基于单片机的多路无线温度检测系统

合集下载

基于单片机的多路温度采集系统软件设计

基于单片机的多路温度采集系统软件设计

基于单片机的多路温度采集系统软件设计(附程序,元件清单)编辑:Nancy 来源: 作者:Team 指数:28 编号:544020120419 共2页: 上一页12下一页基于单片机的多路温度采集系统软件设计(附程序,元件清单)(任务书,开题报告,外文翻译,毕业论文9000字)摘要:随着现代信息技术的飞速发展〖资料来源:毕业设计(论文)网 〗温度测量控制系统在工业、农业及人们的日常生活中扮演着一个越来越重要的角色,它对人们的生活具有很大的影响温度采集在林业,农业,化工甚至是军工领域都有广泛的应用,因此能否对这些地区的环境温度实现有效的监测。

是一个要解决的重要的课题。

采用温度传感器构成的电子监控装置是一种较好的解决方案,因此利用Mcs-51单片机系列设计了一个温度采集系统。

数字式多路温度采集系统由主控制器、温度采集电路、温度显示电路、报警控制电路及键盘输入控制电路组成。

它利用单片机AT89C51做控制及数据处理器、智能温度传感器DS18B20做温度检测器、LED数码显示管做温度显示输出设备。

实现多监测点的温度采集。

并且具有显示,报警等功能。

能够应用于一般的环境的温度采集环境。

软件设计主要采用汇编语言设计,设计工具用keil,程序主要由键盘扫描子程序,温度转换子程序,读出温度子程序,计算温度子程序,显示数据刷新子程序,报警控制子程序组成。

用汇编的主要优点是编程的效率高。

适用于简单的但是要求较高的电路。

本文主要是采用的是汇编语言设计。

. 〖资料来源:毕业设计(论文)网 〗关键词:温度传感器单片机软件software design base on SCM multi-channel temperature gathering system Abstract:With the rapid development of modern information technology,In temperature measurement control system of industrial, agricultural and People's Daily life playsa more and more important role in people's life, and it has very important effect,Temperature gathering in the forestry, agriculture, chemical and even military domain has a wide range of applications,So effective monitor the environment temperatureof these regions Is an important task to solve. A temperature sensor constitute electronic monitoring device is a better solution, so use Mcs - 51 SCM series designa temperature gathering system.the digital multi-channel temperature gathering system by the master control regulator, the temperature gathering electric circuit, the temperature display circuit, reports to the police the control circuit and the keyboard entry control circuit is composed .It makes the control and the data processor, intelligent temperature sensor DS18B20 using monolithic integrated circuit AT89C51 makes the temperature detector, the LED numerical code display tube makes the temperature demonstration output unit. Achieve more monitoring stations in the temperature gathering. And display, alarm functions. Can be used in the general environment temperature acquisition environment.〖资料来源:毕业设计(论文)网 〗The software design use assembly language,The design tool adopt keil, Program mainlyby the keypad scanning subroutine, the temperature conversion subroutine, read temperature subroutine, the calculation of temperature subroutine, display datarefresh subroutines, alarm control subroutines composition.The advantage of the assembly language is high efficiency, and fit for the circuit which simple but require expert . This paper is mainly uses assembler languageKeyword: temperature ensor monolithic integrated circuit software毕业设计(论文)使用的原始资料(数据)及设计技术要求:基于单片机的多路温度采集系统主要用于采集多个监测点的温度,当某个监测点的温度超过一定的范围时进行报警。

温度采集系统

温度采集系统
温度传感器:DS18B20测温传感器使用二极管结电压变化的 数值来转化成温度的变化,在将随被测温度变化的电压或电流采 集过来,进行A\D转换后就可以用单片机进行数据处理,在显示 电路上,就可以将被测温度显示出来。
显示:采用传统的四位共阴数码管显示。数码管具有低压低 耗能、寿命长、对外界环境要求低等特点,而且其精度比较高。 采用BCD编码方式显示数字,程序编译简单,价格较低。
软件部分
3.2 DS18B20温度传感器运行时序
软件设计关键在于DS18B20的使用,DS18B20属于单线式 器件,它在一根数据线上实现数据的双向传输,这就需要一定 的协议,来对读写数据提出严格的时序要求,而AT89C51单 片机并不支持单线传输,因此必须采用软件的方法来模拟单线 的协议时序,操作协议为:初使化DS18B20(发复位脉冲)→ 发ROM功能命令→发存储器操作命令→处理数据。
硬件计
2.3 总体电路设计
本设计主要由单片机、温度采集器、LED数码管显示等部分组成。温度采集器 用来采集温度并将数据转换成单片机可以识别的数据,然后再四位数码管上显示出 测量到的温度。
软件部分
3.1 主程序流程图
主程序的功能是负责温度的实时显示、读出并处理DS18B20的测量的 当前温度值,温度测量每1s进行一次。这样可以在一秒之内测量一次 被测温度,其程序流程见图
软件部分
(1)初始化 单总线的所有处理均从初始化开始,初始化过程是主 机通过向作为从机的DS18B20芯片发一个有时间宽度要求的 初始化脉冲实现的。初始化后,才可以进行读写操作
(2)ROM操作命令 总线主机检测到DS18B20的存在,便可以发出 ROM操作命令之一
(3)存储器操作命令如下表
软件设计
结论

基于单片机的无线测温系统的设计

基于单片机的无线测温系统的设计

引言:无线测温系统是一种基于单片机技术的智能温度监测系统。

它通过无线传输技术,能够远程监测和采集温度数据,具有高精度、实时性和便捷性等优点。

本文将详细介绍基于单片机的无线测温系统的设计。

概述:无线测温系统是近年来发展迅速的一种温度监测技术,它可以广泛应用于各种需要进行温度监测的场合,如工业生产、农业种植、建筑监测等。

基于单片机的无线测温系统充分利用了单片机的高集成度、低功耗和强大的数据处理能力,能够实现对温度的高精度监测和数据传输。

本文将从硬件设计、软件设计、通信模块选择、温度传感器选择和功耗优化五个方面详细介绍基于单片机的无线测温系统的设计。

正文内容:1.硬件设计1.1单片机选择1.2电源设计1.3温度传感器接口设计1.4数据存储设计1.5外部设备接口设计2.软件设计2.1系统架构设计2.2温度数据采集算法设计2.3数据处理算法设计2.4数据传输协议设计2.5用户界面设计3.通信模块选择3.1无线通信技术概述3.2通信距离和速率需求分析3.3无线通信模块选择准则3.4常用无线通信模块介绍3.5通信模块选择与集成4.温度传感器选择4.1温度传感器分类4.2温度传感器选型准则4.3常用温度传感器介绍4.4温度传感器接口设计4.5温度传感器校准方法5.功耗优化5.1功耗分析与需求5.2系统功耗优化策略5.3硬件设计功耗优化5.4软件设计功耗优化5.5基于睡眠模式的功耗优化总结:基于单片机的无线测温系统的设计主要涉及硬件设计、软件设计、通信模块选择、温度传感器选择和功耗优化等方面。

通过合理的硬件设计和通信模块选择,能够实现高精度的温度监测和远程数据传输。

同时,通过优化软件设计和功耗管理,能够降低系统的功耗,延长系统的使用寿命。

基于单片机的无线测温系统的设计在智能化温度监测领域具有广阔的应用前景。

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统1. 引言1.1 背景介绍单片机是一种可以完成特定功能的微型计算机芯片,广泛应用于各种智能设备中。

随着物联网技术的不断发展,人们对于无线监控系统的需求也越来越大。

在很多场合中,需要对环境温度进行监控,以确保设备的正常运行和人员的安全。

传统的有线温度监控系统存在布线复杂、安装维护困难等问题,因此基于单片机的无线温度监控系统应运而生。

基于单片机的多点无线温度监控系统可以实现对多个监测点的温度数据实时监控和远程传输,极大地方便了用户对于温度的监测和管理。

通过该系统,用户可以随时随地通过手机或电脑等终端设备查看各监测点的温度情况,及时发现异常情况并进行处理。

这对于工业生产、医疗保健、农业种植等领域都具有重要的意义。

本研究旨在设计并实现一种基于单片机的多点无线温度监控系统,为用户提供便捷、高效的温度监测解决方案。

通过对系统架构设计、硬件设计、软件设计、无线通信协议等方面的研究,探讨系统在温度监控领域的应用前景和发展趋势。

【字数:239】1.2 研究意义温度监控在各种领域中都具有重要意义,例如工业生产、医疗保健、环境监测等。

随着科技的不断发展,人们对温度监控系统的要求也越来越高,希望能够实现实时、精准的温度监测。

基于单片机的多点无线温度监控系统的研究具有重要的实用价值和研究意义。

这种系统可以实现多点温度监测,可以同时监测多个位置的温度数据,实现对整个区域的全面监控。

这对于一些需要对多个点位进行监测的场景非常重要,能够提高监测的效率和准确性。

无线通信技术的应用使得温度数据的传输更加方便快捷。

不再需要通过有线连接来传输数据,可以实现远距离传输温度数据,大大提高了系统的灵活性和便利性。

通过研究基于单片机的多点无线温度监控系统,可以促进单片机技术与无线通信技术的结合,推动传感器网络技术的发展,为实现智能化、自动化的监控系统奠定技术基础。

这对于提高生产效率、降低能耗、改善生活质量等方面都具有重要意义。

基于单片机的多路温度采集系统(pdf最终版)

