绘制函数图象的五种技法
函数图像画法
考点名称:函数图象∙定义:点集{(x,y)|y=f(x)}叫做函数y=f(x)的图像。
∙函数图像的画法:(1)描点法:一般我们选择一些特殊点(包括区间端点、最值点、极值点、函数图像与坐标轴的交点等)。
(2)用函数的性质画图一般我们选择先确定函数的定义域,再看函数是否具有周期性和对称性、奇偶性,这样我们就可以只画出部分图像,之后根据性质直接得到其余部分的图像,然后判断单调性,确定特殊点或渐近线,进而得到函数的大致图像。
(3)通过图像变换画图(一)平移变化:Ⅰ水平平移:函数y=f(x+a)的图像可以把函数y=f(x)的图像沿x轴方向向左(a>0)或向右(a<0)平移|a|个单位即可得到;Ⅱ竖直平移:函数y=f(x+a)的图像可以把函数y=f(x)的图像沿x轴方向向上(a>0)或向下(a<0)平移|a|个单位即可得到.(二)对称变换:Ⅰ函数y=f(-x)的图像可以将函数y=f(x)的图像关于y轴对称即可得到;Ⅱ函数y=-f(x)的图像可以将函数y=f(x)的图像关于x轴对称即可得到;Ⅲ函数y=-f(-x)的图像可以将函数y=f(x)的图像关于原点对称即可得到;Ⅳ函数y=f-1(x)的图像可以将函数y=f(x)的图像关于直线y=x对称得到.函数图像的判断:这里主要是抽象函数的图像,借助函数的对称性、周期性及单调性确定函数的图像;另外借助导数,就是函数在某点处的切线斜率的变化,体现在函数的图像上就是增长的快还是慢来确定函数的图像。
常用结论:(1)若函数y=f(x)定义域内任一x的值都满足f(a+x)=f(b-x),则y=f(x)的图像关于直线成轴对称图形;特别地,y=f(x)满足恒成立,则y=f(x)的图像关于直线x=a 成轴对称图形;(2)函数y=f(x)的图像关于直线x=a及x=b对称,则y=f(x)是周期函数,且2|b-a|是它的一个周期。
数学函数图像操作方法
数学函数图像操作方法
在进行数学函数图像操作时,我们通常需要考虑以下几个方法:
1. 描点法:将函数的自变量取一组特定的值,然后计算对应的函数值,再将这些点连线,就可以得到函数的图像。
这种方法适用于简单的函数,但会忽略函数在两个点之间的变化。
2. 函数变化法:通过观察函数的表达式,分析函数的性质,确定函数的增减性,转折点,极值点等关键信息,再结合这些信息来画图。
这种方法适用于一些特殊函数或复杂函数,可以更全面地描述函数的特点。
3. 借助计算工具:借助数学软件或计算器,输入函数的表达式,通过计算工具可以直接绘制函数图像。
这种方法适用于复杂函数或需要更精确绘制的情况,可以节省时间和提高准确性。
4. 函数变换法:对于已知函数的图像,可以通过一些变换操作来得到新函数的图像。
例如,平移、伸缩、翻转等操作可以改变函数图像的位置、形状和方向。
这种方法可以通过调整参数或组合多个函数来得到不同的图像。
以上方法是常用的数学函数图像操作方法,根据具体情况选择合适的方法进行操作。
在进行图像操作时,要根据函数的性质和图像的需求来确定合适的方法,并
注意分析图像的特点和变化规律。
绘制函数图像
用几何画板绘制函数图象的基本技法李善佳(韶关学院数学与信息科学学院)(4)单击“度量”菜单下“计算”,计算214E x ; 21图2三、参数法例3 绘制二次函数y=-x 2+2x+3的图象. 操作步骤:例4 画函数223(1),1()4,1312,33x x r x x x x x ⎪--<⎪=-≤<⎨⎪⎪-≥⎩,,的图象。
操作步骤:(1)单击“图表”菜单下“新建参数”a=1,b=3(设定区间分界点); (2)单击“图表”菜单下“新建函数”f(x)=3-(x-1)2,g(x)=4-x ,h(x)=2123x -; (3)单击“图表”菜单下“绘制新函数”1sgn()1sgn(()())1sgn()()()()()()()()222a x x ab x x b r x f x g x h x +-+--+-=⋅+⋅+⋅(如图4).()h x =. 因此,最后画出的只是区间[a,b]上的图象.五、变换法 1. 平移一个平移就是一个向量,对于函数图象的平移,采取“标记向量”较为简单. 例7 绘制与214y x =,x ∈[-2,3]图象相同,而位置可任意改变的函数图象. 操作步骤:(1)用轨迹法绘制214y x =,x ∈[-2,3]图象(同例2); (2)用“点工具”任作两个点A 、B ;JJ1(21091117)·中数高中第12期发稿·杜安利说明:拖动点A 或点B ,就可以把图象按向量AB 任意平移. 2. 反射 例8 绘制与214y x =,x ∈[-2,3]图象关于任意直线对称的图象.3. 旋转 例9 绘制与214y x =,x ∈[-2,3]图象绕任意点旋转任意角度的图象. 操作步骤:(1)用轨迹法绘制214y x =,x ∈[-2,3]图象(例2); (2)用“点工具”任作点A ,选中点A ,单击“变换”菜单下“标记中心”; (3)单击“图表”菜单下“新建参数”,设置参数t ,单位设置为“弧度”,选中t ,单击“变换”菜单下“标记角度”;(4)选中点F ,单击“变换”菜单下“旋转”,在“旋转参数”中选择“标记角度”,按“确定”得到点'F ;(5)选中点E 与'F ,单击“构造”菜单下“轨迹”,得到原函数图象绕点A 旋转t 角度的图象(如图9).。
函数图像画法知识点总结
函数图像是一种在平面上表示函数关系的方法,通过画出函数图像,可以直观地看出函数的性质和特点。
在数学教学中,函数图像的绘制是非常重要的一部分,它帮助学生理解函数的变化规律,并且可以帮助学生更好地理解函数的性质。
在本文中,将对函数图像的画法进行详细的介绍和总结,包括常见的一些函数图像的特点和绘制方法。
一、基本函数图像的特点及绘制方法1. 直线函数 y=ax+b直线函数是最基本的函数之一,其图像在平面直角坐标系中呈直线状。
直线函数的一般形式为y=ax+b,其中a和b分别是函数的斜率和截距。
当a大于0时,函数图像呈现为向上倾斜的直线;当a小于0时,函数图像呈现为向下倾斜的直线。
绘制直线函数的方法非常简单,只需取两个点就可以确定一条直线。
首先确定直线的截距b,然后再找到直线的斜率a,通过这两个参数就可以确定直线的图像了。
2. 平方函数 y=x^2平方函数是一种非常常见的二次函数,其图像呈现为抛物线形状。
平方函数的一般形式为y=x^2。
平方函数的图像对称于y轴,开口向上。
绘制平方函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=-2,-1,0,1,2等一些常用点,然后根据这些点的坐标值来画出平方函数的图像。
3. 开方函数 y=sqrt(x)开方函数是平方函数的反函数,其图像为抛物线的一条分支。
开方函数的一般形式为y=sqrt(x)。
开方函数的图像对称于x轴,开口向右。
绘制开方函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=0,1,4,9等一些常用点,然后根据这些点的坐标值来画出开方函数的图像。
4. 绝对值函数 y=|x|绝对值函数的图像呈现为一条V形状的曲线。
绝对值函数的一般形式为y=|x|。
绘制绝对值函数的方法可以通过选取多个点来确定函数的图像,一般情况下可以通过选取x=-2,-1,0,1,2等一些常用点,然后根据这些点的坐标值来画出绝对值函数的图像。
以上是一些常见的基本函数的图像特点及绘制方法,通过这些例子可以看出,绘制函数图像的方法主要是通过选取一些关键点来确定函数的图像,然后再通过连接这些点来得到完整的函数图像。
第五节函数图像
