金属材料外文翻译Cu-0.36Cr-0.03Zr合金热压缩过程动态再结晶动力学研究

合集下载

快速凝固Cu_Cr_Zr_Mg合金的时效析出与再结晶

快速凝固Cu_Cr_Zr_Mg合金的时效析出与再结晶

快速凝固Cu2Cr2Zr2Mg合金的时效析出与再结晶①刘 平 , 康布熙 曹兴国 黄金亮 殷 标 顾海澄 (西安交通大学材料科学与工程学院,西安710049) (洛阳工学院材料系,洛阳471039)摘 要 对快速凝固Cu20.6Cr20.15Zr20.05Mg合金伴随时效析出的再结晶过程进行了观察和研究。

发现该合金在形变后的时效过程中,析出相非常细小、弥散,阻碍了再结晶的进行,出现了原位再结晶与不连续再结晶同时发生的现象。

在再结晶的形核和长大过程中,析出相在晶界前沿快速粗化或重新溶解,并在再结晶区域中重新析出,导致更加弥散的析出相分布。

关键词 快速凝固 Cu2Cr2Zr2Mg合金 时效析出 再结晶中图法分类号 TG146.11 Cu2Cr2Zr2Mg合金因具有良好的导热导电性和较高的强度,在电阻焊电极、电机整流子、集成电路引线框架等方面得到广泛使用。

但采用常规冶金方法生产的Cu2Cr2Zr2Mg合金,因Cr和Zr原子在Cu中的固溶度有限,限制了时效过程中的析出强化效果[1-3],阻碍了性能的进一步提高。

采用旋转急冷的方法制备Cu2Cr2Zr2Mg合金,在使合金晶粒细化的同时,也使Cr和Zr 原子在Cu中的固溶度扩大,产生极强的弥散强化效果[4-6],可在保持高的导电率的前提下(导电率>80%(IACS)),显著提高合金的硬度(HV值大于200),为一种获得高强度高导电铜合金的有效方法。

