人教版初三数学二次函数应用

合集下载

人教版九年级上册数学课件:二次函数的应用

人教版九年级上册数学课件:二次函数的应用

a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
y=ax2+bx+c (1)a确定抛物线的开口方向:
y
•(0,c)
0
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
(小)值,这个最大(小)值是多少?
(6)x为何值时,y<0?x为何值时,y>0?
解:(6)
y
由图象可知
当-3 < x < 1时,y < 0 当x< -3或x>1时,y > 0
•(-3,0) • • (-1,-2)
•(1,0) x
0
•(0,-3–) 2
人教版九年级上册数学课件:二次函 数的应 用
人教版九年级上册数学课件:二次函 数的应 用
(6)x为何值时,y<0?x为何值时,y>0?
解 :(4)由对称性可知
y
MA=MB=√22+22=2√2
• • AB=|x1-x2|=4
A(-3,0) D B(1,0) x
∴ ΔMAB的周长=2MA+AB
0
=2 √2×2+4=4 √2+4 Δ=M—12 A×B4面×积2==4—12AB×MD
3
• •C(0,-2–) • M(-1,-2)
人教版九年级上册数学课件:二次函 数的应 用

初中数学人教版九年级上册二次函数图象和性质综合应用

初中数学人教版九年级上册二次函数图象和性质综合应用

的图象只可能是(D )
y
1 0
x
y
y
y
y
0x
0x
0x
0x
( A)
(B)
(C )
(D)
小明从右边的二次函数y=ax2+bx+c的图象观察
得出下面的五条信息:① a< 0;② c=0;③ 函
数的最小值为-3; ④当x<0时,y>0; ⑤当0<x1
<x2<2时,y1 > A.2 B.3
y2
你认为其中正确的个数有(
所以其解析式为:
(1) y=(x-1)2+5
(2) y=(x-1)2-5
(3) y=-(x-1)2+5
(4) y=-(x-1)2-5
课堂小结:
1、二次函数的定义及表达式; 2、二次函数的一般形式; 3、二次函数的特殊形式 4、二次函数的图像及性质 5、二次函数与一元二次方程的关系。
二次函数
开口方向 对称轴 顶点坐标
y = a(x+h) 2+k a > 0 向上 直线X=-h (-h,k) a < 0 向下
练习巩固2:
(1)抛物线 y = 2 (x –3 ) 2+1 的开口向 上,
对称轴 X=3 , 顶点坐标是(3,1)
(2)若抛物线y = a (x+m) 2+n开口向下,顶
点在第四象限,则a〈 0, m〈 0, n〈 0。
对称轴在y轴左侧
a、b同号
对称轴在y轴右侧 对称轴是y轴
a、b异号 b=0
(4)b2-4ac的符号: 由抛物线与x轴的交点个数确定
与x轴有两个交点
与x轴有一个交点 与x轴无交点
b2-4ac>0 b2-4ac=0

人教部初三九年级数学上册 二次函数的应用-根据图象性质解决实际问题 名师教学PPT课件

人教部初三九年级数学上册 二次函数的应用-根据图象性质解决实际问题 名师教学PPT课件

(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取
值范围是多少?(排球压线属于没出界)
解:(3)设抛物线解析式为y=a(x-7)2+h, 将点C(0,1.8)代入得49a+h=1.8,
a 1.8 h 49
由题意得
4(1.8
49 121(1.8 49
h) h)
h
h
解:(1)设抛物线解析式为y=ax2,

n 100a n 3 25a
n 4
解得
a
1 25
∴二次函数解析式为:y 1 x2
25
(2) ∵B(10,-4),
∴ 拱桥顶O到CD的距离为4,
∴ 4 20 小时。
0.2
∴ 再过20 h就能到达桥面。
探究:利用二次函数解决抛物线形拱桥问题
则 100a h 25a 3 h
解:(1)设抛物线解析式为y=ax2,
因为抛物线关于y轴对称,AB=20,所以点B
的横坐标10,
设点B(10,n),点D(5,n+3),
n=10²•a=100a,n+3=5²a=25a,

n 100a n 3 25a
解得
n 4
a
1 25
∴二次函数解析式为: y 1 x2 25
探究:利用二次函数解决抛物线形拱桥问题
解: (1)根据题意知此时抛物线的顶点G的坐标为(7,3.2), 设抛物线解析式为y=a(x-7)2+3.2 将点C(0,1.8)代入得49a+3.2=1.8,
解得 a 1
35
y 1 (x 7)2 16
35
5
探究:利用二次函数解决实际问题的训练
挑战题:为备战奥运会,中国女排的姑娘们刻苦训练,为国争光, 如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB为 2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前 方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G,建 立如图所示的平面直角坐标系。

人教版数学中考知识点梳理-二次函数的应用

人教版数学中考知识点梳理-二次函数的应用

第13讲二次函数的应用
一、知识清单梳理
【素材积累】
1、只要心中有希望存摘,旧有幸福存摘。

预测未来的醉好方法,旧是创造未来。

坚志而勇为,谓之刚。

刚,生人之德也。

美好的生命应该充满期待、惊喜和感激。

人生的胜者决不会摘挫折面前失去勇气。

2、我一直知道,漫长人生中总有一段泥泞不得不走,总有一个寒冬不得不过。

感谢摘这样的时候,我遇见的世界上最美的心灵,我接受的最温暖的帮助。

经历
过这些,我将带着一颗感恩和勇敢的心继续走上梦想的道路,无论是风雨还是荆棘。

人教版九年级数学二次函数应用题(含问题详解)

人教版九年级数学二次函数应用题(含问题详解)