第五节(函数图像)第五节函数的图象[知识能否忆起]一、利用描点法作函数图象其基本步骤是列表、描点、连线,首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性);其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点);最后:描点,连线.二、利用基本函数的图象作图1.平移变换(1)水平平移:y=f(x±a)(a>0)的图象,可由y=f(x)的图象向左(+)或向右(-)平移a个单位而得到.(2)竖直平移:y=f(x)±b(b>0)的图象,可由y=f(x)的图象向上(+)或向下(-)平移b个单位而得到.2.对称变换(1)y=f(-x)与y=f(x)的图象关于y轴对称.(2)y=-f(x)与y=f(x)的图象关于x轴对称.(3)y=-f(-x)与y=f(x)的图象关于原点对称.(4)要得到y=|f(x)|的图象,可将y=f(x)的图象在x 轴下方的部分以x轴为对称轴翻折到x轴上方,其余部分不变.(5)要得到y=f(|x|)的图象,可将y=f(x),x≥0的部分作出,再利用偶函数的图象关于y轴的对称性,作出x<0时的图象.3.伸缩变换(1)y=Af(x)(A>0)的图象,可将y=f(x)图象上所有点的纵坐标变为原来的A倍,横坐标不变而得到.(2)y=f(ax)(a>0)的图象,可将y=f(x)图象上所有点的横坐标变为原来的1a倍,纵坐标不变而得到.[小题能否全取]1.一次函数f(x)的图象过点A(0,1)和B(1,2),则下列各点在函数f(x)的图象上的是()A.(2,2)B.(-1,1)C.(3,2) D.(2,3)解析:选D一次函数f(x)的图象过点A(0,1),B(1,2),则f(x)=x+1,代入验证D满足条件.2.函数y=x|x|的图象大致是()解析:选A函数y=x|x|为奇函数,图象关于原点对称.3.(教材习题改编)在同一平面直角坐标系中,函数f(x)=ax与g(x)=a x的图象可能是下列四个图象中的()解析:选B因a>0且a≠1,再对a分类讨论.4.(教材习题改编)为了得到函数y=2x-3的图象,只需把函数y=2x的图象上所有的点向______平移______个单位长度.答案:右 35.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是________.解析:由题意a =|x |+x令y =|x |+x =⎩⎨⎧ 2x ,x ≥0,0,x <0,图象如图所示,故要使a =|x |+x 只有一解则a >0.答案:(0,+∞)1.作图一般有两种方法:直接作图法、图象变换法.其中图象变换法,包括平移变换、伸缩变换和对称变换,要记住它们的变换规律.[注意] 对于左、右平移变换,可熟记口诀:左加右减.但要注意加、减指的是自变量,否则不成立.2.一个函数的图象关于原点(y 轴)对称与两个函数的图象关于原点(y 轴)对称不同,前者是自身对称,且为奇(偶)函数,后者是两个不同的函数对称.作函数的图象典题导入[例1] 分别画出下列函数的图象:(1)y =|lg x |;(2)y =2x +2;(3)y =x 2-2|x |-1.[自主解答] (1)y =⎩⎨⎧lg x ,x ≥1,-lg x ,0<x <1.图象如图1. (2)将y =2x 的图象向左平移2个单位.图象如图2. (3)y =⎩⎨⎧x2-2x -1,x ≥0,x 2+2x -1,x <0.图象如图3.由题悟法画函数图象的一般方法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出.(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.以题试法1.作出下列函数的图象:(1)y =|x -x 2|;(2)y =x +2x -1. 解:(1)y =⎩⎨⎧x -x 2,0≤x ≤1,-(x -x 2),x >1或x <0,即y =⎩⎪⎨⎪⎧-⎝ ⎛⎭⎪⎪⎫x -122+14,0≤x ≤1,⎝ ⎛⎭⎪⎪⎫x -122-14,x >1或x <0, 其图象如图1所示(实线部分).(2)y =(x -1)+3x -1=1+3x -1,先作出y =3x 的图象,再将其向右平移1个单位,并向上平移1个单位即可得到y =x +2x -1的图象,如图2.识图与辨图典题导入[例2] (2012·湖北高考)已知定义在区间[0,2]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为()[自主解答] 法一:由y =f (x )的图象知f (x )=⎩⎪⎨⎪⎧x (0≤x ≤1),1(1<x ≤2). 当x ∈[0,2]时,2-x ∈[0,2],所以f (2-x )=⎩⎨⎧ 1(0≤x ≤1),2-x (1<x ≤2),故y =-f (2-x )=⎩⎨⎧-1(0≤x ≤1),x -2(1<x ≤2).法二:当x =0时,-f (2-x )=-f (2)=-1;当x =1时,-f (2-x )=-f (1)=-1.观察各选项,可知应选B.[答案] B由题悟法“看图说话”常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题.(2)定量计算法:通过定量的计算来分析解决问题.(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.以题试法2.(1)如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝ ⎛⎭⎪⎫1f (3)的值等于________.(2)(2012·东城模拟)已知函数对任意的x∈R有f(x)+f(-x)=0,且当x>0时,f(x)=ln(x+1),则函数f(x)的图象大致为()解析:(1)∵由图象知f(3)=1,∴1 f(3)=1.∴f⎝⎛⎭⎪⎫1f(3)=f(1)=2.(2)∵对∀x∈R有f(x)+f(-x)=0,∴f(x)是奇函数.f(0)=0,y=f(x)的图象关于原点对称,当x<0时,f(x)=-f(-x)=-ln(-x+1)=-ln(1-x),由图象知符合上述条件的图象为D.答案:(1)2(2)D函数图象的应用典题导入[例3](2011·新课标全国卷)已知函数y=f(x)的周期为2,当x∈[-1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lg x|的图象的交点共有()A.10个B.9个C.8个D.1个[自主解答]根据f(x)的性质及f(x)在[-1,1]上的解析式可作图如下:可验证当x=10时,y=|lg 10|=1;0<x<10时,|lg x|<1;x>10时|lg x|>1.结合图象知y=f(x)与y=|lg x|的图象交点共有10个.[答案] A若本例中f(x)变为f(x)=|x|,其他条件不变,试确定交点个数.解:根据f(x)的性质及f(x)在[-1,1]上的解析式可作图如下:由图象知共10个交点.由题悟法1.利用函数的图象研究函数的性质对于已知或易画出在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应关系.2.利用函数的图象研究方程根的个数当方程与基本函数有关时,可以通过函数图象来研究方程的根,方程f(x)=0的根就是函数f(x)图象与x轴的交点的横坐标,方程f (x )=g (x )的根就是函数f (x )与g (x )图象的交点的横坐标.以题试法3.