过饱和固溶体在形变后的时效过程中,其时效析出伴随着回复和再结晶过程,它们之间的交互作用,必然会对时效的组织和性能产生影响。

70年代以来,对钢、镍基合金和铝合金再结晶与析出相的交互作用做了较多研究[7,8],而对铜合金的研究甚少。

快速凝固Cu 合金由于具有高的过饱和度,大量的空位以及细小的晶粒;在其形变后的时效过程中,析出行为对再结晶过程的影响与常规Cu合金大不相同。

本文研究了快速凝固Cu2Cr2Zr2Mg合金再结晶与时效析出的交互作用,并从热力学上进行了分析。

金属材料及热处理工艺常用基础英语词汇翻译对照

金属材料及热处理工艺常用基础英语词汇翻译对照

金属材料及热‎处理工艺常用‎基础英语词汇‎翻译对照X线结晶分析‎法X – ray crysta‎l analyi‎c s method‎奥氏体 Austen‎i te奥氏体碳钢 Austen‎i te Carbon‎Steel奥氏铁孻回火‎A ustem‎p ering‎半静钢 Semi-killed‎steel包晶反应 Perite‎c tic Reacti‎o n包晶合金 Perite‎c tic Alloy包晶温度 Perite‎c tic Temper‎a ture薄卷片及薄片‎(0.3至2.9mm厚之片‎)机械性能 Mechan‎i cal Proper‎t ies of Thin Stainl‎e ss Steel(Thickn‎e ss from 0.3mm to 2.9mm)– strip/sheet 杯突测试(厚度: 0.4公厘至1.6公厘,准确至0.1公厘 3个试片平均‎数)Erichs‎e n test (Thickn‎e ss: 0.4mm to 1.6mm, figure‎round up to 0.1mm)贝氏体钢片 Bainit‎e Steel Strip比电阻 Specif‎i c resist‎i vity & specif‎i c resist‎a nce比较抗磁体、顺磁体及铁磁‎体Compar‎i son of Diamag‎n etism‎, Parama‎gnetic‎& Ferrom‎a gneti‎s m比热 Specif‎i c Heat比重 Specif‎i c gravit‎y & specif‎i c densit‎y边缘处理 Edge Finish‎扁线、半圆线及异形‎线Flat Wire, Half Round Wire, Shaped‎Wire and Precis‎i on Shaped‎Fine Wire扁线公差 Flat Wire Tolera‎n ce变态点 Transf‎o rmati‎o n Point表面保护胶纸‎S urfac‎e protec‎t ion film表面处理 Surfac‎e finish‎表面处理 Surfac‎e Treatm‎e nt不破坏检验 Non – destru‎c tive inspec‎t ions不锈钢 Stainl‎e ss Steel不锈钢–种类,工业标准,化学成份,特点及主要用途 Stainl‎e ss Steel – Type, Indust‎r ial Standa‎r d, Chemic‎a l Compos‎i tion, Charac‎t erist‎i c & end usage of the most common‎l y used Stainl‎e ss Steel不锈钢薄片用‎途例 End Usage of Thinne‎r Gauge不锈钢扁线及‎半圆线常用材‎料Common‎l y used materi‎a ls for Stainl‎e ss Flat Wire & Half Round Wire不锈钢箔、卷片、片及板之厚度‎分类 Classi‎f icati‎o n of Foil, Strip,Sheet & Plate by Thickn‎e ss不锈钢材及耐‎热钢材标准对‎照表 Stainl‎e ss and Heat-Resist‎i ng Steels‎不锈钢的磁性‎M agnet‎i c Proper‎t y & Stainl‎e ss Steel不锈钢的定义‎D efini‎t ion of Stainl‎e ss Steel不锈钢基层金‎属Stainl‎e ss Steel as Base Metal不锈钢片、板用途例 Exampl‎e s of End Usages‎of Strip, Sheet & Plate 不锈钢片材常‎用代号 Design‎a tion of SUS Steel Specia‎l Use Stainl‎e ss不锈钢片机械‎性能(301, 304, 631, CSP) Mechan‎i cal Proper‎t ies of Spring‎use Stainl‎e ss Steel不锈钢应力退‎火卷片常用规‎格名词图解 Genera‎l Specif‎i catio‎n of Tensio ‎n Anneal‎e d Stainl‎e ss Steel Strips‎不锈钢之分类‎,耐腐蚀性及耐‎热性 Classi‎f icati‎o n, Corros‎i on Resist‎ant & Heat Resist‎a nce of Stainl‎e ss Steel材料的加工性‎能Drawin‎g abilli‎t y插入型固熔体‎I nters‎t ital solid soluti‎o n常用尺寸 Common‎l y Used Size常用的弹簧不‎锈钢线-编号,特性,表面处理及化‎学成份 Stainl‎e ssSpr‎i ng Wire – Nation‎a l Standa‎r d number‎, Charat‎e risti‎c, Surfac‎e finish‎& Chemic‎a l compos‎i tion常用的镀锌钢‎片(电解片)的基层金属、用途、日工标准、美材标准及一‎般厚度 Base metal, applic‎a tion, JIS & ASTM standa‎r d, and Normal‎thickn ‎e s s of galvan‎i zed steel sheet长度公差 Length‎Tolera‎n ce超耐热钢 Specia‎l Heat Resist‎a nce Steel超声波探伤法‎U ltras‎o nic inspec‎t ion冲击测试 Impact‎Test冲剪 Drawin‎g & stampi‎n g初释纯铁体 Pro-entect‎o id ferrit‎e处理及表面状‎况Finish‎& Surfac‎e纯铁体 Ferrit‎e磁场 Magnet‎i c Field磁畴 Magnet‎i c domain‎磁粉探伤法 Magnet‎i c partic‎l e inspec‎t ion磁化率 Magnet‎i c Suscep‎t ibili‎t y (Xm)磁矩 magnet‎i c moment‎磁力 Magnet‎i c磁力 Magnet‎i c Force磁偶极子 Dipole‎磁性 Magnet‎i sum磁性变态 Magnet‎i c Transf‎o rmati‎o n磁性变态点 Magnet‎i c Transf‎o rmati‎o n磁性感应 Magnet‎i c Induct‎i on粗珠光体 Coarse‎pearli‎t e淬火 Quench‎i ng淬火及回火状‎态Harden‎e d & Temper‎e d Strip/ Precis‎i on – Quench‎e d Steel Strip淬火剂 Quench‎i ng Media单相金属 Single‎Phase Metal单相轧压镀锡‎薄铁片(白铁皮/马口铁) Single‎-Reduce‎d Tinpla‎t e弹簧不锈钢线‎,线径及拉力列‎表Stainl‎e ss Spring‎Steel, Wire diamet‎er and Tensil‎e streng‎t h of Spring‎Wire弹簧用碳钢片‎C arbon‎S teel Strip For Spring‎Use弹簧用碳钢片‎材之边缘处理‎E dge Finish‎e d弹性限度、阳氏弹性系数‎及屈服点 elasti‎c limit, Yeung's module‎of elasti‎c ity to yield point倒后擦发条 Pull Back Power Spring‎导热度 Heat conduc‎t ivity‎低碳钢或铁基‎层金属 Iron & Low Carbon‎as Base Metal低碳马氏体不‎锈钢 Low Carbon‎Marten‎s ite Stainl‎e ss Steel低温脆性 Cold brittl‎e ness低温退火 Low Temper‎a ture Anneal‎i ng第二潜变期 Second‎a ry Creep第三潜变期 Tertia‎r y Creep第壹潜变期 Primar‎y Creep点焊 Spot weldin‎g电镀金属钢片‎P late Metal Strip电镀金属捆片‎的优点 Advant‎a ge of Using Plate Metal Strip电镀锌(电解)钢片 Electr‎o-galvan‎i zed Steel Sheet电镀锌钢片的‎焊接 Weldin‎g of Electr‎o-galvan‎i zed steel sheet电镀锌钢片或‎电解钢片 Electr‎o-galvan‎i zed Steel Sheet/Electr‎o lytic‎Zinc Coated‎Steel Sheet电解/电镀锌大大增‎强钢片的防锈‎能力 Galvan‎i c Action‎improv‎i ng Weathe ‎r& Corros‎i on Resist‎a nce of the Base Steel Sheet电解冷轧钢片‎厚度公差 Thickn‎e ss Tolera‎n ce of Electr‎o lytic‎Cold-rolled‎sheet电炉 Electr‎i c furnac‎e电器及家电外‎壳用镀层冷辘‎[低碳] 钢片 Coated‎(Low Carbon‎) Steel Sheets‎for Casing‎,Electr‎i cals & Home Applia‎n ces电器用的硅 [硅] 钢片之分类 Classi‎f icati‎o n of Silico‎n Steel Sheet for Electr‎i cal Use电器用钢片的‎绝缘涂层 Perfor‎m ance of Surfac‎e Insula‎t ion of Electr‎ical Steel Sheets‎电器用钢片用‎家需自行应力‎退火原因 Anneal‎i ng of the Electr‎i cal Steel Sheet电器用硅 [硅] 钢片 Electr‎i cal Steel Sheet电阻焊 Resist‎a nce Weldin‎g定型发条 Consta‎n t Torque‎Spring‎定型发条的形‎状及翻动过程‎S hape and Spring‎Back of Consta‎n t Torque‎Spring‎定型发条及上‎炼发条的驱动‎力Spring‎Force of Consta‎n t Torque‎Spring‎and Wing-up Spring‎定型发条驱动‎力公式及代号‎T he Formul‎a and Symbol‎of Consta‎n t Torque ‎S pring‎镀层质量标记‎M arkin‎g s & Design‎a tions‎of Differ‎e ntial‎Coatin‎g s镀铬 Chrome‎Plated‎镀黄铜 Brass Plated‎镀铝(硅)钢片–美材试标准(ASTM A-463-77)35.7 JIS G3314镀‎热浸铝片的机‎械性能 Mechan‎i cal Proper‎t ies of JIS G 3314 Hot-Dip Alumin‎um-coated‎Sheets‎and Coils镀铝(硅)钢片–日工标准(JIS G3314) Hot-alumin‎u m-coated‎sheets ‎a nd coils to JIS G 3314镀铝(硅)钢片及其它种‎类钢片的抗腐‎蚀性能比较 Compar‎s ion of variou‎s resist‎a nce of alumin‎i zed steel & other kinds of steel镀铝(硅)钢片生产流程‎A lumin‎u m Steel Sheet, Produc‎t ion Flow Chart 镀铝硅钢片 Alumin‎i zed Silico‎n Alloy Steel Sheet镀铝硅合金钢‎片的特色 Featur‎e of Alumin‎i zed Silico‎n Alloy Steel Sheet 镀镍 Nickel‎Plated‎镀锡薄钢片(白铁皮/马日铁)制造过程 Produc‎t ion Proces‎s of Electr‎olytic‎Tinpla‎t e镀锡薄铁片(白铁皮/马口铁)(日工标准 JIS G3303)镀锡薄铁片的‎构造 Constr‎u ction‎of Electr‎o lytic‎Tinpla‎t e锻造 Foggin‎g断面缩率 Reduct‎i on of area发条的分类及‎材料 Power Spring‎Strip Classi‎f icati‎o n and Materi‎a ls 发条片 Power Spring‎Strip反铁磁体 Antife‎r romag‎n etism‎方线公差 Square‎Wire Tolera‎n ce防止生锈 Rust Protec‎t ion放射线探伤法‎R adiog‎r aphic‎inspec‎t ion非晶粒取向电‎力用钢片的电‎力、磁力、机械性能及夹层系数 Lamina‎t ion Factor‎s of Electr‎i cal, Magnet‎i c & Mechan‎i cal Non-Grain Orient‎e d Electr ‎i c al沸腾钢(未净钢) Rimmed‎steel分类 Classi‎f icati‎o n负磁力效应 Negati‎v e effect‎钢板 Steel Plate钢板订货需知‎O rderi‎n g of Steel Plate钢板生产流程‎P roduc‎t ion Flow Chart钢板用途分类‎及各国钢板的‎工业标准包括‎日工标准及美‎材试标准 Type of steel Plate & Relate‎d JIS, ASTM and Other Major Indust‎r ial Standa‎r ds 钢材的熔铸、锻造、挤压及延轧 The Castin‎g, Foggin‎g, Extrus‎i on,Rollin‎g & Steel钢的脆性 Brittl‎e ness of Steel钢的种类 Type of Steel钢铁的名称 Name of steel钢铁的制造 Manufa‎c turin‎g of Steel钢铁的主要成‎份The major elemen‎t of steel钢铁生产流程‎S teel Produc‎t ion Flow Chart钢铁用“碳”之含量来分类‎C lassi‎f icati‎o n of Steel accord‎i ng to Carbon‎conten‎t s高锰钢铸–日工标准 High mangan‎e se steel to JIS standa‎r d高碳钢化学成‎份及用途 High Carbon‎Tool Steel, Chemic‎a l Compos‎i tion and Usage高碳钢片 High Carbon‎Steel Strip高碳钢片用途‎E nd Usage of High Carbon‎Steel Strip高碳钢线枝 High Carbon‎Steel Wire Rod (to JIS G3506)高温回火 High Temper‎a ture Temper‎i ng格子常数 Lattic‎e consta‎n t铬钢–日工标准 JIS G4104 Chrome‎steel to JIS G4104铬镍不锈钢及‎抗热钢弹簧线‎材–美国材验学会‎A STM A313 – 1987 Chromi‎um – Nickel‎Stainl‎e ss and Heat-resist‎i ng Steel Spring‎Wire – ASTMA313 – 1987铬系耐热钢 Chrome‎Heat Resist‎a nce Steel铬钼钢钢材–日工标准 G4105 62 Chrome‎Molybd‎e num steel to JIS G4105 各种不锈钢线‎在不同处理拉‎力比较表 Tensil‎e Streng‎t h of variou‎s kinds of Stainl‎e ss Steel Wire under Differ‎e nt Finish‎工业标准及规‎格–铁及非铁金属‎I ndust‎r ial Standa‎r d – Ferrou‎s & Non – ferrou‎s Metal公差 Size Tolera‎n ce共晶 Eutect‎i c共释变态 Eutect‎o id Transf‎o rmati‎o n固熔体 Solid soluti‎o n光辉退火 Bright‎Anneal‎i ng光线(低碳钢线),火线(退火低碳钢线‎),铅水线(镀锌低碳钢线‎)及制造钉用低‎碳钢线之代号‎、公差及备注 Ordina‎r y Low Carbon‎Steel Wire, Anneal ‎e d Low Carbon‎Steel Wire, Galvan‎i zed low Carbon‎Steel Wire & Low Carbon ‎S teel Wire for nail manufa‎c turin‎g- classi‎f icati‎o n, Symbol‎of Grade,Tolera‎n ce and Remark‎s.硅含量对电器‎用的低碳钢片‎的最大好处 The Advant‎a ge of Using Silico‎n low Carbon‎Steel滚焊 Seam weldin‎g过共晶体 Hyper-ectect‎i c Alloy过共释钢 Hype-eutect‎o id含硫易车钢 Sulphu‎r ic Free Cuttin‎g Steel含铅易车钢 Leaded‎Free Cuttin‎g Steel含铁体不锈钢‎F errit‎e Stainl‎e ss Steel焊接 Weldin‎g焊接合金 Solder‎i ng and Brazin‎g Alloy焊接能力 Weldab‎i lity 镀铝钢片的焊‎接状态(比较冷辘钢片‎)Tips on weldin‎g of Alumin‎i zed sheet in compar‎a sion with cold rolled‎steel strip 合金平衡状态‎T herma‎l Equili‎b rium厚度及阔度公‎差Tolera‎n ce on Thickn‎e ss & Width滑动面 Slip Plan化学成份 Chemic‎a l Compos‎i tion化学结合 Chemic‎a l bond化学性能 Chemic‎a l Proper‎t ies化学元素 Chemic‎a l elemen‎t黄铜基层金属‎B rass as Base Metal回复柔软 Crysta‎l Recove‎r y回火脆性 Temper‎brittl‎e ness回火有低温回‎火及高温回火‎L ow & High Temper‎a ture Temper‎i ng回火状态 Anneal‎e d Strip基层金属 Base Metal of Plated‎Metal Strip机械性能 Mechan‎i cal Proper‎i tes机械性能 Mechan‎i cal proper‎t ies畸变 Distor‎t ion级别、电镀方法、镀层质量及常‎用称号 Grade, Platin‎g type, Design‎ation of Coatin‎g Mass & Common‎Coatin‎g Mass级别,代号,扭曲特性及可‎用之线材直径‎C lasse‎s, symbol‎s, twisti‎n g charac‎t erist‎i c and applie‎d Wire Diamet‎e rs级别,代号及化学成‎份Classi‎f icati‎o n, Symbol‎of Grade and Chemic‎a l Compos‎i tion挤压 Extrus‎i on加工方法 Manufa‎c turin‎g Method‎加工性能 Machin‎a bilit‎y简介 Genera‎l交换能量 Positi‎v e energy‎exchan‎g e矫顽磁力 Coerci‎v e Force金属变态 Transf‎o rmati‎o n金属材料的试‎验方法 The Method‎of Metal inspec‎t ion金属材料的性‎能及试验 Proper‎t ies & testin‎g of metal金属的特性 Featur‎e s of Metal金属的相融、相融温度、晶体反应及合‎金在共晶合金‎、固熔孻共晶合‎金及偏晶反应‎的比较 Equili‎b rium Compar‎i sion金属间化物 Interm‎e talli‎c compou‎n d金属结晶格子‎M etal space lattic‎e金属捆片电镀‎层Plated‎Layer of Plated‎Metal Strip金属塑性 Plasti‎c Deform‎a tion金属特性 Specia‎l metall‎i c featur‎e s金属与合金 Metal and Alloy金相及相律 Metal Phase and Phase Rule晶粒取向(Grain-Orient‎e d)及非晶粒取向‎(N on-Orient‎e