平行四边形性质3PPT课件
合集下载
平行四边形判定PPT课件
![平行四边形判定PPT课件](https://img.taocdn.com/s3/m/c66e1445854769eae009581b6bd97f192379bf56.png)
两组对边分别相等
四边形中,如果两组对边分别相等,则该四边形为平行四边形。
一组对边平行且相等
四边形中,如果有一组对边既平行又相等,则该四边形为平行四边 形。
角度判定法
两组对角分别相等
四边形中,如果两组对角分别相等,则该四边形为平行四边 形。
一组邻角互补
四边形中,如果有一组邻角互补(即两个角的度数之和为 180度),则该四边形为平行四边形。
在水准测量中,可以利用 平行四边形对角线互相平 分的性质进行高程传递和 计算。
05 误区提示与易错点剖析
常见误区提示
误区一
仅根据两组对边分别平行就判定为平行四边形。实际上, 还需要考虑其他条件,如对角线是否互相平分等。
误区二
忽视平行四边形的性质,仅根据图形外观判断。平行四边 形的性质包括两组对边分别平行且相等、对角线互相平分 等,需要综合考虑。
梯形判定
一组对边平行且不相等的四边形是梯形;只有一组对边平行的四边形是梯形。
其他特殊情况
01
等腰梯形判定
同一底上的两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯
形。
02
直角梯形判定
有一个角是直角的梯形是直角梯形。
03
平行四边形与特殊四边形的转化
通过添加辅助线或改变条件,可以将平行四边形转化为矩形、正方形、
正方形
既是矩形又是菱形的四边形是正方形。 正方形具有矩形和菱形的所有性质,此 外还具有四个直角和四条相等的边。
菱形
有一组邻边相等的平行四边形是菱形。菱形 具有平行四边形的所有性质,此外还具有四 条相等的边和两条垂直且平分的对角线。
02 平行四边形判定方法
边长判定法
两组对边分别平行
四边形中,如果两组对边分别平行,则该四边形为平行四边形。
四边形中,如果两组对边分别相等,则该四边形为平行四边形。
一组对边平行且相等
四边形中,如果有一组对边既平行又相等,则该四边形为平行四边 形。
角度判定法
两组对角分别相等
四边形中,如果两组对角分别相等,则该四边形为平行四边 形。
一组邻角互补
四边形中,如果有一组邻角互补(即两个角的度数之和为 180度),则该四边形为平行四边形。
在水准测量中,可以利用 平行四边形对角线互相平 分的性质进行高程传递和 计算。
05 误区提示与易错点剖析
常见误区提示
误区一
仅根据两组对边分别平行就判定为平行四边形。实际上, 还需要考虑其他条件,如对角线是否互相平分等。
误区二
忽视平行四边形的性质,仅根据图形外观判断。平行四边 形的性质包括两组对边分别平行且相等、对角线互相平分 等,需要综合考虑。
梯形判定
一组对边平行且不相等的四边形是梯形;只有一组对边平行的四边形是梯形。
其他特殊情况
01
等腰梯形判定
同一底上的两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯
形。
02
直角梯形判定
有一个角是直角的梯形是直角梯形。
03
平行四边形与特殊四边形的转化
通过添加辅助线或改变条件,可以将平行四边形转化为矩形、正方形、
正方形
既是矩形又是菱形的四边形是正方形。 正方形具有矩形和菱形的所有性质,此 外还具有四个直角和四条相等的边。
菱形
有一组邻边相等的平行四边形是菱形。菱形 具有平行四边形的所有性质,此外还具有四 条相等的边和两条垂直且平分的对角线。
02 平行四边形判定方法
边长判定法
两组对边分别平行
四边形中,如果两组对边分别平行,则该四边形为平行四边形。
6.1 平行四边形的性质 课件(共29张PPT)数学北师大版八年级下册
![6.1 平行四边形的性质 课件(共29张PPT)数学北师大版八年级下册](https://img.taocdn.com/s3/m/c73c538281eb6294dd88d0d233d4b14e85243e2e.png)
感悟新知
解题秘方:紧扣平行四边形边的性质进行解答 .
知2-练
解:∵平行四边形的对边相等, ∴ CD=AB=5 cm, AD=BC=4 cm. ∴ ▱ ABCD 的周长 =AB+BC+CD+AD=5+4+5+4=18(cm) .