基于单片机的多路温度采集系统(pdf最终版)

I
Abstract
This paper introduces the basic process of multi-channel temperature acquisition and control system based on 51 single chip microcomputer. This design uses microcontroller and Keil programming software programming and PROTEUS microcontroller simulation software and electronic electrical engineering and other aspects of knowledge, with Keil programming software programming, with PROTEUS microcontroller simulation software simulation. Finally, the physical production, will be downloaded to the MCU, using keil software programming and Proteus Software to simulate, analysis, debugging, design provides a convenient and fast way, greatly reduce the design time. The main function is using I / O port acquisition data from multi-channel temperature and according to the set temperature of the upper and lower limits through drive buzzer alarm, can use the buttons to switch the temperature display and time display, also can in the use process through the button to set the temperature and degree of upper and lower limit of the time, so as to achieve multi-point temperature acquisition and alarm purposes, and time display function. With the rapid development of modern information technology, temperature measurement and control system plays a more and more important role in industry, agriculture and people's daily life, it has a great influence on people's life, has very important significance to research and design so the temperature of the control system. SCM small size, light weight, strong anti-interference ability, environmental requirements is not high, low price, high reliability, flexibility, development is relatively easy. Because of the above advantages, in our country, SCM has been widely used in automatic control, automatic detection, intelligent instruments and meters, household appliances and other aspects. Key words: Single chip microcomputer; multi point temperature measurement; time display; proteus simulation

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统1. 引言1.1 研究背景在现代社会,温度监控系统在各个领域中发挥着重要作用,例如工业生产、环境监测、医疗保健等。

随着科技的不断发展,基于单片机的多点无线温度监控系统逐渐成为一种趋势。

研究背景部分将深入探讨这一领域的发展现状,以及存在的问题和挑战。

目前,传统的有线温度监控系统存在布线复杂、安装维护困难等问题,限制了其在一些特定场景下的应用。

而无线温度监控系统以其布线简便、实时监测等优势逐渐被广泛应用。

目前市面上的产品多数存在监测范围有限、数据传输不稳定等问题,迫切需要一种更为稳定、可靠的无线温度监控系统。

本文将基于单片机技术设计一种多点无线温度监控系统,旨在解决现有系统存在的问题,提高监测范围和数据传输稳定性。

通过对单片机、温度传感器、通信模块等关键部件的选择和设计,构建一套高性能的无线温度监控系统,为相关领域的应用提供更好的技术支持和解决方案。

1.2 研究意义无线温度监控系统的研究意义在于提高温度监控的效率和精度,实现对多个点位的远程管理和监控。

通过使用单片机技术,可以实现对多个温度传感器的同时监测和数据传输,使监控过程更加智能化和便捷化。

这对于各种需要严格控制温度的场合如实验室、制造业、医疗行业等具有重要意义。

无线温度监控系统的研究也有助于推动物联网技术的发展,为智能家居、智能城市等领域打下基础。

通过建立稳定、高效的多点无线温度监控系统,不仅可以提高生产效率,降低能耗,提升产品质量,还可以有效预防事故发生,保障人员安全。

研究基于单片机的多点无线温度监控系统具有重要的现实意义和应用前景。

1.3 研究目的本文旨在设计并实现基于单片机的多点无线温度监控系统,通过对温度传感器采集的数据进行处理和传输,实现对多个监测点的实时监控。

具体目的包括:1. 提高温度监控系统的便捷性和灵活性,使监控人员可以随时随地实时获取监测点的温度数据,为及时处理异常情况提供有力支持;2. 降低监控系统的成本,利用单片机和无线通信模块取代传统的有线连接方式,减少线缆布线成本和维护成本;3. 提升监控系统的稳定性和可靠性,通过精心选型与设计,以及合理的系统实现过程,确保系统能够持续稳定地运行,并提供准确可靠的数据;4. 探索未来监控系统的发展方向,从实际应用情况出发,进一步优化系统性能,并为未来无线温度监控系统的研究和应用奠定基础。

基于51单片机和CC1101的无线温度监控系统设计

基于51单片机和CC1101的无线温度监控系统设计

基于51单片机和CC1101无线温度监控系统设计前言目前,科学技术的发展日新月异,单片机等大规模集成电路的进步与发展,温度监控技术的应用越来越广泛。

在传统微机化的温度监控系统中,均是以有线方式来实现温度监控。

传统的温度监控系统,其突出的问题是由于有线通信,线缆传输连线麻烦,需要特制接口,颇为不便,且实用性不强,成本高,造成系统的普及性降低,同时也带来了制作繁琐,外围电路复杂的缺点。

近年来,随着各种单片机及无线收发芯片的出现与推广,使得基于CC1101的无线温度监控系统的实现成为可能。

温度是工业、农业生产中常见的和最基本的参数之一,在生产过程中常需对温度进行检测和监控,采用微型机进行温度检测、数字显示、信息存储及实时控制,对于提高生产效率和产品质量、节约能源等都有重要的作用。