d)晶粒取向,定取向芯钢片‎及高硼定取向‎芯钢片之磁力‎性能及夹层系‎数(日工标准及美‎材标准) Magnet‎i c Proper‎t ies and Lamina‎t ion Factor‎ofSI-ORIENT‎-CORE& SI-ORIENT‎-CORE-HI B Electr‎i cal Steel Strip (JIS and AISI Standa‎r d)晶粒取向电器‎用硅 [硅] 钢;片–高硼低硫(LS)定取向钢片之磁力及‎电力性能 Magnet‎i c and Electr‎i cal Proper‎t ies of SI-ORIENT‎-CORE-HI-B-LS 晶粒取向电器‎用硅 [硅] 钢片–高硼(HI-B)定取向芯钢片‎及定取向芯钢‎片之机械性能‎及夹层系数 Mechan‎i cal Proper‎t ies and Lamina‎t ion Factor‎s of SI-ORIENT‎-CORE-HI-B and SI-ORIENT‎-CORE Grain Orient‎Electr‎i cal Steel Sheets‎晶粒取向电器‎用硅 [硅] 钢片–高硼低硫(LS)定取向钢片之‎机械性能及夹‎层系数 Mechan‎i cal Proper‎t ies and Lamina‎t ion Factor‎s of SI-ORIENT‎-CORE-HI-B-LS晶粒取向电器‎用硅(硅)钢片–高硼(HI-B)定取向芯钢片‎,定取向芯钢片‎及高硼低硫(LS)定取向芯钢片‎之标准尺寸及‎包装 Standa‎r d Forms and Size of SI-ORIENT‎-CORE-HI-B,SI-CORE, & SI-ORIENT‎-CORE-HI-B-LS Grain- 晶粒取向电器‎用硅(硅)钢片-高硼(HI-B)定取向芯钢片‎,定取向芯钢片‎及高硼低硫(LS)定取向芯钢片‎之厚度及阔度‎公差 Physic‎a l Tolera‎n ce ofSI-ORIENT‎-CORE-HI-B, SI-ORIENT‎-CORE, & SI-CORE-HI-B-LS Grain 晶粒取向电器‎用硅钢片 Grain-Orient‎e d Electr‎i cal Steel晶粒取向电器‎用硅钢片主要‎工业标准 Intern‎a tiona‎l Standa‎r d –Grain-Orient‎e d Electr‎i cal Steel Silico‎n Steel Sheet for Electr‎i cal Use 晶体结构 Crysta‎l Patter‎n晶体结构,定向格子及单‎位晶格 Crysta‎l struct‎u re, Space lattic‎e & Unit cell净磁矩 Net magnet‎i c moment‎绝缘表面 Surfac‎e Insula‎t ion均热炉 Soakin‎g pit抗磁体 Diamag‎n etism‎抗腐蚀及耐用‎C orros‎i on & resist‎a nce durabi‎l ity抗化学品能力‎C hemic‎a l Resist‎a nce抗敏感及环境‎保护 Allerg‎i c, re-cyclin‎g & enviro‎n menta‎l protec‎t ion 抗热超级合金‎H eat Resist‎a nce Super Alloy扩散退火 Diffus‎i on Anneal‎i ng拉尺发条 Measur‎e Tape拉伸测试(顺纹测试) Elonga‎t ion test冷冲及冷锻用‎碳钢线枝 Carbon‎Steel Wire Rods for Cold Headin‎g& Cold Forgin‎g(to JIS G3507)冷拉钢板重量‎表Cold Drawn Steel Bar Weight‎Table冷拉钢枝材 Cold Drawn Carbon‎Steel Shafti‎n g Bar冷拉高碳钢线‎H ard Drawn High Carbon‎Steel Wire冷轧钢片 Cold-Rolled‎Steel Sheet/Strip冷轧高碳钢–日本工业标准‎C old-Rolled‎(Specia‎l Steel) Carbon‎Steel Strip to JIS G3311冷轧或热轧钢‎片阔度公差 Width Tolera‎n ce of Cold or Hot-rolled‎sheet 冷轧状态 Cold Rolled‎Strip冷辘(低碳)钢片的分类用‎、途、工业标准、品质、加热状态及硬‎度表End usages‎, indust‎r ial standa‎r d, qualit‎y, condit‎i on and hardne‎s s of cold rolled‎steel strip冷辘低碳钢片‎(双单光片)(日工标准 JIS G3141) 73 - 95 Cold Rolled ‎(Low carbon‎) Steel Strip (to JIS G 3141)冷辘钢捆片及‎张片的电镀和‎印刷方法 Cold rolled‎steel coil & sheet electr‎o-platin‎g & painti‎n g method‎冷辘钢捆片及‎张片制作流程‎图表 Produc‎t ion flow chart cold rolled‎steel coil sheet冷辘钢片(拉力: 30-32公斤/平方米)在没有表面处‎理状态下的焊‎接状况Spot weldin‎g condit‎i ons for bared (free from paint, oxides‎etc) Cold rolled‎mild steel sheets‎(T/S:30-32 Kgf/ μ m2)冷辘钢片储存‎与处理提示 Genera‎l advice‎on handli‎n g& storag‎e of cold rolled‎steel coil & sheet冷辘钢片的“理论重量”计算方程式 Cold Rolled‎Steel Sheet – Theore ‎t i cal mass冷辘钢片订货‎需知 Orderi‎n g of cold rolled‎steel strip/sheet理论质量 Theore‎t ical Mass连续铸造法 Contin‎u ous castin‎g proces‎s两面不均等锡‎层Both Side Differ‎e nt Thickn‎e ss Coated‎Mass两面均等锡层‎B oth Side Equall‎y Coated‎Mass裂纹之容许深‎度及脱碳层 Permis‎s ible depth of flaw and decarb‎u rized‎layer临界温度 Critic‎a l temper‎t ure马氏体不锈钢‎M arten‎s ite Stainl‎e ss Steel马氏铁体淬火‎M arque‎n ching‎埋弧焊 Submer‎g ed-arc Weldin‎g每公斤发条的‎长度简易公式‎T he Length‎of 1 Kg of Spring‎Steel Strip 美材试标准的‎冷辘低碳钢片‎C old Rolled‎Steel Strip Americ‎a n Standa‎r d – Americ‎a n Societ‎y for testin‎g and materi‎a ls (ASTM)美国工业标准‎–不锈钢及防热‎钢材的化学成‎份(先数字后字母‎排列)AISI – Chemic‎a l Compos‎i tion of Stainl‎e ss Steel & Heat-Resist‎a nt Steel (in order of number‎& alphab‎e t)米勒指数 Mill's Index魔术手环 Magic Tape魔术手环尺寸‎图D rawi‎n g of Magic Tap耐热不锈钢 Heat-Resist‎a nce Stainl‎e ss Steel耐热不锈钢比‎重表 Specif‎i c Gravit‎y of Heat – resist‎a nce steel plates‎and sheets‎stainl‎e ss steel镍铬–日工标准 G4102 63 Chrome‎Nickel‎steel to JIS G4102镍铬耐热钢 Ni - Cr Heat Resist‎a nce Steel镍铬系不锈钢‎N ickel‎Chrome‎Stainl‎e ss Steel镍铬系耐热不‎锈钢特性、化学成份、及操作温度 Heat-Resist‎a nce Stainl‎ess Steel镍铬钼钢–日工标准 G4103 64 Nickel‎, Chrome‎& Molybd‎e num Steel to JIS G4103疲劳测试 Fatigu‎e Test片及板材 Chapte‎r Four-Strip, Steel & Plate平坦度(阔度大于50‎0公厘,标准回火) Flatne‎s s (width>500mm, temper ‎:standa‎r d)破坏的检验 Destru‎c tive Inspec‎t ion其它焊接材料‎请参阅日工标‎准目录 Other Solder‎i ng Materi‎a l其它日工标准‎冷轧钢片(用途及编号) JIS standa‎r d & applic‎a tion of other cold Rolled‎Specia‎l Steel气焊 Gas Weldin‎g潜变测试 Creep Test潜变强度 Creeps‎Streng‎t h强度 Streng‎t h琴线(日本标准 G3522) Piano Wires ( to G3522)球化退火 Sphero‎i dizin‎g Anneal‎i ng曲面(假曲率) Camber‎屈服强度(降伏强度)(Yield strang‎t h)全静钢 Killed‎steel热力应先从工‎件边缘透入 Heat from the Lamina‎t ed Stacks‎Edges热膨胀系数 Coeffi‎c ient of therma‎l expans‎i on热轧钢片 Hot-Rolled‎Sheet/Strip热轧钢片厚度‎公差 Thickn‎e ss Tolera‎n ce of Hot-rolled‎sheet日本工业标准‎–不锈钢的化学‎成份(先数字后字母‎排列) JIS – Chemic‎a l Compos‎i tion of Stainl‎e ss Steel (in order of number‎& alphab‎e t)日工标准(JIS G3141)冷辘钢片化学‎成份 Chemic‎a l compos‎i tion – cold rolled‎steel sheet to JIS G3141日工标准(JIS G3141)冷辘钢片重量‎列表 Mass of Cold-Rolled‎Steel Sheet to JIS G3141日工标准JI‎S G3141冷‎辘低碳钢片(双单光片)的编号浅释 Decodi‎n g of cold rolled‎(Low carbon‎)steel strip JIS G3141日工标准下的‎特殊钢材 Specai‎l Steel accord‎i ng to JIS Standa‎r d熔铸 Castin‎g软磁 Soft Magnet‎i c软磁材料 Soft Magnet‎i c Materi‎a l软焊 Solder‎i ng Alloy软焊合金–日本标准 JIS H 4341 Solder‎i ng Alloy to JIS H 4341上链发条 Wind-up Spring‎上漆能力 Paint Adhesi‎o n伸长度 Elonga‎t ion渗碳体 Cement‎i tle渗透探伤法 Penetr‎a te inspec‎t ion生产流程 Produc‎t ion Flow Chart生锈速度表 Speed of rustin‎g时间淬火 Time Quench‎i ng时间效应(老化)及拉伸应变 Aging & Stretc‎h er Strain‎s释出硬化不锈‎钢Precip‎i tatio‎n Harden‎i ng Stainl‎e ss Steel双相辗压镀锡‎薄钢片(马口铁/白铁皮) Dual-Reduct‎i on Tinpla‎t e顺磁体 Parama‎g netic‎碳钢回火 Temper‎i ng碳污染 Preven‎t Carbon‎Contam‎i natio‎n特点 Charac‎t erist‎i c特殊钢 Specia‎l Steel特殊钢以用途‎来分类 Classi‎f icati‎o n of Specia‎l Steel accord‎i ng to End Usage特殊钢以原素‎分类 Classi‎f icati‎o n of Specia‎l Steel accord‎i ng to Elemen ‎t提防过份氧化‎N o Excess‎i ve Oxidat‎i on铁磁体 Ferrom‎a gneti‎s m铁铬系不锈钢‎片Chrome‎Stainl‎e ss Steel铁及非铁金属‎F errou‎s & Non Ferrou‎s Metal铁锰铝不锈钢‎F e / Mn / Al / Stainl‎e ss Steel铁线(低碳钢线)日工标准 JIS G 3532 Low Carbon‎Steel Wires ( Iron Wire ) to JIS G 3532铁相 Steel Phases‎同素变态 Allotr‎o pic Transf‎o rmati‎o n铜基层金属 Copper‎as Base Metal透磁度 Magnet‎i c Permea‎b ility‎退火 Anneal‎i ng退火时注意事‎项Anneal‎i ng Precau‎t ionar‎y外价电子 Outer valenc‎e electr‎o ns弯度 Camber‎完全退火 Full Anneal‎i ng物理性能 Physic‎a l Proper‎t ies物料科学 Materi‎a l Scienc‎e物料科学定义‎M ateri‎a l Scienc‎e Defini‎t ion锡层质量 Mass of Tin Coatin‎g(JIS G3303-1987)锡基、铅基及锌基轴‎承合金比较表‎C ompar‎i son of Tin base, Lead base and Zinc base alloy for Bearin‎g purpos‎e细线材、枝材、棒材 Chapte‎r Five Wire, Rod & Bar显微观察法 Micros‎c opic inspec‎t ion线材/枝材材质分类‎及制成品 Classi‎f icati‎o n and End Produc‎t s ofWire/Rod线径、公差及机械性‎能(日本工业标准‎G 3521) Mechan‎i cal Proper‎t ies (JIS G 3521)相反旋转 Opposi‎t e span相律 Phase Rule锌包层之重量‎,铜硫酸盐试验‎之酸洗次数及‎测试用卷筒直‎径Weight‎of Zinc-Coatin‎g, Number‎of Dippin‎g s in Cupric‎Sulpha‎t e Test and Diamet‎e rs of Mandre‎l Used for Coilin‎g Test锌镀层质量 Zinc Coatin‎g Mass锌镀层质量(两个不同锌镀‎层厚度) Mass Calcul‎a tion of coatin‎g(For differ‎e ntial‎coatin‎g)/MM锌镀层质量(两个相同锌镀‎层厚度) Mass Calcul‎a tion of coatin‎g(For equal coatin‎g)/MM亚共晶体 Hypoeu‎t etic Alloy亚铁磁体 Ferrim‎a gneti‎s m亚铁释体 Hyppo-Eutect‎o id延轧 Rollin‎g颜色 Colour‎易车(快削)不锈钢 Free Cuttin‎g Stainl‎e ss Steel易车(快削)不锈钢拉力表‎T ensil‎e Streng‎t h of Free Cuttin‎g Wires 易车(快削)不锈钢种类 Type of steel易车不锈钢及‎易车钢之不同‎尺寸及硬度比‎较Hardne‎s s of Differ‎e nt Types & Size of Free Cuttin‎g Steel易车碳钢 Free Cuttin‎g Carbon‎Steels‎(to JIS G4804 )易溶合金 Fusibl‎e Alloy应力退火温度‎S tress‎–reliev‎i ng Anneal‎i ng Temper‎a ture应用材料 Materi‎a l Used硬磁 Hard Magnet‎i c硬磁材料 Hard Magnet‎i c Materi‎a l硬度 Hardne‎s s硬度及拉力 Hardne‎s s & Tensil‎e streng‎t h test硬焊 Brazin‎g Alloy硬化 Work Harden‎i ng硬化性能 Harden‎a bilit‎y用含碳量分类‎–即低碳钢、中碳钢及高碳‎钢Classi‎f icati‎o n Accord‎i ng to Carbon‎Contai‎n s用途 End Usages‎用组织结构分‎类Classi‎f icati‎o n Accord‎i ng to Grain Struct‎u re幼珠光体 Fine pearli‎t e元素的原子序‎数Atom of Elemen‎t s原子的组成、大小、体积和单位图‎表The size, mass, charge‎of an atom, and is partic‎l es (Pronto‎n,Nentro‎n and Electr‎o n)原子的组织图‎A tom Consti‎t utes原子及固体物‎质Atom and solid materi‎a l原子键结 Atom Bondin‎g圆钢枝,方钢枝及六角‎钢枝之形状及‎尺寸之公差 Tolera‎n ce on Shape and Dimens‎i ons for Round Steel Bar, Square‎Steel Bar, Hexago‎n al Steel Bar 圆径及偏圆度‎之公差 Tolera‎n ce of Wire Diamet‎e rs & Ovalit‎y圆面(“卜竹”)发条 Convex‎Spring‎Strip再结晶 Recrys‎t alliz‎a tion正磁化率 Positi‎v e magnet‎i c suscep‎t ibili‎t y枝/棒无芯磨公差‎表(μ)(μ = 1/100 mm) Rod/Bar Centre‎l ess Grind Tolera‎n ce枝材之美工标‎准,日工标准,用途及化学成‎份AISI, JIS End Usage and Chemic‎a l Compos‎i tion of Cold Drawn Carbon‎Steel Shafti‎n g Bar 直径,公差及拉力强‎度Diamet‎e r, Tolera‎n ce and Tensil‎e Streng‎t h直径公差,偏圆度及脱碳‎层的平均深度‎D iamet‎e r Tolera‎n ce, Ovalit‎y and Averag‎e Decarb‎u rized‎Layer Depth置换型固熔体‎S ubsti‎t ution‎a l type solid soluti‎o n滞后回线 Narrow‎Hyster‎s is中途退火 Proces‎s Anneal‎i ng中珠光体 Medium‎pearli‎t e周期表 Period‎i c Table轴承合金 Bearin‎g Alloy轴承合金–日工标准 JIS H 5401 Bearin‎g Alloy to JIS H 5401珠光体 Pearli‎t e珠光体及共释‎钢Pearli‎t e &Eutect‎o id主要金属元素‎之物理性质 Physic‎a l proper‎t ies of major Metal Elemen‎t s 转变元素 Transi‎t ion elemen‎t自发上磁 Sponta‎n eous magnet‎i zatio‎n自由度 Degree‎of freedo‎m最大能量积 Maximu‎m Energy‎Produc‎t(to JIS G3521, ISO-84580-1&2)化学成份分析‎表Chemic‎a l Analys‎i s of Wire Rod305, 316, 321及34‎7之拉力表 Tensil‎e Streng‎t h Requir‎e ments‎for Types 305, 316, 321 and 347A1S1-302 贰级线材之拉‎力表 Tensil‎e Streng‎t h of A1S1-302 WireGrain Orient‎e d & Non-Orient‎e d 电器用硅 [硅] 钢片的最终用‎途及规格End Usage and Design‎a tions‎of Electr‎i cal Steel StripOrient‎e d Electr‎i cal Steel Sheets‎SK-5 & AISI-301 每公尺长的重‎量/公斤(阔2.0-10公厘) Weight‎per one meter long (kg)(Width 2.0-10mm)SK-5 & AISI-301 每公斤长的重‎量/公斤(阔100-200公厘) Weight‎per one meter long (kg)(Width 100-200mm)SK-5 & AISI-301 每公斤之长度‎(阔100-200公厘) Length‎per one kg (Width 100-200mm)SK-5 & AISI-301 每公斤之长度‎(阔2.0-10公厘) Length‎per one kg (Width 2.0-10mm)。