感悟新知
知2-练
2-1. [ 中考·湘潭 ] 在▱ ABCD 中(如图),连接AC,已知 ∠ BAC =40 °, ∠ ACB = 80 °,则∠ BCD = ( C)
解:S 四边形 ABFE=S 四边形 FCDE. 理由如下: ∵四边形 ABCD 是平行四边形, ∴ OA=OC, AD ∥ BC. ∴∠ 1= ∠ 2. 又∵∠ 3= ∠ 4, ∴△ AOE ≌△ COF(ASA). ∴ S △ AOE=S △ COF.
知3-练
感悟新知
又由 ▱ ABCD 得
知3-练
感悟新知
例4 如图 6-1-8,在▱ ABCD 中,对角线 AC, BD 相
知3-练
交于点 O,过点 O 作直线 EF,分别交 AD, BC 于点 E, F. 判断四边形 ABFE 的面积与四边形 FCDE 的面 积有何关系,试说明理由 .
感悟新知
解题秘方:紧扣平行四边形的对角线性质、全等 三角形的性质进行解答 .
知2-讲
特别提醒
1. 2.
从 从• 边角• 看看• ::平平行行四四边边形形的的对对角边相平等行、且邻相角等互. 补 注• 意•:•要根据推理证明的需要,合理选用平
.
行四边形的性质 .
感悟新知
知2-练
例2 [母题教材P137随堂练习T1] 如图 6-1-4,在 ABCD 中, AB=5 cm, BC=4 cm,则▱ ABCD 的周长为__1_8___cm.
《平行四边形的性质》四边形PPT课件3
![《平行四边形的性质》四边形PPT课件3](https://img.taocdn.com/s3/m/44066308cd1755270722192e453610661fd95a57.png)
平行四边形是我们常见的图形,你还能举出平行四边 形在生活中应用的例子吗?
探究新知
两组对边分别平行的四边形叫做平行四边形.
表示:如图,在四边形ABCD中,AB//DC,AD//BC, 那么四边形ABCD是平行四边形.
几何语言:
A
D 因为 AB∥CD, AD∥BC
所以四边形ABCD是平行四边形
B
C
因为四边形ABCD是平行四边形
所以 AB∥CD, AD∥BC
探究新知
A B
D C
记作: ABCD 读作:平行四边形ABCD
注意:平行四边形中对边是指无公共点的边,对角是 指不相邻的角,邻边是指有公共端点的边,邻角是指 有一条公共边的两个角.而三角形对边是指一个角的 对边,对角是指一条边的对角.
探究新知
A
D
B
C
平行四边形相对的边称为对边, 相对的角称为对角.
b
长就是a、b之间的距离.
B
随堂检测
1.如图,在 ABCD中,
A
D
A:基础知识:
B
C
若∠A=130°,则∠B=_5_0_°___ 、∠C=_1_3_0_°__ 、∠D=__5_0_°__.
B:变式训练: (1)若∠A+ ∠C= 200°,则∠A=__1_0_0_°_ 、∠B=__8_0_°__; (2)若∠A:∠B= 5:4,则∠C=__1_0_0_°_ 、∠D=___8_0_°_.
∠BAC=_8_0_°_.
随堂检测
2.如图,△ABC是等腰三角形,P是底边BC上一动点, 且PE//AB,PF//AC.求证:PE+PF=AB.
证明:因为PE//AB,PF//AC, 所以四边形AEPF为平行四边形, ∠C=∠FPB. 所以PE=AF. 因为△ABC是等腰三角形, 所以∠B=∠C.所以∠B=∠FPB. 所以PF=BF.所以PE+PF=AF+BF=AB.
探究新知
两组对边分别平行的四边形叫做平行四边形.
表示:如图,在四边形ABCD中,AB//DC,AD//BC, 那么四边形ABCD是平行四边形.
几何语言:
A
D 因为 AB∥CD, AD∥BC
所以四边形ABCD是平行四边形
B
C
因为四边形ABCD是平行四边形
所以 AB∥CD, AD∥BC
探究新知
A B
D C
记作: ABCD 读作:平行四边形ABCD
注意:平行四边形中对边是指无公共点的边,对角是 指不相邻的角,邻边是指有公共端点的边,邻角是指 有一条公共边的两个角.而三角形对边是指一个角的 对边,对角是指一条边的对角.
探究新知
A
D
B
C
平行四边形相对的边称为对边, 相对的角称为对角.
b
长就是a、b之间的距离.
B
随堂检测
1.如图,在 ABCD中,
A
D
A:基础知识:
B
C
若∠A=130°,则∠B=_5_0_°___ 、∠C=_1_3_0_°__ 、∠D=__5_0_°__.