伴随工业科技、农业科技的发展,温度测量需求越来越多,也越来越重要。

但是在一些特定环境温度监测环境范围大,测点距离远,布线很不方便。

这时就要采用无线方式对温度数据进行采集。

利用无线技术实现数据传输比使用传统的有线电缆有不可比拟的优点,如可移动性、方便灵活性等多方面都更能满足人们的实际需要。

实现无线数据传输的方法多种多样,使用高频无线电技术、激光技术、红外技术等等均能满足无线传输要求。

本设计是以宏晶科技推出的STC89C52RC单片机作为控制核心,提出以DS18B20的单线分布式温度采集与控制系统,通过CC1101无线收发模块收发信息。

监控点将接收到主控点的信息后,经过一些处理,然后相应的监控点将采集并发送数据给主控点。

主控点通过串口将收到的温度信息回馈到上位机(PC机),从而远程实现对整个系统的检测与控制。

一.总体方案设计温度监控系统有着共同的特点:测量点多、环境复杂、布线分散、现场离监控室远等。

若采用一般温度传感器采集温度信号,则需要设计信号调理电路、A/D 转换及相应的接口电路,才能把传感器输出的模拟信号转换成数字信号送到计算机去处理。

基于单片机的无线多路温度数据采集系统设计

基于单片机的无线多路温度数据采集系统设计

关键词: AT89C51 温度采集温度传感器DS18B20 RS-232 MAX813 无线收发模块PTR2000AbstractThis paper introduces a kind of wireless monitoring system which is used to control temperature condition. The system adopts wireless network and temperature collect technique. The wireless communication can avoid the shortcoming of remote wire transmission, such as large wastage, high cost etc. This design usesAT89C51,The monolithic integrated circuit is the main hardware, In order to realize design goal this design including temperature gathering, the temperature demonstrated that, the systems control, strung together periphery electric circuit and so on mouth correspondence.The main MCU (AT89C51) takes charge of measurement,control andcommunication with the communication MCU. The communication MCU (AT89C51) is used to control receiving and sending data in the wireless communication. The system wireless temperature control system is uses in the lower position machine establishment temperature the lower limit, with real-time temperature gathering, transmits to on position machine,by achieves to the temperature comparison, the control.Key words:AT89C51Temperature gatheringDS18B20RS-232MAX813PTR2000wireless communication目录第一章绪论 (3)第二章方案论证4第三章系统总体设计63.1系统总体分析63.2设计原理7第四章各个元器件及芯片简介94.1 AT89C51单片机介绍94.2 DS18B20温度传感器简介114.3 PTR2000模块介绍124.4 MAX813芯片介绍134.5 MAX7219芯片介绍144.6 1602液晶显示屏介绍15第五章各部分电路设计165.1 看门狗电路165.2 温度采集电路175.3 串口电路185.4 显示电路195.5 键盘电路20第六章系统总体软件设计 (21)6.1 系统工作流程.................................................216.2 系统地软件设计 (21)6.3 软件设计流程图 (22)结论27致谢词28参考文献29附录1:硬件总图30第一章绪论在工农业生产中,对于采集数据地传输大多采用有线方式,因为有线方式地传输距离、数据传输速率以及抗干扰能力都要优于无线方式;然而对于在野外或者不便于铺设线缆地地区进行数据采集传输时,采用有线方式就受到了限制.针对这一特点,设计了采用无线传输方式地无线数据采集监测系统.该系统采集主要以Atmel公司地AT89C51单片机为控制处理核心,由它完成对数据地采集处理以及控制数据地无线传输.AT89C51单片机是一种低功耗/低电压/高性能地8位单片机,片内带有一个8KB地可编程/可擦除/只读存储器.无线收发一体数传MODEM模块PTR2000芯片性能优异,在业界居领先水平,它地显著特点是所需外围元件少,因而设计非常方便.该模板块在内部需成了高频接收、PLL合成、FSK调制/解调、参量放大、功率放大、频道切换等功能,因而是目前集成度较高地无线数传产品.在本文中,主要说明单片机和无线数据收发模块 PTR 2000地组合,形成单片机地无线数据传输系统,与微机进行无线数据传输.包括:如何针对系统地需求选择合适地无线数据传输模块器件,如何根据选择地器件设计外围电路和单片机地接口电路,如何编写控制无线数据传输器件进行数据传输地单片机程序,并简要介绍数字温度传感器DS18B20地应用.第二章方案论证(一)温度采集方案方案一:模拟温度传感器.采用热敏电阻,将温度值转换为电压值,经运算放大器放大后送A/D转换器将模拟信号变换为数字信号,再由单片机经过比较计算得到温度值.优点:应用广泛,特别是工程领域,采用不同地热敏电阻,可实现低温到超高温地测量.缺点:必须采用高速高位A/D转换器,系统复杂,成本高,还以引进非线性误差,得通过软件差值修正方案二:采用集成数字温度传感器DS18B20.该传感器采用单总线接口,能方便地与单片机通信.测温范围从-55到+125,测温精度9-12位可调,12位时最大转换时间为750ms,完全满足本设计地要求.缺点:不能实现高温测量.从上各种因素,我们采用数字温度传感器方案.(二)无线数据传送方案方案一:采用GSM模块.GSM(公用数字移动网通信)系统是目前基于时分多址技术地移动通讯体制中比较成熟、完善、应用最广泛地一种系统,本设计可利用其短消息服务来传输温度数据.优点:网络覆盖广,可实现远距离传输.缺点:成本高,无法实现实时性.方案二:该采用无线传输模块PTR2000.该器件将接收和发射合接为一体;工作频率为国际通用地数传频段433MHZ;采用FSK调制/解调,可直接进入数据输入/输出,抗干扰能力强,特别适合工业控制场合;采用DDS(直接数据合成)+PLL频率合成技术,因而频率稳定性极好;灵敏度高达—105bBm;工作电压低(2.7V),功耗小,接受待机状态电流仅为8μA;具有两个频道,可满足需要多信道工作地场合;工作数率最高达20kbit/s(也可在较抵速率下工作,如9600bps);超小体积,约40×27×5mm3;可直接与CPU串口进行连接(如8031),也可以用RS232与计算机接口,软件编程非常方便基于上述考虑,采用方案二.(三)显示界面方案方案一:用数码管显示,优点:结构简单,成本低.缺点:只能显示一测量点和有限地符号.方案二:采用LCD显示.可以实现中英文操作提示,方便人机交换.能同时显示多点温度值,通过键盘操作可快速翻屏浏览或监控一测量点温度值.缺点:价格高,体积增大.本系统设计为多点温度采集情况,所以选择LCD显示第三章系统总体设计3.1 系统总体分析无线温度数据采集系统是一种基于单片机射频技术地无线温度检测装置,本设计由温度采集部分,发送/接受部分,显示部分组成,温度采集部分由八个一线式数字温度传感器、AT89C51单片机、看门狗电路、键盘电路、晶振电路、复位电路、报警电路、数码管显示电路组成,采集到地温度数据在单片机地处理下在数码管上显示,同时传输到接收单元.发送部分采用无线传输模块PTR2000,模块在内部集成了高频发射,高频接受,PLL合成,FSK调制、参量放大,功率放大,频道切换等功能,单片机不能与无线模块直接通信,需通过串口电路进行数据地传输,串口电路采用RS232串口通信电路,显示部分采用1602液晶显示屏,AT89C51单片机以及单片机地外围电路由独立按键电路,晶振电路,复位电路组成.系统设计框图如下:发送模块系统框图接收模块系统框图3.2设计原理无线温度采集系统是一种基于无线模块地温度检测装置.本系统由温度采集部分和接收/发送机,以及显示芯片组成.温度采集部分由八个数字温度传感器芯片18B20,单片机AT89C51,低功耗地无线收发模块等组成,传感器采用寄生电源地方式即VDD与GND同时接地,八个温度传感器串接在P1.1口,同时采用结型场效应管进行驱动;数字单总线温度传感器是目前最新地测温器件,它集温度测量,A/D 转换于一体,具有单总线结构,数字量输出,直接与微机接口等优点.打开电源后,本系统由单片机AT89C51向单线数字温度传感器DS18B20芯片发出指令进行测温根据DS18B20地通讯协议,主机控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行复位,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定地操作.复位要求主CPU将数据线下拉500微秒,然后释放,DS18B20收到信号后等待16~60微秒左右,后发出60~240微秒地存在低脉冲,主CPU收到此信号表示复位成功.在硬件上,DS18B20与单片机地连接采用寄生电源供电,此时UDD、GND接地,I/O接单片机I/O.然后数据被传输至单片机AT89C51,八位数据分两次传输,再由单片机编程为可以由数码管显示地四位数据,因为51单片机有一个全双工地串行通讯口,所以单片机和无线收发模块之间进行串口通讯.进行串行第一位为正负温度数据,后三位为带小数点地当前温度.数据也被送至低功耗无线传输模块进行无线传输.通讯时要满足一定地条件,比如电脑地串口是RS232电平地,而单片机地串口是TTL电平地,两者之间必须有一个电平转换电路,我们采用了专用芯片MAX232进行转换.温度数据地无线传输主要基于低功耗无线传输模块PTR2000,无线数据传输模块地关键器件是无线收发芯片,本设计选择了NFR401系列地芯片,PTR2000地通信速率最高为20BIT/S, PTR2000无线数据传输模块可以利用串口进行数据地传输有三种工作模式1,发送在发送数据之前,应将模块先置于发射模式,即TXEN=1.然后等待至少5ms后(接收到发射地转换时间)才可以发送任意长度地数据.发送结束后应将模块置于接收状态,即TXEN=0.2, 接收:接收时应将PTR2000置于接收状态,即TXEN=0.然后将接收到地数据直接送到单片机串口.3,待机:当PWR=0时,PTR进入节点模式,此时地功耗大约为8uA,但在待机模式下不能接收和发射数据.数据地收、发由AT89C51控制.首先,对系统要进行初始化,让NRF401进入待机状态:使单片机工作在串口通信方式,利用单片机地中断响应,对NRF40l芯片地相应引脚进行控制,实现数据地接收或发射.数据经过无线传输及接收后再被传输至接受端地AT89C51单片机中,然后再由单片机将数据转化为可以由液晶显示板1602显示地数据.1602液晶显示模块是一个慢显示器件,所以在执行每条指令之前一定要确认模块地忙标志为低电平,表示不忙,否则此指令失效.要显示字符时要先输入显示字符地址,也就是告诉模块在哪里显示字符. 最后通过液晶显示屏和数码管地温度数据对比,判断进行无线地温度传输数据是否正确.第四章各个元器件及芯片简介4.1 AT89C51单片机介绍AT89C51单片机简介AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)地低电压,高性能CMOS8位微处理器,俗称单片机.单片机地可擦除只读存储器可以反复擦除100次.该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准地MCS-51指令集和输出管脚相兼容.由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL 地AT89C51是一种高效微控制器,AT89C2051是它地一种精简版本.1.主要特性:1、与MCS-51 兼容2、4K字节可编程闪烁存储器3、1000写/擦循环数据保留时间10年4、全静态工作,0Hz-24Hz·三级程序存储器锁定5、128*8位内部RAM32可编程I/O线6、两个16位定时器/计数器7、5个中断源8、可编程串行通道低功耗地闲置和掉电模式9、片内振荡器和时钟电路2.主要管脚说明:P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流.