分析研究实验报告
一元线性回归分析研究实验报告一元线性回归分析研究实验报告一、引言一元线性回归分析是一种基本的统计学方法,用于研究一个因变量和一个自变量之间的线性关系。
本实验旨在通过一元线性回归模型,探讨两个变量之间的关系,并对所得数据进行统计分析和解读。
二、实验目的本实验的主要目的是:1.学习和掌握一元线性回归分析的基本原理和方法;2.分析两个变量之间的线性关系;3.对所得数据进行统计推断,为后续研究提供参考。
三、实验原理一元线性回归分析是一种基于最小二乘法的统计方法,通过拟合一条直线来描述两个变量之间的线性关系。
该直线通过使实际数据点和拟合直线之间的残差平方和最小化来获得。
在数学模型中,假设因变量y和自变量x之间的关系可以用一条直线表示,即y = β0 + β1x + ε。
其中,β0和β1是模型的参数,ε是误差项。
四、实验步骤1.数据收集:收集包含两个变量的数据集,确保数据的准确性和可靠性;2.数据预处理:对数据进行清洗、整理和标准化;3.绘制散点图:通过散点图观察两个变量之间的趋势和关系;4.模型建立:使用最小二乘法拟合一元线性回归模型,计算模型的参数;5.模型评估:通过统计指标(如R2、p值等)对模型进行评估;6.误差分析:分析误差项ε,了解模型的可靠性和预测能力;7.结果解释:根据统计指标和误差分析结果,对所得数据进行解释和解读。
五、实验结果假设我们收集到的数据集如下:经过数据预处理和散点图绘制,我们发现因变量y和自变量x之间存在明显的线性关系。
以下是使用最小二乘法拟合的回归模型:y = 1.2 + 0.8x模型的R2值为0.91,说明该模型能够解释因变量y的91%的变异。
此外,p 值小于0.05,说明我们可以在95%的置信水平下认为该模型是显著的。
误差项ε的方差为0.4,说明模型的预测误差为0.4。
这表明模型具有一定的可靠性和预测能力。
六、实验总结通过本实验,我们掌握了一元线性回归分析的基本原理和方法,并对两个变量之间的关系进行了探讨。
一元线性回归模型实验报告
一元线性回归模型实验报告——以中国1985~2009年财政收入Y 和国内生产总值(和国内生产总值(GDP GDP GDP)为例)为例以GDP 为横轴,Y 为纵轴的散点图为纵轴的散点图以GDP 为解释变量,Y 为被解释变量,建立一元线性回归方程:为被解释变量,建立一元线性回归方程:Y i =β0+β1·GDP iDependent Variable: Y Method: Least Squares Date: 11/06/11 Time: 22:35 Sample: 1985 2009 Included observations: 25Variable Coefficient Std. Error t-Statistic Prob. C -3225.757 787.7145 -4.095084 0.0004 GDP0.1973980.00565734.894270.0000R-squared0.981461 Mean dependent var 16899.30 Adjusted R-squared 0.980655 S.D. dependent var 19287.38 S.E. of regression 2682.632 Akaike info criterion 18.70360 Sum squared resid1.66E+08Schwarz criterion 18.80111Log likelihood -231.7950 F-statistic 1217.610 Durbin-Watson stat0.118499Prob(F-statistic) 0.000000图3:回归分析结果:回归分析结果可得出β^0=-3225.757 β^1=0.197398财政收入随国内生产总值变化的一元线性回归方程为:财政收入随国内生产总值变化的一元线性回归方程为:Y ^=-3225.757+0.197398·GDPR 2=0.981461斜率的经济意义是:在1985~2009年间,GDP 每增加一单位,财政收入平均增加0.197398单位。
一元线性回归分析实验报告
一元线性回归在公司加班制度中的应用院(系):专业班级:学号姓名:指导老师:成绩:完成时间:一元线性回归在公司加班制度中的应用一、实验目的掌握一元线性回归分析的基本思想和操作,可以读懂分析结果,并写出回归方程,对回归方程进行方差分析、显著性检验等的各种统计检验 二、实验环境SPSS21.0 windows10.0 三、实验题目一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。