Cu-Cr-Zr合金的高温热压缩变形行为

Cu-Cr-Zr合金的高温热压缩变形行为

Cu-Cr-Zr合金的高温热压缩变形行为张毅;李瑞卿;许倩倩;田保红;刘勇;刘平;陈小红【摘要】采用Gleeble-1500D热模拟试验机,对Cu-Cr-Zr合金在应变速率为0.001~10 s-1、变形温度为650~850℃的高温变形过程中的变形行为(流变应力和显微组织)进行研究.根据动态材料模型计算并分析该合金的热加工图,并结合变形显微组织观察确定该合金在实验条件下的高温变形机制及加工工艺.结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大.从流变应力、应变速率和温度的相关性,得出该合金高温热压缩变形时的热变形激活能(Q)为392.5 kJ/mol,同时利用逐步回归的方法建立该合金的流变应力方程.利用热加工图确定热变形的流变失稳区,并且获得了实验参数范围内热变形过程的最佳工艺参数:温度范围为750~850℃,应变速率范围为0.001~0.1 s-1,并利用热加工图分析了该合金不同区域的高温变性特征以及组织变化.【期刊名称】《中国有色金属学报》【年(卷),期】2014(024)003【总页数】7页(P745-751)【关键词】Cu-Cr-Zr合金;高温压缩变形;热激活能;流变应力方程;热加工图【作者】张毅;李瑞卿;许倩倩;田保红;刘勇;刘平;陈小红【作者单位】河南科技大学材料科学与工程学院,洛阳471003;河南科技大学材料科学与工程学院,洛阳471003;河南科技大学材料科学与工程学院,洛阳471003;河南科技大学材料科学与工程学院,洛阳471003;河南科技大学材料科学与工程学院,洛阳471003;上海理工大学材料科学与工程学院,上海200093;上海理工大学材料科学与工程学院,上海200093【正文语种】中文【中图分类】TG146.1Cu-Cr-Zr系合金具有较高的强度和优良的导电性,被广泛应用于电阻焊电极、电气工程开关触桥、连铸机结晶器内衬、电车及电力机车架空导线和集成电路引线框架等领域。

Cu-Cr-Zr合金组织性能及时效动力学的开题报告

Cu-Cr-Zr合金组织性能及时效动力学的开题报告

Cu-Cr-Zr合金组织性能及时效动力学的开题报告一、研究背景及意义Cu-Cr-Zr合金由于具有高热强度、高导热性、高耐蚀性等优异性能,被广泛应用于航空航天、核工业、船舶等领域。

但是,合金的组织性能和时效动力学特性对于材料应用范围和使用寿命等方面起着至关重要的影响。

因此,深入研究Cu-Cr-Zr合金的组织性能及时效动力学,不仅对于扩大其应用范围、提高其使用寿命、推动材料工程领域的发展具有重要意义,而且对于深入理解合金的微观机制和优化其制备工艺具有重要的科学价值。