已知函数f (x )=2-x 2,g (x )=x .若f (x )*g (x )=min{f (x ),g (x )},那么f (x )*g (x )的最大值是________.(注意:min 表示最小值)解析:画出示意图(实线部分),⎩⎪⎨⎪⎧2-x 2(x ≤-2),x (-2<x <1),2-x 2(x ≥1), f (x )*g (x )=其最大值为1. 答案:1[典例] (2012·天津高考)已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则 实数k 的取值范围是________.[解析] 因为函数y =|x 2-1|x -1=⎩⎨⎧x +1,x ≤-1或x >1,-x -1,-1<x <1,所以函数y =kx -2的图象恒过点(0,-2),根据图象易知,两个函数图象有两个交点时,0<k <1或1<k <4.[答案] (0,1)∪(1,4)[题后悟道] 所谓数形结合思想,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.解答本题利用了数形结合思想,本题首先作出y=|x2-1|x-1的图象,然后利用图象直观确定直线y=kx-2的位置.作图时应注意不包括B、C两点,而函数y=kx-2的图象恒过定点A(0,-2),直线绕A点可以转动,直线过B、C两点是关键点.针对训练1.(2012·长春第二次调研)设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是________.解析:如图作出函数f(x)=|x+a|与g(x)=x-1的图象,观察图象可知:当且仅当-a≤1,即a≥-1时,不等式f(x)≥g(x)恒成立,因此a 的取值范围是[-1,+∞).答案:[-1,+∞)2.已知函数f (x )=⎩⎪⎨⎪⎧|2x -1|,x <2,3x -1,x ≥2,若方程f (x )-a =0有三个不同的实数根,则实数a 的取值范围为( )A .(1,3)B .(0,3)C .(0,2)D .(0,1)解析:选D 因为方程f (x )-a =0的根,即是直线x =a 与函数f (x )=⎩⎪⎨⎪⎧ |2x -1|,x <2,3x -1,x ≥2的图象交点的横坐标,画出函数图象进行观察可以得知,a 的取值范围是(0,1).1.函数f (x )=2x 3的图象( )A .关于y 轴对称B .关于x 轴对称C .关于直线y =x 对称D .关于原点对称 解析:选D 显然函数f (x )=2x 3是一个奇函数,所以其图象关于原点对称.2.函数y =⎩⎨⎧x 2,x <0,2x -1,x ≥0的图象大致是( )解析:选B 当x <0时,函数的图象是抛物线;当x ≥0时,只需把y =2x 的图象在y 轴右侧的部分向下平移1个单位即可,故大致图象为B.3.(2012·北京海淀二模)为了得到函数y =12log 2(x -1)的图象,可将函数y =log 2x 的图象上所有的点的( )A.纵坐标缩短到原来的12,横坐标不变,再向右平移1个单位长度B.纵坐标缩短到原来的12,横坐标不变,再向左平移1个单位长度C.横坐标伸长到原来的2倍,纵坐标不变,再向右平移1个单位长度D.横坐标伸长到原来的2倍,纵坐标不变,再向左平移1个单位长度解析:选A本题考查图象的平移和伸缩.将y=log2x的图象横坐标不变,纵坐标缩短到原来的12,得y=12log2x的图象,再将y=12log2x的图象向右平移1个单位长度即可.4.(2011·陕西高考)设函数f(x)(x∈R)满足f(-x)=f(x),f(x+2)=f(x),则y=f(x)的图象可能是()解析:选B表达式“f(x)=f(-x)”,说明函数是偶函数,表达式“f(x+2)=f(x)”,说明函数的周期是2,再结合选项图象不难看出正确选项为B.5.(2012·济南模拟)函数y=lg 1|x+1|的大致图象为()解析:选D由题知该函数的图象是由函数y=-lg|x|的图象左移一个单位得到的,故其图象为选项D中的图象.6.(2011·天津高考)对实数a和b,定义运算“⊗”:a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R.若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A.⎝⎛⎦⎤-∞,-2∪⎝⎛⎭⎪⎪⎫-1,32 B.⎝⎛⎦⎤-∞,-2∪⎝⎛⎭⎪⎪⎫-1,-34 C.⎝⎛⎭⎪⎪⎫-1,14∪⎝ ⎛⎭⎪⎪⎫14,+∞ D.⎝ ⎛⎭⎪⎪⎫-1,-34∪⎣⎢⎢⎡⎭⎪⎪⎫14,+∞ 解析:选B由题意可知f (x )=错误! =⎩⎪⎨⎪⎧ x 2-2,-1≤x ≤32,x -x 2,x <-1或x >32作出图象,由图象可知y =f (x )与y =c 有两个交点时,c ≤-2或-1<c <-34, 即函数y =f (x )-c 的图象与x 轴恰有两个公共点时实数c 的取值范围是(-∞,-2]∪⎝⎛⎭⎪⎪⎫-1,-34. 7.已知函数f (x )的图象如图所示,则函数g (x )=log2f (x )的定义域是________.解析:当f (x )>0时,函数g (x )=log 2f (x )有意义, 由函数f (x )的图象知满足f (x )>0的x ∈(2,8]. 答案:(2,8]8.函数f (x )=x +1x 图象的对称中心为________.解析:f (x )=x +1x =1+1x ,把函数y =1x 的图象向上平移1个单位,即得函数f (x )的图象.由y =1x 的对称中心为(0,0),可得平移后的f (x )图象的对称中心为(0,1).答案:(0,1)9.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.解析:当-1≤x ≤0时,设解析式为y =kx +b ,则⎩⎨⎧ -k +b =0,b =1,得⎩⎨⎧k =1,b =1. ∴y =x +1. 当x >0时,设解析式为y =a (x -2)2-1,∵图象过点(4,0),∴0=a (4-2)2-1,得a =14. 答案:f (x )=⎩⎨⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0 10.已知函数f (x )=错误! (1)在如图所示给定的直角坐标系内画出f (x )的图象;(2)写出f (x )的单调递增区间;(3)由图象指出当x取什么值时f(x)有最值.解:(1)函数f(x)的图象如图所示.(2)由图象可知,函数f(x)的单调递增区间为[-1,0],[2,5].(3)由图象知当x=2时,f(x)min=f(2)=-1,当x=0时,f(x)max=f(0)=3.11.若直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点,求a的取值范围.解:当0<a<1时,y=|a x-1|的图象如图1所示,由已知得0<2a<1,即0<a<12.当a>1时,y=|a x-1|的图象如图2所示,由已知可得0<2a<1,即0<a <12,但a >1,故a ∈∅. 综上可知,a 的取值范围为⎝⎛⎭⎪⎪⎫0,12. 12.已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x ,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围.