经10周时间,收集了每周加班数据和签发的新保单数目,x 为每周签发的新保单数目,y 为每周加班时间(小时),数据如表所示y3.51.04.02.01.03.04.51.53.05.01. 画散点图。
2. x 与y 之间大致呈线性关系?3. 用最小二乘法估计求出回归方程。
4. 求出回归标准误差σ∧。
5. 给出0β∧与1β∧的置信度95%的区间估计。
6. 计算x 与y 的决定系数。
7. 对回归方程作方差分析。
8. 作回归系数1β∧的显著性检验。
9. 作回归系数的显著性检验。
10.对回归方程做残差图并作相应的分析。
11.该公司预测下一周签发新保单01000x =张,需要的加班时间是多少?12.给出0y的置信度为95%的精确预测区间。
13.给出()E y的置信度为95%的区间估计。
四、实验过程及分析1.画散点图如图是以每周加班时间为纵坐标,每周签发的新保单为横坐标绘制的散点图,从图中可以看出,数据均匀分布在对角线的两侧,说明x和y之间线性关系良好。
2.最小二乘估计求回归方程用SPSS 求得回归方程的系数01,ββ分别为0.118,0.004,故我们可以写出其回归方程如下:0.1180.004y x =+3.求回归标准误差σ∧由方差分析表可以得到回归标准误差:SSE=1.843 故回归标准误差:2=2SSEn σ∧-,2σ∧=0.48。
4.给出回归系数的置信度为95%的置信区间估计。
由回归系数显著性检验表可以看出,当置信度为95%时:0β∧的预测区间为[-0.701,0.937], 1β∧的预测区间为[0.003,0.005].0β∧的置信区间包含0,表示0β∧不拒绝为0的原假设。
计量经济学实验一一元线性回归完成版
计量经济学实验⼀⼀元线性回归完成版实验⼀⼀元线性回归⽅程1.下表是中国2007年各地区税收Y和国内⽣产总值GDP的统计资料。
单位:亿元要求,运⽤Eviews软件:(1)作出散点图,建⽴税收随国内⽣产总值GDP变化的⼀元线性回归⽅程,并解释斜率的经济意义;解:散点图如下:得到估计⽅程为:0.07104710.62963=-y x这个估计结果表明,GDP 每增长1亿元,各地区税收将增加0.071047亿元。
(2) 对所建⽴的回归⽅程进⾏检验;解:从回归的估计的结果来看,模型拟合得较好。
可决系数20.7603R =,表明各地区税收变化的76.03%可由GDP 的变化来解释。
从斜率项的t 检验值看,⼤于5%显著性⽔平下⾃由度为229n -=的临界值0.025(29) 2.05t =,且该斜率满⾜0<0.071047<1,表明2007年,GDP 每增长1亿元,各地区税收将增加0.071047亿元。
(3) 若2008年某地区国内⽣产总值为8500亿元,求该地区税收收⼊的预测值及预测区间。
解:由上述回归⽅程可得地区税收收⼊的预测值:0.0710********.62963593.3Y =-= 下⾯给出税收收⼊95%置信度的预测区间:由于国内⽣产总值X 的样本均值与样本房差为()8891.126()57823134E X Var X ==于是,在95%的置信度下,0()E Y 的预测区间为593.3 2.045±593.3113.4761=±或(479.8239,706.7761)当GDP 为8500亿元时地区的税收收⼊的个值预测值仍为593.3。
同样的,在95%的置信度下,该地区的税收收⼊的预测区间为593.3 2.045593.3641.0421±=±或(-47.7,1234.3)。
资料来源:《深圳统计年鉴2002》,中国统计出版社解:(1)建⽴深圳地⽅预算内财政收⼊对GDP 的回归模型;得到回归⽅程:?0.134582 3.611151yx =-(2)估计所建⽴模型的参数,解释斜率系数的经济意义;X 的系数为0.314582,常数项为-3.611151。
一元线性回归模型的估计OLSE估计回归方程
实验一:一元线性回归模型的估计实验题目:14.为了调查广告对销售收入的影响,某商店记录了5个月的销售收入y(万元)和广告费用x(万元),数据如表2-6所示。
表2-6(1)画散点图。
(2)x与y之间是否大致呈线性关系?(3)用最小二乘法估计求出回归方程。
(4)求回归标准误差。
(5)给出β0与β1的置信度为95%的区间估计。
(6)计算x与y的决定系数。
(7)对回归方程作方差分析。
(8)作回归系数β1的显著性检验。
(9)作相关系数的显著性检验。
(10)对回归方程作残差图并作相应的分析。
(11)求当广告费用为4.2万元时,销售收入将达到多少,并给出置信度为95%的置信区间。