B:变式训练: (1)若∠A+ ∠C= 200°,则∠A=__1_0_0_°_ 、∠B=__8_0_°__; (2)若∠A:∠B= 5:4,则∠C=__1_0_0_°_ 、∠D=___8_0_°_.
∠BAC=_8_0_°_.
随堂检测
2.如图,△ABC是等腰三角形,P是底边BC上一动点, 且PE//AB,PF//AC.求证:PE+PF=AB.
证明:因为PE//AB,PF//AC, 所以四边形AEPF为平行四边形, ∠C=∠FPB. 所以PE=AF. 因为△ABC是等腰三角形, 所以∠B=∠C.所以∠B=∠FPB. 所以PF=BF.所以PE+PF=AF+BF=AB.
《平行四边形的性质》PPT课件
![《平行四边形的性质》PPT课件](https://img.taocdn.com/s3/m/df37861677c66137ee06eff9aef8941ea76e4b8c.png)
B、对角线互相平分
C、内角的为360度 D、外角和为360度
2022年7月16日星期六
16
若平行四边形的一边长为5,则它的两条
对角线长可以是( D )
A. 12和2
B. 3和4
C. 4和6
D. 4和8
A
C
O
2022年7月16日星期六
B
D
如图,在平面直角坐标系中, OBCD的顶点
O﹑B﹑D的坐标如图所示,则顶点C的
A D
∴…是平行四边形
B C ∵四边形ABCD是平
四 边 形
质 对边平行;对边 相等;对角相等; 对角线互相平
A D
行四边形
BC
∴AB∥CD,AD∥BC AB=CD,AD= BC
分
O ∠A=∠C,∠B=∠D
A
B OA=OC,OB=OD
2022年7月16日星期六
22
ABCD的对角线AC与BD相交于O,直线EF 过点 O与 AB 、CD分别相交于E 、F.
数学八年级下册
22.1 平行四边形的性质
1
八年级 数学
结论
B
C
A
D
定 义 两组对边分别平行的四边形叫做 平 行 四 边形。
表示方法
平行四边形ABCD, 记为“□ABCD”, 读作
“平行四边形ABCD”, 其中线段AC, BD称 为对角线。
1.平行四边形的两组对边平行且相等; 性 质 2. 平行四边形的对角相等。
A
D
●
M
B
2022年7月16日星期六
C
7
一位饱经苍桑的老人,经过一辈子的辛勤劳动, 到 晚年的时候,终于拥有了一块平行四边形的土地,由于年 迈体弱,他决定把这块土地分给他的四个孩子,他是这样
平行四边形的定义及性质ppt课件
![平行四边形的定义及性质ppt课件](https://img.taocdn.com/s3/m/3b80cc91ac51f01dc281e53a580216fc710a537f.png)
§18.1平行四边形的定义及性质 (一)
学习目标: 1、掌握平行四边形的定义及对边相等、 对角相等的性质; 2、会证明平行四边形的性质1、2。
1
2
思考:什么样的四边形是平行四边形?
3
对边 相对的两条边 对角 相对的两个角
邻角 相邻的两个角 对角线 平行四边形不相邻的两个顶点连成 的线段
4
合作交流 解读探究
作业:
P75的练习第1题、
P80的习题18.1第1、3题 20
21
形性
质1
(关 对边相等
于边)
∵四边形ABCD是平行 四边形
∴ AB=DC ,AD=BC
10
平行四边形的性质
A
D
B
C
文字叙述
符号语言
平行 四边
对角相等
∵四边形ABCD是平行四边形 ∴ ∠A=∠C ,∠B=∠D
形性
质2
∵四边形ABCD是平行四边形
(关 于角)
邻角互补
∴ ∠A +∠ B =180° ∠A +∠D =180 °
∠C +∠ D=180°
∠C+∠ B =180° 11
小试牛刀:
如图:在 ABCD中,根据已知
你能得到哪些结论?为什么?
A 32cm D
124°
56°
30cm
30cm
56°
124°
B 32cm C
12
例1 如图,在 ABCD中,已知∠A=40°, 求其他各个内角的度数。
解:
∵四边形ABCD是平行四边形, 且∠A=40°(已知)
3cm,那么周长是10cm. ( ∨ ) (5)在平行四边形ABCD中,如果∠A=35°,
学习目标: 1、掌握平行四边形的定义及对边相等、 对角相等的性质; 2、会证明平行四边形的性质1、2。
1
2
思考:什么样的四边形是平行四边形?