人教版九年级数学二次函数实际问题(含答案)一、单选题1.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为[ ] A.28米B.48米C. 68米D.88米2.由于被墨水污染,一道数学题仅能见到如下文字:y=ax2 +bx+c的图象过点(1,0)……求证这个二次函数的图象关于直线x=2对称.,题中的二次函数确定具有的性质是[ ] A.过点(3,0)B.顶点是(2,-1)C.在x轴上截得的线段的长是3D.与y轴的交点是(0,3)3.某幢建筑物,从10 m高的窗口A用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直),如图,如果抛物线的最高点M离墙1m,离地面m,则水流落地点B离墙的距离OB是A.2mB.3mC .4 mD.5 m4.如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是,则该运动员此次掷铅球的成绩是[ ] A.6 mB.8mC. 10 mD.12 m5.某人乘雪橇沿坡度为1:的斜坡笔直滑下,滑下的距离S(m)与时间t(s)间的关系为S=l0t+2t2,若滑到坡底的时间为4s,则此人下降的高度为[ ] A.72 mB.36 mC.36 mD.18 m6.童装专卖店销售一种童装,若这种童装每天获利y(元)与销售单价x(元)满足关系y=-x2 +50x-500,则要想获得最大利润,销售单价为[ ] A.25元B.20元C.30元D.40元7.中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从2.4米高(球门距横梁底侧高)入网.若足球运行的路线是抛物线y=ax2 +bx+c所示,则下列结论正确的是①a<;② <a<0;③ a-b+c>0;④ 0<b<-12a[ ]A.①③B.①④C.②③D.②④8.关于x的二次函数y=2mx2 +(8m+1)x+8m的图象与x轴有交点,则m的取值围是[ ] A.m<≥且m≠0C.m=D.m m≠09.某种产品的年产量不超过1 000吨,该产品的年产量(吨)与费用(万元)之间函数的图象是顶点在原点的抛物线的一部分,如图①所示;该产品的年销售量(吨)与销售单价(万元/吨)之间的函数图象是线段,如图②所示,若生产出的产品都能在当年销售完,则年产量是( )吨时,所获毛利润最大.(毛利润=销售额-费用)①②[ ] A.1 000B.750C. 725D.50010.某大学的校门是一抛物线形水泥建筑物,如图所示,大门的地面宽度为8m,两侧距地面4m高处各有一个挂校名匾用的铁环,两铁环的水平距离为6m,则校门的高为(精确到0.1m,水泥建筑物的厚度忽略不计)[ ] A.5.1 mC.9.1 mD.9.2 m11.图(1)是一个横断面为抛物线形状的拱桥,当水面在如图(1)时,拱顶(拱桥洞的最高点)离水面2m,水面宽4 m.如图(2)建立平面直角坐标系,则抛物线的关系式是[ ]A. y= - 2x2B.y=2x2C. y=-2 x2D.y= x212.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的?[ ] A.第8秒B.第10秒C. 第12秒D.第15秒二、填空题13.把一根长为100 cm的铁丝剪成两段,分别弯成两个正方形,设其中一段长为xcm,两个正方形的面积的和为S cm2,则S与x的函数关系式是( ),自变量x的取值围是( ).14.如图所示,是某公园一圆形喷水池,水流在各方向沿形状相同的抛物线落下,建立如图所示的坐标系,如果喷头所在处A(0,1.25),水流路线最高处B(1,2.25),则该抛物线的表达式为( ).如果不考虑其他因素,那么水池的半径至少要( ),才能使喷出的水流不致落到池外.15.如图,一桥拱呈抛物线状,桥的最大高度是16 m,跨度是40 m,在线段AB上离中心M处5m的地方,桥的高度是( )m .16.在距离地面2m高的某处把一物体以初速度v o(m/s)竖直向上抛出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g是常数,通常取10m/s),若v0=10 m/s,则该物体在运动过程中最高点距离地面( )m三、计算题17.求下列函数的最大值或最小值.(l);(2)y=3(x+l) (x-2).四、解答题18.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6 m.(1)求抛物线的解析式;(2)如果该隧道设双行道,现有一辆货运卡车高为4.2 m,宽为2.4 m,这辆货运卡车能否通过该隧道?通过计算说明.19.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与每件的销售价x (元)满足一次函数:m=162-3x.(1)写出商场卖这种商品每天的销售利润y与每件的销售价x之间的函数关系式.(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?能力提升20.如图所示,一边靠学校院墙,其他三边用40 m长的篱笆围成一个矩形花圃,设矩形ABCD的边AB =x m,面积为Sm2(1)写出S与x之间的函数关系式,并求当S=200 m2时,x的值;(2)设矩形的边BC=y m,如果x,y满足关系式x:y=y:(x+y),即矩形成黄金矩形,求此黄金矩形的长和宽.21.某产品每件成本是120元,为了解市场规律,试销售阶段按两种方案进行销售,结果如下:方案甲:保留每件150元的售价不变,此时日销售量为50件;方案乙:不断地调整售价,此时发现日销量y(件)是售价x(元)的一次函数,且前三天的销售情况如下表:(1)如果方案乙中的第四天,第五天售价均为180元,那么前五天中,哪种方案的销售总利润大?(2)分析两种方案,为了获得最大日销售利润,每件产品的售价应定为多少元?此时,最大日销售利润S是多少?(注:销售利润=销售额-成本额,销售额=售价×销售量).22.某医药研究所进行某一抗病毒新药的开发,经过大量的服用试验后可知:成年人按规定的剂量服用后,每毫升血液中含药量y微克(1微克=10-3毫克)随时间xh的变化规律与某一个二次函数y=ax2 +bx+c(a ≠0)相吻合.并测得服用时(即时间为0)每毫升血液中含药量为0微克;服用后2h,每毫升血液中含药量为6微克;服用后3h,每毫升血液中含药量为7.5微克.(l)试求出含药量y微克与服用时间xh的函数关系式;并画出0≤x≤8的函数图象的示意图;(2)求服药后几小时,才能使每毫升血液中含药量最大?并求出血液中的最大含药量.(3)结合图象说明一次服药后的有效时间有多少小时?(有效时间为血液中含药量不为0 的总时间.)23.某农户计划利用现有的一面墙再修四面墙,建造如图所示的长方体水池,培育不同品种的鱼苗,他已备足可以修高为1.5 m,长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=x m.(不考虑墙的厚度)(1)若想水池的总容积为36 m3,x应等于多少?(2)求水池的容积V与x的函数关系式,并直接写出x的取值围;(3)若想使水浊的总容积V最大,x应为多少?最大容积是多少?实践探究24.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20 m,如果水位上升3m时,水面CD的宽是10 m.(1)建立如图所示的平面直角坐标系,求此抛物线的解析式;(2)现有一辆载有一批物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以40 km/h的速度开往乙地,当行驶1 h时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0. 25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由,若不能,要使货车安全通过此桥,速度应超过每小时多少千米?25.全线共有隧道37座,共计长达742421.2米.如图所示是庙垭隧道的截面,截面是由一抛物线和一矩形构成,其行车道CD总宽度为8米,隧道为单行线2车道.(1)建立恰当的平面直角坐标系,并求出隧道拱抛物线EHF的解析式;(2)在隧道拱的两侧距地面3米高处各安装一盏路灯,在(1)的平面直角坐标系中用坐标表示其中一盏路灯的位置;(3)为了保证行车安全,要求行驶车辆顶部(设为平顶)与隧道拱在竖直方向上高度之差至少有0.5米.现有一辆汽车,装载货物后,其宽度为4米,车载货物的顶部与路面的距离为2.5米,该车能否通过这个隧道?请说明理由.26.我市有一种可食用的野生菌,上市时,外商经理按市场价格30元/千克收购了这种野生菌1 000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.(1)设x天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P 与x之间的函数关系式.(3)经理将这批野生菌存放多少天后出售可获得最大利润W元?(利润=销售总额-收购成本-各种费用)27.在如图所示的抛物线型拱桥上,相邻两支柱间的距离为10 m,为了减轻桥身重量,还为了桥形的美观,更好地防洪,在大抛物线拱上设计两个小抛物线拱,三条抛物线的顶点C、B、D离桥面的距离分别为4m、10 m、2 m.你能求出各支柱的长度及各抛物线的表达式吗?28.某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示,如图甲,一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高,如图乙.根据图象提供的信息解答下面问题(1)一件商品在3月份出售时的利润是多少元?(利润=售价一成本)(2)求出图(乙)中表示的一件商品的成本Q(元)与时间t(月)之间的函数关系式;(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月售出此种商品30000件,请你计算该公司在一个月最少获利多少元?29.某工厂生产A产品x吨所需费用为P元,而卖出x吨这种产品的售价为每吨Q元,已知(1)该厂生产并售出x吨,写出这种产品所获利润W(元)关于x(吨)的函数关系式;(2)当生产多少吨这种产品,并全部售出时,获利最多?这时获利多少元?这时每吨的价格又是多少元? 30.某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足w=-2x+80,设销售这种台灯每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时.每天的利润最大?最大利润是多少?(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润.应将销售单价定为多少元?word参考答案1、D2、A3、B4、C5、C6、A7、B8、B9、B10、C11、C12、B13、0<x<10014、y=-(x-1)2+2. 25 2.515、1516、717、解:(l),y有最大值,当x=-l时,y有最大值.(2)y= 3(x+l) (x-2)=3(x2-x-2)a=3>0,y有最小值,当x=时,y有最小值.18、解:设抛物线的解析式为y=ax2+6,又因为抛物线过点(4,2),则16a+6=2,,抛物线的解析式为y =+6.(2)当x=2.4时,y=+6 =-1. 44+6=4. 56>4.2,故这辆货运卡车能通过该隧道.19、解:(l)y=(x-30) (162-3x)= - 3 x2 +252x-4860 (2)y= -3 (x-42) 2 +432 当定价为42元时,最大销售利润为432元20、解:(l)S=x(40- 2x)=-2 x2+40x, 当S=200时,.(2)当BC=y,则y=40-2x①又y2 =x(x+y) ②由①、②解得x=20±,其中20+不合题意,舍去,x=20-,y=当矩形成黄金矩形时,宽为20-m,长为m.21、解:(1)方案乙中的一次函数为y= -x+200.第四天、第五天的销售量均为20件.方案乙前五天的总利润为:130×70+150×50+160 ×40+180 ×20+180 ×20-120 ×(70+50+40+20+20)=6 200元.方案甲前五天的总利润为(150-120)×50×5=7 500元,显然6200<7 500,前五天中方案甲的总利润大.(2)若按甲方案中定价为150元/件,则日利润为(150-120)×50=1500元,对乙方案:S =xy-120y=x(-x+200) -120(-x+200)= -x2 +320x- 24000= - (x-160) 2 +1600,即将售价定在160元/件,日销售利润最大,最大利润为1600元.22、解:(1)图象略.(2) 当x=4时,函数y有最大值8.所以服药后4h,才能使血液中的含药量最大,这时的最大含药量是每毫升血液中含有药8微克.(3)图象与x轴两交点的横坐标的差即为有效时间.故一次服药后的有效时间为8h23、解:(l)因为AD= EF=BC=x m,所以AB=18-3x.所以水池的总容积为1. 5x(18-3x)=36,即x2- 6x+8=0,解得x1=2,x2=4,所以x应为2或4.2 +27x,且x的取值围是:0<x<6.(3)V=4.5 x2 +27.所以当x=3时,V有最大值,即若使水池总容积最大,x应为3,最大容积为40.5 m3.24、解:(1)设抛物线的解析式为y= ax2,1 / 10word桥拱最高点0到水面CD的高为h米,则D(5,-h).B(10,-h-3).所以即抛物线的解析式为y=-. (2)货车按原来速度行驶不能安全通过此桥.要使货车安全通过此桥,货车的速度应超过60千米/时.25、解:(1)以EF所在直线为x 轴,经过H且垂直于EF的直线为y轴,建立平面直角坐标系,显然E(-5,0),F(5,0),H(0,3).设抛物线的解析式为+bx+c 依题意有:所以y= +3.(2)y=1,路灯的位置为(,1)或(一,1).(只要写一个即可)(3)当x=4时,,点到地面的距离为1.08+2=3.08,因为3.08-0.5=2.58>2.5,所以能通过.26、解:(1)y=x+30(1≤x≤160,且x为整数)(2)P=(x+30)(1000-3x)=-3+910x+30000 (3)由题意得W=(-3+910x+30000)-30×1000-310x=-3(x-100)2+30000 当x=100时,W最大=30000.100天<160天,存放100天后出售这批野生菌可获得最大利润30000元.27、解:抛物线OBA过B(50, 40) ,A(100,0),抛物线OBA的解析式为.当x=20, 30, 40时,y的值分别为:MC=4( m),EN= (m),FQ=50-= ( m),GT= ( m),BR= 10 (m). G1T1 =GT- (m),PQ1-FQ= (m).又抛物线CE过顶点C(10,46),E(20,),解析式为y=-(x-10)2 +46.而抛物线PD过顶点D(85,48),P(70,).解析式为y=-(x-85)2+48.x= 80求得y=.KK1=50--,KK1-LL1 = (m).综上:三条抛物线的解析式分别为:从左往右各支柱的长度分别是:4m,m,m,m,10m,m,10m,m,m,m,m28、解:(1)一件商品在3月份出售时利润为:6-1=5(元).(2)由图象可知,一件商品的成本Q(元)是时间t(月)的二次函效,由图象可知,抛物线的顶点为(6,4),由题知t=3, 4,5,6,7.(3)由图象可知,M(元)是t(月)的一次函数,其中t=3,4,5,6,7∴当t=5时,W∴所以该公司一月份最少获利元29、解:(1)当x=150吨时,利润最多,最大利润2 000元.当x=150吨时,Q=+45=40(元).30、解:(1)y=(x-20)(-2x+80)=-2+120x-1600 (2) y=-2+120x-1 600=-2(x-30)2+200 当x=30时,最大利润为y=200元.(3)由题意,y=150,即-2(x-30)2+200=150解得x l=25,x2=3 5.又销售量w=-2x+80随单价增大而减小,故当x=25时,既能保证销售量大,又可以每天获得1 50元的利润.2 / 10。