实验目的:掌握用OLSE估计回归方程并根据方程进行预测,掌握拟合度的分析,掌握t检验与F检验,会做相关系数的显著性检验,会画散点图并通过编辑散点图掌握画回归线、置信区间图的SPSS使用的小技巧。
SPSS输出结果及答案:1:散点图2:由散点图知:x与y之间大致成线性关系3:用最小二乘法估计求出回归方程;4:求回归标准误a. 因变量: y由上述输出结果得到回归系数的置信度为95%的区间估计:β0(_-21.211,0.906),β1(0.906,13.094)(6)计算x与y的决定系数;Anova b模型平方和df 均方 F Sig.由上述输出结果得到回归系数β1的t统计量值为3.656。
(9)作相关系数的显著性检验;相关性x yx Pearson 相关性 1 .904*显著性(双侧).035平方与叉积的和10.000 70.000协方差 2.500 17.500N 5 5y Pearson 相关性.904* 1显著性(双侧).035平方与叉积的和70.000 600.000协方差17.500 150.000N 5 5*. 在 0.05 水平(双侧)上显著相关。
由上述输出结果得到x,y的相关系数为0.904,在1%的显著性水平上是显著的。
一元线性回归分析实验报告doc
一元线性回归分析实验报告.doc一、实验目的本实验旨在通过一元线性回归模型,探讨两个变量之间的关系,即一个变量是否随着另一个变量的变化而呈现线性变化。
通过实际数据进行分析,理解一元线性回归模型的应用及其局限性。
二、实验原理一元线性回归是一种基本的回归分析方法,用于研究两个连续变量之间的关系。
其基本假设是:因变量与自变量之间存在一种线性关系,即因变量的变化可以由自变量的变化来解释。
一元线性回归的数学模型可以表示为:Y = aX + b,其中Y是因变量,X是自变量,a是回归系数,b是截距。
三、实验步骤1.数据收集:收集包含两个变量的数据集,用于建立一元线性回归模型。
2.数据预处理:对数据进行清洗、整理和标准化,确保数据的质量和准确性。
3.绘制散点图:通过散点图观察因变量和自变量之间的关系,初步判断是否为线性关系。
4.建立模型:使用最小二乘法估计回归系数和截距,建立一元线性回归模型。
5.模型评估:通过统计指标(如R²、p值等)对模型进行评估,判断模型的拟合程度和显著性。
6.模型应用:根据实际问题和数据特征,对模型进行解释和应用。
四、实验结果与分析1.数据收集与预处理:我们收集了一个关于工资与工作经验的数据集,其中工资为因变量Y,工作经验为自变量X。
经过数据清洗和标准化处理,得到了50个样本点。
2.散点图绘制:绘制了工资与工作经验的散点图,发现样本点大致呈线性分布,说明工资随着工作经验的变化呈现出一种线性趋势。
3.模型建立:使用最小二乘法估计回归系数和截距,得到一元线性回归模型:Y = 50X + 2000。
其中,a=50表示工作经验每增加1年,工资平均增加50元;b=2000表示当工作经验为0时,工资为2000元。
4.模型评估:通过计算R²值和p值,对模型进行评估。
在本例中,R²值为0.85,说明模型对数据的拟合程度较高;p值为0.01,说明自变量对因变量的影响是显著的。
一元线性回归模型的参数估计实验报告
一元线性回归模型的参数估计实验报告一、实验目的通过实验了解一元线性回归模型,理解线性回归模型的原理,掌握回归系数的计算方法和用途,并运用Excel对一组数据进行一元线性回归分析,并解释拟合结果。
二、实验原理1.一元线性回归模型一元线性回归模型是指只有一个自变量和一个因变量之间存在线性关系,数学为:`Y = β0 + β1X + ε`其中,Y表示因变量的数值,X表示自变量的数值,β0和β1分别是系数,ε表示误差项。
系数是待求的,误差项是不可观测和无法准确计算的。
2.回归系数的计算方法回归系数通常使用最小二乘法进行计算,最小二乘法是一种通过最小化误差平方和来拟合数据的方法。
具体计算方法如下:(1)计算X的平均值和Y的平均值;(2)计算X和Y的样本标准差;(3)计算X和Y的协方差以及相关系数;(4)计算回归系数β1和截距β0;三、实验步骤1.导入实验数据将实验数据导入Excel,并进行清理。
2.绘制散点图在Excel中绘制散点图,判断是否存在线性关系。
3.计算相关系数通过Excel的相关系数函数计算出X和Y的相关系数。
通过Excel的回归分析函数计算出回归方程。
5.分析结果分析回归方程的拟合程度以及回归系数的意义。
四、实验结果1.数据准备通过Excel的回归分析函数,计算出回归系数为β0=1.1145,β1=2.5085,回归方程为`Y=1.1145+2.5085X`,如下图所示:(1)拟合程度:相关系数为0.870492,说明自变量和因变量之间存在一定的线性关系,回归方程的拟合程度较好。