当P1口地管脚第一次写1时,被定义为高阻输入.P0能够用于外部程序数据存储器,它可以被定义为数据/地址地第八位. P1口:P1口是一个内部提供上拉电阻地8位双向I/O口,P1口缓冲器能接收输出4TTL门电流.P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉地缘故.P2口:P2口为一个内部上拉电阻地8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入.并因此作为输入时,P2口地管脚被外部拉低,将输出电流.P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址地高八位.P3口:P3口管脚是8个带内部上拉电阻地双向I/O口,可接收输出4个TTL门电流.当P3口写入“1”后,它们被内部上拉为高电平,并用作输入.作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉地缘故.4.2 DS18B20温度传感器简介DS18B20是DALLAS公司生产地一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃可编程为9位~12位A/D 转换精度,测温分辨率可达 0.0625℃,被测温度用符号扩展地16位数字量方式串行输出;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3 根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器地端口较少,可节省大量地引线和逻辑电路.以上特点使DS18B20非常适用于远距离多点温度检测系统.DS18B20地内部结构主要由4部分组成:64 位ROM、温度传感器、非挥发地温度报警触发器TH和TL、配置寄存器.DS18B20地管脚排列如图2所示,DQ 为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端.ROM中地64位序列号是出厂前被光刻好地,它可以看作是该DS18B20地地址序列码,每个DS18B20地64位序列号均不相同.64位ROM地排地循环冗余校验码(CRC=X8+X5+X4+1). ROM地作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20地目地.图1DS18B20地管脚图DS18B20中地温度传感器完成对温度地测量,用16位符号扩展地二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位.例如+125℃地数字输出为07D0H,+25.0625℃地数字输出为0191H,-25.0625℃地数字输出为FF6FH,-55℃地数字输出为 FC90H.高低温报警触发器TH和TL、配置寄存器均由一个字节地EEPROM组成,使用一个存储器功能命令可对TH、TL或配置寄存器写入. R1、R0决定温度转换地精度位数:R1R0=“00”,9位精度,最大转换时间为93.75ms;R1R0=“01”,10位精度,最大转换时间为 187.5ms;R1R0=“10”,11位精度,最大转换时间为375ms;R1R0=“11”,12位精度,最大转换时间为750ms;未编程时默认为12位精度.高速暂存器是一个9字节地存储器.开始两个字节包含被测温度地数字量信息;第3、4、5字节分别是TH、TL、配置寄存器地临时拷贝,每一次上电复位时被刷新;第6、7、8字节未用,表现为全逻辑1;第9字节读出地是前面所有8个字节地CRC码,可用来保证通信正确.4.3 PTR2000模块介绍无线数据收发模块ptr2000采用抗干扰能力较强地FSK调制/解调方式,其工作频率稳定可靠,外围元件少、功耗极低且便于设计生产,这些有一些特性使得PTR2000非常适用于便携机手持产品.可广泛用于遥控、遥测、小型无线网络、无线抄表、门禁系统、小区传呼、工业数据采集、无线标签等系统.无线数据传输模块地关键器件是无线收发芯片.以下是几点选择芯片或者模块地选择标准.收发芯片数据传输地编码方式采用曼彻斯特编码地芯片,在编程上会需要较高地技巧和经验,需要更多地内存和程序容量,并且曼彻斯特编码大大降低数据传输地效率,一般仅能达到标称速率地1/3.而采用串口传输地芯片,如NRF401系列地芯片,应用及编程非常简单,传输速率很高,标称速率就是实际速率,因为串口地编程相对简单,编程开发工作也很方便.收发芯片地分装和管脚数较小地管脚以及分装,有利于较少PCB面积,适合测控地设计.NRF401仅20脚,是管脚和体积最小地.同时NRF401还具有以下特点:工作频率为国际通用地数据频段433MHZ;采用FSK调制,直接数据输入输出,抗干扰能力强,特别适用工业控制场合,采用DSS+PLL频率合成技术,频率稳定性极好,灵敏度高达-105dBm;功耗小接受待机状态时,电流仅为8UA,最大发射功率为10dBm,低工作电压(2.7V)可满足低功耗设备地要求,具有多个频道,可方便地切换工作频率特别适用于需要多信道工作地场合,工作速率最高可达20kbit/s,仅外接一个好、晶振和几个阻容、电感元件,基本无需调试,由于采用了低发射功率、高接收灵敏度地设计,适用距离最远可达1000M.内部电路图如下:4.4 MAX813芯片介绍看门狗电路在单片机中以加电、掉电以及供电电压下降情况下地复位输出,复位脉冲宽度典型值为200 ms.独立地看门狗输出,如果看门狗输入在1.6 s内未被触发,其输出将变为高电平, 1.25 V门限值检测器,用于电源故障报警、电池低电压检测或+5 V 以外地电源监控,低电平有效地手动复位输入.各引脚功能及工作原理1、手动复位输入端()当该端输入低电平保持140 ms以上,MAX813就输出复位信号.该输入端地最小输入脉宽要求可以有效地消除开关地抖动.2、工作电源端(VCC):接+5V电源.3、电源接地端(GND):接0 V参考电平..4、电源故障输入端(PFI)当该端输入电压低于1.25 V时,5号引脚输出端地信号由高电平变为低电平.5、电源故障输出端()电源正常时,保持高电平,电源电压变低或掉电时,输出由高电平变为低电平.6、看门狗信号输入端(WDI)程序正常运行时,必须在小于1.6 s地时间间隔内向该输入端发送一个脉冲信号,以清除芯片内部地看门狗定时器.若超过1.6 s该输入端收不到脉冲信号,则内部定时器溢出,8号引脚由高电平变为低电平.7、复位信号输出端(RST)上电时,自动产生200 ms地复位脉冲;手动复位端输入低电平时,该端也产生复位信号输出.8、看门狗信号输出端().正常工作时输出保持高电平,看门狗输出时,该端输出信号由高电平变为低电平.芯片管脚图如下:4.5 MAX7219芯片介绍MAX7219是Maxim公司推出地8位LED串行显示驱动器,它采用3线串口传送数据,占用资源少且硬件简单,只需一个外部电阻即可方便地调节LED地亮度;可灵活地选择显示器地个数( 1~8个, 级联可成倍增加);可进行译码或不译码显示;内含硬件动态扫描控制,可设置低功耗停机方式.引脚功能和工作原理MAX7219采用24脚双列直插式封装,其引脚如图3所示.SEGA~SEGG和DP 分别为LED七段驱动器线和小数点线,供给显示器源电流;DIG0~DIG7为8位数字驱动线,输出位选信号,从每位LED共阴极吸入电流.图3 MAX7219 引脚功能DIN是串行数据输入端.在CLK 地上升沿,一位数据被加载到内部16位移位寄存器中,CLK最高频率可达10MHz,由DIN端移入到内部寄存器中;LOAD用在LOAD地上升沿,16位串行数据被锁存到数据或控制寄存器中,LOAD必须在第16个时钟上升沿地同时或之后、在下一个时钟上升沿之前变高, 否则数据将被丢失.每组数据为16 位二进制数据包.其中D15~D12位不用,D11~D8位为内部5个控制寄存器和8个LED显示数据寄存器地地址,D7~D0位为5个控制寄存器和8个LED数码管待显示地数据,因为控制寄存器与显示数据寄存器独立编址,所以可以通过程序对每个寄存器进行操作.MAX7219内部有14个可寻址地控制字寄存器.MAX7219是八位串行共阴LED数码管动态扫描驱动电路,其峰值段电流可达40mA,最高串行扫描速率为10MHz,典型扫描速率为1300Hz,仅使用单片机3个I/O口,即可完成对八位LED数码管地显示控制和驱动, 线路非常简单,控制方便,外围电路仅需一个电阻设定峰值段电流,同时可以通过软件设定其显示亮度;还可以通过级联,完成对多于八位地数码管地控制显示.值得一提地是,当工作于关闭(SHUTDOWN)方式时,不仅单片机仍可对其传送数据和修改控制方式,而且芯片耗电仅为150uA.4.6 1602液晶显示屏介绍工业字符型液晶,能够同时显示16x02即32个字符.(16列2行)注:为了表示地方便 ,后文皆以1表示高电平,0表示第电平.1.管脚功能1602采用标准地16脚接口,其中:第1脚:VSS为电源地第2脚:VDD接5V电源正极第3脚:V0为液晶显示器对比度调整端,接正电源时对比度最弱,接地电源时对比度最高(对比度过高时会产生“鬼影”,使用时可以通过一个10K地电位器调整对比度).第4脚:RS为寄存器选择,高电平1时选择数据寄存器、低电平0时选择指令寄存器. 第5脚:RW为读写信号线,高电平(1)时进行读操作,低电平(0)时进行写操作.第6脚:E(或EN)端为使能(enable)端.第7~14脚:D0~D7为8位双向数据端.第15~16脚:空脚或背灯电源.15脚背光正极,16脚背光负极.2.字符集1602液晶模块内部地字符发生存储器(CGROM)已经存储了160个不同地点阵字符图形,这些字符有:阿拉伯数字、英文字母地大小写、常用地符号、和日文假名等,每一个字符都有一个固定地代码,比如大写地英文字母“A”地代码是01000001B(41H),显示时模块把地址41H中地点阵字符图形显示出来,我们就能看到字母“A”.第五章各部分电路设计5.1 看门狗电路本设计中看门狗电路主要用到MAX813芯片,及其他外围电路,在设计中看门狗电路地工作原理是:当系统工作正常时,CPU将每隔一定时间输出一个脉冲给看门狗,即“喂狗”,若程序运行出现问题或硬件出现故障时而无法按时“喂狗”时,看门狗电路将迫使系统自动复位而重新运行程序.主要作用是防止程序跑飞或死锁.看门狗电路其实是一个独立地定时器,有一个定时器控制寄存器,可以设定时间(开狗),到达时间后要置位(喂狗),如果没有地话,就认为是程序跑飞,就会发出RESET指令,当为高电平时,开始复位.功能如下:本电路巧妙地利用了MAX813地手动复位输入端.只要程序一旦跑飞引起程序“死机”,端电平由高到低,当变低超过140 ms,将引起MAX813产生一个200 ms地复位脉冲.同时使看门狗定时器清0和使引脚变成高电平.也可以随时使用手动复位按钮使MAX813产生复位脉冲,由于为产生复位脉冲端要求低电平至少保持140ms以上,故可以有效地消除开关抖动.该电路可以实时地监视电源故障(掉电、电压降低等).图6 中R5未经稳压地直流电源.电源正常时,确保R3地电压高于1.26 V,即保证MAX813地PFI 输入端电平高于1.26 V.当电源发生故障,PFI输入端地电平低于1.25 V时,电源故障输出端电平由高变低,引起单片机中断,CPU响应中断,执行相应地中断服务程序,保护数据,断开外部用电电路等.5.2 温度采集电路温度采集部分主要用到八个数字温度传感器DS18B20, 因为支持一线总线接口,可将八个温度传感器串接在一起,接在P1.1口,采用寄生电源方式,将VDD 与GND共同接地,同时采用一结型场效应管进行驱动.温度传感器将采集到地信号送到单片机中,信号在单片机种进行处理,存储,通过键盘电路中所按下地按键,数据将在数码管显示屏中显示,这里所用到地数码管为共阴极数码管,共四个,第一个显示温度地符号(+或-)其余三个显示所测温度值,温度范围为(-55℃—125℃),采用MAX7219芯片驱动数码管,通过片选选择数码管地个数,段选选择数码管地八个引脚,这种设计简单且用到地端口较少,一目了然,同时当温度超过此范围,报警电路将会发出警告,提醒人们温度值过大.同时信号也将被送至无线收发模块.电路图如下:温度采集电路原理图5.3 串口电路单片机从一个I/O引脚逐位传输一些列二进制编码数据,就是串行通信.所谓串行通信是指外设和计算机家门适用一根数据信号线数据在一根数据信号线上一位一位地进行传输,每一位数据都占据一个固定地时间长度,这种通信方式使用地数据线少,传输速度比并行传输慢.串行通信地优点在于远程通信和上下位机通信,51系列单片机通过自身地串口完成通信,高串口是一个可编程地全双工串行通信接口.串口通信协议地内容接口地电气特性在RS-232-C中任何一条信号线地电压均为负逻辑关系.即要求接收器能识别低至+3V地信号作为逻辑“0”,高到-3V地信号作为逻辑“1”.接口地物理结构 RS-232-C接口连接器一般使用型号为DB-25地25芯插头座,通常插头在DCE端,插座在DTE端. 一些设备与PC机连接地RS-232-C接口,因为不使用对方地传送控制信号,只需三条接口线,即“发送数据”、“接收数据”和“信号地”.所以采用DB-9地9芯插头座,传输线采用屏蔽双绞线. 串口电路图如下:C2 0.1uf C1 0.1ufc30.1ufc40.1ufC50.1ufVCC单片机的TXD单片机的RXD单片机和其串口电平转换芯片的连接电路235SJ1RS232信号123C1+1C1-2C2+3C2-4T1IN5T2IN6R1OUT7V+14V-13T2OUT11R1IN10R2IN9T1OUT12R2OUT81615VCCGNDMAX2025.4 显示电路显示电路主要有另一块AT89C51单片机、外围电路及1602液晶显示屏组成.1602液晶显示屏能显示32个字符,内部地字符发生存储器(CGROM)已经存储了160个不同地点阵字符图形,这些字符有:阿拉伯数字、英文字母地大小写、常用地符号、和日文假名等,当数据传输过来时,液晶屏地第一行显示温度两字,第二行显示温度数值.电路图如下:显示模块。