部编人教版九年级数学上册22.3.2 用二次函数求实际中的应用问题(课件)

部编人教版九年级数学上册22.3.2 用二次函数求实际中的应用问题(课件)

知2-讲
由(1)(2)的讨论及现在的销售状况,你知 道应如何定价能使利润最大了吗? 定价为65元时,利润最大.
总结
知2-讲
用二次函数解决最值问题的一般步骤: (1)列出二次函数的解析式,并根据自变量的
实际意义,确定自变量的取值范围; (2)在自变量的取值范围内,运用公式法或通
过配方法求出二次函数的最大值或最小值.
知2-讲
(1)设每件涨价x元,则每星期售出商品的利润y随之变 化.我们先来确定y随x变化的函数解析式.涨价x元时, 每星期少卖_1_0_x__件,实际卖出(_3_0_0_-__1_0_x_)_件,销售额 为_(_6_0_+__x_)_(_3_0_0_-__1_0_x_)元,买进商品需付_4_0_(_3_0_0_-__1_0_x_)
知识点 1 用二次函数解析式表示实际问题
知1-讲
运用二次函数的代数模型表示实际问题时,实际上 是根据实际问题中常量与变量的关系,构造出 y=ax2+bx+c,y=a(x-h)2+k或y=a(x-x1)(x-x2)等二次函 数模型,为运用二次函数的性质解决实际问题奠定 基础.
知1-讲
例1 某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日 租金为400元时,可全部租出;当每辆车的日租金每增 加50元时,未租出的车将增加1辆;公司平均每日的各 项支出共4 800元.设公司每日租出x辆车,日收益为y 元,(日收益=日租金收入-平均每日各项支出). (1)公司每日租出x辆车时,每辆车的日租金为 (_1__4_0_0_-__5_0_x_)_(_0_≤__x_≤__2_0_)_元(用含x的代数式表示); (2)求租赁公司日收益y(元)与每日租出汽车的辆数x之 间的函数关系式.
知1-讲

二次函数实际应用 初中初三九年级数学教学课件PPT 人教版

二次函数实际应用  初中初三九年级数学教学课件PPT 人教版
∴汽车能顺利经过大门.
2.某工厂大门是一抛物线形的水 泥建筑物,大门底部宽AB=4m,顶部 C离地面的高度为4.4m,现有载满 货物的汽车欲通过大门,货物顶部 距地面2.7m,装货宽度为2.4m.这 辆汽车能否顺利通过大门?若能, 请你通过计算加以说明;若不能, 请简要说明理由.
练习1
练习2
22.3 实际问题与二次函数
第3课时 拱桥问题和卡车过隧道问题
导入新课
讲授新课
当堂练习
课堂小结
利用二次函数解决实物抛物线形问题
学习目标
1.掌握二次函数模型的建立,会把实际问题转化为二 次函数问题.(重点) 2.利用二次函数解决拱桥的有关问题.(重、难点) 3.能运用二次函数的图象与性质进行决策.
C A
y O
h 20 m
解:设该拱桥形成的抛
x 物线的解析式为y=ax2.
D B
∵该抛物线过(10,-4),
∴-4=100a,a=-0.04
∴y=-0.04x2.
探究2
如图,一座拱桥的纵截面是抛物线的一部分,拱桥的跨度 是4.9米,水面宽是4米时,拱顶离水面2米.(1)你能求出水面 宽3米时,拱顶离水面高多少米吗?(2)有一乌篷船顶宽2米, 高1.6米,问可以通过吗?
代入解析式y= 1 x2 2
解得: y=-0.5。
2-0.5=1.5<1.6. 所以船不能通过
2.某工厂大门是一抛物线形的水 泥建筑物,大门底部宽AB=4m,顶部 C离地面的高度为4.4m,现有载满 货物的汽车欲通过大门,货物顶部 距地面2.7m,装货宽度为2.4m.这 辆汽车能否顺利通过大门?若能, 请你通过计算加以说明;若不能, 请简要说明理由.
一 利用二次函数解决实物抛物线形问题

人教版九年级上册数学教案:22.3二次函数的实际应用:利润问题

人教版九年级上册数学教案:22.3二次函数的实际应用:利润问题
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数在利润问题中的基本概念。二次函数是描述变量间二次关系的数学表达式,它在商业决策中起着重要作用,尤其是在求解最优化问题时。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过建立二次函数模型来解决实际问题,以及它如何帮助我们找到最大利润的售价。
五、教学反思
今天我,整个教学过程让我有了以下几点思考。
首先,我发现同学们在建立二次函数模型时,对于一些关键信息的提取和处理还存在一定的困难。比如在确定二次项系数、一次项系数和常数项时,容易混淆。这让我意识到,在今后的教学中,需要更加注重培养学生提取信息、处理信息的能力。
在实践活动方面,我发现同学们在分组讨论和实验操作中,能够将所学知识应用到实际问题中,这让我感到很欣慰。但同时,我也注意到有些小组在操作过程中,对于一些细节问题处理得不够到位。为了提高同学们的实际操作能力,我计划在后续的教学中,增加一些针对性的练习和指导。
最后,今天的课堂总结环节,同学们能够较好地回顾所学内容,并提出自己的疑问。这表明大家在课堂上能够认真听讲,积极思考。但在回答问题时,有些同学的语言表达能力还有待提高。在今后的教学中,我会多关注这一点,并尝试通过一些课堂活动来提高同学们的表达能力。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数在利润问题中的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对二次函数解决实际问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
四、教学流程