(2)回归系数的意义:截距为1.1145,表示当自变量为0时,因变量的值为1.1145;回归系数为2.5085,表示自变量增加1个单位,因变量会增加2.5085个单位。
计量经济学实验报告一元线性回归模型实验
2013-2014第1学期计量经济学实验报告实验(一):一元线性回归模型实验学号姓名:专业:国际经济与贸易选课班级:实验日期:2013年12月2日实验地点:K306实验名称:一元线性回归模型实验【教学目标】《计量经济学》是实践性很强的学科,各种模型的估计通过借助计算机能很方便地实现,上机实习操作是《计量经济学》教学过程重要环节。
目的是使学生们能够很好地将书本中的理论应用到实践中,提高学生动手能力,掌握专业计量经济学软件EViews的基本操作与应用。
利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。
【实验目的】使学生掌握1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换。
2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测【实验内容】1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换;2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。
实验内容以下面1、2题为例进行操作。
1、为了研究深圳地方预算中财政收入与国内生产总值关系,运用以下数据:(1)建立深圳的预算内财政收入对GDP的回归;(2)估计模型的参数,解释斜率系数的意义;(3)对回归结果进行检验;(4)若2002年的国内生产总值为3600亿元,试确定2002年财政收入的预测值和预α=)。
测区间(0.052、在《华尔街日报1999年年鉴》(The Wall Street Journal Almanac 1999)上,公布有美国各航空公司业绩的统计数据。
航班正点准时到达的正点率和此公司每10万名乘客中投诉1(1)做出上表数据的散点图(2)依据散点图,说明二变量之间存在什么关系?(3)描述投诉率是如何根据航班正点率变化,并求回归方程。
计量经济学实验报告
计量经济学实验报告实验一:一元线性回归模型题目:已知某城镇居民年人均可支配收入X,研究它与人均消费性支出Y之间的关系。
实验目的:通过了解19805年~1998年的样本观测值,得到一元线性回归模型、以此得到1999、2000年的人均消费性支出的预测值。
实验时间:10月12日(星期三)实验地点:科技楼3楼实验内容:1,主菜单-File―New-Workfile打开工作文件范围选择框,选择Annual,分别输入1980,20002,主菜单-Quick-Sample在打开的当前的样本区间选择框中分别输入1980,1998。
3,主菜单-Quick-Empty Group打开空白表格数据窗口,分别输入变量Y,X的数据。
4,主菜单-Quick-Estimate Equation打开估计模型对话框,选择Least Squares,输入Y CX。
下面是Eviews的估计结果:得到回归方程为:Y =283.84+0.51X5,主菜单-Quick-Sample在打开的当前样本区间选择框中分别输入1980,20006,主菜单-Quick-Empty Group编辑变量X的数据,输入X1999,X2000年的实际值。
在回归模型估计结果显示窗口的命令行中,单击Forecast命令,预测结果变量名的缺省选择为YF,选择静态预测,点击ok。
得到1999,2000年的城镇居民年人均消费性支出预测值分别为1354.89和1424.05.实验二:二元线性回归方程模型实验目的:通过了解学生用于购买书籍及课外读物的支出与本人受教育年限和其家庭收入水平有关,了解预测当学生的受教育年限为10年,家庭月可支配收入为480元时,该学生全年购买书籍以及课外读物的支出。
实验时间:10月26日(星期三)实验地点:科技楼3楼实验内容:1,主菜单-File―New-Workfile打开工作文件范围选择框,选择Integer date,分别输入1,192,主菜单-Quick-Sample在打开的当前的样本区间选择框中分别输入1,18。
预测与决策实验报告
实验一 一元线性回归在Excel 中的实现一、 实验目的:掌握一元线性回归在Excel 中实现的基本方法,熟悉Excel 的有关操作。