3
对边 相对的两条边 对角 相对的两个角
邻角 相邻的两个角 对角线 平行四边形不相邻的两个顶点连成 的线段
4
合作交流 解读探究
作业:
P75的练习第1题、
P80的习题18.1第1、3题 20
21
形性
质1
(关 对边相等
于边)
∵四边形ABCD是平行 四边形
∴ AB=DC ,AD=BC
10
平行四边形的性质
A
D
B
C
文字叙述
符号语言
平行 四边
对角相等
∵四边形ABCD是平行四边形 ∴ ∠A=∠C ,∠B=∠D
形性
质2
∵四边形ABCD是平行四边形
(关 于角)
邻角互补
∴ ∠A +∠ B =180° ∠A +∠D =180 °
∠C +∠ D=180°
∠C+∠ B =180° 11
小试牛刀:
如图:在 ABCD中,根据已知
你能得到哪些结论?为什么?
A 32cm D
124°
56°
30cm
30cm
56°
124°
B 32cm C
12
例1 如图,在 ABCD中,已知∠A=40°, 求其他各个内角的度数。
解:
∵四边形ABCD是平行四边形, 且∠A=40°(已知)
3cm,那么周长是10cm. ( ∨ ) (5)在平行四边形ABCD中,如果∠A=35°,
人教版八年级数学下册《平行四边形的判定》平行四边形PPT精品课件
![人教版八年级数学下册《平行四边形的判定》平行四边形PPT精品课件](https://img.taocdn.com/s3/m/11d4a711580102020740be1e650e52ea5518ce1a.png)
新知探究
于是我们又得到平行四边形的一个判断定理: 一组对边平行且相等的四边形是平行四边形.
数学表达式:如图,∵AB =∥ CD, ∴四边形ABCD是平行四边形.
例题精析
例1 如图,在▱ABCD中,E,F分别是AB,CD的中点.
求证:四边形EBFD是平行四边形.
证明:∵四边形ABCD是平行四边形,
人教版八年级数学下册
第十八章 平行四边形
平行四边形的判定
第1课时
新课导入
前面我们学习了平行四边形的定义和性质,它们的内容是什么? 平行四边形的定义:
两组对边分别平行的四边形叫平行四边形; 平行四边形的性质:
对边相等,对角相等,对角线互相平分.
新课导入 一、复习反思,引出课题
学习完定义和性质后,由以前经验接下来我们应该研究什么?
定义
性质
判?定
平行四边形的判定
新课探究
根据以往学习一些图形判定定理的经验,如何寻找平行四边形 的判定方法?
性质定理 两直线平行,同位角相等
角平分线上的点到角两边的距离相等
线段垂直平分线上的点到线段两端点的距 离相等
全等三角形的对应边相等 ……
判定定理 同位角相等,两直线平行
角的内部,到角两边距离相等的 点在这个角的角平分线上
∴ △AOD≌△COB.
∴ ∠OAD=∠OCB.
∴ AD∥BC. 同理 AB∥DC.
判定3: 对角线互相平分的四边形是平行四边形.
∴ 四边形ABCD是平行四边形.
新课探究
两组对边分别平行 两组对边分别相等 两组对角分别相等 对角线互相平分
的四边形是平行四边形
例题精析
例1 如图,AB=DC=EF,AD=BC,DE=CF.求证:AB∥EF.
平行四边形的判定(三)优秀课件
![平行四边形的判定(三)优秀课件](https://img.taocdn.com/s3/m/4ab4d17ec281e53a5902ff4c.png)
探究一:
平行四边形的对边相等。它的逆命题是什么?
逆命题:两组对边分别相等的四边形是平行四边形。 这个命题是否成立?如何证明?
D
C 已知,四边形ABCD中,AB=CD,
AD=BC.
求证:四边形ABCD为平行四边形.
A
B
平行四边形判定定理1:
两组对边分别相等的四边形是平行四边形
D
C
∵ AB=CD,AD=BC
C.AB=CD AD∥BC C.AB∥CD AD∥ BC
例2、如图所示,在四边形ABCD中,M 是BC中点,AM、BD互相平分于点O,那 么请说明AM=DC 且AM∥DC 。
A
D
O
B
MC
3、如图:在ABCD中,已知M和N分别是AB和CD的中点
,那么四边形BNDM是平形四边形吗?试用多种方法证明你
有两组对边分别平行的四边形 叫做平行四边形
A
A
D 如果
DA
D
AB∥CD B
B
C AD∥BC
四边形ABCD
边
C
ABCD
B
O C
平行四边形的对边平行
平行四边形的对边相等
平行四边形的性质:角
平行四边形的对角相等 平行四边形的邻角互补
∵四边形ABCD 是平行四边形
对角线 平行四边形的对角线互 相平分
∴∴AAAo BAB∥=ACCODDCB 1C800
AOADBDB∥=BBOCCDD
对称性
中心对称图形
在前面的学习中,我们通过对平行四边形的边、角、对角线 的有关特征进行分析,得到了它的性质。那么,具有什么性 质的四边形一定是平行四边形呢?