二次函数的实际应用解答题专项练习(原卷版)—2024-2025学年九年级数学上册(人教版)

二次函数的实际应用解答题专项练习(原卷版)—2024-2025学年九年级数学上册(人教版)

二次函数实际应用解答题专项训练类型一:几何图形的面积问题类型二:销售中的利润问题类型三:抛物线形的形状问题类型四:抛物线形的运动轨迹问题类型一:几何图形的面积问题1.如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为x m,面积为y m2.(1)若要围成面积为63m2的花圃,则AB的长是多少?(2)求AB为何值时,使花圃面积最大,并求出花圃的最大面积.2.某养殖户准备围建一个矩形鸡舍,其中一边靠墙MN,另外的边(虚线部分)用长为28米的篱笆围成,并将矩形鸡舍分成两个相同的房间,每个房间并各留出宽1米的门方便进出.已知墙的长度为12米,设这个鸡舍垂直于墙的一边的长为x米,鸡舍的面积为S.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)求出鸡舍的面积S的最大值,此时x为多少米?3.如图,是400米跑道示意图,中间的足球场ABCD是矩形,两边是半圆,直道AB的长是多少?你一定知道是100米!可你也许不知道,这不仅仅为了比赛的需要,还有另外一个原因,等你做完本题就明白了.设AB=x米.(1)请用含x的代数式表示BC.(2)设矩形ABCD的面积为S.①求出S关于x的函数表达式.②当直道AB为多少米时,矩形ABCD的面积最大?4.春回大地,万物复苏,又是一年花季到.某花圃基地计划将如图所示的一块长40m,宽20m的矩形空地划分成五块小矩形区域.其中一块正方形空地为育苗区,另一块空地为活动区,其余空地为种植区,分别种植A,B,C三种花卉.活动区一边与育苗区等宽,另一边长是10m.A,B,C三种花卉每平方米的产值分别是2百元、3百元、4百元.(1)设育苗区的边长为x m,用含x的代数式表示下列各量:花卉A的种植面积是 m2,花卉B的种植面积是 m2,花卉C的种植面积是 m2.(2)育苗区的边长为多少时,A,B两种花卉的总产值相等?(3)若花卉A与B的种植面积之和不超过560m2,求A,B,C三种花卉的总产值之和的最大值.5.如图1,用一段长为33米的篱笆围成一个一边靠墙并且中间有一道篱笆隔墙的矩形ABCD菜园,墙长为12米.设AB的长为x米,矩形ABCD菜园的面积为S平方米.(1)分别用含x的代数式表示BC与S;(2)若S=54,求x的值;(3)如图2,若在分成的两个小矩形的正前方各开一个1.5米宽的门(无需篱笆),当x为何值时,S取最大值,最大值为多少?6.如图,某农户计划用篱笆围成一个矩形场地养殖家禽,为充分利用现有资源,该矩形场地一面靠墙(墙的长度为18m),另外三面用篱笆围成,中间再用篱笆把它分成三个面积相等的矩形分别养殖不同的家禽,计划购买篱笆的总长度为32m,设矩形场地的长为x m,宽为y m,面积为s m2.(1)分别求出y与x,s与x的函数解析式;(2)当x为何值时,矩形场地的总面积最大?最大面积为多少?(3)若购买的篱笆总长增加8m,矩形场地的最大总面积能否达到100m2?若能,请求出x的值;若不能,请说明理由.7.某家禽养殖场,用总长为200m的围栏靠墙(墙长为65m)围成如图所示的三块矩形区域,矩形EAGH 与矩形HGBF面积相等,矩形EAGH面积等于矩形DEFC面积的二分之一,设AD长为x m,矩形区域ABCD的面积为y m2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,y有最大值?最大值是多少?(3)现需要在矩形EAGH和矩形DEFC区域分别安装不同种类的养殖设备,单价分别为40元/平方米和20元/平方米,若要使安装成本不超过30000元,请直接写出x的取值范围.8.小明准备给长16米,宽12米的长方形空地栽种花卉和草坪,图中I、II、III三个区域分别栽种甲、乙、丙三种花卉,其余区域栽种草坪.四边形ABCD和EFGH均为正方形,且各有两边与长方形边重合,矩形MFNC(区域II)是这两个正方形的重叠部分,如图所示.(1)若花卉均价为450元/米2,种植花卉的面积为S(米2),草坪均价为300元/米2,且花卉和草坪裁种总价不超过65400元,求S的最大值;(2)若矩形MFNC满足MF:FN=1:3.①求MF,FN的长;②若甲、乙、丙三种花卉单价分别为150元/米2,80元/米2,150元/米2,且边BN的长不小于边ME长的倍.求图中I、II、II三个区域栽种花卉总价W元的最大值.9.阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求多项式x2﹣4x+5的最小值.解:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1,因为(x﹣2)2≥0,所以(x﹣2)2+1≥1.当x=2时,(x﹣2)2+1=1.因此(x﹣2)2+1有最小值,最小值为1,即x2﹣4x+5的最小值为1.通过阅读,理解材料的解题思路,请解决以下问题:(1)【理解探究】已知代数式A=x2+10x+20,则A的最小值为 ;(2)【类比应用】张大爷家有甲、乙两块长方形菜地,已知甲菜地的两边长分别是(3a+2)米,(2a+5)米,乙菜地的两边长分别是5a米,(a+5)米,试比较这两块菜地的面积S甲和S乙的大小,并说明理由;(3)【拓展升华】如图,△ABC中,∠C=90°,AC=8cm,BC=12cm,点M、N分别是线段AC和BC上的动点,点M 从A点出发以1cm/s的速度向C点运动;同时点N从C点出发以2cm/s的速度向B点运动,当其中一点到达终点时,两点同时停止运动,设运动的时间为t秒,请直接写出△MCN的面积最大值.10.综合与实践,研究小组想利用在前面的空地围出一个,矩的函数表达式,同时求出自变量的取值范围,再结合函数性质求出的最大值:比较并判断矩形种植园的面积最类型二:销售中的利润问题11.麻花是我国的一种特色油炸面食小吃,其色、香、味俱全,品种多样,十分畅销.阳光超市购进了一批麻花礼盒进行销售,成本价为30元/件,根据市场预测,在一段时间内,销售单价为40元/件时,每天的销售量为300件,销售单价每提高10元/件,将少售出50件.(1)求超市销售该麻花礼盒每天的销售量y(件)与销售单价x(元/件)之间的函数关系式,并求出出变量取值范围;(2)当销售单价定为多少时,超市销售该麻花礼盒每天获得的利润最大?并求出最大利润.12.某乡镇贸易公司开设了一家网店,销售当地某种农产品,已知该农产品成本为每千克10元,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中10<x≤30)(1)写出y与x之间的函数关系式及自变量的取值范围;(2)当销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?13.某文具商店用销售进价为28元/盒的彩色铅笔,市场调查发现,若以每盒40元的价格销售,平均每天销售80盒,价格每提高1元,平均每天少销售2盒,设每盒彩色铅笔的销售,价为x(x>40)元,平均每天销售y盒,平均每天的销售利润为W元.(1)直接写出y与x之间的函数关系式: .(2)求W与x之间的函数关系式.(3)为稳定市场,物价部门规定每盒彩色铅笔的售价不得高于50元,当每盒的销售价为多少元时,平均每天获得的利润最大?最大利润是多少元?14.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件,如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于65元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)若每件商品的售价定价为55元,则每个月可卖出 件;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)若在销售过程中每一件商品有a(a>2)元的其他费用,商家发现当售价每件不低于57元时,每月的销售利润随x的增大而减小,请求出a的取值范围.15.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.小柳按照政策投资销售本市生产的一种网红螺蛳粉.已知这种网红螺蛳粉的成本价为每箱80元,出厂价为每箱100元,每月销售量y(箱)与销售单价x(元)之间满足函数关系:y=﹣2x+400.(1)小柳在开始销售的第1月将螺蛳粉的销售单价定为120元,这个月他销售该螺蛳粉可获利 元.(2)设小柳销售螺蛳粉获得的月利润为w(元),当销售单价为多少元时,月利润最大,最大利润是多少元?(3)物价部门规定,这种网红螺蛳粉的销售单价不得高于150元,那么政府每个月为他承担的总差价最少为多少元?16.某商场某商品现在的售价为每件60元,每星期可以卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出10件.已知商品的进价为每件40元.设售价为x元/件(x为正整数),每星期销售量为y件,每星期销售利润为W元.(1)直接写出y与x,W与x的函数解析式以及自变量x的取值范围;(26000元,那么该商品的售价是多少?(3)当该商品的售价定为多少时,每星期的销售利润最大?最大利润是多少?17.某食品厂生产一种半成品食材,成本为2元/千克,每天的产量p(百千克)与销售价格x(元/千克)满足函数关系式p=x+8,从市场反馈的信息发现,该半成品食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:销售价格x(元/千克)24 (10)市场需求量q(百千克)1210 (4)当每天的产量不大于市场需求量时,这种半成品食材能全部售出;而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.已知销售价格不低于2元/千克,不得高于10元/千克.(1)直接写出q与x的函数关系式,并注明自变量x的取值范围;(2)当每天的产量不大于市场需求量时,求厂家每天获得的利润的最大值;(3)当每天的产量大于市场需求量时,求厂家每天获得的最大利润.18.某商场以每件20元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于36元,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间符合一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)该商场销售这种商品要想每天获得600元的利润,每件商品的售价应定为多少元?(3)设商场销售这种商品每天获利w(元),当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?19.端午节是中华民族的传统节日,吃粽子是端午节的风俗之一.在今年端午节即将到来之际,某食品店以15元/盒的价格购进某种粽子,为了确定售价,食品店安排人员调查了附近A,B,C,D,E五个食品店近期该种粽子的售价与日销量情况.【数据整理】将调查数据按照一定顺序进行整理,得到下列表格:(1)分析数据的变化规律,发现日销售量与售价间存在我们学过的某种函数关系,请求出这种函数关系式(不要求写出自变量的取值范围);【拓广应用】(2)①要想每天获得198元的利润,应如何定价?②售价定为多少时,每天能获得最大利润?最大利润是多少?20.某农户在30天内采用线下店面和抖音平台带货两种方式销售一批农产品.其中一部分农产品在抖音平台带货销售,已知抖音平台带货销售日销售量y1(件)与时间x(天)关系如图所示.