二、 实验内容: 学会Excel 中一元线性回归的输入形式和求解方法。
三、 实验准备 :仔细阅读有关Excel 命令的内容,对有关命令,都要事先准备好使用的例子;仔细阅读Excel 中的有关菜单的功能。
四、 实验步骤题目:某种商品的需求量与人均月收入的关系数据如下表:人均月收入(元)700800 900 10001100120012601340需求量(万元)9.0 9.6 10.211.612.413.013.814.6如果估计下个月人均月收入为1400元,试预测下月该商品的需求量。
解:设一元线性回归模型为: i ^y =a+b i x 1.一元线性回归输入:2. 绘制散点图:3、 一元线性回归的计算资料:计算2x 、2y 、xy 、∑y 、∑2x 、∑2y 及∑xy ∑x 。
4、一元线性回归系数的计算:xb y a x x n y x xy n b 22-=--=∑∑∑∑∑)(故预测模型为:i ^y =2.546567205+8.894875⨯103-i x按 i ^y =2.546567205+8.894875⨯103-i x 进行估值计算:5.F 检验:F=)2n ()(1)y (2^2-÷-÷-∑∑-∧y y yF>05.0F (1,6)=5.99 故方程通过F 检验 6.预测区间估计: 当x=1400时:^y =2.546567205+8.894875⨯103-⨯1400=14.999 根据公式^y ± t 2a SE y 求预测区间:SE=2)ˆ(2--∑n y y =0.21523243SE y =SE ∑----++220)()(n11x x x x =0.262552763 查表得:t 2a (6)=2.4469t 2a SE y =0.64244预测区间:^y ± t 2a SE y故下个月的需求为:14.36-15.64万元之间。
(2023)一元线性回归分析研究实验报告(一)
(2023)一元线性回归分析研究实验报告(一)分析2023年一元线性回归实验报告实验背景本次实验旨在通过对一定时间范围内的数据进行采集,并运用一元线性回归方法进行分析,探究不同自变量对因变量的影响,从而预测2023年的因变量数值。
本实验中选取了X自变量及Y因变量作为研究对象。
数据采集本次实验数据采集范围为5年,采集时间从2018年至2023年底。
数据来源主要分为两种:1.对外部行业数据进行采集,如销售额、市场份额等;2.对内部企业数据进行收集,如研发数量、员工薪资等。
在数据采集的过程中,需要通过多种手段确保数据的准确性与完整性,如数据自动化处理、数据清洗及校验、数据分类与整理等。
数据分析与预测一元线性回归分析在数据成功采集完毕后,我们首先运用excel软件对数据进行统计及可视化处理,制作了散点图及数据趋势线,同时运用一元线性回归方法对数据进行了分析。
结果表明X自变量与Y因变量之间存在一定的线性关系,回归结果较为良好。
预测模型建立通过把数据拆分为训练集和测试集进行建模,本次实验共建立了三个模型,其中模型选用了不同的自变量。
经过多轮模型优化和选择,选定最终的预测模型为xxx。
预测结果表明,该模型能够对2023年的Y因变量进行较为准确的预测。
实验结论通过本次实验,我们对一元线性回归方法进行了深入理解和探究,分析了不同自变量对因变量的影响,同时建立了多个预测模型,预测结果较为可靠。
本实验结论可为企业的业务决策和经营策略提供参考价值。
同时,需要注意的是,数据质量和采集方式对最终结果的影响,需要在实验设计及数据采集上进行充分的考虑和调整。
实验意义与不足实验意义本次实验不仅是对一元线性回归方法的应用,更是对数据分析及预测的一个实践。
通过对多种数据的采集和处理,我们能够得出更加准确和全面的数据分析结果,这对于企业的经营决策和风险控制十分重要。
同时,本实验所选取的X自变量及Y因变量能够涵盖多个行业及企业相关的数据指标,具有一定的代表性和客观性。
一元线性回归实验报告
实验一一元线性回归一实验目的:掌握一元线性回归的估计与应用,熟悉EViews的基本操作。
二实验要求:应用教材P61第12题做一元线性回归分析并做预测。
三实验原理:普通最小二乘法。
四预备知识:最小二乘法的原理、t检验、拟合优度检验、点预测和区间预测。
五实验内容:第2章练习12下表是中国2007年各地区税收Y和国内生产总值GDP的统计资料。
单位:亿元(1)作出散点图,建立税收随国内生产总值GDP变化的一元线性回归方程,并解释斜率的经济意义;(2)对所建立的回归方程进行检验;(3)若2008年某地区国内生产总值为8500亿元,求该地区税收收入的预测值及预测区间。