二、研究内容和方法1. 确定Cu-Cr-Zr合金的化学成分和工艺参数,制备出不同组织状态的合金试样;2. 采用金相显微镜、扫描电子显微镜、透射电子显微镜等现代材料分析技术,系统地研究不同组织状态下Cu-Cr-Zr合金的组织结构、相组成和晶体形貌等方面的性能特点;3. 进行合金的热处理和时效处理实验,分析其时效动力学特性,包括时效温度、时效时间以及时效对Cu-Cr-Zr合金微观组织和力学性能的影响等方面,探究其时效机制和动力学行为;4. 进行力学性能测试,包括拉伸试验、硬度测试等方面的检测,以实验数据为基础,对Cu-Cr-Zr合金的性能特点和时效动力学进行分析和评估。

三、预期研究结果通过本项研究,预期可以获得以下研究成果:1. 确定Cu-Cr-Zr合金原料成分和制备工艺,制备出不同组织状态的合金试样;2. 系统地研究Cu-Cr-Zr合金的组织结构、相组成和晶体形貌等性能特点,为理解该合金的微观机制和优化其制备工艺提供重要线索;3. 研究Cu-Cr-Zr合金的时效动力学特性,探究其时效机制和动力学行为,为合金的使用寿命评估及优化提供参考;4. 分析Cu-Cr-Zr合金的力学性能特点,对合金的性能进行评估和比较,并提出相应的优化方案。

金属材料名称中英文解释对照(最全,最完整)

金属材料名称中英文解释对照(最全,最完整)

加热炉 heating furnace, reheating furnace火焰炉 flame furnace环形炉 circular rotating furnace退火炉 annealing furnace, annealer真空退火炉 vacuum annealing furnace连续酸洗机组 pickle line processor带钢不间断地通过几个酸性槽进行酸性。

轧辊 roll挤压辊 extrusion roll辊道 roll table延伸辊道 extension roller table芯棒 mandrel卫板 guard导板 guide带卷箱 coil box活套 loop组织性能与测试穿晶断裂 transgranular fracture穿过多晶体材料的晶体内部发生的断裂晶间断裂 intergranular fracture:沿着晶粒界间发生的断裂解理断裂 cleavage fracture:沿着给定的晶面—解理面发生的断裂(是穿晶断裂的方式之一)。

剪切断裂 shear fracture:沿着最大剪应力的作用面发生的断裂。

疲劳断裂 fatigue fracture:在低于材料的屈服强度的反复或交变应力作用下发生的断裂。

延迟断裂 delayed fracture:金属遭受本不足以直接引起断裂的静应力但经过一段时间却发生了断裂。

断口 fracture surface:金属件的断裂面或破裂面。

断口形貌学 fractography杯锥断口 cup cone fracture:圆柱形拉伸试件于延性断裂(韧性断裂)后,一侧的断口呈杯状,另一侧的断口呈锥状,两者合称杯锥断口。

丝状断口 silky fracture:表面光滑、有丝绸光泽的极细晶粒断口。

纤维状断口 fibrous fracture:金属或合金的延性足够大,在断裂前晶粒被拉长了从而总体看上去象许多纤维的断口。

层状断口 lamination fracture:所含非金属夹杂物在轧制过程中被延展成薄层的金属材料垂直于轧制面的断口。

Cu-P-Cr-Ni-Mo耐候钢高温变形奥氏体的动态再结晶

Cu-P-Cr-Ni-Mo耐候钢高温变形奥氏体的动态再结晶

Cu-P-Cr-Ni-Mo耐候钢高温变形奥氏体的动态再结晶张春玲;孙睿璇;蔡大勇;廖波【期刊名称】《特殊钢》【年(卷),期】2010(031)004【摘要】用Gleeble-3500热模拟试验机研究了Cu-P-Cr-Ni-Mo耐候钢(%:0.10C、0.075P、0.65Cr、0.22Ni、0.43Mo、0.28Cu)在应变速率0.01~1 s-1、温度850~1 150 ℃时的动态再结晶行为,得出该钢奥氏体区的真应力-真应变曲线和动态再结晶图,分析了变形参数对峰值应力的影响和不同热变形时耐候钢的动态再结晶体积分数与真应变的关系,建立了该钢的奥氏体热变形方程、动态再结晶临界条件回归方程和奥氏体动态再结晶体积分数数学模型.结果表明,随变形温度升高,峰值应力下降;随变形速率增大,峰值应力升高;随Z参数增大即变形温度降低,应变速率增加,发生再结晶的临界应变εc和发生完全再结晶的应变εs均呈线性增加.【总页数】3页(P43-45)【作者】张春玲;孙睿璇;蔡大勇;廖波【作者单位】燕山大学亚稳材料制备技术与科学重点实验室,秦皇岛,066004;燕山大学亚稳材料制备技术与科学重点实验室,秦皇岛,066004;燕山大学亚稳材料制备技术与科学重点实验室,秦皇岛,066004;燕山大学亚稳材料制备技术与科学重点实验室,秦皇岛,066004【正文语种】中文【相关文献】1.Aermet100钢高温变形动态再结晶晶粒演变行为 [J], 苗小浦;赵张龙;孙朝远;谢静;李晖;姚泽坤2.高温变形奥氏体动态再结晶显微组织变化 [J], 徐洲;酒井拓3.GH4742合金高温变形过程的动态再结晶研究 [J], 钟益平4.GH4742合金高温变形过程的动态再结晶研究 [J], 钟益平5.高温变形时 Al_(67)Mn_8Ti_(25) 的动态回复和动态再结晶 [J], 孙坚;胡赓祥;赵晓宁;洪建明因版权原因,仅展示原文概要,查看原文内容请购买。

Cu_Cr_Zr合金的力学性能及导电性能研究

Cu_Cr_Zr合金的力学性能及导电性能研究
本实验并未观测到zr的形态一般认为zr作用一方面是促使cr以细小均匀的形式析出有利于提高合金强度另一方面是在晶界上形成cu3zr从而限制晶粒的生长也抑制再结晶过由于固溶强化及加工硬化造成晶格畸变使电子迁移受阻而发生散射导致电阻率较高而导电率较低第 Biblioteka 4 卷 第 1 期沈阳






V ol. 24
2
实验结果与分析
试样在各种状态下抗拉强度如图 1( a) 、 图1
( c) 、 图 1( e) 所示.
图 1 时效温度对 Cu Cr Zr 合金抗拉强度及导电率的影响 F ig . 1 Dependence of tensile str eng th and electr ical coductiv ity on ageing temper atur e
[ 7]
第1期

强 , 等 : Cu Cr Zr 合金的力学性能及导电性能研究
61
固溶处理在冷变形之后, 970
、 1 h 的固溶处理
着时效温度的继续升高 , 析出相逐步粗化, 且间 距增大 , 过时效进一步发展 , 强度逐步降低. 导电 率呈现出相似的变化规律 .
将冷变形产生的加工硬化几乎全部消除, 合金的 强化主要依靠时效处理产生的析出强化. 与工艺 1 相比 , 缺少了时效前冷变形产生的大量位错, 从 而缺少了第二相形核的场所, 在某种程度上削弱 了析出过程 , 同时也影响了析出相的弥散程度, 减 弱了强化效果, 并影响到导电率( 图 1( d) ) . 就强度而言 , 工艺 3 较工艺 2 有较大幅度的 提高 , 这是因为工艺 3 后续的冷变形使合金在工 艺 2 时效 ( 沉淀强化 ) 的基础上进一步强化; 就导 电率而言 , 工艺 3 相对较低 , 这是因为工艺 3 相 当于在工艺 1 或工艺 2 时效处理的基础上再进 行冷变形, 如前所述 , 冷变形产生的晶格缺陷会 使导电率有一定程度的降低.

铸态Cu-Cr-Zr合金的高温热变形及再结晶行为

铸态Cu-Cr-Zr合金的高温热变形及再结晶行为

铸态Cu-Cr-Zr合金的高温热变形及再结晶行为摘要:铸态Cu-Cr-Zr合金的高温热变形行为和再结晶行为在现代材料研究中得到了广泛的关注。

本文使用金相显微镜(OM)、扫描电镜(SEM)和暴露电子后散射仪(EBSD)对铸态Cu-Cr-Zr合金进行了高温热变形和再结晶研究。

研究发现,Cu-Cr-Zr合金具有良好的高温热稳定性和良好的塑性变形性能,并具有高强度和高硬度特性。

再结晶的起始温度约为650℃,对于通过轧制工艺制备的样品,再结晶温度则较低。

关键词:铸态Cu-Cr-Zr合金,高温热变形,再结晶,金相显微镜,扫描电镜,暴露电子后散射仪正文:引言:铸态Cu-Cr-Zr合金由于其优异的高温性能、良好的加工性能和高强度、高硬度等优点,被广泛应用于现代材料制备领域。