解:(1)设f (x )图象上任一点坐标为(x ,y ),∵点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上,∴2-y =-x +1-x+2, ∴y =x +1x ,即f (x )=x +1x .(2)由题意g (x )=x +a +1x ,且g (x )=x +a +1x ≥6,x ∈(0,2].∵x ∈(0,2],∴a +1≥x (6-x ),即a ≥-x 2+6x -1.令q (x )=-x 2+6x -1,x ∈(0,2],q (x )=-x 2+6x -1=-(x -3)2+8,∴x ∈(0,2]时,q (x )max =q (2)=7,故a 的取值范围为[7,+∞).1.(2013·威海质检)函数y =f (x )(x ∈R)的图象如图所示,下列说法正确的是( )①函数y =f (x )满足f (-x )=-f (x );②函数y =f (x )满足f (x +2)=f (-x );③函数y =f (x )满足f (-x )=f (x );④函数y =f (x )满足f (x +2)=f (x ).A .①③B .②④C .①②D .③④解析:选C 由图象可知,函数f (x )为奇函数且关于直线x =1对称,所以f (1+x )=f (1-x ),所以f [1+(x +1)]=f [1-(x +1)],即f (x +2)=f (-x ).故①②正确.2.若函数f (x )的图象经过变换T 后所得图象对应函数的值域与函数f (x )的值域相同,则称变换T 是函数f (x )的同值变换.下面给出四个函数及其对应的变换T ,其中变换T 不属于函数f (x )的同值变换的是( )A .f (x )=(x -1)2,变换T 将函数f (x )的图象关于y 轴对称B .f (x )=2x -1-1,变换T 将函数f (x )的图象关于x轴对称C .f (x )=2x +3,变换T 将函数f (x )的图象关于点(-1,1)对称D .f (x )=sin ⎝ ⎛⎭⎪⎪⎫x +π3,变换T 将函数f (x )的图象关于点(-1,0)对称解析:选B 对于A ,与f (x )=(x -1)2的图象关于y 轴对称的图象对应的函数解析式为g (x )=(-x -1)2=(x +1)2,易知两者的值域都为[0,+∞);对于B ,函数f (x )=2x -1-1的值域为(-1,+∞),与函数f (x )的图象关于x 轴对称的图象对应的函数解析式为g (x )=-2x -1+1,其值域为(-∞,1);对于C ,与f (x )=2x +3的图象关于点(-1,1)对称的图象对应的函数解析式为2-g (x )=2(-2-x )+3,即g (x )=2x +3,易知值域相同;对于D ,与f (x )=sin ⎝⎛⎭⎪⎪⎫x +π3的图象关于点(-1,0)对称的图象对应的函数解析式为g (x )=sin ⎝⎛⎭⎪⎪⎫x -π3+2,其值域为[-1,1],易知两函数的值域相同.3.已知函数y =f (x )的定义域为R ,并对一切实数x ,都满足f (2+x )=f (2-x ).(1)证明:函数y =f (x )的图象关于直线x =2对称;(2)若f (x )是偶函数,且x ∈[0,2]时,f (x )=2x -1,求x ∈[-4,0]时的f (x )的表达式.解:(1)证明:设P(x0,y0)是函数y=f(x)图象上任一点,则y0=f(x0),点P关于直线x=2的对称点为P′(4-x0,y0).因为f(4-x0)=f(2+(2-x0))=f(2-(2-x0))=f(x0)=y0,所以P′也在y=f(x)的图象上,所以函数y =f(x)的图象关于直线x=2对称.(2)因为当x∈[-2,0]时,-x∈[0,2],所以f(-x)=-2x-1.又因为f(x)为偶函数,所以f(x)=f(-x)=-2x-1,x∈[-2,0].当x∈[-4,-2]时,4+x∈[0,2],所以f(4+x)=2(4+x)-1=2x+7.而f(4+x)=f(-x)=f(x),所以f(x)=2x+7,x∈[-4,-2].所以f (x )=⎩⎨⎧ 2x +7,x ∈[-4,-2],-2x -1,x ∈[-2,0].1.设D ={(x ,y )|(x -y )(x +y )≤0},记“平面区域D 夹在直线y =-1与y =t (t ∈[-1,1])之间的部分的面积”为S ,则函数S =f (t )的图象的大致形状为()解析:选C 如图平面区域D为阴影部分,当t =-1时,S =0,排除D ;当t =-12时,S >14S max ,排除A 、B.2.(2012·深圳模拟)已知定义在区间[0,1]上的函数y =f (x )的图象如图所示,对于满足0<x 1<x 2<1的任意x 1、x 2,给出下列结论:①f (x 2)-f (x 1)>x 2-x 1;②x 2f (x 1)>x 1f (x 2);③f (x 1)+f (x 2)2<f ⎝ ⎛⎭⎪⎫x 1+x 22. 其中正确结论的序号是________.(把所有正确结论的序号都填上)解析:①错误,①即为f (x 2)-f (x 1)x 2-x 1>1,在(0,1)上不恒成立;由题图知,0<x 1<x 2<1时,f (x 1)x 1>f (x 2)x 2,②正确;图象是上凸的,③正确.答案:②③。
画函数图像的方法
画函数图像的方法函数图像是用于表达函数关系的一种图表。
它是把函数算式中的变量转换为横纵坐标的点,再把所有点连接起来形成的曲线。
函数图像的特点是把函数关系清晰地表达出来,可作为函数研究的重要参考材料。
二、如何画函数图像1、定画布:在坐标系中设定画布,一般用网格纸或绘图软件。
2、定函数:将函数表达式写入画布,如y=3x+2,x为横纵坐标,y为函数值。
3、出函数的根:函数的根为函数图像的拐点,可以使用试值代入法求出。
4、出函数图像:根据函数表达式可以求出横纵坐标的配对,在坐标系中一点一点的将它们连接起来,画出函数图像。
三、函数图像的类型1、稳函数:函数图像不发生变化,伴随变量x变化而变化,只有一条线。
例如y=2x。
2、函数:函数图像向下弯曲,伴随变量x变化而变化,只有一条线。
例如y=3x的平方。
3、函数:函数图像向上弯曲,伴随变量x变化而变化,只有一条线。
例如y=logx。
4、大值函数:函数图像最高点降低,伴随变量x变化而变化,只有一条线。
例如y=sinx。
5、物线:函数图像存在上拐点或下拐点,两端弯曲向上或向下,只有一条线。
例如y=4x的平方-2x。
四、画函数图像的应用(1)函数图像可以帮助研究函数的性质,从而解决函数的极值问题、求解函数的最大值和最小值的问题;(2)函数图像可以帮助更加直观地理解函数的定义域和值域;(3)函数图像可以帮助求解函数的极限值,以及估算函数斜率。
五、总结画函数图像是数学中常见的一种任务,它可以帮助我们理解函数的定义域和值域,求解函数的极值问题、求解函数的最大值和最小值的问题,以及估算函数斜率。
画函数图像的方法主要分为:确定画布,确定函数,画出函数的根以及画出函数图像,其中画出函数的根需要使用试值代入法求出。
在画函数图像时,应根据函数的特点区分函数的类型,如平稳函数、凹函数、凸函数、最大值函数以及抛物线,以便更加清晰准确地表达函数的关系,发挥画函数图像的最大价值。
如何用几何画板作函数图像
如何用几何画板作函数图像本人在教学工作中常用几何画板作函数图像,总结了一些基本方法现成文与广大数学教师共享。
一、坐标法坐标法适用于已知函数解析式求作函数图像的方法。
构造一个坐标满足函数解析式的点,用几何画板的轨迹工具画出图象。
下以二次函数为例。
步骤如下:1、新建一个绘图,选择菜单里的“图表”,鼠标单击“建立坐标轴”。