六实验步骤1.建立工作文件并录入数据:(1)双击桌面快速启动图标,启动Microsoft Office Excel, 如图1,将题目的数据输入到excel表格中并保存。
(2)双击桌面快速启动图标,启动EViews6程序。
(3)点击File/New/ Workfile…,弹出Workfile Create对话框。
在WorkfileCreate对话框左侧Workfile structure type栏中选择Unstructured/Undated 选项,在右侧Data Range中填入样本个数31.在右下方输入Workfile的名称P53.如图2所示。
图 1 图 2(4)下面录入数据,点击File/Import/Read Text-Lotus-Excel...选中第(1)步保存的excel表格,弹出Excel Spreadsheet Import对话框,在Upper-left data cell栏输入数据的起始单元格B2,在Excel 5+sheet name栏中输入数据所在的工作表sheet1,在Names for series or Number if named in file栏中输入变量名Y GDP,如图3所示,点击OK,得到如图4所示界面。
《统计学》实验报告(一元线性回归分析)
南昌航空大学经济管理学院学生实验报告实验课程名称:统计学实验时间 2012.12.24 班级学号 11091125 姓名戴文琦成绩实验地点 G804实验性质: □基础性 ■综合性 □设计性实验项目名 称一元线性回归分析指导老师王秀芝一、实验目的:掌握用SPSS 软件进行一元线性回归分析。
二、实验要求:在《中国统计年鉴》中选择合适的数据进行一元线性回归分析(注明数据来源)。
注意回归分析要有经济意义。
三、实验结果及主要结论根据该表进行拟合优度检验。
由于判定系数(0.983)较接近1,因此,认为拟合优度较高,被解释变量可以被模型解释的部分较多,不能被解释的部分较少。
由表中数据,被解释变量的SST 为2.462×107,SSR 为2.379×107,SSE 为835127.295,MSR 为2.379×107,MSE 为167025.459,F 统计量的观测值为142.428,对应的概率P 值近似为0。
根据表中数据进行回归方程的显著性检验。
如果显著性水平α为0.05,由于概率P 值小于显著性水平α,应拒绝回归方程显著性检验的原假设(β1=0),认为回归系数不为0,被解释变量与解释变量的线性关系显著,可建立线性模型。
根据表中数据进行回归系数的显著性检验。
可以看出,如果显著性水平α为0.05,变量回归系数显著性t 检验的概率远远小于显著性水平α,因此拒绝原假设(β1=0),认为回归系数与0存在显著差异,即不为0。
根据上述结果写出的一元线性回归方程如下1:x y214.0858.2437ˆ+= 原数据:按收入等级分城镇居民家庭平均每人全年现金消费支出 (2011年)Model SummaryModel R R Square Adjusted R Square Std. Error of theEstimate 1.983a.966.959408.68748a. Predictors: (Constant), 现金消费支出 (元)ANOVA bModel Sum of Squares df Mean Square F Sig.1 Regression 2.379E7 1 2.379E7 142.428 .000aResidual 835127.295 5 167025.459 Total 2.462E7 6a. Predictors: (Constant), 现金消费支出 (元)b. Dependent Variable: 食品 Coefficients aModelUnstandardizedCoefficients Standardized CoefficientstSig.BStd. ErrorBeta1(Constant) 2437.858 349.6876.972.001现金消费支出(元).214.018.98311.934 .000a. Dependent Variable: 食品1未考虑异方差问题。
一元线性回归法测量纸张厚度
一元线性回归法测量纸张厚度
一、实验目的
1. 学习使用列表法、一元线性回归法记录并处理数据;
2. 学习误差和数据的处理方法。
二、实验器材
游标卡尺、书本
三、实验原理
一元线性回归法是分析只有一个自变量(自变量x 和因变¯量y )线性相关的方法。
一元线性回归法包括建立模型、检验模型两部分。
建立一元线性回归模型的条件是确实存在显著相关关系,确,.