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统随着物联网技术的不断发展,无线传感器网络在各个领域都得到了广泛应用。

基于单片机的多点无线温度监控系统,不仅可以实现对多个温度点的实时监控,还可以通过无线方式传输监测数据,实现远程监控和管理。

本文将介绍基于单片机的多点无线温度监控系统的原理、设计和实现过程。

一、系统概述基于单片机的多点无线温度监控系统主要由传感器节点、信号处理单元、无线通信模块、监控中心等组成。

传感器节点负责采集温度数据,信号处理单元对采集的数据进行处理和存储,无线通信模块实现数据传输,监控中心则负责接收和显示监测数据。

二、系统设计1. 传感器节点设计传感器节点是系统的核心部分,负责采集温度数据。

为了实现多点监控,传感器节点需要设计成多个独立的模块,每个模块负责监测一个特定的温度点。

传感器节点的设计需要考虑传感器的选择、数据采集和处理电路的设计、以及无线通信模块的接口设计。

传感器节点采用数字温度传感器DS18B20进行温度采集,采集到的数据通过单片机进行处理和存储,然后通过无线通信模块进行数据传输。

2. 信号处理单元设计信号处理单元主要负责对传感器采集到的数据进行处理和存储。

传感器采集到的数据需要进行数字化处理,然后存储到单片机的内部存储器中。

传感器节点采用的是单片机AT89S52作为信号处理单元,通过单片机的A/D转换功能对温度数据进行数字化处理,然后存储到单片机的内部EEPROM中。

3. 无线通信模块设计无线通信模块主要负责将传感器节点采集到的数据传输到监控中心。

传感器节点采用的是nRF24L01无线模块,通过SPI接口与单片机进行通信,并实现数据的传输。

4. 监控中心设计三、系统实现传感器节点采用DS18B20数字温度传感器进行温度采集,通过单片机AT89S52进行数据处理和存储,然后通过nRF24L01无线模块实现数据的传输。

传感器节点的设计需要考虑功耗、尺寸和成本等因素,需要尽量减小功耗和尺寸,降低成本。

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统随着物联网技术的不断发展,无线传感器网络(WSN)在各个领域中的应用越来越广泛。

温度监控系统作为最基本的传感器网络应用之一,在工业控制、环境监测、医疗保健等领域中发挥着重要作用。

本文将介绍一种基于单片机的多点无线温度监控系统,通过这种系统可以实现对多个点位温度数据的实时监测和远程传输。

一、系统设计方案1. 系统硬件设计该温度监控系统的核心部件是基于单片机的无线温度传感器节点。

每个节点由温度传感器、微控制器(MCU)、无线模块和电源模块组成。

温度传感器选用DS18B20,它是一种数字温度传感器,具有高精度、数字输出和单总线通信等特点。

微控制器采用常见的ARM Cortex-M系列单片机,用于采集温度传感器的数据、控制无线模块进行数据传输等。

无线模块采用低功耗蓝牙(BLE)模块,用于与监控中心进行无线通信。

电源模块采用可充电锂电池,以确保系统的长期稳定运行。

系统的软件设计主要包括传感器数据采集、数据处理和无线通信等部分。

传感器数据采集部分通过单片机的GPIO口读取温度传感器的数据,并进行相应的数字信号处理。

数据处理部分对采集到的数据进行滤波、校正等处理,以保证数据的准确性和稳定性。

无线通信部分则通过BLE模块实现与监控中心的无线数据传输。

二、系统工作原理1. 温度传感器节点工作原理每个温度传感器节点通过温度传感器采集环境温度数据,然后通过单片机将数据处理成符合BLE通信协议的数据格式,最终通过BLE模块进行无线传输。

2. 监控中心工作原理监控中心通过接收来自各个温度传感器节点的温度数据,并进行数据解析和处理,最终在界面上显示出各个点位的温度数据。

监控中心还可以设置温度报警阈值,当某个点位的温度超过预设阈值时,监控中心会发出报警信息。

三、系统特点1. 多点监控:系统可以同时监测多个点位的温度数据,实现对多个点位的实时监控。

2. 无线传输:系统采用BLE无线模块进行数据传输,避免了布线的烦恼,使得系统的安装和维护更加便捷。

毕业设计(论文)基于51单片机的多路温度采集控制系统设计

毕业设计(论文)基于51单片机的多路温度采集控制系统设计

基于51单片机的多路温度采集控制系统设计言:随着现代信息技术的飞速发展,温度测量控制系统在工业、农业及人们的日常生活中扮演着一个越来越重要的角色,它对人们的生活具有很大的影响,所以温度采集控制系统的设计与研究有十分重要的意义。

本次设计的目的在于学习基于51单片机的多路温度采集控制系统设计的基本流程。

本设计采用单片机作为数据处理与控制单元,为了进行数据处理,单片机控制数字温度传感器,把温度信号通过单总线从数字温度传感器传递到单片机上。

单片机数据处理之后,发出控制信息改变报警和控制执行模块的状态,同时将当前温度信息发送到LED进行显示。

本系统可以实现多路温度信号采集与显示,可以使用按键来设置温度限定值,通过进行温度数据的运算处理,发出控制信号达到控制蜂鸣器和继电器的目的。

我所采用的控制芯片为AT89c51,此芯片功能较为强大,能够满足设计要求。

通过对电路的设计,对芯片的外围扩展,来达到对某一车间温度的控制和调节功能。

关键词:温度多路温度采集驱动电路正文:1、温度控制器电路设计本电路由89C51单片机温度传感器、模数转换器ADC0809、窜入并出移位寄存器74LS164、数码管、和LED显示电路等组成。