另一部分农产品在线下店铺销售,农产品的日销售量y2(件)与时间x(天)之间满足函数关系,其中部分对应值如表所示.销售时间x(天)0102030日销售量y2(件)07510075(1)写出y1与x的函数关系式及自变量x的取值范围;(2)试确定线下店铺日销售量y2与x的函数关系式并求出线下店铺日销售量y2的最大值;(3)已知该农户线下销售该农产品每件利润为20元,在抖音平台销售该农产品每件利润为30元,设该农户销售农产品的日销售总利润为w,写出w与时间x的函数关系式,并判断第几天日销售总利润w最大,并求出此时最大值.类型三:抛物线形的形状问题21.蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它的出现使人们可以吃到反季节蔬菜.如图,某菜农搭建了一个横截面为抛物线的大棚,宽度AB为8米,棚顶最高点距离地面高度OC为4米.以AB所在直线为x轴,OC所在直线为y轴建立平面直角坐标系.(1)求该抛物线的函数表达式;(2)若借助横梁DE(DE∥AB)在大棚正中建一个2米高的门(DE到地面AB的距离为2米),求横梁DE的长度是多少米?(结果保留根号)22.一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索L1与缆索L2均呈抛物线型,桥塔AO与桥塔BC 均垂直于桥面,如图所示,以O为原点,以直线FF′为x轴,以桥塔AO所在直线为y轴,建立平而直角坐标系.已知:缆索L1所在抛物线与缆索L2所在抛物线关于y轴对称,桥塔AO与桥塔BC之间的距离OC=100m,AO=BC=17m,缆索L1的最低点P到FF′的距离PD=2m.(桥塔的粗细忽略不计)(1)求缆索L1所在抛物线的函数表达式;(2)点E在缆索L2上,EF⊥FF′,且EF=2.6m,FO<OD,求FO的长.23.如图①为某景区一长廊,该长廊顶部的截面可近似看作抛物线型,其跨度AB为2m,长廊顶部的最高点与地面的距离CD为3m,两侧的柱子OA、BE均垂直于地面,且高度为2.5m,线段OE表示水平地面,建立如图②所示的平面直角坐标系.(1)求该抛物线的函数表达式;(2)为了夜间美观,景区工作人员计划分别在距离A,B两端水平距离为0.5m处的抛物线型长廊顶部各悬挂一盏灯笼,且灯笼底部要保持离地面至少2.6m的安全距离,现市面上有一款长度为0.2m的小灯笼,试通过计算说明该款灯笼是否符合要求(忽略悬挂处长度).24.如图1某桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B 到水面的距离是4m.(1)按如图1所示的坐标系,求该桥拱OBA的函数表达式;(2)要保证高2.26米的小船能够通过此桥(船顶与桥拱的距离不小于0.3米),求小船的最大宽度是多少?(3)如图2,桥拱所在的函数图象的抛物线的x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.现将新函数图象向右平移m(m>0)个单位长度,使得平移后的函数图象在9≤x≤10之间,且y随x的增大而减小,请直接写出m的取值范围.25.某一抛物线形隧道,一侧建有垂直于地面的隔离墙,其横截面如图所示,并建立平面直角坐标系.已知抛物线经过(0,3),,三点.(1)求抛物线的解析式(不考虑自变量的取值范围);(2)有一辆高5m,顶部宽4m的工程车要通过该隧道,该车能否正常通过?并说明理由;(3)现准备在隧道上A处安装一个直角形钢架BAC,对隧道进行维修.B,C两点分别在隔离墙和地面上,且AB与隔离墙垂直,AC与地面垂直,求钢架BAC的最大长度.26.古往今来,桥给人们的生活带来便利,解决跨水或者越谷的交通,便于运输工具或行人在桥上畅通无阻,中国桥梁的桥拱线大多采用圆弧形、抛物线形和悬链形,坐落在河北省赵县汶河上的赵州桥建于隋朝,距今已有约1400年的历史,是当今世界上现存最早、保存最完整的古代敞肩石拱桥,赵州桥的主桥拱便是圆弧形.(1)某桥A主桥拱是圆弧形(如图①中),已知跨度AC=40m,拱高BD=10m,则这条桥主桥拱的半径是 m;(2)某桥B的主桥拱是抛物线形(如图②),若水面宽MN=10m,拱顶P(抛物线顶点)距离水面4m,求桥拱抛物线的解析式;(3)如图③,某时桥A和桥B的桥下水位均上升了2m,求此时两桥的水面宽度.27.开封黑岗口引黄调蓄水库上的东京大桥,又名“彩虹桥”.夜晚在桥上彩灯的映衬下好似彩虹般绚丽.主景观由三个抛物线型钢拱组成(如图①所示),其中最高的钢拱近似看成二次函数的图象抛物线,钢拱最高处C点与路面的距离OC为50米,若以点O为原点,OC所在的直线为y轴,建立如图②所示的平面直角坐标系,抛物线与x轴相交于A、B两点,且AB两点间的距离为80米.(1)求这条抛物线的解析式;(2)钢拱最高处C点与水面的距离CD为72米,请求出此时这条钢拱之间水面的宽度;(3)当﹣32<x<16时,求y的取值范围.28.根据以下素材,探索完成任务.)种植技术已十分成熟,一块土地上有一个蔬菜大棚,其横截面顶部上,根支DE根中棚顶向上调整,支架总数不变,对应支架上升(接问题解决29.综合与实践主题:设计高速公路的隧道高速公路隧道设计及行驶常识:为了行驶安全,高速公路的隧道设计一般是单向行驶车道,要求货车,车货总高度从地.为了保证行驶的安全,货车右侧某高速公路准备修建一个单向双车道(两个车道的宽度一样)的隧道,隧道的截面近似看成由抛物线3.5)与隧道两侧的距离类型四:抛物线形的运动轨迹问题30.某小区花园新安装了一排音乐喷泉装置,其中位于中间的喷水装置OA喷水能力最强,水流在各个方向上沿形状相同的抛物线路径落下,若喷出的水流高度为y(m),水流与OA之间的水平距离为x(m),y 与x之间满足二次函数关系.如图所示,经测量,喷水装置OA高度为3.5米,水流最高处离喷水装置OA的水平距离为3米,离地面竖直距离为8米.(1)求水流喷出的高度y(m)与水平距离x(m)之间的函数关系式;(2)若在音乐喷泉四周摆放花盆,不计其它因素,花盆需至少离喷水装置OA多少米处,才不会被喷出的水流击中?31.“急行跳远”是田径运动项目之一.运动员起跳后的腾空路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到落入沙坑的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x﹣h)2+k(a<0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:水平距离x/m02 2.53 3.54竖直高度y/m00.80.8750.90.8750.8根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y=a(x﹣h)2+k(a<0);(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=﹣0.25(x﹣2.2)2+1.21,记该运动员第一次训练落入沙坑点的水平距离为l1,第二次训练落入沙坑点的水平距离为l2,请比较l1,l2的大小.32.如图1,某公园一个圆形喷水池,在喷水池中心O处竖直安装一根高度为1m的水管OA,A处是喷头,喷出水流沿形状相同的曲线向各个方向落下,喷出水流的运动路线可以看作是抛物线的一部分.建立如图2所示的平面直角坐标系,测得喷出水流距离喷水池中心O的最远水平距离OB为3m,水流竖直高度的最高处位置C距离喷水池中心O的水平距离OD为1m.(1)求喷出水流的竖直高度y(m)与距离水池中心O的水平距离x(m)之间的关系式,并求水流最大竖直高度CD的长;(2)安装师傅调试时发现,喷头竖直上下移动时,抛物线形水流随之竖直上下移动(假设抛物线水流移动时,保持对称轴及形状不变),若要使水流离喷水池中心O的最远水平距离增大至4m,则水管OA的高度增加多少米?33.高楼火灾越来越受到重视,某区消防中队开展消防技能比赛,如图,在一废弃高楼距地面10m的点A 和其正上方点B处各设置了一个火源.消防员来到火源正前方,水枪喷出的水流看作抛物线的一部分(水流出口与地面的距离忽略不计),第一次灭火时,站在水平地面上的点C处,水流恰好到达点A处,且水流的最大高度为12m.待A处火熄灭后,消防员退到点D处,调整水枪进行第二次灭火,使水流恰好到达点B处,已知点D到高楼的水平距离为12m,假设两次灭火时水流的最高点到高楼的水平距离均为3m.建立如图所示的平面直角坐标系.(1)求消防员第一次灭火时水流所在抛物线的解析式;(2)若两次灭火时水流所在抛物线的形状相同,求A、B之间的距离;(3)若消防员站在到高楼水平距离为9m的地方,想要扑灭距地面高度12~18m范围内的火苗,当水流最高点到高楼的水平距离始终为3m时,直接写出a的取值范围.34.甲、乙两名同学进行羽毛球比赛,羽毛球发出并飞行一段距离后,其飞行路线可以看作是抛物线的一部分.如图建立平面直角坐标系,羽毛球从点O 的正上方发出,飞行过程中羽毛球与地面的垂直高度y (单位:m )与水平距离x (单位:m )之间近似满足二次函数关系.比赛中,甲同学某次发球时如图1,羽毛球飞出一段距离后,抛物线部分的飞行高度y 与此时水平距离x 的对应七组数据如下:水平距离x /m23 3.54 4.556…竖直高度y /m3.444.15 4.2 4.154 3.4…根据以上数据,回答下列问题:(1)①当羽毛球飞行到最高点时,距地面 m ,此时水平距离是 m ;②在水平距离5m 处,放置一个高1.55m 的球网,羽毛球  (填“是”或“否”)可以过网;(2)求出y 与x 的函数解析式;(3)若甲发球过网后,乙在羽毛球飞行的水平距离为7m 的点Q 处接住球(如图2).此时如果乙选择扣球,羽毛球的飞行高度y(m )与水平距离x (m )近似满足一次函数关系y =0.4x +m .如果乙选择吊球,羽毛球的飞行高度 y (m ) x (m ) 近似满足二次函数关系y =n (x ﹣6)2+3.2.上面两种击球方式均能使球过网.要使球的落地点到O 点的距离更远,请通过计算判断乙应选择哪种击球方式更合适.35.如图1,某广场要修建一个景观喷水池,水从喷头喷出后呈抛物线形状先向上至最高点后落下.将中间立柱近似看作一条线,以其为y轴建立如图2所示直角坐标系.已知中间立柱顶端C到地面的距离为6m,喷水头D恰好是立柱OC的中点.若水柱上升到最高点E时,高度为4m,到中间立柱的距离为1m.(1)求图2中第一象限内抛物线的函数表达式.(2)为了使水落下后全部进入水池中,请判断圆形水池的直径不能小于多少米?(3)实际施工时,决定对喷水设施做如下设计改进,把水池的直径修成7m,在不改变喷出的抛物线形水柱形状的情况下,且喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,需对水管的长度进行调整,求调整后水管的最大长度.36.如图,某跳水运动员进行10米跳台跳水训练,水面边缘点E(﹣1.5,﹣10),运动员(可视为一质点)在空中运动的路线是经过原点O的抛物线,在跳某个规定动作时,运动员在空中最高处点A(1,1.25),正常情况下,运动员在距水面高度5米前必须完成规定的翻腾,打开动作,并调整好入水姿势,否则就为失误.运动员入水后,运动路线为另一条抛物线.(1)求该运动员在空中运动时所对应抛物线的解析式;(2)若运动员在空中调整好入水姿势时,入水点恰好距点E的水平距离为5米,问该运动员此次跳水是否失误?请通过计算说明理由;(3)在该运动员入水点B的正前方M,N两点,且EM=10.5,EN=13.5,该运动员入水后运动路线对应的抛物线解析式为y=a(x﹣h)2+k且顶点C距水面4米.若该运动员的出水点D在MN之间(含M,N两点),求a的取值范围.。