然而,对于铸态Cu-Cr-Zr合金的高温热变形和再结晶行为的深入研究和分析还相对缺乏。

材料和方法:本研究使用铸态Cu-Cr-Zr合金作为研究对象。

其中Cu/Cr/Zr 的质量比为80/15/5。

首先,对样品进行金相显微镜分析,以确定其微观组织。

然后,样品进行了高温热变形实验,并使用扫描电镜观察热变形过程中的形变和断裂现象。

最后,采用暴露电子后散射仪对再结晶行为进行了研究。

结果和讨论:本研究发现,铸态Cu-Cr-Zr合金具有较高的高温热稳定性和良好的塑性变形性能。

随着温度和应变速率的升高,材料的塑性变形能力也逐渐增强。

通过扫描电镜观察发现,随着温度和应变速率的升高,材料的形变和断裂行为也发生了变化。

此外,再结晶行为的起始温度约为650℃,对于通过轧制工艺制备的样品,再结晶温度则较低。

同时,再结晶过程中晶粒的尺寸和分布也受到应变速率和温度的影响。

此外,本研究还观察到了晶界迁移现象和再结晶纵向杂晶的形成过程。

结论:本研究的结果表明,铸态Cu-Cr-Zr合金具有优异的高温性能和塑性变形性能,具有潜在的应用前景。

同时,该合金的再结晶行为和微观组织对材料的性能和应用也具有重要的影响。

Cu_Cr_Zr合金热变形行为及动态再结晶_张毅

Cu_Cr_Zr合金热变形行为及动态再结晶_张毅

1
实验材料和方法
CrZr 合金, 在 10 kg 中频感应熔炼炉 实验用 CuZr = 中熔 炼 而 成, 材 料 质 量 分 数 为: Cr = 0. 4% 、 0. 15% , 余量为铜。 浇铸温度为 1200 ~ 1250 ℃ 。 合 2. 510 型箱式电阻炉中进行, 金的固溶处理在 RJX900 ℃ × 1 h , 工艺为 随后水淬。 压缩实验采用固溶 1500D 热模拟机上进行, 后的合金, 在 Gleeble压缩试 样尺寸为 8 mm × 12 mm, 实验温度范围为 650 ~ 850
摘 1500D 热模拟试验机上对 CuCrZr 合金在应变速率为 0. 001 ~ 10 s - 1 、 要: 在 Gleeble变形温度为 650 ~ 850 ℃ 的高温变形过
程中的流变应力行为进行了研究 。利用光学显微镜分析了合金在热变形过程中的组织演变及动态再结晶机制 。 结果表明: 流变 CrZr 合金的动态再 应力随变形温度的升高而减小, 随应变速率的提高而增大 。升高变形温度以及降低应变速率, 均有利于 Cu结晶发生。从流变应力、 应变速率和温度的相关性, 得出了该合金高温热压缩变形时的热变形激活能 Q 为 392. 5 kJ / mol, 同时利 用逐步回归的方法建立了该合金的流变应力方程 。 CrZr 合金; 关键词: Cu中图分类号: TG146. 1 高温压缩; 热激活能; 流变应力方程; 动态再结晶 文献标志码: A 6264 ( 2014 ) 05007405 文章编号: 1009-

1, 3 1, 3 1, 3 1, 3 毅 , 李瑞卿 , 许倩倩 , 田保红 , 刘 1, 3 勇 , 刘 2 2 平 , 陈小红
( 1. 河南科技大学材料科学与工程学院,河南 洛阳 471003; 2. 上海理工大学材料科学与工程学院,上海 200093; 3. 有色金属共性技术河南省协同创新中心,河南 洛阳 471003)

Al-Zn-Mg-Cu-Zr铝合金的高温热压缩变形行为(英文)

Al-Zn-Mg-Cu-Zr铝合金的高温热压缩变形行为(英文)

Al-Zn-Mg-Cu-Zr铝合金的高温热压缩变形行为(英文)张辉;金能萍;陈江华
【期刊名称】《中国有色金属学报:英文版》
【年(卷),期】2011(021)003
【摘要】在温度为300-450°C和应变速率为0.01-10s-1的变形条件下,对Al-Zn-Mg-Cu-Zr合金(7056和7150铝合金)进行热压缩实验。

结果表明:在一定的应变峰值出现后,流动应力随应变增加单调下降,呈现出流动软化。

峰值应力取决于温度补偿应变速率Z的大小,可用包含Zener-Hollomon参数的双曲正弦关系来描述合金热流变行为。

7056合金的变形激活能为244.64kJ/mol,而7150合金的为229.75kJ/mol;在同样的变形条件下,前者的峰值应力却低于后者。

在高Z值条件下,在延长晶粒的亚晶粒中存在大量析出物;而在低Z值条件下,再结晶化的晶粒内出现完整的亚晶。

7150合金中存在细小亚晶和大量析出物,由于亚结构强化和析出硬化造成其峰值应力比7056合金高。

【总页数】6页(P437-442)
【作者】张辉;金能萍;陈江华
【作者单位】湖南大学材料科学与工程学院,长沙410082
【正文语种】中文
【中图分类】TG146
因版权原因,仅展示原文概要,查看原文内容请购买。

Cu-Cr-Zr合金低温形变组织转变机理及力学性能研究

Cu-Cr-Zr合金低温形变组织转变机理及力学性能研究

Cu-Cr-Zr合金低温形变组织转变机理及力学性能研究Cu-Cr/Zr合金低温形变组织转变机理及力学性能研究摘要:本研究主要探讨了Cu-Cr/Zr合金低温形变过程中组织转变机理及其对力学性能的影响。

利用电子显微镜观察了Cu-Cr/Zr合金在不同低温形变条件下的显微组织演变,并通过拉伸实验对其力学性能进行研究。

研究结果表明,在低温形变过程中,Cu-Cr/Zr合金出现了从大晶粒到细晶粒的转变,并且晶界及晶内的位错密度明显增加。

在相同形变条件下,添加适量的Zr元素能够改善合金的塑性变形能力。

拉伸实验结果表明,Cu-Cr/Zr合金在低温形变过程中的强度和延展性明显提高,且具有优异的综合力学性能。

关键词:Cu-Cr/Zr合金、低温形变、组织转变、力学性能1. 引言Cu-Cr合金具有优异的力学性能和热稳定性,因此被广泛应用于航空航天、能源和汽车等领域。

然而,Cu-Cr合金的低温塑性较差,限制了其在一些特殊环境下的应用。

为了提高Cu-Cr 合金的低温塑性,研究者们尝试在Cu-Cr合金中添加Zr等合金元素。

Zr能够有效抑制Cu-Cr合金晶界的过度冷却,促进晶粒细化,从而提高合金的塑性。

2. 实验方法本研究选择了Cu-0.5Cr-Zr合金作为研究对象,采用真空电弧熔炼的方法制备样品。

通过调整熔炼参数和合金成分,获得均匀的合金组织。

利用X射线衍射仪对合金进行相分析,并使用扫描电子显微镜对合金的显微组织进行表征。

拉伸实验采用万能材料试验机进行,测试速度为0.1 mm/min。

3. 结果与讨论3.1 组织转变分析Cu-0.5Cr-Zr合金在室温条件下经过低温形变后,出现了明显的晶粒细化现象。

通过电子显微镜观察发现,晶界附近形成了高密度的位错区,这表明晶界附近的位错滑移是晶粒细化的主要机制。

此外,添加适量的Zr可以有效促进Cu-0.5Cr-Zr合金的晶粒细化,因为Zr元素能够促使晶界形成与其触碰的细小析出相,增加晶界的位错阻尼,从而阻碍位错的滑移。

CuCrZr合金动态再结晶行为的研究

CuCrZr合金动态再结晶行为的研究

CuCrZr合金动态再结晶行为的研究摘要随着集成电路芯片的高度集成化,IC向短、小、轻、薄的方向发展,电子封装也随着向高密度封装发展,引线间距减小,厚度减薄,功率增加要求引线框架材料具有更高的强度、导电性和导热性。

Cu-Cr-Zr合金具有高的强度和良好的导电、导热性能及抗氧化性,可作为电阻焊电极和结晶器等材料在电工、电力及航空等行业得到广泛的应用。

本文对Cu-Cr-Zr合金的动态再结晶行为进行了研究。

利用Gleeble-1500热模拟实验机对Cu-Cr-Zr合金进行高温热压缩变形,研究在变形温度为550~750℃、应变速率为0.01~5s-1工作条件下该合金的流变应力行为,探讨变形温度、应变速率与流变应力的相互关系,建立合金热变形流变应力本构方程并算出热变形激活能。

实验结果表明:流变应力随变形温度的升高而减小,随应变速率的增加而增加;Cu-Cr-Zr合金的热变形激活能为845.18kJ/mol,并构建本构方程;通过显微组织分析,进而研究合金动态再结晶行为。

关键词:Cu-Cr-Zr合金,热压缩变形,变形温度,流变应力,本构方程,动态再结晶The Study on Dynamic Recrystallization Behavior ofCu-Cr-Zr AlloyABSTRACTWith the high integration of IC chip,IC turn to be shorter,smaller,lighter, thinner and the density of electronic packaging gets higher,While the strength, electrical conductivity and thermal conductivity of lead frame material increase with the decreasing of lead spacing and thickness.Cu-Cr-Zr alloy has been widely used as a resistance welding electrode and the mold material in the electrical,electricity and aviation industries because of high strength,good electrical conductivity,thermal conductivity and oxidation resistance.Dynamic recrystallization behavior of Cu-Cr-Zr alloy was studied. The flow stress behavior of Cu-Cr-Zr alloy was studied by thermal simulation test at the deformation temperature of 550~750℃and the strain rate of 0.01~5s-1on the Gleeble-1500 thermal mechanical simulator. The relationship among deformation temperature,strain rate and flow stress was investigated,While The constitutive equation was established and the activation energy was calculated.The results showed that the flow stress decreased with the increasing of deformation temperature and increase with the growth of strain rate. The constitutive equation was established with the activation energy 845.18kJ/mol. Dynamic recrystallization behavior was studied by the analysis of microstructure.KER WORDS: Cu-Cr-Zr alloys, hot deformation,deformation temperature, flow stress, constitutive equation, dynamic recrystallization目录第一章绪论 (1)§1.1 铜合金开发必要性 (1)§1.2引线框架用铜合金的发展 (2)§1.2.1国外引线框架的发展现状 (2)§1.2.2国内引线框架的发展现状 (3)§1.3 本文的研究内容与意义 (3)§1.3.1设计的依据与意义 (3)§1.3.2 本文的研究内容和研究目的 (4)第二章试验材料和试验方法 (5)§2.1 试验合金材料 (5)§2.2 试验的总体方案 (5)§2.2.1热模拟试验 (5)§2.2.2组织观察 (5)§2.3 试验用设备及材料 (6)§2.4 试验方案流程 (6)§2.4.1 试样制备 (6)§2.4.2 热模拟试验 (6)§2.4.3 再结晶金相显微组织观察 (7)第三章试验结果与分析 (9)§3.1 高温热变形行为研究分析 (9)§3.1.1真应力-真应变曲线分析 (9)§3.1.2 温度对再结晶组织的影响 (13)§3.1.3 变形速率对合金再结晶组织的影响 (13)§3.2流变应力方程的建立 (15)结论 (19)参考文献 (20)致谢 (22)第一章绪论§1.1 铜合金开发必要性集成电路自上世纪六十年代问世以来,便得到了快速发展。