A
1、利用定义:
《 平行四边形的判定》课件(共48张PPT)
![《 平行四边形的判定》课件(共48张PPT)](https://img.taocdn.com/s3/m/dd5d80066ad97f192279168884868762caaebb23.png)
【 ∵四边形 是平行四边形,∴OD=OB, 证明】 ABCD 已知:如图,四边形ABCD的对角线AC,BD相交于点O,并且 AO=CO,BO=DO。
将两长两短的四根细木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边.
OA=OC,AB∥CD (2010·怀化中考)如图,平行四边形ABCD的对角线
E,F. 于点 ∴AB=B′C, AB=A′C(平行四边形的对边相等). AECF . 上两的组两 对点角,分求并别且相证等A:E的=四C四F边。形边是平形行四边形。是平行四边形
从实验结果得出什么结论? ∵ AO=OC,BO=OD 判定一个四边形是平行四边形应具备几个条件? 两组对角分别相等的四边形是平行四边形。 你认为下面四个条件中可选择的是( ) 证明:连结BD,交AC于点O ∵AB CD, ∴四边形ABCD是平行四边形 两组对边分别相等的四边形是平行四边形 求证:四边形BFDE是平行四边形 ∴四边形ABCD是平行四边形
A B
证明:∵四边形ABCD是
E
D
平行四边形
∴AD∥BC AD=BC
∵ DE=1/2AD
BF=1/2BC
∴DE∥BF DE=BF
F
C
∴四边形EBFD是平
行四边形
∴EB=DF
如图,在 ABCD中,已知AE、CF分别是
∠DAB、∠BCD的角平分线,
求证:四边形AECF是平行四边形。
A
F
D
256
1
34
8 7
∵AB ﹦∥CD, ∴四边形ABCD是平行四边形
A
通过了本节课学习,
你有哪些收获?
B
D
O
C
1、两组对边分别平行的 ∵AB∥CD,AD∥BC
将两长两短的四根细木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边.
OA=OC,AB∥CD (2010·怀化中考)如图,平行四边形ABCD的对角线
E,F. 于点 ∴AB=B′C, AB=A′C(平行四边形的对边相等). AECF . 上两的组两 对点角,分求并别且相证等A:E的=四C四F边。形边是平形行四边形。是平行四边形
从实验结果得出什么结论? ∵ AO=OC,BO=OD 判定一个四边形是平行四边形应具备几个条件? 两组对角分别相等的四边形是平行四边形。 你认为下面四个条件中可选择的是( ) 证明:连结BD,交AC于点O ∵AB CD, ∴四边形ABCD是平行四边形 两组对边分别相等的四边形是平行四边形 求证:四边形BFDE是平行四边形 ∴四边形ABCD是平行四边形
A B
证明:∵四边形ABCD是
E
D
平行四边形
∴AD∥BC AD=BC
∵ DE=1/2AD
BF=1/2BC
∴DE∥BF DE=BF
F
C
∴四边形EBFD是平
行四边形
∴EB=DF
如图,在 ABCD中,已知AE、CF分别是
∠DAB、∠BCD的角平分线,
求证:四边形AECF是平行四边形。
A
F
D
256
1
34
8 7
∵AB ﹦∥CD, ∴四边形ABCD是平行四边形
A
通过了本节课学习,
你有哪些收获?
B
D
O
C
1、两组对边分别平行的 ∵AB∥CD,AD∥BC
《平行四边形的判定》(公开课)ppt课件
![《平行四边形的判定》(公开课)ppt课件](https://img.taocdn.com/s3/m/02054c4311a6f524ccbff121dd36a32d7275c71b.png)
∵AB=CD AC=CA
∴△ABC≌△CDA (SAS)
∴BC=AD
A
D
∴四边形ABCD是平行四边形 B
C
(两组对边分别相等的四边形是平行四边形)
平行四边形的判定定理1:
一组对边平行且相等的四边形是平行四边 形
例1:已知:平行四边形ABCD中,E, F分别是边AD,BC的中点(如图)
求证:EB=DF
A
E
D
B
F
C
例1:已知:平行四边形ABCD中,E, F分别是边AD,BC的中点(如图)
求证:EB=DF
A
E
D
B
F
C
例1:已知:平行四边形ABCD中,E, F分别是边AD,BC的中点(如图)
A
求证:EB=DF
E
D
证明:∵四边形ABCD
是平行四边形 B
F
C
∴AD BC
∵ED=1/2AD BF=1/2BC ∴ED BF ∴ห้องสมุดไป่ตู้边形EBFD是平行四边形
边有什么关系?