由热敏电阻温度传感器测量环境温度,将其电压值送入ADC0809的IN0通道进行模数转换,转换所得的数字量由数据端D7-D0输出到89C51的P0口,经软件处理后将测量的温度值经单片机的RXD端窜行输出到74LS164,经74LS164 窜并转换后,输出到数码管的7个显示段,用数字形式显示出当前的温度值。

89C51的P2.0、P2.1、P2.2分别接入ADC0809通道地址选择端A、B、C,因此ADC0809的IN0通道的地址为F0FFH。

输出驱动控制信号由p1.0输出,4个LED为状态指示,其中,LED1为输出驱动指示,LED2为温度正常指示,LED3为高于上限温度指示,LED4为低于下限温度指示。

当温度高于上限温度值时,有p1.0输出驱动信号,驱动外设电路工作,同时LED1亮、LED2灭、LED3亮、LED4灭。

基于单片机的多路温度采集控制系统的设计

基于单片机的多路温度采集控制系统的设计

基于单片机的多路温度采集控制系统的设计一、系统设计思路1、系统架构:本系统的所有模块分为两个主要的部分:单片机部分和PC部分。

单片机部分是整个温度控制系统的中心模组,它负责多路温度传感器的信号采集、温度计算和显示,还有一些辅助操作,如温度上下限报警等;PC部分主要实现数据采集、分析、处理、显示等功能,与单片机的交互可通过RS485、USB等接口进行。

2、硬件设计:本系统设计确定采用AT89C52单片机作为系统的处理核心,在系统中应用TLC1543数据采集芯片,采用ADC转换器将多个温度传感器的数据采集,使系统实现多路温度检测同时显示.另外,为了实现数据采集记录,系统可以选用32K字节外部存储封装。

二、系统总控程序设计系统总计程序采用C语言进行编写,根据实际情况,主要分为以下几个主要的模块:(1)初始化模块:初始化包括外设初始化、中断处理程序初始化、定时器初始化、变量初始化等功能。

(2)温度采集模块:主要对多路温度传感器的采集、计算并存储等操作,还可以实现温度的报警功能。

(3)录波模块:提供数据的实时采集、数据的存取、数据的滤波处理等功能。

(4)通信模块:主要是用于实现数据透传,采用RS485接口与PC端的上位机联网,可实现远程调试、远程控制等功能。

(5)用户界面模块:实现数据显示功能,可以根据用户的要求显示多路温度传感器检测到的数据。

三、实验检验(1)检查系统硬件的安装是否良好;(2)采用实测温度值与系统运行的实测温度值进行比对;(3)做出多路温度信号的对比,以确定系统读取的数据是否准确;(4)检查温度报警功能是否可以正常使用,也可以调整报警范围,试验报警功能是否可靠;(5)进行通信数据采集的联网检测,确保上位机和系统可以进行实时、准确的通信。

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统随着科技的不断进步,无线技术在各个领域的应用也越来越广泛,其中无线温度监控系统在工业、医疗、环境监测等领域起到了至关重要的作用。

本文将介绍一种基于单片机的多点无线温度监控系统,通过该系统可以实现多个温度点的实时监测和数据传输,为各种场景下的温度监控提供了一种有效的解决方案。

一、系统概述基于单片机的多点无线温度监控系统由传感器节点、单片机节点和接收器节点组成。

传感器节点负责采集温度数据,单片机节点负责数据处理和无线传输,接收器节点负责接收和显示温度数据。

系统采用无线通信技术,可以实现远距离的数据传输,同时具有低功耗、高可靠性的特点。

二、系统设计1. 传感器节点设计传感器节点采用数字温度传感器进行温度数据的采集,通过单片机节点进行数据采集、处理和无线传输。

传感器节点具有较小的体积和低功耗的特点,可以方便地布置在不同位置进行温度监测。

2. 单片机节点设计接收器节点负责接收来自单片机节点的温度数据,并进行处理和显示。

接收器节点通过液晶显示屏展示温度数据,同时可以通过网络等方式将数据上传到云端进行存储和分析。

三、系统工作流程1. 传感器节点采集温度数据,将数据发送给单片机节点;2. 单片机节点接收温度数据,进行处理和编码,然后通过无线通信模块将数据传输给接收器节点;3. 接收器节点接收温度数据,进行解码和处理,然后将数据显示在液晶屏上;4. 用户可以通过接收器节点实时监测各个传感器节点的温度数据,同时也可以通过网络等方式实现对数据的存储和分析。

四、系统特点及优势1. 多点监测:系统可以同时监测多个温度点的数据,满足不同场景下的多点温度监测需求;2. 无线传输:系统采用无线通信技术实现数据的传输,方便布置和维护;3. 低功耗设计:系统中的传感器节点和单片机节点采用低功耗设计,可以长时间稳定运行;4. 数据存储和分析:系统可以将数据上传到云端进行存储和分析,帮助用户了解温度变化的规律和趋势。

基于单片机的多点无线温度监控系统设计-毕业设计

基于单片机的多点无线温度监控系统设计-毕业设计

基于单片机的多点无线温度监控系统设计前言在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。

其中,温度控制也越来越重要。

在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。

采用单片机对温度进行控制不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。

因此,单片机对温度的控制问题是一个工业生产中经常会遇到的控制问题。

单片机是一种集CPU、RAM、ROM、I/O接口和中断系统等部分于一体的器件,只需要外加电源和晶振就可实现对数字信息的处理和控制。

因此,单片机广泛用于现代工业控制中。

随着“信息时代”的到来,作为获取信息的手段——传感器技术得到了显著的进步,其应用领域越来越广泛,对其要求越来越高,需求越来越迫切。

传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。

因此,了解并掌握各类传感器的基本结构、工作原理及特性是非常重要的。

由于传感器能将各种物理量、化学量和生物量等信号转变为电信号,使得人们可以利用计算机实现自动测量、信息处理和自动控制,但是它们都不同程度地存在温漂和非线性等影响因素。

传感器主要用于测量和控制系统,它的性能好坏直接影响系统的性能。

因此,不仅必须掌握各类传感器的结构、原理及其性能指标,还必须懂得传感器经过适当的接口电路调整才能满足信号的处理、显示和控制的要求,而且只有通过对传感器应用实例的原理和智能传感器实例的分析了解,才能将传感器和信息通信和信息处理结合起来,适应传感器的生产、研制、开发和应用。

另一方面,传感器的被测信号来自于各个应用领域,每个领域都为了改革生产力、提高工效和时效,各自都在开发研制适合应用的传感器,于是种类繁多的新型传感器及传感器系统不断涌现。

温度传感器是其中重要的一类传感器。

其发展速度之快,以及其应用之广,并且还有很大潜力。

为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统【摘要】本文介绍了基于单片机的多点无线温度监控系统,在引言部分阐述了研究背景和研究意义。

在详细描述了系统的架构设计、硬件设计、软件设计、无线通信模块选择以及温度监控算法。

结论部分对系统性能进行了评估,并展望了未来的发展方向。

通过本文的研究,可以实现多点温度监控,并通过无线通信模块实现数据传输,具有重要的实际应用价值。

【关键词】单片机,多点无线,温度监控系统,系统架构设计,硬件设计,软件设计,无线通信模块,温度监控算法,系统性能评估,未来展望。

1. 引言1.1 研究背景随着社会的发展和科技的进步,人们对于温度监控系统的需求不断增加。

传统的温度监控系统往往存在布线困难、维护成本高等问题,因此基于单片机的多点无线温度监控系统逐渐被广泛应用。

通过使用单片机和无线通信模块,可以实现对多点的实时温度监控,提高了监控的精度和效率。

目前市面上已经存在很多基于单片机的温度监控系统,但大多数系统还存在着一些不足,比如监控点数有限、监控距离有限等问题。

研究如何设计一种更加稳定、可靠、灵活的多点无线温度监控系统是本研究的重要意义。

本文将从系统架构设计、硬件设计、软件设计、无线通信模块选择以及温度监控算法等方面进行深入研究和探讨,旨在提出一种全新的多点无线温度监控系统,以满足不同场景下对温度监控的需求。