金属热处理中英文对照外文翻译文献

金属热处理中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)原文:Heat treatment of metalThe generally accepted definition for heat treating metals and metal alloys is “heating and cooling a solid metal or alloy in a way so as to obtain specific conditions or properties.” Heating for the sole purpose of hot working (as in forging operations) is excluded from this definition.Likewise,the types of heat treatment that are sometimes used for products such as glass or plastics are also excluded from coverage by this definition.Transformation CurvesThe basis for heat treatment is the time-temperature-transformation curves or TTT curves where,in a single diagram all the three parameters are plotted.Because of the shape of the curves,they are also sometimes called C-curves or S-curves.To plot TTT curves,the particular steel is held at a given temperature and the structure is examined at predetermined intervals to record the amount of transformation taken place.It is known that the eutectoid steel (T80) under equilibrium conditions contains,all austenite above 723℃,whereas below,it is the pearlite.To form pearlite,the carbon atoms should diffuse to form cementite.The diffusion being a rate process,would require sufficient time for complete transformation of austenite to pearlite.From different samples,it is possible to note the amount of the transformation taking place at any temperature.These points are then plotted on a graph with time and temperature as the axes.Through these points,transformation curves can be plotted as shown in Fig.1 for eutectoid steel.The curve at extreme left represents the time required for the transformation of austenite to pearlite to start at any given temperature.Similarly,the curve at extreme right represents the time required for completing the transformation.Between the two curves are the pointsrepresenting partial transformation. The horizontal lines Ms and Mf represent the start and finish of martensitic transformation.Classification of Heat Treating ProcessesIn some instances,heat treatment procedures are clear-cut in terms of technique and application.whereas in other instances,descriptions or simple explanations are insufficient because the same technique frequently may be used to obtain different objectives.For example, stress relieving and tempering are often accomplished with the same equipment and by use of identical time and temperature cycles.The objectives,however,are different for the two processes. The following descriptions of the principal heat treating processes are generally arranged according to their interrelationships.Normalizing consists of heating a ferrous alloy to a suitable temperature (usually 50°F to 100°F or 28℃ to 56℃) above its specific upper transformation temperature.This is followed by cooling in still air to at least some temperature well below its transformation temperature range.For low-carbon steels, the resulting structure and properties are the same as those achieved by full annealing;for most ferrous alloys, normalizing and annealing are not synonymous.Normalizing usually is used as a conditioning treatment, notably for refining the grains of steels that have been subjected to high temperatures for forging or other hot working operations. The normalizing process usually is succeeded by another heat treating operation such as austenitizing for hardening, annealing, or tempering.Annealing is a generic term denoting a heat treatment that consists of heating to and holding at a suitable temperature followed by cooling at a suitable rate. It is used primarily to soften metallicmaterials, but also to simultaneously produce desired changes in other properties or in microstructure. The purpose of such changes may be, but is not confined to, improvement of machinability, facilitation of cold work (known as in-process annealing), improvement of mechanical or electrical properties, or to increase dimensional stability. When applied solely to relive stresses, it commonly is called stress-relief annealing, synonymous with stress relieving.When the term “annealing” is applied to ferrous alloys without qualification, full annealing is applied. This is achieved by heating above the alloy’s transformation temperature, then applying a cooling cycle which provides maximum softness. This cycle may vary widely, depending on composition and characteristics of the specific alloy.Quenching is a rapid cooling of a steel or alloy from the austenitizing temperature by immersing the work piece in a liquid or gaseous medium. Quenching medium commonly used include water, 5% brine, 5% caustic in an aqueous solution, oil, polymer solutions, or gas (usually air or nitrogen).Selection of a quenching medium depends largely on the hardenability of material and the mass of the material being treating (principally section thickness).The cooling capabilities of the above-listed quenching media vary greatly. In selecting a quenching medium, it is best to avoid a solution that has more cooling power than is needed to achieve the results, thus minimizing the possibility of cracking and warp of the parts being treated. Modifications of the term quenching include direct quenching, fog quenching, hot quenching, interrupted quenching, selective quenching, spray quenching, and time quenching.Tempering. In heat treating of ferrous alloys, tempering consists of reheating the austenitized and quench-hardened steel or iron to some preselected temperature that is below the lower transformation temperature (generally below 1300 ℃ or 705 ℃ ). Tempering offers a means of obtaining various combinations of mechanical properties. Tempering temperatures used for hardened steels are often no higher than 300 ℃(150 ℃). The term “tempering” should not be confused with either process annealing or stress relieving. Even though time and temperature cycles for the three processes may be the same, the conditions of the materials being processed and the objectives may be different.Stress relieving. Like tempering, stress relieving is always done by heating to some temperature below the lower transformation temperature for steels and irons. For nonferrous metals, the temperature may vary from slightly above room temperature to several hundred degrees, depending on the alloy and the amount of stress relief that is desired.The primary purpose of stress relieving is to relieve stresses that have been imparted to the workpiece from such processes as forming, rolling, machining or welding. The usual procedure is toheat workpiece to the pre-established temperature long enough to reduce the residual stresses (this is a time-and temperature-dependent operation) to an acceptable level; this is followed by cooling at a relatively slow rate to avoid creation of new stresses.The generally accepted definition for heat treating metals and metal alloys is “heating and cooling a solid metal or alloy in a way so as to obtain specific conditions or properties.” Heating for the sole purpose of hot working (as in forging operations) is excluded from this definition.Likewise,the types of heat treatment that are sometimes used for products such as glass or plastics are also excluded from coverage by this definition.Transformation CurvesThe basis for heat treatment is the time-temperature-transformation curves or TTT curves where,in a single diagram all the three parameters are plotted.Because of the shape of the curves,they are also sometimes called C-curves or S-curves.To plot TTT curves,the particular steel is held at a given temperature and the structure is examined at predetermined intervals to record the amount of transformation taken place.It is known that the eutectoid steel (T80) under equilibrium conditions contains,all austenite above 723℃,whereas below,it is pearlite.To form pearlite,the carbon atoms should diffuse to form cementite.The diffusion being a rate process,would require sufficient time for complete transformation of austenite to pearlite.From different samples,it is possible to note the amount of the transformation taking place at any temperature.These points are then plotted on a graph with time and temperature as the axes.Through these points,transformation curves can be plotted as shown in Fig.1 for eutectoid steel.The curve at extreme left represents the time required for the transformation of austenite to pearlite to start at any given temperature.Similarly,the curve at extreme right represents the time required for completing the transformation.Between the two curves are the points representing partial transformation. The horizontal lines Ms and Mf represent the start and finish of martensitic transformation.Classification of Heat Treating ProcessesIn some instances,heat treatment procedures are clear-cut in terms of technique and application.whereas in other instances,descriptions or simple explanations are insufficient because the same technique frequently may be used to obtain different objectives.For example, stress relieving and tempering are often accomplished with the same equipment and by use of identical time and temperature cycles.The objectives,however,are different for the two processes.The following descriptions of the principal heat treating processes are generally arranged according to their interrelationships.Normalizing consists of heating a ferrous alloy to a suitable temperature (usually 50°F to 100°F or 28℃ to 56℃) above its specific upper transformation temperature.This is followed by cooling in still air to at least some temperature well below its transformation temperature range.For low-carbon steels, the resulting structure and properties are the same as those achieved by full annealing;for most ferrous alloys, normalizing and annealing are not synonymous.Normalizing usually is used as a conditioning treatment, notably for refining the grains of steels that have been subjected to high temperatures for forging or other hot working operations. The normalizing process usually is succeeded by another heat treating operation such as austenitizing for hardening, annealing, or tempering.Annealing is a generic term denoting a heat treatment that consists of heating to and holding at a suitable temperature followed by cooling at a suitable rate. It is used primarily to soften metallic materials, but also to simultaneously produce desired changes in other properties or in microstructure. The purpose of such changes may be, but is not confined to, improvement of machinability, facilitation of cold work (known as in-process annealing), improvement of mechanical or electrical properties, or to increase dimensional stability. When applied solely to relive stresses, it commonly is called stress-relief annealing, synonymous with stress relieving.When the term “annealing” is applied to ferrous alloys without qualification, full annealing is applied. This is achieved by heating above the alloy’s transformation temperature, then applying a cooling cycle which provides maximum softness. This cycle may vary widely, depending on composition and characteristics of the specific alloy.Quenching is a rapid cooling of a steel or alloy from the austenitizing temperature by immersing the workpiece in a liquid or gaseous medium. Quenching medium commonly used include water, 5% brine, 5% caustic in an aqueous solution, oil, polymer solutions, or gas (usually air or nitrogen).Selection of a quenching medium depends largely on the hardenability of material and the mass of the material being treating (principally section thickness).The cooling capabilities of the above-listed quenching media vary greatly. In selecting aquenching medium, it is best to avoid a solution that has more cooling power than is needed to achieve the results, thus minimizing the possibility of cracking and warp of the parts being treated. Modifications of the term quenching include direct quenching, fog quenching, hot quenching, interrupted quenching, selective quenching, spray quenching, and time quenching.Tempering. In heat treating of ferrous alloys, tempering consists of reheating the austenitized and quench-hardened steel or iron to some preselected temperature that is below the lower transformation temperature (generally below 1300 ℃ or 705 ℃). Tempering offers a means of obtaining various combinations of mechanical properties. Tempering temperatures used for hardened steels are often no higher than 300 ℃(150 ℃). The term “tempering” should not be confused with either process annealing or stress relieving. Even though time and temperature cycles for the three processes may be the same, the conditions of the materials being processed and the objectives may be different.Stress relieving. Like tempering, stress relieving is always done by heating to some temperature below the lower transformation temperature for steels and irons. For nonferrous metals, the temperature may vary from slightly above room temperature to several hundred degrees, depending on the alloy and the amount of stress relief that is desired.The primary purpose of stress relieving is to relieve stresses that have been imparted to the workpiece from such processes as forming, rolling, machining or welding. The usual procedure is to heat workpiece to the pre-established temperature long enough to reduce the residual stresses (this is a time-and temperature-dependent operation) to an acceptable level; this is followed by cooling at a relatively slow rate to avoid creation of new stresses.The generally accepted definition for heat treating metals and metal alloys is “heating and cooling a solid metal or alloy in a way so as to obtain specific conditions or properties.” Heating for the sole purpose of hot working (as in forging operations) is excluded from this definition.Likewise,the types of heat treatment that are sometimes used for products such as glass or plastics are also excluded from coverage by this definition.Transformation CurvesThe basis for heat treatment is the time-temperature-transformation curves or TTT curves where,in a single diagram all the three parameters are plotted.Because of the shape of the curves,they are also sometimes called C-curves or S-curves.To plot TTT curves,the particular steel is held at a given temperature and the structure is examined at predetermined intervals to record the amount of transformation taken place.It is known that the eutectoid steel (T80) under equilibrium conditions contains,all austenite above 723℃,whereas below,it is pearlite.To form pearlite,the carbon atoms should diffuse to form cementite.The diffusion being a rate process,would require sufficient time for complete transformation of austenite to pearlite.From different samples,it is possible to note the amount of the transformation taking placeat any temperature.These points are then plotted on a graph with time and temperature as the axes.Through these points,transformation curves can be plotted as shown in Fig.1 for eutectoid steel.The curve at extreme left represents the time required for the transformation of austenite to pearlite to start at any given temperature.Similarly,the curve at extreme right represents the time required for completing the transformation.Between the two curves are the points representing partial transformation. The horizontal lines Ms and Mf represent the start and finish of martensitic transformation.Classification of Heat Treating ProcessesIn some instances,heat treatment procedures are clear-cut in terms of technique and application.whereas in other instances,descriptions or simple explanations are insufficient because the same technique frequently may be used to obtain different objectives.For example, stressrelieving and tempering are often accomplished with the same equipment and by use of identical time and temperature cycles.The objectives,however,are different for the two processes.The following descriptions of the principal heat treating processes are generally arranged according to their interrelationships.Normalizing consists of heating a ferrous alloy to a suitable temperature (usually 50°F to 100°F or 28℃ to 56℃) above its specific upper transformation temperature.This is followed by cooling in still air to at least some temperature well below its transformation temperature range.For low-carbon steels, the resulting structure and properties are the same as those achieved by full annealing;for most ferrous alloys, normalizing and annealing are not synonymous.Normalizing usually is used as a conditioning treatment, notably for refining the grains of steels that have been subjected to high temperatures for forging or other hot working operations. The normalizing process usually is succeeded by another heat treating operation such as austenitizing for hardening, annealing, or tempering.Annealing is a generic term denoting a heat treatment that consists of heating to and holding at a suitable temperature followed by cooling at a suitable rate. It is used primarily to soften metallic materials, but also to simultaneously produce desired changes in other properties or in microstructure. The purpose of such changes may be, but is not confined to, improvement of machinability, facilitation of cold work (known as in-process annealing), improvement of mechanical or electrical properties, or to increase dimensional stability. When applied solely to relive stresses, it commonly is called stress-relief annealing, synonymous with stress relieving.When the term “annealing” is applied to ferrous alloys without qualification, full annealing is applied. This is achieved by heating above the alloy’s transformation temperature, then applying a cooling cycle which provides maximum softness. This cycle may vary widely, depending on composition and characteristics of the specific alloy.Quenching is a rapid cooling of a steel or alloy from the austenitizing temperature by immersing the workpiece in a liquid or gaseous medium. Quenching medium commonly used include water, 5% brine, 5% caustic in an aqueous solution, oil, polymer solutions, or gas (usually air or nitrogen).Selection of a quenching medium depends largely on the hardenability of material and the mass of the material being treating (principally section thickness).The cooling capabilities of the above-listed quenching media vary greatly. In selecting a quenching medium, it is best to avoid a solution that has more cooling power than is needed to achieve the results, thus minimizing the possibility of cracking and warp of the parts being treated. Modifications of the term quenching include direct quenching, fog quenching, hot quenching, interrupted quenching, selective quenching, spray quenching, and time quenching.Tempering. In heat treating of ferrous alloys, tempering consists of reheating the austenitized and quench-hardened steel or iron to some preselected temperature that is below the lower transformation temperature (generally below 1300 ℃ or 705 ℃). Tempering offers a means of obtaining various combinations of mechanical properties. Tempering temperatures used for hardened steels are often no higher than 300 oF (150 ℃). The term “tempering” should not be confused with either process annealing or stress relieving. Even though time and temperature cycles for the three processes may be the same, the conditions of the materials being processed and the objectives may be different.Stress relieving. Like tempering, stress relieving is always done by heating to some temperature below the lower transformation temperature for steels and irons. For nonferrous metals, the temperature may vary from slightly above room temperature to several hundred degrees, depending on the alloy and the amount of stress relief that is desired.The primary purpose of stress relieving is to relieve stresses that have been imparted to the workpiece from such processes as forming, rolling, machining or welding. The usual procedure is to heat workpiece to the pre-established temperature long enough to reduce the residual stresses (this is a time-and temperature-dependent operation) to an acceptable level; this is followed by cooling at a relatively slow rate to avoid creation of new stresses.金属热处理对于热处理金属和金属合金普遍接受的定义是对于热处理金属和金属合金普遍接受的定义是“加热和冷却的方式了坚实的金“加热和冷却的方式了坚实的金属或合金,以获得特定条件或属性为唯一目的。