人教版中考数学一轮复习--二次函数的应用(精品课件)

人教版中考数学一轮复习--二次函数的应用(精品课件)
∴易得c=3,即y=- 1 x2+bx+3. 4
∵A(1,0),即二次函数图象的对称轴为直线x=1,
∴x=-2×b-14=1,∴b=12,
∴二次函数的解析式为 y=-14x2+12x+3.
(2)若点C与点B重合,求tan∠CDA的值.
解:过点D作x轴的垂线,垂足为E.
∵∠CAD=90°,∴∠BAO+∠DAE=90°.
解:当m=-2时,直线l2:y=-2x+n(n≠10), ∴直线l2:y=-2x+n(n≠10)与直线l1:y=-2x+10不重合, 假设l1与l2不平行,则l1与l2必相交,设交点为P(xP,yP), ∴ yyPP= =- -22xxPP+ +n10,,解得n=10. ∵n=10与已知n≠10矛盾,∴l1与l2不相交,∴l2∥l1.
综上所述,当a≥50时,矩形菜园ABCD面积的最大值为1 250 m2; 当0<a<50时,矩形菜园ABCD面积的最大值为 50a-12a2 m2.

考点3 销售问题 例4 某药店选购了一批消毒液,进价为每瓶10元,在销售过
程中发现,每天销售量y(瓶)与每瓶售价x(元)之间存在 一次函数关系(其中10≤x≤21,且x为整数).当每瓶消毒 液售价为12元时,每天销售量为90瓶;当每瓶消毒液售 价为15元时,每天销售量为75瓶. (1)求y与x之间的函数关系式;
∴直线MN的解析式为y=-x+4,
由-x2+2x+3=-x+4 得,x=3±2 5,
∴M 点横坐标为3+2
5或3-2
5 .
例2 【2020福建节选14分】已知直线l1:y=-2x+10交y轴 于点A,交x轴于点B,二次函数的图象过A,B两点,交 x轴于另一点C,BC=4,且对于该二次函数图象上的任 意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.