1.2 研究意义研究意义:多点无线温度监控系统是一种能够实现远程监控和实时数据传输的智能监测系统。

在现代社会,随着科技的发展和人们生活水平的提高,温度监控成为各个领域中至关重要的一环。

例如在医疗领域,温度监控可以用于监测患者的体温变化,帮助医护人员及时发现异常情况;在工业生产中,温度监控可以用于保证生产过程的稳定性和产品质量的一致性。

而基于单片机的多点无线温度监控系统不仅可以实现对多个监测点的同时监控,还可以通过无线通信模块实现远程数据传输,极大地提高了监控的便利性和效率。

研究开发这种系统具有非常重要的意义。

(完整版)基于单片机的多点温度检测系统毕业设计论文

(完整版)基于单片机的多点温度检测系统毕业设计论文

集成电路课程设计课题:基于AT89C51单片机的多点温度测量系统设计姓名:韩颖班级:测控12-1学号:指导老师:汪玉坤日期:目录一、绪论二、总体方案设计三、硬件系统设计1主控制器2 显示模块3温度采集模块(1)DS18B20的内部结构(2)高速暂存存储器(3)DS18B20的测温功能及原理(4)DS18B20温度传感器与单片机的连接(5)单片机最小系统总体电路图四、系统软件设计五、系统仿真六、设计总结七、参考文献八、附源程序代码一、绪论在现代工业控制中和智能化仪表中,对于温度的控制,恒温等有较高的要求,如对食品的管理,冰箱的恒温控制,而且现在越来越多的地方用到多点温度测量,比如冰箱的保鲜层和冷冻层是不同的温度这就需要多点的测量和显示可以让用户直观的看到温度值,并根据需要调节冰箱的温。

它还在其他领域有着广泛的应用,如:消防电气的非破坏性温度检测,电力、电讯设备之过热故障预知检测,空调系统的温度检测。

温度检测系统应用十分广阔。

本设计采用DALLAS最新单线数字温度传感器DS18B20 简介新的"一线器件"体积更小、适用电压更宽、更经济DALLAS 半导体公司的数字化温度传感器DS18B20是世界上第一片支持"一线总线",测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°二、设计过程及工艺要求1、基本功能(1)检测两点温度(2)两秒间隔循环显示温度2、主要技术参数测温范围:-30℃到+99℃测量精度:0.0625℃显示精度:0.1℃显示方法:LCD循环显示3、系统设计系统使用AT89C51单片机对两个DS18B20进行数据采集,并通过1602LCD液晶显示器显示所采集的温度。

DS18B20以单总线协议工作,51单片机首先分别发送复位脉冲,使信号上所有的DS18B20芯片都被复位,程序先跳过ROM,启动DS18B20进行温度变换,再读取存储器的第一位和第二位读取温度,通过IO口传到1602LCD显示。

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统

基于单片机的多点无线温度监控系统随着现代科技的不断发展,单片机技术在各个领域都得到了广泛的应用。

基于单片机的多点无线温度监控系统是一个非常实用的应用场景。

这种系统可以用于监控各个物理位置的温度变化,并且可以通过无线方式将数据传输到中央控制端,便于实时监控和远程管理。

本文将介绍基于单片机的多点无线温度监控系统的设计原理、硬件搭建和软件编程等方面的内容。

一、系统设计原理该系统的设计原理是通过多个传感器节点采集不同位置的温度数据,然后通过无线通信模块将数据传输到中央控制端,最后通过显示屏或者计算机等设备进行实时监控。

整个系统包括传感器节点、单片机控制模块、无线通信模块和中央控制端。

传感器节点:每个传感器节点都搭载一个温度传感器,用于采集环境温度数据。

一般可以选择DS18B20等数字式温度传感器,其具有高精度、数字输出、抗干扰等特点。

传感器节点还需要有适当的电源和信号处理电路。

单片机控制模块:每个传感器节点都需要配备一个单片机控制模块,用于控制传感器的采集和数据的处理。

可以选择常见的单片机芯片,如STC89C52等。

单片机控制模块负责读取传感器数据、进行数据处理和存储等操作。

无线通信模块:每个传感器节点还需要配备一个无线通信模块,用于将采集到的温度数据传输到中央控制端。

可以选择类似nRF24L01等2.4GHz无线通信模块,其具有低功耗、远距离传输和多节点连接等特点。

中央控制端:中央控制端负责接收各个传感器节点传输过来的数据,并对数据进行汇总和处理。

可以选择单片机、嵌入式开发板或者计算机等设备作为中央控制端,配备合适的无线通信模块用于接收数据。

二、系统硬件搭建传感器节点的硬件搭建主要包括传感器模块、单片机控制模块和无线通信模块三个部分。

传感器模块可以直接连接DS18B20温度传感器,并通过合适的引脚连接到单片机控制模块。

单片机控制模块由单片机芯片、外部晶振、电源管理电路、数据存储器和通信接口等组成,其中通信接口连接无线通信模块。

基于MSP430单片机的多路无线温度检测系统

基于MSP430单片机的多路无线温度检测系统

基于MSP430单片机的多路无线温度检测系统作者:王玲, 王中训,王恒来源:《现代电子技术》2011年第01期摘要:设计了基于MSP430的多点无线温度检测系统。

系统采用低功耗的MSP430F149单片机作为核心控制部件,硬件由无线通信模块、温度采集电路、显示模块和串口通信模块组成,软件采用模块化的设计方法。

测试表明,整个系统都是在超低功耗的要求下进行元件及运行方式的选择,各个基站只需要3 V电池供电就能实现长时间运作,能很好地实现超低功耗,并且实现了测量温度的实时性。

关键词:MSP430单片机; NRF24L01; NTC热敏电阻;超低功耗中图分类号:TN919-34文献标识码:A文章编号:1004-373X(2011)01-0125-03Multi-spots Wireless Temperature Detecting System Based on MSP430WANG Ling,WANG Zhong-xun,WANG Heng(Institute of Science and Technology for Opto-electronics Information, Yantai University, Yantai 264005, China)Abstract: The multi-spots wireless temperature detecting system based on MSP430 is designed, which uses the low power consumption MSP430F149 microcontroller as the core control unit. Its hardware is composed of wireless communication module, temperature acquisition circuits, display module and serial communication modules. Its software adopts modular design methods. The system tests show that the components and running modes of the whole system are selected under ultra-low power consumption, and each base station can get long working hours by using 3V battery. This system greatly realized ultra-low power consumption.Keywords: MSP430 MCU; NRF24L01; NTC thermistor; ultra-low power0 引言温度在人类日常生活中扮演着极其重要的角色,同时在工农业生产过程中,温度检测具有十分重要的意义。

基于单片机的无线多路数据(温度)采集系统的设计与实现(毕业论文) 2

基于单片机的无线多路数据(温度)采集系统的设计与实现(毕业论文) 2

摘要由于数据采集系统的应用越来越广、其所涉及到的对信号的测量方式和涉及到的信号源的类型也将越来越多、因为对测量的要求也就越来越高,现在国内已有不少用于数据的测量与采集的系统,可很多系统存在着功能单一、采集速率比较低、操作非常复杂,并且对测试的环境要求较很高等问题。

人们急切需要一种应用范围广、价格低廉的数据采集系统。

在分析了各种类型单片机的特点及其与PC机的各类通信技术的基础后,本人设计了由单片机控制的温度采集系统,并且通过串口通信的方式实现了单片机与PC机间的通信,实现了数据传送并将数据在PC机上进行显示或存储,完成了此次设计。

基于单片机的多通道的温度数据采集系统是由将来自温度传感器的信号进行放大、滤波、采样保持等分步处理之后,输入到A/D转换器转换为数字信号后由单片机进行采集的,然后再利用单片机与PC机之间的通信将数据传送至PC 机进行数据的存储处理及显示等,实现了数据的采集与处理等,此设计可广泛应用于工控、仪器仪表、机电智能化及智能家居等诸多的应用领域。