实存在直
线相关关系。
四、实验内容及步骤
1. 测量。
使用游标卡尺分八组测量,自50页起每次增加20页纸;
2. 数据记录和分析,
五、实验记录与数据处理
六、 令纸张页数为x 页,纸张总厚度为y mm ,a bx +=y ,=x 120,=y 6.07,⎺x 2=16500,⎺y 2=41.5413,xy ——=827.7
则b=0.04728 a=0.39568 r=0.9999
U a(b)=0.00027 U b(b)=8.9×10-5 U b =0.0003
最终合成量d=(0.0473±0.0003)mm 纸张页数/页
50 70 90 110 130 150 170 190 纸张总厚度/mm 2.76 3.72 4.62 5.60 6.58 7.44 8.48 9.36。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一一元线性回归一实验目的:掌握一元线性回归的估计与应用,熟悉EViews的基本操作。
二实验要求:应用教材P59第12题做一元线性回归分析并做预测。
三实验原理:普通最小二乘法。
四预备知识:最小二乘法的原理、t检验、拟合优度检验、点预测和区间预测。
五实验容:第2章练习12下表是中国2007年各地区税收Y和国生产总值GDP的统计资料。
单位:亿元(1)作出散点图,建立税收随国生产总值GDP变化的一元线性回归方程,并解释斜率的经济意义;(2)对所建立的回归方程进行检验;(3)若2008年某地区国生产总值为8500亿元,求该地区税收收入的预测值及预测区间。
六实验步骤1.建立工作文件并录入数据:(1)双击桌面快速启动图标,启动Microsoft Office Excel, 如图1,将题目的数据输入到excel表格中并保存。
(2)双击桌面快速启动图标,启动EViews6程序。
(3)点击File/New/ Workfile…,弹出Workfile Create对话框。
在Workfile Create对话框左侧Workfile structure type栏中选择Unstructured/Undated 选项,在右侧Data Range中填入样本个数31.在右下方输入Workfile的名称P53.如图2所示。
图 1 图 2(4)下面录入数据,点击File/Import/Read Text-Lotus-Excel...选中第(1)步保存的excel表格,弹出Excel Spreadsheet Import对话框,在Upper-left data cell栏输入数据的起始单元格B2,在Excel 5+sheet name栏中输入数据所在的工作表sheet1,在Names for series or Number if named in file栏中输入变量名Y GDP,如图3所示,点击OK,得到如图4所示界面。
图 3 图 4(5)按住Ctrl键同时选中Workfile界面的gdp表跟y表,点击鼠标右键选Open/as Group得到完整表格如图5,并点击Group表格上菜单命令Name,在弹出的对话框中命名为group01.图 5 图 62.数据的描述性统计和图形统计:以上建立的序列GDP和Y之后,可对其做描述统计和统计以把握该数据的一些统计属性。
(1)描述属性:点View/Descriptive Stats\Common Sample,得描述统计结果,如图6所示,其中:Mean为均值,Std.Dev为标准差。
(2)图形统计:双击序列GDP,打开GDP的表格形式,点击表格左边View/Graph,可得图7。
同样可查看序列Y的线形图。
很多时候需要把两个序列放在一个图形中来查看两者的相互关系,用线图或散点图都可以。
在命令栏键入:scat GDP Y,然后回车,就可以得到用散点图来查看GDP 和Y的关系,如图8所示。
图 7 图 83.设定模型,用最小二乘法估计参数:设定模型为12i i i Y X u ββ=++。
按住Ctrl 键,同时选中序列Y 和序列GDP ,点击右键,在所出现的右键菜单中,选择Open/as Equation …后弹出一对话框,在框中一次输入“y c gdp ”,(注意被解释变量在最前,变量间要空格,如图9)点击其下的确定,即可得到回归结果(如图10)。
图 9 图 10由图10数据结果,可得到回归分析模型为:10.629630.071047i i Y X =-+(0.123500)- (9.591245)20.760315R =, 9199198F =, .. 1.570523DW =其中,括号的数为相应的t 检验值。
2R 是可决系数,F 与..DW 是有关的两个检验统计量。
4.模型检验:(1)经济意义检验。
斜率2ˆ0.071047β=为边际可支国生产总值GDP ,表明2007年,中国地各省区GDP 每增加1亿元时,税收平均增加0.071047亿元。
(2)t 检验和拟合优度检验。
在显著性水平下,自由度为31-2=29的t 分布的临界值0.025(29) 2.05t =。
因此,从参数的t 检验值看,斜率项显然不为零,但不拒绝截距项为零的假设。
另外,拟合优度20.760315R =表明,税收的76%的变化也以由GDP 的变化来解释,因此拟合情况较好。
在Eqution 界面点击菜单命令View/Actual,Fitted,Residual/Actual,Fitted.Residual Graph 可得到图11,可直观看到实际观测站和拟合值非常接近。
图 11 图 125.应用:回归预测:(1)被解释变量Y 的个别值和平均值的点预测:由第二章第五节知道,个别值和平均值点预测的预测公式均为12ˆˆF FY X ββ=+ 插预测:在Equation 框中,点击“Forecast ”,在Forecast name 框中可以为所预测的预测值序列命名,计算机默认为yf ,点击“OK ”,得到样本期被解释变量的预测值序列yf (也称拟合值序列)的图形形式(图12)。