数学人教版九年级上册二次函数的应用课件

数学人教版九年级上册二次函数的应用课件

y=a(x-h)2+k
a﹤0有最大 a﹤0 x> 值k X y
-
b 2a
各种形式的二次函数的关系(可互相平移得到) 左 右 平 移
y = a( x – h )2 + k
y = ax2 + k
上 下 平 移 y = a( x – h )2
上下平移 y = ax2 左右平移
结论: 一般地,抛物线 y = a(x-h)2+k 与y = ax2 ,y = ax2+k 形状相同,位置 不同。
1
2
1,
2
二次函数 : y=ax2+bx+c(a≠0)
b 2 4ac b a( x ) 2a 4a
2
b 对称轴为:直线x , 2a 2 b 4ac b 顶点坐标是: , 2a 4a

形状:开口向上(或向下)的抛物线
抛物线
顶点坐标
对称轴
X=b 2a
基础性质应用:
1、抛物线y=-2x² +4x-1的开口方向是 向下 , 它的对称轴是 X=1 在y轴的 右 侧,与y轴交于点(0,-1) 。 ( 1, 3 ) 2、二次函数y=2(x-1)2+3的顶点坐标是 , 对称轴 X=1 ,当x= 1 时它有最 小值是 3 。 3、函数y=5(x-3)2-2的图象可由函数y=5x2的图象 沿x轴向 右 平移 3 个单位,再沿y轴向 下 平移 2 个 单位得到。
5 a 4
即所求的函数解析式为
5 2 5 15 y x x 4 2 4
解法三 ∵ 点(-1,0)和(3,0)是关于直线x =1对称,
显然(1,-5)是抛物线的顶点坐标,故可设二次函数解

【精编】九年级上册数学 人教版 二次函数的应用

【精编】九年级上册数学 人教版 二次函数的应用

二次函数的应用教学目标:1.掌握二次函数解析式的应用;2.学会建立二次函数模型解决问题;3.掌握二次函数中动点综合问题。

教学重难点:建立二次函数模型解决问题、二次函数中动点综合问题一、销售问题例1.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?例2.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?例3.(山东青岛)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:=-+.y x10500(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)针对练习11.(四川南充,18,8分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?元/件)2.(本题9分)牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的投放市场进行试销.经过调查,y 与x 的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)菏泽市物价部门规定,该工艺品销售单价最高不能..超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?二、抛物线型问题例4.某校九年级的一场篮球比赛中,如图所示,队员甲正在投篮,已知球出手时离地面高920m ,与篮圈中心的水平距离为7 m ,当球出手后水平距离为4 m 时到达最大高度4 m .设篮球的运动轨迹为抛物线,篮圈距地面3 m .(1)请你建立适当的平面直角坐标系,并判定此球能否准确投中? (2)此时,若对方队员乙在甲面前1 m 处跳起盖帽拦截,已知乙的 最大摸高为2.9 m ,那么他能否获得成功?例5.某公司草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4 m 加设不锈钢管(如图a)做成的立柱,为了计算所需不锈钢管立柱的总长度,设计人员利用图b 所示的坐标系进行计算.(1)求该抛物线的函数关系式; (2)计算所需不锈钢管立柱的总长度.针对练习2.1.某跳水运动员在进行10 m 跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线.在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面3210m ,入水处距池边的距离为4 m ,同时运动员在距水面高度5 m 以前,必须完成规定的翻腾动作,并调整好入水姿势时,否则就会出现失误.(1)求这条抛物线的函数关系式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线, 且运动员在空中调整好入水姿势时,距池边的水平距离为533m , 问此次跳水会不会失误?并通过计算说明理由.2.如图所示,某隧道设计为双向回车道,车道宽22 m ,要求通过车辆限高4.5 m ,隧道全长2.5 km ,隧道的拱线近似地看成是抛物线形状,若最大拱高为6 m ,求隧道应设计的拱长是多少.三、简单的几何问题例 6. 如图,在矩形ABCD 中,6cm AB =,12cm BC =,点P 从A 出发沿AB 边向点B 以1cm/s 的速度移动,同时点Q 从点B 出发沿BC 边以2cm/s 的速度移动,分别到达B ,C 两点后就停止运动. (1)设运动开始后第s t 时,五边形APQCD 的面积为2cm S ,试写出S 与t 的函数关系式,并指出自变量t 的取值范围.(2)第几秒五边形APQCD 的面积最小?是多少?23例7.Rt△ABC以1m/s的速度沿BC方向从矩形移出,直到AB与CD重合,AB=32m,∠ACB=30°,设x s时,三角形与矩形重合部分面积为y2m.(1) 经过多少秒,AB与CD重合?;(2) 写出y与x之间的函数关系式(3)经过多少秒,阴影部分的面积S最大,最大面积是多少?巩固练习1.用8m长木条,做成如图的窗框(包括中间棱),若不计损耗,窗户的最大面积为2m.2. 用长8m的铝合金条制成如图形状的矩形窗框,为了使窗户的透光面积最大,那么这个窗户的最大透光面积是()A.264m25B.24m3C.28m3D.24m3.某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,在对历年市场行情和生产情况进行了调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行预测,提供了两个方面的信息,如图1,图2.注:图1、图2中的每个实心黑点所对应的纵坐标分别指相应月份的售价和成本,生产成本6月份最低;图1的图像是线段,图2的图像是抛物线.请你根据图像提供的信息说明:(1)在3月份出售这种蔬菜,每千克的收益是多少元?(2)哪个月出售这种蔬菜,每千克的收益最大?说明理由.4.某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支 (不含进价)总计120万元.在销售过程中发现,年销售量y (万件)与销售单价x (元)之间存在着如图所示的一次函数关系.(1)求y 关于x 的函数关系式;(2)试写出该公司销售该种产品的年获利z (万元)关于销售单价x (元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支).当销售单价x 为何值时,年获利最大?并求这个最大值; (3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?5.某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB =4 m ,顶部C 离地面高度为4.4 m .现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8 m ,装货宽度为2.4 m .请判断这辆汽车能否顺利通过大门.6.如图所示,一位篮球运动员在离篮圈水平距离为4 m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5 m时,达到最大高度3.5 m,然后准确落入篮框内.已知篮圈中心离地面距离为3.05 m.(1)建立如图所示的直角坐标系,求抛物线所对应的函数关系式;(2)若该运动员身高1.8 m,这次跳投时,球在他头顶上方0.25 m处出手.问:球出手时,他跳离地面多高?尝试中考1.(沈阳)某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的函数关系满足图②中的图象.(1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为,其中自变量x的取值范围是;(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式.思维拓展有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在池塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg放养在池塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1 000 kg蟹的销售总额为Q元,写出Q关于x的函数关系式;(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q-收购总额)?。