平行四边形的对边平行且相等,这种 关系可记作AB =//CD,
问题:请猜想“一组对边平行且相 等的四边形是平行四边形”这个命 1 题是真命题还是假命题?
已知:如图 ,在四边形ABCD中,AB=//CD 求证:四边形ABCD是平行四边形
A
D
B
C
证明:连接AC
∵ AB∥CD
∴∠BAC=∠DCA
19.2平行四边形的 判定
课前复习 新课讲授
例题解析
课堂练 习小 结
想一想:一个四边形只有当它具
备了哪些条件时才是平行四边形?
按图1说明:
M
平行四边形的性质ppt课件
![平行四边形的性质ppt课件](https://img.taocdn.com/s3/m/944be61f68eae009581b6bd97f1922791688bef1.png)
相交于点O.
A
D
求证:OA=OC,OB=OD.
1O 3
42
B
C
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
方法提示:
1.有关四边形的问题常常转化为三角形问题解决;
D
2、证明线段相等常 用全等
A
C B
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
复习旧知
1.定义:
有两组对边分别平行的四边形
叫做平行四边形。
A
2.记作: ABCD
3.读作:平行四边形ABCDB
D C
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
情景引入
一位饱经苍桑的老人,经过一辈子的辛勤劳动, 到 晚年的时候,终于拥有了一块平行四边形的土地,由于年 迈体弱,他决定把这块土地分给他的四个孩子,他是这样
分的:
老大
老二
老四
老三
当四个孩子看到时,争论不休,都认为自己的地 少,同学们,你认为老人这样分合理吗?为什么?
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
课堂小结
1、今天,你学到了什么知识? 2、你能总结以下平行四边形有哪些性质吗?
平行四边形的性质与判定PPT精品课件
![平行四边形的性质与判定PPT精品课件](https://img.taocdn.com/s3/m/1ab189691fb91a37f111f18583d049649b660ea8.png)
从原始社会的氏族部 落发展到奴隶制国家是社 会的进步还是倒退?
三、 商汤灭夏
1、夏桀的暴政及其灭亡
2、商朝的建立
建国者: 汤 时 间: 公元前1600年 都 城: 亳
夏
禹
王 像
启像
三、 商汤灭夏
1、夏桀的暴政及其灭亡 2、商朝的建立 3、盘庚迁殷 4、商朝的统治区域 5、商朝经济的发展
商朝的经济发展有 哪些表现?
10.如图,△ABC是等边三角形,点D,F分别在线段BC,AB上, ∠EFB=60°,DC=EF.
(1)求证:四边形EFCD是平行四边形; (2)若BF=EF,求证:AE=AD.
解:(1)∵△ABC是等边三角形,∴∠ABC=60°,又∵∠EFB= 60°,∴∠ABC=∠EFB,∴EF∥BC,又∵DC=EF,∴四边形EFCD 是平行四边形 (2)连接BE,∵∠EFB=60°,BF=EF,∴△BEF为等 边三角形,∴BE=BF=EF,∠ABE=60°,∵CD=EF,∴BE=CD, 又∵△ABC为等边三角形,∴AB=AC,∠ACD=60°,∴∠ABE= ∠ACD,∴△ABE≌△ACD(SAS),∴AE=AD
【对应训练】 7.如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将 △BDE绕着CB的中点D逆时针旋转180°,点E到了点E′的位置,则四边 形ACE′E的形状是_______平__行__四__边.形
8 . 如 图 , 已 知 点 E , C 在 线 段 BF 上 , BE = CE = CF , AB∥DE , ∠ACB=∠F.