2、选择轴,右击鼠标显示快捷菜单,选择作图,对象上的点,确保该点处在被选中状态,选择工具栏里的“标出文本&标签”工具,鼠标单击刚画出的点,将显示出该点的“标签”(假设为“C”)。
确保C点处于被选中状态,右击鼠标显示快捷菜单选择“度量”,鼠标单击“坐标”,得到C点的坐标。
3、选择工具栏里的“选择&平移”工具,鼠标单击C点的坐标,使它处于被选中状态,再选择菜单栏里的“度量”,鼠标单击“计算”,出现“计算器”窗口,用鼠标单击“数值”按钮,把鼠标放在“点C”上,选择x,然后用鼠标单击“计算器”窗口里“确定”按钮,这样我们就得到了C点的横坐标的度量值。
如果用鼠标拖动点C的话,你会发现它的横坐标的度量值在随之变化。
4、下面我们把界面稍微整理一下,用鼠标单击C点的坐标,使它处于被选中状态,然后同时按下Ctrl和H键,把C点的坐标隐藏掉。
再选择工具栏里的“标出文本&标签”工具,用鼠标双击C点横坐标的度量值,在出现的“度量值格式”窗口里选择“文本格式”,出现两个文本框,将左面文本框内的“X[C]=”改成“x=”,按下“度量值格式”窗口里的“确定”按钮。
经过上面的工作,我们已经把二次函数的自变量构造出来了。
5、选择工具栏里的“选择&平移”按钮,按住Shift键,鼠标单击度量值x(确保别的对象不处于选中状态),选择菜单栏里的“度量”,鼠标单击“计算…”,在出现的“计算器”窗口里,鼠标单击“数值”按钮,选择“2”,鼠标单击“*”号按钮,鼠标单击“数值”按钮,选择“x”,鼠标单击“^”号按钮,鼠标单击“2”按钮,鼠标单击“-”号按钮,鼠标单击“数值”按钮,选择“3”,鼠标单击“*”号按钮,鼠标单击“数值”按钮,选择“x”,鼠标单击“+”号按钮,鼠标单击“数值”按钮,选择“1”,最后按下确定按钮,得到一个新的度量值。
五点法绘制二次函数图像
五点法绘制二次函数图像二次函数的图像绘制可以通过多种方法,以下是一种常用的五步方法——五点法:五点法步骤1:确定顶点首先,根据二次函数的顶点式 $y = a(x - h)^2 + k$,可以直接确定顶点坐标为$(h, k)$。
在平面直角坐标系中描出这个顶点M,并用虚线画出对称轴$x = h$。
步骤2:求与x轴的交点当 $aeq 0$ 时,将 $y$ 设为0,解方程 $a(x - h)^2 + k = 0$,得到与x轴的交点。
这个方程可能有两个不相等的实根(两个交点A、B)、两个相等的实根(一个交点)或没有实根(与x轴无交点)。
步骤3:求与y轴的交点将 $x$ 设为0,求得与y轴的交点C的坐标 $(0, c)$,其中 $c = ah^2 + k$。
步骤4:求关于对称轴的对称点如果抛物线与x轴有两个交点A、B,找到点C关于对称轴$x = h$ 的对称点D。
如果抛物线与x轴只有一个交点或无交点,则只需考虑点C和它的对称点D。
步骤5:绘制图像将顶点M、与x轴的交点A、B(如果存在)、与y轴的交点C及其对称点D按从左到右的顺序连接起来,并向上或向下延伸,就得到了二次函数的图像。
注意事项●当描点作图时,原则上相邻x的差值应相等,但远离顶点的点可以适当减小差值,以提高作图精度。
●如果需要更精确的图像,可以在顶点两侧各取多对对称点,并顺次连接这些点来绘制图像。
总结五点法是一种直观且实用的绘制二次函数图像的方法,通过确定顶点、与x轴和y轴的交点及其对称点,可以快速、准确地绘制出二次函数的图像。
这种方法适用于大多数二次函数的作图,无论是开口向上还是开口向下,都可以使用。
高中数学之常用的函数作图方法大总结
高中常用的函数作图方法大总结函数作图是高中数学最重要的基本功之一。
能够顺畅的做出函数图像,在解题的时候非常重要。
往往我们只需要做出函数的简图即可,不要求严格的精确,追求的是图像的趋势和作图时的速度。
有个别十分基础的函数图像画法,在此就不再一一总结。
以下是较常用,也是学生较生疏的作图,在此做个汇总。
一、一元二次函数即()20y ax bx c a =++≠,做此函数的简图,求出三个要素,就能够迅速确定函数的大致图像。
即:(1)判别式的符号。
决定与x 轴是否有无交点 (2)对称轴2ba-。
决定函数整体位于y 轴左侧还是右侧 (3)确定f(0)的值。
决定函数与y 轴交与上方还是下方 练习:做出下列函数的简图 (答案略)(1)223y x x =+- (2)2232y x x =-+ (3)231y x x =--+二、幂函数()y x αα=为有理数y x α=在第一象限内大致图像如下:则画幂函数图像的步骤: (1)先画出第一象限内的图像(2)再根据有无奇偶性画出其余象限的图像(如无奇偶性,则图像只出现在第一象限) 练习:做出下列函数图像 (1)31y x=(2)34y x = (3)3y x = 解:(1)先画出第一象限,又函数是奇函数,故图像如下(2)函数非奇非偶,因此只有第一象限内的图像,如下(3)函数为奇函数,画出第一象限内,再补充第三象限的即可,如下继续练习作草图:答案:三、ax bycx d+=+图像形如ax bycx d+=+的函数,实际上是由最基本的反比例函数1yx=或者1yx=-经过平移变换得来的。
也是比较常考常用的。
下面就将该图像的画图方法以及图像的核心性质总结下来。
画图步骤:(1)先分离常数(2)确定渐近线的交点(即点(0,0)平移到了哪个点)注意这里的平移口诀是“左加右减,上加下减”(3)画出渐近线,并画出函数图像(注意分子的正负)下面以两道题为例,详细说明画图步骤。
练习(1)作321xyx+=+的图像(2)作341xyx-=-的图像解:(1)()2113212111xxyx x x+++===++++分离常数完成后,可以明显看到,原本的反比例函数的中心点(0,0),先向左平移1再向上平移2,变成了点(-1,2)。
数学中的函数图像的绘制与应用
数学中的函数图像的绘制与应用在数学中,函数是一个非常重要的概念。
而函数图像则是对函数进行可视化的一种方式,它可以让我们更加直观地理解函数的特征和性质。
本文将探讨函数图像的绘制方法、常见的函数图像形态及其应用。
一、函数图像的绘制方法函数图像绘制是一种基于函数的可视化表示方法。
为了绘制函数图像,我们需要先确定要绘制的函数。
这样才能在坐标系内绘制出函数的图像。
下面将介绍如何在笛卡尔坐标系中绘制常见的函数图像。
1. 直线函数的图像绘制直线函数方程为y=kx+b(其中k、b为常数),其图像通常是一条斜率为k,截距为b的直线。
这里以y=2x+1为例,绘制其函数图像的步骤如下:(1)构建坐标系:在纸上画一个直角坐标系。
(2)确定坐标:通过设定变量的值进行逐一计算;或设置x轴和y轴的单位间隔,根据方程中的值确定函数图像上的点坐标。
(3)依据坐标绘图:在坐标系中依照前面计算出来的坐标,描绘出直线。
2. 幂函数的图像绘制幂函数的方程通常具有以下形式:y=x^n(其中n为常数)。
幂函数的图像形态与其幂指数的正负有关。
当幂指数为正数时,函数的图像呈现出向上的凸形状;当幂指数为负数时,函数的图像则呈现出向下的凹形状。
以y=x^2为例,绘制其函数图像的步骤如下:(1)构建坐标系:在纸上画一个直角坐标系。
(2)确定坐标:通过设定变量的值进行逐一计算;或设置x轴和y轴的单位间隔,根据方程中的值确定函数图像上的点坐标。
(3)依据坐标绘图:在坐标系中依照计算出来的坐标,连结相邻的点形成一条曲线。
由于幂函数的曲线通常比较平滑,因此绘制时需要分段绘制(例如x<0部分,x=0的位置,x>0部分等),并且需要足够细致。
3. 三角函数的图像绘制三角函数具有周期性的特点,也就意味着可以将函数图像沿周期区间翻折并重叠,以此来推出整个函数图像的形态。