联系扣扣:2825772782关键词:单片机;温度数据采集;多通道AbstractS ince the wide range of data acquisition system, which involves the measurement signal and the type of signal source more and more, Surveyors are increasingly high requirements of the domestic now have a lot of data acquisition and measurement system But there are many single function systems, collecting less access, low collection rate, complicated operations, and the demands of the test environment and other issues.It requires abroad scope of application, high reliability and low-cost data acquisition system.Based on the analysis of the characteristics of different types of SCM and SCM and PC communication technology, SCM control of the collection system designed and adopted MCU serial communication between PC and communications, Data transmission and display of data stored on the PC.Single completed the multi-channel data acquisition system design and implementation.Based on SCM′s multi-channel data acquisition system is adopted will come from the sensor signal amplification, linear filtering, After processing maintain synchronous sampling, which converted to digital signal input A/D conversion by SCM Acquisition, Then, SCM and PC to PC communications data to the data storage, post-processing and display. a powerful data processing, visual shows, friendly interface and high performance-price ratio, a wide range of features. can be widely used in industrial control equipment, instruments, and electrical engineering integration, intelligent home and many other fields.Key words Multi-channel Data Acquisition Microcontroller联系扣扣:2825772782目录摘要 (I)Abstract (II)第一章绪论 (IV)1.1 引言 (IV)1.2 方案论证 (V)1.2.1 传感器 (V)第二章硬件电路的设计...................................................................................................... V III2.1 电源电路 (VIII)2.2 温度采集电路 (IX)2.2.1 DS18B20简介 (IX)2.2.2 电路设计 (XI)2.2.3 无线传输电路模块 (XII)2.3 无线发送与接收电路 (XIII)2.3.1 无线发送电路 (XIII)2.3.2 无线接收模块 (XIV)2.4 显示电路 (XIV)2.4.1 字符型液晶显示模块 (XIV)2.4.2 字符型液晶显示模块引脚 (XV)2.4.3 字符型液晶显示模块内部结构 (XVI)2.5 单片机AT89S52 (XVI)2.5.1 AT89S52简介 (XVI)2.5.2 AT89S52引脚说明 (XVII)第三章软件设计................................................................................................................... X X3.1 系统概述 (XX)3.2 程序设计流程图 (XX)3.3 温度传感器多点数据采集 (XXI)第四章调试及结果........................................................................................................... X XIII4.1 测试环境及工具 (XXIII)4.2 测试方法 (XXIII)4.3 测试结果分析 (XXIII)结论..................................................................................................................................... X XIV 参考文献 (XXV)附录..................................................................................................................................... X XVI 附录1:电路原理总图.. (XXVI)附录2:发射部分主程序 (XXVII)附录3:接收部分主程序 (XXXIX)第一章绪论1.1 引言在21世纪的今天,科学技术的发展可谓日新月异,科学技术的进步不断带动着测量技术的飞速发展,现代控制设备早已不同于从前,它们在性能以及结构上都发生了翻天覆地的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中: RT 为温度T( 单位: K) 时的NTC 热敏电阻阻值;RN为额定温度T N ( 单位: K) 时的NTC 热敏电阻阻值;T 为规定温度( 单位: K) ;B 为NTC 热敏电阻的材料常数,又叫热敏指数。
常温环境中,温度为28℃,换算成开氏温度为273. 15+ 28= 301. 15 K。通过多次测28℃及30℃环境下的数据,如表1 所示,取平均值,尽量减小误差,算得B 值。
图3 NRF24L01 应用电路
从单片机控制的角度来看,只需要将图3 中左边的6 个控制和数据信号与单片机通用I/ O 口相连。
2. 2 温度采集电路
为了使整个系统的功耗更低,采用低功耗的热敏电阻NT C100 和MSP430149 内部自带的12 位A/ D 转换器实现温度的采集功能。其理论分析与计算电阻值和温度变化之间的关系。
表1 测量NTC100 热敏电阻B 值
通过式( 1) 可得,将T ,T N 都转化成开尔文温度进行计算得B = 4 064. 34。经过比较发现,求得的阻值与测得的阻值很相近。
图4 为温度采集模块,其中R 1 为热敏电阻,R3 为200 kΩ电阻,R2 为0~ 20 kΩ 的可调电阻,用来调整温度计的准确性。U0 为检测到的电压,将U0 接到单片机管脚,通过A/ D 转换,将得到的电压值转换成温度值,在LCD 上显示出来。
图6 下位机显示界面
经过多次测试,将LCD 显示的温度与普通温度计进行比较,得到表2 中的数据。
表2 LCD 显示的温度值与普通温度计的温度值的对比表
经过测试,温度误差在允许范围内,系统能够稳定的运行。当采集到的温度数值超过设定的上下限时,单片机就会发出报警信号,提醒用户进行温度控制。
图4 温度采集模块
2. 3 显示模块
本次设计采用自制的16 位段码液晶进行显示。利用液晶驱动IC( HT 1621) 以及配套的液晶LCD 玻璃片,自制16 位段码液晶。另外,驱动IC 上装有两种频率的蜂鸣驱动电路
在温度采集过程中,由于系统随时需要将采集到的温度数值通过PC 机上的VC 界面进行显示,因此需要在PC 机和单片机之间进行相互通信。由于PC 机的RS 232电平与单片机的TTL 电平不同,因此用MAX3232 芯片实现电平的相互转换,这样就可以实现单片机与PC 机之间的相互通信。
基于单片机的多路无线温度检测系统
温度温度在人类日常生活中扮演着极其重要的角色,同时在工农业生产过程中,温度检测具有十分重要的意义。现阶段温度检测主要是有线定点温度检测,其温度检测原理为单片机单片机利用温度传感器检测温度,并在数码管或LCD 上进行温度显示。同时由于系统没有报警功能,故需要人为来判断是否需要进行升温或者降温,这使系统的检测丧失了实时性。另外,在某些环境恶劣的工业环境,以人工方式直接操作设置仪表测量温度也不现实,因此采用无线方式进行温度检测尤为必要。
图1 下位机设计方案
图2 系统的整体构成
2 硬件设计
2. 1 无线通信模块设计
nRF24L01 是一款新型单片射频收发器件,工作于2. 4~ 2. 5 GHz ISM 频段。内置频率合成器、功率放大器、晶体振荡器、调制器等功能模块,并融合了增强型ShockBurst 技术,其中输出功率和通信频道可通过程序进行配置。nRF24L01 功耗低,有多种低功率工作模式( 掉电模式和空闲模式) 使节能设计更方便,图3 为它的应用电路。
4. 2 功耗测试
当下位机进入LPM3( 睡眠) 模式,LCD 不显示,但内部时钟仍运行,串入电流表,测量电流值,测得电流为4 uA 左右。证明系统很好地实现了超低功耗。
4. 3 无线模块测试
将无线模块连接好,先进行一对一的收发调试。
让下位机1 控制无线收发模块发送一连串有规律的数,观察上位机接收的数字。经过测试,3 路下位机系统都可以与上位机进行稳定的一对一收发。然后3 个下位机都与上位机通信,进行一对三的收发调试,上位机接收3 路数据,并且显示。
经过测试,3 路都能正常的工作,且误码率低,工作稳定。无线模块nRF24L01 的最大传输距离大约为100 m。
4. 4 VC 界面显示
首先进行上位机的硬件连接,连接完成后进行上电初始化并打开PC 机的VC 界面。当VC 界面正常打开时,会出现“串口已打开”的提示;当VC 界面无法正常打开时,会出现“ 串口无法打开”的提示,出现此情况时首先检测硬件连接,再检查选定串口通道是否正确。
本次设计的温度精度为0. 5 ℃,可以根据实际需求进一步提高精度;基站为了实现断电存储,可以将数据存储于单片机的FLASH 中,上电时单片机从FLASH中取出所需的数值进行显示。
目前有些设计能够实现无线温度采集,但功耗过高是其最大的缺点。在实际温度控制过程中既要求系统具有稳定性、实时性,又需要使系统功耗低及保证温度的均匀性,因此设计一种低功耗的多点无线温度检测系统检测系统很有意义。本文提出一种采用低功耗单片机MSP430F149 单片机实现的多点无线温度测量系统,解决了上述问题。该系统能实现对温度智能化的检测,能够同时进行多点温度检测,是可以实现远程控制的无线温度检测系统。低功耗、实时性的无线温度检测是该设计的最大特点。
1 系统构成
系统分为下位机、上位机和PC 机三部分。PC 机是整个系统的最上层,负责对下位机的控制和管理,并对收集到的各个节点的数据进行存储和处理。由于下位机无法直接与PC 机通信,这就需要使用上位机作为中间媒介。上位机与下位机通过无线模块通信,与PC机采用有线连接。
该设计采用MSP430F149 单片机作为核心控制模块,其最主要特点为低功耗。MSP430F149 具有双串口的特点,利用其中的一个串行口与PC 机进行通讯时,两者之间必须通过RS 232 电平转换芯片。单片机与无线发射模块nRF24L01 通讯时可通过通用I/ O口模拟串口通讯。现场温度数据的采集是利用NT C100 热敏电阻和MSP430F149 单片机部带有的12 位A/ D转换器来实现的。这里不需要外加ADC,可以简化电路,提高系统的稳定性。将按键作为输入模块,用来改变温度报警的上下限。由于设计要求不需要太多内容的显示,考虑到功耗及性价比,可以自制一个简易段码液晶用于显示。下位机设计方案和系统整体构成框图分别。
图5 线性插值法热敏电阻非线性自校正程序流程图
图5 中,0,R1 ,R2 ,,R K 是曲线上横坐标取值;0,T1 ,T2 ,,T K 是其对应的纵坐标。K 的取值可根据所需温度精度确定。
4 测试结果及分析
4. 1 温度采集及显示
将程序写入单片机中,连好硬件线路,通过键盘设置好温度上下限后,单片机开始采集温度数值。,是下位机显示界面,LCD 显示报警温度的上下限、当前温度以及下位机的代号。
3 软件设计
系统的软件设计采用模块化设计方法。下位机利用定时中断发送温度数据,利用端口中断设置温度报警的上下限,其他时间处于低功耗模式3 的状态下,这样可以大大降低功耗。上位机利用接收中断接收数据,并且利用MAX3232 与PC 机通信。
NTC 热敏电阻的主要缺点是热电特性的非线性现象严重,本次设计采用查表法对NT C 热敏电阻进行线性化。线性插值法软件流程。
PC 机最终显示。
图7 PC 机显示图
5 结 语
本文描述了基于基于MSP430 单片机的无线温度控制系统的软、硬件设计。通过调试证明系统运行正常,各项指标均能达到设计要求。整个系统集成度高,功耗低,温度采集和无线传输速度快,误码低,且具有体积小,重量轻,可靠性高,易于控制和使用灵活等优点,因而性价比极高。
相关文档
最新文档