(1)求证:△ABC≌△EAD; (2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数. 解 : (1)∵ 四 边 形 ABCD 是 平 行 四 边 形 , ∴ BC = AD , BC∥AD , ∴∠EAD=∠AEB,∵AB=AE,∴∠B=∠AEB,∴∠B=∠EAD, ∴△ABC≌△EAD(SAS) (2)∵AE平分∠DAB,∴∠DAE=∠BAE,又 ∵∠DAE=∠AEB,AB=AE,∴∠BAE=∠AEB=∠B,∴△ABE为等 边 三 角 形 , ∴ ∠ BAE = 60° , ∵ ∠ EAC = 25° , ∴ ∠ BAC = 85° , ∵△ABC≌△EAD,∴∠AED=∠BAC=85°
18.1.3平行四边形的性质课件华东师大版八年级数学下册
![18.1.3平行四边形的性质课件华东师大版八年级数学下册](https://img.taocdn.com/s3/m/7cb5e58dc67da26925c52cc58bd63186bceb92f4.png)
A.63°
B.72°
C.54°
D.60°
4. 如图,在□ABCD中,BF 平分∠ABC,交 AD 于点 F,
CE 平分∠BCD,交 AD 于点 E,AB = 6,EF = 2,则 BC 长为( B )
5. 如图,在平行四边形 ABCD 中,P 是 CD 边上一点, 且 AP 和 BP 分别平分∠DAB 和∠CBA,若 AD = 5, AP = 8,则△APB 的周长为__2_4____.
BC分别相交于点 E 和点 F .求证:OE=OF.
分析:要证明OE=OF,只要证明它们所在
A
E
O
D
的两个三角形全等即可.
证明:▱ABCD中
B
F
C
有OB=OD(平行四边形的对角线互相平分) 又∵∠DOE=∠BOF,
∵AD∥BC
∴△DEO≌△BFO.
∴∠DEO=∠BFE
∴OE=OF
9. 如图,▱ABCD的对角线AC与DB相交于点O,其周长为16,且△AOB
的周长比△BOCAB和BC的长.
解:在▱ABCD中
A
D
O
有OA=OC(平行四边形的对角线互相平分)
B
C
∵△AOB的周长+2=△BOC的周长
∴AB+OA+OB+2=BC+OB+OC,
∴2(AB+BC)=16
43;4=16
又∵▱ABCD的周长等于16
∴AB=3,BC=5
10. 如图,在▱ABCD中,对角线AC=21cm,BE⊥AC,垂足为点E,且 BE=5cm,ADAD和BC之间的距离.
1. 已知平行四边形 ABCD 的周长为 32,AB = 4,则 BC 的长为____1_2___.
认识平行四边形ppt课件
![认识平行四边形ppt课件](https://img.taocdn.com/s3/m/ba0588730a4c2e3f5727a5e9856a561252d3210e.png)
认识平行四边形
目 录
• 平行四边形的定义 • 平行四边形的性质 • 平行四边形的判定 • 平行四边形的面积和周长 • 平行四边形的应用 • 总结与回顾
01
平行四边形的定义
定义
01
平行四边形是由两组相对边平行 组成的四边形。
02
它是一种特殊的四边形,在几何 学中具有重要地位。
特点
01
02
03
对边平行
面积计算方法
先确定平行四边形的底和 高,然后使用面积公式进 行计算。
注意事项
在计算面积时,要确保底 和高的长度是有效的,即 底不能为0,高不能为负数 。
周长计算
周长公式
平行四边形的周长等于四条边的 长度之和,用数学公式表示为 $P = text{边1} + text{边2} + text{
边3} + text{边4}$。
平行四边形的对边平行, 这是平行四边形的基本性 质。
对角相等
平行四边形的对角相等, 即相邻的两个角的角度和 为180度。
对角线互相平分
平行四边形的对角线互相 平分,这是平行四边形的 一个重要性质。
分类
按照角度分类
根据平行四边形内角的大小,可 以分为锐角、直角、钝角和平角 平行四边形。
按照边长分类
根据平行四边形的边长比例,可 以分为等腰、不等腰和矩形等不 同类型的平行四边形。
02
平行四边形的性质
对角线性质
对角线互相平分
平行四边形的对角线互相平分,将平 行四边形分成两个面积相等的三角形 。
对角线性质的应用
利用对角线互相平分的性质,可以证 明平行四边形的相关性质,如平行四 边形的相对两角相等。
对边性质
目 录
• 平行四边形的定义 • 平行四边形的性质 • 平行四边形的判定 • 平行四边形的面积和周长 • 平行四边形的应用 • 总结与回顾
01
平行四边形的定义
定义
01
平行四边形是由两组相对边平行 组成的四边形。
02
它是一种特殊的四边形,在几何 学中具有重要地位。
特点
01
02
03
对边平行
面积计算方法
先确定平行四边形的底和 高,然后使用面积公式进 行计算。
注意事项
在计算面积时,要确保底 和高的长度是有效的,即 底不能为0,高不能为负数 。
周长计算
周长公式
平行四边形的周长等于四条边的 长度之和,用数学公式表示为 $P = text{边1} + text{边2} + text{
边3} + text{边4}$。
平行四边形的对边平行, 这是平行四边形的基本性 质。
对角相等
平行四边形的对角相等, 即相邻的两个角的角度和 为180度。
对角线互相平分
平行四边形的对角线互相 平分,这是平行四边形的 一个重要性质。
分类
按照角度分类
根据平行四边形内角的大小,可 以分为锐角、直角、钝角和平角 平行四边形。
按照边长分类
根据平行四边形的边长比例,可 以分为等腰、不等腰和矩形等不 同类型的平行四边形。
02
平行四边形的性质
对角线性质
对角线互相平分
平行四边形的对角线互相平分,将平 行四边形分成两个面积相等的三角形 。
对角线性质的应用
利用对角线互相平分的性质,可以证 明平行四边形的相关性质,如平行四 边形的相对两角相等。
对边性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年10月2日
20
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
2020年10月2日
4
图 形 无
处 不 在
2020年10月2日
5
定义
• 两组对边分别平行的四边形叫做平行四边形
A
D
B
C
表示:四边形ABCD是平行四边形,记作: “ ABCD”, 读作:平行四边形ABCD
对边:AB与CD,AD与BC
对角: ∠A和∠C,∠B和∠D.