以下以正弦函数y=sin(x)为例,绘制其函数图像的步骤如下:(1)构建坐标系:在纸上画一个直角坐标系。
高中数学归纳《函数图象的作法》
【知识要点】一、函数图像的作法一般有三种:描点法、图像变换法和性质分析法.二、描点法作函数的图像的一般步骤是:列表→描点→连线 ,描点法一般是在知道函数的图像和性质的情况下使用,其使用对象一般是我们熟悉的初等函数,如2()23 1.f x x x =-+三、图像的变换法就是利用图像的平移变换、伸缩变换、对称变换、翻折变换等作出函数的图像,其解题对象一般是复合函数,如12()log ||f x x =.1、平移变换(左加右减,上加下减)①把函数()f x 的图像向左平移(0)a a >个单位,得到函数()f x a +的图像; ②把函数()f x 的图像向右平移(0)a a >个单位,得到函数()f x a -的图像; ③把函数()f x 的图像向上平移(0)a a >个单位,得到函数()f x a +的图像; ④把函数()f x 的图像向下平移(0)a a >个单位,得到函数()f x a -的图像. 2、伸缩变换①把函数()y f x =图象的纵坐标不变,横坐标伸长到原来的ω倍得1()y f x ω= (1w >) ②把函数()y f x =图象的纵坐标不变,横坐标缩短到原来的ω倍得1()y f x ω= (0ω<<1)③把函数()y f x =图象的横坐标不变,纵坐标伸长到原来的w 倍得()y f x ω= ( ω>1) ④把函数()y f x =图象的横坐标不变,纵坐标缩短到原来的w 倍得()y f x ω= (0<ω<1) 3、对称变换①函数()y f x =和函数()y f x =-的图像关于x 轴对称; 函数()y f x =和函数()y f x =-的图像关于y 轴对称; 函数()y f x =和函数()y f x =--的图像关于原点对称; 函数()y f x =和函数1()y fx -=的图像关于直线x y =对称;简单地记为:x 轴对称y 要变,y 轴对称x 要变,原点对称都要变,y=x 对称交换变.②对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称 轴是2ba x +=. ③()y f x =的图像关于直线x a =对称⇔()()f a x f a x +=-或()(2)f x f a x =- ;()y f x =的图像关于点(,)a b 对称⇔()()2f a x f a x b ++-=或()(2)2f x f a x b +-=; ()y f x =与()y g x =的图像关于直线x a =对称⇔ ()(2)f x g a x =-或 ()()f a x g a x +=-; ()y f x =与()y g x =的图像关于点(,)a b 对称⇔()()2f a x g a x b ++-=或 ()(2)2f x g a x b +-=.4、翻折变换①把函数()y f x =图像上方部分保持不变,下方的图像对称翻折到x 轴上方,得到函数()y f x =的图像;②保留y 轴右边的图像,擦去y 轴左边的图像,再把右边的图像对称翻折到y 轴左边,得到函数()y f x =的图像.四、性质分析法一般指通过对函数的定义域、值域、单调性、奇偶性和周期性的综合研究,再画出函数的图像.性质分析法一般是对那些较复杂的函数使用,如223ln 4y x x =--.学科#网五、作函数的图像,一般是首先化简解析式,然后确定用描点法、图像变换法和性质分析法作函数的图像. 【方法讲评】【例1】用五点法作出函数3sin(2)6y x =+在一个周期的图像.【解析】列表得【点评】对于我们常见的初等函数(一次函数、正比例函数、反比例函数、二次函数、对数函数、指数函数、三角函数等),由于我们知道函数的图像和性质,所以我们常用描点法直接作函数的图像.【反馈检测1】已知函数23[1,2]()3(2,5]x x f x x x ⎧-∈-=⎨-∈⎩(1)在如图给定的直角坐标系内画出()f x 的图象;,(2)写出()f x 的单调递增区间.【例2】 作出下列函数的图象 (1)1||1y x =-; (2)|2|(1)y x x =-+; (3)2|log 1|y x =-; (4)1|2|x y -=【解析】(1)先作函数1y x =的图象,并将图象向右平移1个单位,得到函数11y x =-的图象(如图(a)所示).再擦掉y 轴左边图像,保留y 轴右边图像,并把y 轴右边图像对称翻折到y 轴左边, 得1||1y x =-的图象(如图(b)所示).(2)函数式可化为2219()(2)2419()(2)24x x y x x ⎧--≥⎪⎪=⎨⎪--+<⎪⎩其图象如图所示.【点评】(1)要熟练地画出函数的图像,必须熟练掌握函数的图像变换的知识(见前面的基础知识),能灵活地利用平移变换、伸缩变换、对称变换和翻折变换画出函数的图像.(2)作函数的图像,一般是首先化简解析式,然后确定用描点法、图像变换法和性质分析法作函数的图像.【反馈检测2】关于x 的方程2|43|x x a x -+-=恰有三个不相等的实数根,求实数a 的值.【例3】已知函数2()8f x x x =-+,()6ln g x x m =+,是否存在实数m ,使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由.∵当0x +→时,()x φ→-∞,当x +∞→时,()x φ→+∞ 函数()()()x g x f x φ=-= 286ln x x x m -++的草图如下图所示,∴要使()0x φ=有三个不同的正实数根,函数的草图必须如图1所示,所以必须且只须⎩⎨⎧<-=>-=,0153ln 6)(,07)(+极小值极大值m x m x ϕϕ ∴7156ln3m <<-.【点评】对于较复杂的函数,一般先求函数的定义域、值域、单调性、奇偶性和周期性等,再根据前面函数的性质画出函数的图像.【反馈检测3 】 设函数)(x f =2ln x ax b x ++,曲线()y f x =过(1,0)P ,且在P 点处的切斜线率为2. (1)求a b 、的值;(2)证明:()22f x x ≤-.高中数学常见题型解法归纳及反馈检测第08讲:函数图像作法参考答案【反馈检测1答案】(1)见详细解析;(2)[1,0].[2,5]-. 【反馈检测1详细解析】(1)函数的图像如下图所示:(2)由图象可知,函数f (x )的单调递增区间为[1,0].[2,5]-. 【反馈检测2答案】34a =-【反馈检测3答案】(1)1,3a b =-=;(2)证明见解析.。
高中数学函数图像的绘制与分析方法
高中数学函数图像的绘制与分析方法在高中数学的学习中,函数是一个非常重要的概念,而函数图像则是直观理解函数性质的有力工具。
掌握函数图像的绘制与分析方法,对于解决函数相关的问题具有重要意义。
一、函数图像的绘制1、列表取值首先,我们需要选取一些自变量的值,计算出相应的函数值,列出一个表格。
取值时要注意涵盖函数的关键部分,比如零点、极值点等,同时要保证取值有一定的代表性和规律性。
2、描点连线根据列表中的数值,在平面直角坐标系中描出对应的点。
然后,用平滑的曲线将这些点依次连接起来。
需要注意的是,如果函数在某个区间内是连续的,那么连接的曲线应该是连续的;如果函数在某个点处不连续,比如分段函数,那么在不连续点处要分开绘制。
3、考虑函数的性质在绘制函数图像时,要充分考虑函数的性质,比如奇偶性、单调性、周期性等。
如果函数是偶函数,其图像关于y 轴对称;如果是奇函数,图像关于原点对称。