人教版九年级上册数学二次函数应用题训练

人教版九年级上册数学二次函数应用题训练

人教版九年级上册数学二次函数应用题训练1.某商场购进一批进货价为16元的日用品,销售一段时间后,为了获得更多的利润,商店决定提高价格.调查发现,若按每件20元的价格销售,每月能卖出360件,若按每件25元的价格销售,每月能卖210件,假定每月销售量y(件)是销售价格x (元/件)的一次函数.(1)求y与x之间的关系式;(2)销售价定为多少元时,该商场每月获得利润最大?最大利润是多少?2.某商品的进价为每件50元,当售价为每件70元时,每星期可卖出300件,现需降价处理,经市场调查:在确保盈利的前提下,每降价1元,每星期可多卖出20件,(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式;(2)当降价多少元时,每星期的利润最大?最大利润是多少?3.如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m),设花圃的宽AB为xm,面积为S2m.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为452m的花圃,AB的长是多少米?(3)当AB的长是多少米时,围成的花圃的面积最大?(结果保留两位小数)4.国庆期间,某商场销售一种商品,进货价为20元/件,当售价为24元/件时,每天的销售量为200件,在销售的过程中发现:销售单价每上涨1元,每天的销量就减少10件.设销售单价为x(元/件)(x≥24),每天销售利润为y(元).(1)直接写出y与x的函数关系式为:;(2)若要使每天销售利润为1400元,求此时的销售单价;(3)若每件小商品的售价不超过36元,求该商场每天销售此商品的最大利润.5.某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x元,每个月的销售量为y件.(1)求y与x的函数表达式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?6.为增加农民收入,助力乡村振兴.某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8≤x≤40)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)求五一期间销售草莓获得的最大利润.7.在一次篮球比赛中,如图,队员甲正在投篮.已知球出手时离地面20m9,与篮圈中心的水平距离为7m,球出手后水平距离为4m时达到最大高度4m,设篮球运行轨迹为抛物线,篮圈距地面3m.(1)建立如图所示的平面直角坐标系,求此抛物线的解析式;(2)此时球能否准确投中?(3)此时,对方队员乙在甲面前1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?8.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的矩形花圃,设花圃的宽AB为xm,面积为2S.m(1)求S与x的函数表达式.(2)如果要围成面积为245m的花圈,AB的长是多少米?(3)能围成面积为250m的花圃吗?若能,请说明围法;若不能请说明理由.9.某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.10.某商场有A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A商品和2件B商品,共需135元.(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值;(2)B商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件.①求每天B商品的销售利润y(元)与销售单价(x)元之间的函数关系?①求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?11.某商店经销《超级飞侠》“乐迪”玩具,“乐迪”玩具每个进价60元,每个玩具不得低于80元出售.销售“乐迪”玩具的单价m(元/个)与销售数量n(个)之间的函数关系如图所示.(1)试解释线段AB所表示的实际优惠销售政策;(2)写出该店当一次销售n(n>10)个时,所获利润w(元)与n(个)之间的函数关系式;(3)店长经过一段时间的销售发现:卖25个赚的钱反而比卖30个赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他条件不变的情况下,店长应把最低价每个80元至少提高到多少元?12.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?13.某企业接到生产一批设备的订单,要求不超过12天完成.这种设备的出厂价为1200元/台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台.若干天后,每台设备的生产成本将会增加,设第x天(x为整数)的生产成本为m(元台),m与x的关系如图所示.(1)若第x天可以生产这种设备y台,则y与x的函数关系式为______,x的取值范围为______;(2)第几天时,该企业当天的销售利润最大?最大利润为多少?(3)求当天销售利润低于10800元的天数.14.某水产养殖户,一次性收购了20000kg小龙虾,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批小龙虾放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系式为()()200000501001500050100tmt t≤≤⎧⎪=⎨+≤⎪⎩<,y与t的函数关系如图所示①求y与t的函数关系式;①设将这批小龙虾放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出W的最大值.(利润=销售总额-总成本)15.工艺商场按标价销售某种工艺品时,每件可获利45元;并且进价50件工艺品与销售40件工艺品的价钱相同.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元16.河北内丘柿饼加工精细,色泽洁白,肉质柔韧,品位甘甜,在国际市场上颇具竞争力.上市时,外商王经理按市场价格10元/千克在内丘收购了2000千克柿饼存放入冷库中.据预测,柿饼的市场价格每天每千克将上涨0.5元,但冷库存放这批柿饼时每天需要支出各种费用合计320元,而且柿饼在冷库中最多保存80天,同时,平均每天有8千克的柿饼损坏不能出售.(1)若存放x天后,将这批柿饼一次性出售,设这批柿饼的销售总金额为y元,试写出y与x之间的函数关系式;(2)王经理想获得利润20000元,需将这批柿饼存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)(3)王经理将这批柿饼存放多少天后出售可获得最大利润?最大利润是多少?17.某商场销售一种成本为每件30元的商品,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似看作一次函数y=﹣10x+600,商场销售该商品每月获得利润为w(元).(1)求w与x之间的函数关系式;(2)如果商场销售该商品每月想要获得2000元的利润,那么每月成本至少多少元?(3)若销售价不低于40元且不高于55元,请直接写出每月销售新产品的利润w的取值范围.18.某服装店在服装销售中发现:进货价每件60元,销售价每件100元的某服装每天可售出20件,为了迎接新春佳节,服装店决定采取适当的促销措施,扩大销售量,增加盈利.经调查发现:如果每件服装降价1元,那么每天就可多售出2件.(1)如果服装店想每天销售这种服装盈利1050元,同时又要使顾客得到更多的实惠,那么每件服装应降价多少元?(2)每件服装降价多少元时,服装店每天可获得最大利润?最大利润是多少元?19.为迎接国庆节,某商店购进了一批成本为每件30元的纪念商品.经调查发现,该商品每天的销售量y (件)与销售单价x (元)满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y 与销售单价x 的函数关系式;(2)若商店按不低于成本价,且不高于60元的单价销售,则销售单价定为多少,才能使销售该商品每天获得的利润w (元)最大?最大利润是多少?20.生产某种农产品的成本每千克20元,调查发现,该产品每天销售量y (千克)与销售单价x (元/千克)满足如下关系:280y x =-+,设这种农产品的销售利润为w 元.(1)求w 与x 之间的函数关系式.(2)该产品销售价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)物价部门规定这种产品的销售价不得高于每千克28元,该农户想在这种产品经销季节每天获得150元的利润,销售价应定为每千克多少元?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013—2014学年九年级数学(上)周末辅导资料(09)
理想文化教育培训中心 姓名:________ 得分:_______
一、选择题:
1、抛物线2
y x 12=-+()的顶点坐标是( )
A .(-1,2)
B .(-1,-2)
C .(1,-2)
D .(1,2)
2、抛物线2y ax bx c =++与x 轴的交点坐标是(-l ,0)和(3,0),则这条抛物线的对称轴是( )
A .直线x=-1 8.直线x=0 C .直线x=1 D .直线x= 3
3、关于x 的二次函数()()y=x+1x m -,其图象的对称轴在y 轴的右侧,则实数m 的取值范围是( ) A. m <1- B. 1<m<0- C. 0<m<1 D. m >1
4、已知抛物线y=ax 2﹣2x+1与x 轴没有交点,那么该抛物线的顶点所在的象限是( )
A .第四象限
B .第三象限
C .第二象限
D .第一象限 5、抛物线2y ax bx 3=+-经过点(2,4),则代数式8a 4b 1++的值为( )
A .3
B .9
C .15
D .15-
6、二次函数2y ax bx c =++的图象如图所示,则函数值y 0<时x 的取值范围是( )
A .x 1<-
B .x >3
C .-1<x <3
D .x 1<-或x >3
7、 对于二次函数y 2(x 1)(x 3)=+-,下列说法正确的是( )
A. 图象的开口向下
B. 当x>1时,y 随x 的增大而减小
C. 当x<1时,y 随x 的增大而减小
D. 图象的对称轴是直线x=-1 8、如图,设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点, 则1y ,2y ,3y 的大小关系为( )
A .213y y y >>
B .312y y y >>
C .321y y y >>
D .312y y y >> 9、如图为二次函数y=ax 2
+bx+c (a≠0)的图象,则下列说法: ①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x <3时,y >0 其中正确的个数为( )
A .1
B .2
C .3
D .4
10、已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( ) A .1个 B .2个 C .3个 D .4个
11、如图,二次函数y=(x ﹣2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b 的图象经过该二次函数图象上点A (1,0)及点B . (1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足kx+b≥(x ﹣2)2+m 的x 的取值范围.
12、杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路
线是抛物线23
y=x 3x 15-++的一部分,如图。

(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由。

13、如图,抛物线y =
2
1x 2
+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0). ⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论;
14、如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0). ⑴ 求抛物线的解析式;
⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.
15、如图,已知二次函数c bx x y ++-=22
1
的图象经过A (2,0)、B (0,-6)两点。

(1)求这个二次函数的解析式
(2)设该二次函数的对称轴与x 轴交于点C ,连结BA 、BC ,求△ABC 的面积。

16、如图,抛物线c bx x y ++-=2与x 轴交与A(2,0),B(- 4,0)两点。

(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y 轴与C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.
(3)在(1)中的抛物线上的第二象限上是否存在一点P ,使△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值.若没有,请说明理由.
第14题
A
B
C。

相关文档
最新文档