2020年10月2日
6
如图,DC∥ EF ∥ AB,DA∥ GH∥ CB,图中的平行四边形有
平行四边形的性质
2020年10月2日
1
如图,在一束平行光线中插入一张对边
平行的纸板,如果光线与纸板右下方所 成的∠1是72度,那么光线与纸板左上 方所成的∠2是多少?为什么?
2
1
3
2020年10月2日
2
请 多 留 意 生 活 中 的 图 形 !
2020年10月2日
3
下面的图片中,有你熟悉的哪些图形?
2020年10月2日
15
思考: (如图),若里面的每一同方向木条都 互相平行但不均匀,已知等腰三角形的腰长 是30CM,底边长是50CM,你能帮木工师傅 算出拼木格子所需木条的总长度吗?(不计 接头)。
2020年10月2日
16
学过了本节课,你有哪些收获?
1.平行四边形的定义、表示 方法
2.平行四边形的性质:平行四边 形的对边平行且相等, 对角相等。
B
5cm C
求平行四边形ABCD的面积
2020年10月2日
13
在平行四边形ABCD中,如图所示:
A 5cm E D
5cm
3 4cm
1
2
B
9cm
5cm
C
若BE平分∠ABC,
则ED= 4cm 2020年10月2日
14
思考:有一等腰三角形的木格子(如图),里 面的每一同方向木条都互相平行,已知等腰 三角形的腰长是30CM,底边长是50CM, 你能帮木工师傅算出拼木格子所需木条的总 长度吗?(不计接头)。
2020年10月2日
17
作业
• 1 )作业本 • 2)用平行四边形镶嵌美丽的图
案
2020年10月2日
18
操作: D
C
归纳:
A
O B
边:AB=CD,AD=BC
(结论1)
推理:角: D A B B,C A DB C C(D 结论2A )
完善:
平行四边形的性质:
性质1、平行四边形的对边相等。 性质2、平行四边形的对角相等。
____ __个,它们是____________ _______________
_______________
_。
2020年10月2日
7
用两个全等的三角形纸片可以 拼出几种形状不同的平行四边形? 从拼图可以得到什么启示?
小结:平ቤተ መጻሕፍቲ ባይዱ四边形可以是由两个全等的三角
形组成,因此在解决平行四边形的问题时, 通常可以连结对角线转化为两个全等的三角 形进行解题。
已知: ABCD.
A
求证:∠A=∠C,∠B=∠D. 1 3
B
ABCD
AB∥CD,AD∥BC
D 42
C
2020年10月2日
11
试一试 在平行四边形ABCD
中,已知如图你能得到哪些结论?
A 56°32cm124°D
30cm
30cm
124°
B 32cm
56°
C
2020年10月2日
12
议一议
A
D
4cm
3cm
汇报人:XXX 汇报日期:20XX年10月10日
21
探求平行四边形的性质
1、对边的关系 A
D
2、对角的 关系
B
C
平行四边形的对边平行且相等.
平行四边形的对角相等.
2020年10月2日
9
定理1:平行四边形的对边相等。
已知: ABCD.
A
求证:AB=CD BC=DA
13
B
ABCD
AB∥CD,AD∥BC
D 42
C
2020年10月2日
10
• 定理2:平行四边形的对角相等。