如果函数是单调递增的,图像是上升的;单调递减的,图像是下降的。
周期性函数的图像会在一定的区间内重复出现。
以最简单的一次函数 y = 2x + 1 为例,我们可以先取 x =-2,-1,0,1,2 等值,计算出对应的 y 值,列出表格:| x |-2 |-1 | 0 | 1 | 2 ||||||||| y |-3 |-1 | 1 | 3 | 5 |然后在坐标系中描点(-2,-3),(-1,-1),(0,1),(1,3),(2,5),最后用直线连接这些点,就得到了一次函数 y= 2x + 1 的图像。
再比如二次函数 y = x² 2x 3,我们可以通过配方法将其化为顶点式 y =(x 1)² 4,由此可知其顶点坐标为(1,-4),对称轴为 x =1。
然后取一些点,如 x =-1,0,2,3 等,计算出对应的 y 值,列表并描点连线,就能得到二次函数的图像。
二、函数图像的分析方法1、观察定义域和值域定义域是函数自变量的取值范围,值域是函数值的取值范围。
函数图像画法
⑴y=f(x)向左平移a个单位,得到y=f(x+a);
⑵y=f(x)向右平移a个单位,得到y=f(x-a);
⑶y=f(x)向上平移b个单位,得到y=f(x)+b;
⑷y=f(x)向下平移b个单位,得到y=f(x)-b;
三、经过对称变换得到函数图像⑴y=fຫໍສະໝຸດ x)关于x轴对称,得到y=-f(x);
函数图像
一、基本函数图像
⑴一次函数y=kx+b(k≠0)
⑵二次函数y=ax2+bx+c(a≠0)
画图注意:画二次函数的简图前先配方,把握三点:①开口方向;②对称轴;③顶点位置。
⑶反比例函数y=(k≠0)
⑷指数函数y=ax(a>0,且a≠1)
⑸对数函数y=logax(a>0,且a≠1)
⑹幂函数y=xα
{规律:①正抛负双(α是正数图像为抛物线型;α是正数图像为双曲线型);
②大竖小横(α>1时是竖型抛物线;0<α<1时是横型抛物线);
③=奇(图像在一、三象限);=偶(图像在一、二象限);=非奇非偶(图像在只在一象限)}
⑺对勾函数y=x+(k>0)⑻绝对值函数y=|x|⑼根式函数y=⑽倾斜角与斜率k=tanα
⑵y=f(x)关于y轴对称,得到y=f(-x);
⑶y=f(x)关于原点对称,得到y=-f(-x);
⑷y=f(x)关于y=x对称,得到 ;
四、含绝对值的函数图像
⑴y=f(|x|)的图像是:将函数y=f(x)的图像y轴右侧保留,y轴左侧删除,并作出y轴右侧关于y轴对称的图像,即y轴两侧的图像是关于y轴对称的;
⑵y=|f(x)|的图像是:将函数y=f(x)的图像x轴上方保留,将x轴下方的图像沿x轴翻折上去;
用几何画板绘制函数图象的基本技法
用几何画板绘制函数图象的基本技法李善佳(韶关学院数学与信息科学学院)(4)单击“度量”菜单下“计算”,计算214E x ; 21图2三、参数法例3 绘制二次函数y=-x 2+2x+3的图象. 操作步骤:例4 画函数223(1),1()4,1312,33x x r x x x x x ⎪--<⎪=-≤<⎨⎪⎪-≥⎩,,的图象。
操作步骤:(1)单击“图表”菜单下“新建参数”a=1,b=3(设定区间分界点); (2)单击“图表”菜单下“新建函数”f(x)=3-(x-1)2,g(x)=4-x ,h(x)=2123x -; (3)单击“图表”菜单下“绘制新函数”1sgn()1sgn(()())1sgn()()()()()()()()222a x x ab x x b r x f x g x h x +-+--+-=⋅+⋅+⋅(如图4).()h x =. 因此,最后画出的只是区间[a,b]上的图象.五、变换法 1. 平移一个平移就是一个向量,对于函数图象的平移,采取“标记向量”较为简单. 例7 绘制与214y x =,x ∈[-2,3]图象相同,而位置可任意改变的函数图象. 操作步骤:(1)用轨迹法绘制214y x =,x ∈[-2,3]图象(同例2); (2)用“点工具”任作两个点A 、B ;JJ1(21091117)·中数高中第12期发稿·杜安利说明:拖动点A 或点B ,就可以把图象按向量AB 任意平移. 2. 反射 例8 绘制与214y x =,x ∈[-2,3]图象关于任意直线对称的图象.3. 旋转 例9 绘制与214y x =,x ∈[-2,3]图象绕任意点旋转任意角度的图象. 操作步骤:(1)用轨迹法绘制214y x =,x ∈[-2,3]图象(例2); (2)用“点工具”任作点A ,选中点A ,单击“变换”菜单下“标记中心”; (3)单击“图表”菜单下“新建参数”,设置参数t ,单位设置为“弧度”,选中t ,单击“变换”菜单下“标记角度”;(4)选中点F ,单击“变换”菜单下“旋转”,在“旋转参数”中选择“标记角度”,按“确定”得到点'F ;(5)选中点E 与'F ,单击“构造”菜单下“轨迹”,得到原函数图象绕点A 旋转t 角度的图象(如图9).。
绘制函数图象的五种技法
绘制函数图象的五种技法如今的社会真的是靠脸吃饭的么?小编我却不以为然,还是觉得靠技术吃饭比较重要,技术不压身!现代教学是多媒体教学,那就离不开教学软件的支撑,几何画板就是其中之一。
在用几何画板辅助数学教学的过程中,常常涉及到函数图象的绘制。
熟练掌握绘制函数图象的方法,对提高数学教学效率很有帮助。
下面小编通过实例来系统总结绘制函数图象的五种技法,如果你get以下几个新技能,离超级学霸就不远啦!一、直接法例1 画函数y=sinx在R上的图象。
操作步骤:单击“图表”菜单下“绘制新函数”f(x)=sinx(如图1)。
二、轨迹法例2 画函数y=(1/4)x^2在区间[-2,3]上的图象。
操作步骤:(1)单击“绘图”菜单下“绘制点”C(-2,0),D(3,0),构造线段CD;(2)选中线段CD,单击“构造”菜单下“线段上的点”构造点E;(3)选中点E,单击“度量”菜单下“横坐标”得点E的横坐标xE;(4)单击“数据”菜单下“计算”,计算y值;(5)依次选中xE、y值,单击“绘图”菜单下“绘制(x,y)”,得点F;(6)选中点E与F,单击“构造”菜单下“轨迹”,得函数在区间[-2,3]的图象(如图2)。
三、参数法例3 绘制二次函数y=-x2+2x+3的图象。
操作步骤:(1)单击“数据”菜单下“新建参数”a=-1,b=2,c=3;(2)单击“绘图”菜单下“绘制新函数”f(x)= =-x2+2x+3(如图3)。
改变参数a、b、c的值(可在选中后按“+”或“-”键),可以动态地探索与发现抛物线的开口方向、顶点坐标和对称轴的变化过程.四、辅助函数法例4画下面函数的图象。
操作步骤:(1)单击“数据”菜单下“新建函数”f(x)=sinx,g(x)=cosx;(2)单击“绘图”菜单下“绘制新函数”。
(如图4)五、变换法一个平移就是一个向量,对于函数图象的平移,采取“标记向量”较为简单。
例5绘制与例2图象相同,而位置可任意改变的函数图象。
函数的图像