同时在Workfile 中出现一个新序列对象yf 。
外推预测:① 录入2008年某地区国生产总值GDP 为8500亿元的数据。
双击Workfile 菜单下的Range 所在行,出现将Workfile structured 对话框,讲右侧Observation 旁边的数值改为32,然后点击OK ,即可用将Workfile的Range以及Sample的Range改为32;双击打开GDP序列表格形式,将编辑状态切换为“可编辑”,在GDP序列中补充输入GDP=8500(如图13所示)。
图13 图 14②进行预测在Equation框中,点击“Forecast”,弹出一对话框,在其中为预测的序列命名,如yf2。
点击OK即可用得到预测结果的图形形式(如图14所示)。
点击Workfile中新出现的序列yf2,可以看到预测值为593.2667(图15)(注意:因为没有对默认预测区间1-32做改变,这时候得到的是所有插预测与外插预测的值,若将区间改为32 32,则只会得到外推预测结果)。
图 15 图 16③ 结果查看按住Ctrl 键,同时选中y 、yf 、resid ,点击右键,在右键菜单中选Open/as Group 可打开实际值、预测值、残差序列,在view 菜单选择Graph...,画折线图(如图16所示)。
(2)区间预测原理:当2007年中国某省区GDP 为8500亿元时,预测的税收为()ˆ10.630.0718500593.2667Y=-+⨯=亿元 被解释变量Y 的个别值区间预测公式为:/2ˆˆ1fY t ασ⋅∑ 被解释变量Y 的均值区间预测公式为:/2ˆˆ1/fY t ασ⋅∑。
具体地说,ˆfY 可以在前面点预测序列2593.2667yf =中找到;/2=2.045t α可以查t 分布表得到;样本数n=31为已知;f GDP GDP -中的=8500f GDP 为已知,8891.126GDP =,255957878.6i gdp =∑可以在序列GDP 的描述统计中找到,22()=391.126=152979.5f GDP GDP --();22760310ieRSS ==∑,从而222760310ˆ95183.113111ien k σ===----∑;由X 总体方差的无偏估计式222/(1)619.5803383879.74814809GDP i gdp n σ=-==∑,可以计算2n 111900272.19259079igdp=-=∑() (GDP σ可在序列X 的描述统计中找到)。
(3)区间预测的Eviews 操作: ①个别值置信区间的计算:在命令栏输入:(yfu 为个别值的置信上界,yfl 为个别值的置信下界) “scalaryfu=593.2667+2.045*sqrt(95183.1*(1+1/31+152979.5/55957878.6))” “scalaryfl=593.2667-2.045*sqrt(95183.1*(1+1/31+152979.5/55957878.6))” 得到:yfu=1235.12876632 yfl=-48.5953663235于是95%的置信度下预测的2008年某省区税收入个值的置信区间为:(-48.5953663235,1235.12876632)。
②均值的置信区间的计算:在命令栏输入:(eyfu为均值的置信上界,eyfl为均值的置信下界)“scalare yfu=593.2667+2.045*sqrt(95183.1*(1/31+152979.5/55957878.6))”“scalareyfl=593.2667-2.045*sqrt(95183.1*(1/31+152979.5/55957878.6))”得到:eyfu=711.287072849 eyfl=475.246327151于是在95%的置信度下,预测省区的2008年的税收收入均值的置信区间为:(475.246327151,711.287072849)。
实验二多元线性回归一实验目的:(1) 掌握多元线性回归模型的估计方法(2) 模型方程的F检验,参数的t检验(3) 模型的外推预测与置信区间预测二实验要求:应用教材P107习题14做多元线性回归模型估计,对回归方程和回归参数进行检验并做出单点预测与置信区间预测三实验原理:最小二乘法四预备知识:最小二乘法估计原理、t检验、F检验、点预测和置信区间预测五实验容:在一项对某社区家庭对某种消费品的消费需要调查中,得到书中的表所示的归分析。
,计算2R及2R。
(1)估计回归方程的参数及及随机干扰项的方差2(2)对方程进行F检验,对参数进行t检验,并构造参数95%的置信区间.(3)如果商品单价变为35元,则某一月收入为20000元的家庭的消费支出估计是多少?构造该估计值的95%的置信区间。
六实验步骤:6.1 建立工作文件并录入全部数据如图1所示:图 16.2 建立二元线性回归模型01122Y X X βββ=++点击主界面菜单Quick\Estimate Equation 选项,在弹出的对话框中输入:Y C X1 X2点击确定即可得到回归结果,如图2所示图 2根据图2的信息,得到回归模型的估计结果为:626.51939.790610.02862(15.61)( 3.06)(4.90)Y X X =-+-20.902218R = 20.874281R = .. 1.650804DW =22116.847ie=∑ 32.29408F = (2,7)df =随机干扰项的方差估计值为22116.847302.40677σ∧== 6.3 结果的分析与检验6.3.1 方程的F 检验回归模型的F 值为: 32.29408F =因为在5%的显著性水平下,F 统计量的临界值为0.05(2,7) 4.74F =所以有 0.05(2,7)F F >所以回归方程通过F 检验,方程显著成立。