函数的图像1.利用描点法作函数图象 基本步骤是列表、描点、连线.首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等).其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图象变换法作函数的图象 (1)平移变换:y =f (x )――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a ); y =f (x )――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b . (2)对称变换:y =f (x )――→关于x 轴对称 y =-f (x ); y =f (x )――→关于y 轴对称 y =f (-x ); y =f (x )――→关于原点对称 y =-f (-x ). (3)翻折变换:y =f (x )――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图象翻折到左边去y =f (|x |); y =f (x )――→保留x 轴上方图将x 轴下方的图象翻折到上方去y =|f (x )|.1.函数y =f (x )的图象关于原点对称与函数y =f (x )与y =-f (-x )的图象关于原点对称一致吗?2.一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称有何区别? 3.若函数y =f (x )的图象关于点(a,0)(a >0)对称,那么其图象如何变换才能使它变为奇函数?其解析式变为什么?1.函数y =x |x |的图象经描点确定后的形状大致是( )2.(2013·四川高考)函数y =x 33x -1的图象大致是( )3.(2013·北京高考)函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( )A .e x +1 B .e x -1C .e-x +1D .e-x -14.函数y =f (x )在x ∈[-2,2]的图象如图所示,则当x ∈[-2,2]时,f (x )+f (-x )=________.5.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是________.[例1] 作出下列函数的图象:(1)y =⎝⎛⎭⎫12|x |; (2)y =|log 2(x +1)|; (3)y =2x -1x -1; (4)y =x 2-2|x |-1.[自主解答] (1)作出y =⎝⎛⎭⎫12x 的图象,保留y =⎝⎛⎭⎫12x 图象中x ≥0的部分,加上y =⎝⎛⎭⎫12x的图象中x >0部分关于y 轴的对称部分,即得y =⎝⎛⎭⎫12|x |的图象,如图实线部分.(2)将函数y =log 2x 的图象向左平移1个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图.(3)∵y =2x -1x -1=2+1x -1,故函数图象可由y =1x的图象向右平移1个单位,再向上平移2个单位而得,如图.(4)∵y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,即得函数图象如图.【方法规律】函数图象的画法(1)直接法:当函数表达式是基本函数或函数图象是解析几何中熟悉的曲线(如圆、椭圆、双曲线、抛物线的一部分)时,就可根据这些函数或曲线的特征直接作出.(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称变换得到,可利用图象变换作出.1.高考对函数图象的考查主要有识图和辨图两个方面,其中识图是每年高考的热点内容,题型多为选择题,难度适中.2.高考对识图问题的考查主要有以下几个命题角度:(1)借助实际情景探究函数图象;(2)已知解析式确定函数图象;(3)已知函数解析式(或图象)确定相关函数的图象;(4)借助动点探究函数图象.(2)(2013·山东高考)函数y=x cos x+sin x的图象大致为()A B C D(3)(2012·湖北高考)已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=-f(2-x)的图象为()A BC D识图问题的常见类型及解题策略(1)由实际情景探究函数图象.关键是将生活问题转化为我们熟悉的数学问题求解,要注意实际问题中的定义域问题.(2)由解析式确定函数图象.此类问题往往化简函数解析式,利用函数的性质(单调性、奇偶性、过定点等)判断,常用排除法.(3)已知函数图象确定相关函数的图象.此类问题主要考查函数图象的变换(如平移变换、对称变换等),要注意函数y=f(x)与y=f(-x)、y=-f(x)、y=-f(-x)、y=f(|x|)、y=|f(x)|等的相互关系.(4)借助动点探究函数图象.解决此类问题可以根据已知条件求出函数解析式后再判断函数的图象;也可采用“以静观动”,即将动点处于某些特殊的位置处考察图象的变化特征,从而作出选择.练习:1.若log2<0(a>0,且a≠1),则函数f(x)=log a(x+1)的图象大致是()a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绘制函数图象的五种技法
如今的社会真的是靠脸吃饭的么?小编我却不以为然,还是觉得靠技术吃饭比较重要,技术不压身!现代教学是多媒体教学,那就离不开教学软件的支撑,几何画板就是其中之一。
在用几何画板辅助数学教学的过程中,常常涉及到函数图象的绘制。
熟练掌握绘制函数图象的方法,对提高数学教学效率很有帮助。
下面小编通过实例来系统总结绘制函数图象的五种技法,如果你get以下几个新技能,离超级学霸就不远啦!
一、直接法
例1 画函数y=sinx在R上的图象。
操作步骤:单击“图表”菜单下“绘制新函数”f(x)=sinx(如图1)。
二、轨迹法
例2 画函数y=(1/4)x^2在区间[-2,3]上的图象。
操作步骤:
(1)单击“绘图”菜单下“绘制点”C(-2,0),D(3,0),构造线段CD;
(2)选中线段CD,单击“构造”菜单下“线段上的点”构造点E;
(3)选中点E,单击“度量”菜单下“横坐标”得点E的横坐标xE;
(4)单击“数据”菜单下“计算”,计算y值;
(5)依次选中xE、y值,单击“绘图”菜单下“绘制(x,y)”,得点F;
(6)选中点E与F,单击“构造”菜单下“轨迹”,得函数在区间[-2,3]的图象(如图2)。
三、参数法
例3 绘制二次函数y=-x2+2x+3的图象。
操作步骤:
(1)单击“数据”菜单下“新建参数”a=-1,b=2,c=3;
(2)单击“绘图”菜单下“绘制新函数”f(x)= =-x2+2x+3(如图3)。
改变参数a、b、c的值(可在选中后按“+”或“-”键),可以动态地探索与发现抛物线的开口方向、顶点坐标和对称轴的变化过程.
四、辅助函数法
例4画下面函数的图象。
操作步骤:
(1)单击“数据”菜单下“新建函数”f(x)=sinx,g(x)=cosx;
(2)单击“绘图”菜单下“绘制新函数”。
(如图4)
五、变换法
一个平移就是一个向量,对于函数图象的平移,采取“标记向量”较为简单。
例5绘制与例2图象相同,而位置可任意改变的函数图象。
操作步骤:
(1)用轨迹法绘制例2的图象(同例2);
(2)用“点工具”任作两个点A、B;
(3)选中点A、B,单击“变换”菜单下“标记向量”;
(4)选中点F,单击“变换”菜单下“平移”,选择“标记”选项,得到 F’;
(5)选中点E与 F’,单击“构造”菜单下“轨迹”,得到原函数图象按向量平移的图象。
说明:拖动点A或点B,就可以把图象按向量AB任意平移。
看了以上的五种画函数图像的方法有没有被诱惑到,是不是感觉几何画板这款工具真的很强大,能省去不少在黑板上画图的时间,在黑板上做不出来的演示效果都可以用几何画板完成,弥补了黑板式教学的缺点。
掌握以上绘制函数图像的方法,就真的离学霸不远了哦,如果你觉得小编的这篇文章对你有益的话,就赶紧访问文章开头的链接,用用这款神器吧!
(注:可编辑下载,若有不当之处,请指正,谢谢!)。