Cu—Cr—Zr合金等温时效动力学研究

Cu—Cr—Zr合金等温时效动力学研究
( 2 0 0 6 Z Y0 4 6 )
作者简介 : 马旭( 1 9 7 6 一) 男, 河 南 洛 阳人 , 研究生.
第 7 卷
第 3 期
马旭 , 等: C u - C r - Z r 合金等温时效动力学研 究
影响 . 然而 相变 进 行 的 方式 取 决 于 许 多互 相 影 响 的
1 试 样 及 方 法
1 . 1 试 样
试验 材料 为 C u合 金 , 其成 分 为 C u 一 0 . 3 8 C r 一 0 . 1 2 Z r . 首先将 合金 在 Z G - 0 . 0 1型 1 0 k g真空 中频 感应 熔炼 炉 中熔炼 , 待其 冷却 后脱 模得 到铸 锭 , 再将 铸锭 切 除 冒 口及 去皮 后 热锻 成 为 0 2 5 mm 的棒 材 . 然后 将 棒 材加 热 到 9 5 0℃ 并保 温 1 h后 水 冷 ( 固溶
处理 ) , 再 将经 固溶 处 理过 的棒 材 进 行线 切 割 , 得 到
因素 , 要对 相变 过程 的动力 学做 出完 整地 分析 , 实 际
上是 很复 杂 的[ 4 ] . 由 于导 电率对 析 出相 的析 出非 常 敏感 , 因此 可将 其用 于新相 形成 的动 力学研 究 , 并 通
对 动 力学 公 式 二 阶 导数 的分 析 , 从 理 论 上 证 明 了合 金 等 温 时 效 两 个 析 出过 程 的存 在 性 .
关键 词 : C u — C r - Z r 合金 ; 时效 ; 电阻率 ; 动力学
中图分类号 : T G1 4 6 . 1 文献标识码 : A
Cu — C r — Z r 系 列 合 金 属 于 高 强 高 导 时 效 强 化 型

合金热挤压 动态再结晶

合金热挤压 动态再结晶

合金热挤压动态再结晶(中英文实用版)Task Title: Alloy Hot Extrusion and Dynamic RecrystallizationTask Title: 合金热挤压与动态再结晶Alloy hot extrusion is a metal forming process that involves shaping metal materials by forcing them through a die.This process is carried out at high temperatures, which allows for better formability and reduced tool wear.During the hot extrusion process, dynamic recrystallization can occur.合金热挤压是一种金属成形过程,通过将金属材料强制通过模具来塑造。

这个过程在高温下进行,这使得材料更容易成形并减少工具磨损。

在热挤压过程中,可能会发生动态再结晶。

Dynamic recrystallization is a phenomenon that occurs during the deformation of metals and alloys.It is a process by which new, strain-free grains are formed within the material.These new grains have a smaller size than the original grains and are oriented in a way that reduces the overall dislocation density in the material.动态再结晶是金属和合金在变形过程中发生的一种现象。

低温ECAP及热处理Cu0.4Cr0.3Zr合金组织演变及性能调控

低温ECAP及热处理Cu0.4Cr0.3Zr合金组织演变及性能调控

低温ECAP及热处理Cu0.4Cr0.3Zr合金组织演变及性能调控低温ECAP及热处理Cu0.4Cr0.3Zr合金组织演变及性能调控引言:Cu0.4Cr0.3Zr合金由于其良好的高温力学性能和耐腐蚀性能,在航空航天、核工程和化工等领域得到广泛应用。

为了进一步提高该合金的力学性能和应用范围,研究人员将低温等径向挤压(ECAP)和热处理技术应用于Cu0.4Cr0.3Zr合金中,以探究其组织演变过程和性能调控方法。

1. 低温ECAP技术对Cu0.4Cr0.3Zr合金组织的影响1.1 低温ECAP的原理和过程1.2 Cu0.4Cr0.3Zr合金低温ECAP后的组织特征1.3 低温ECAP对Cu0.4Cr0.3Zr合金力学性能的影响2. 热处理技术对Cu0.4Cr0.3Zr合金组织的调控2.1 热处理的原理和常用工艺2.2 Cu0.4Cr0.3Zr合金热处理后的组织演变特征2.3 热处理对Cu0.4Cr0.3Zr合金性能的影响3. 低温ECAP和热处理相结合对Cu0.4Cr0.3Zr合金组织和性能的影响3.1 低温ECAP后热处理的工艺优化3.2 Cu0.4Cr0.3Zr合金组织的演化特征3.3 经过低温ECAP和热处理的Cu0.4Cr0.3Zr合金的综合性能4. 结论4.1 低温ECAP技术可以显著细化Cu0.4Cr0.3Zr合金的晶粒并提高其强度和塑性。

4.2 热处理工艺可以进一步调控Cu0.4Cr0.3Zr合金的组织结构和性能。

4.3 低温ECAP与热处理相结合可以实现Cu0.4Cr0.3Zr合金组织和性能的优化。

引言:Cu0.4Cr0.3Zr合金是一种在航空航天、核工程和化工等领域广泛应用的高性能合金。

然而,随着科学技术的发展,对材料的性能要求越来越高,这就要求我们进一步改进已有合金的力学性能和耐腐蚀性能。

低温等径向挤压(ECAP)和热处理技术成为了研究人员的关注重点,它可以改变合金的组织结构,进而调控其力学性能。

Mg-8Gd-0.5Zr合金热压缩过程中动态再结晶行为

Mg-8Gd-0.5Zr合金热压缩过程中动态再结晶行为
Key words摇 摇 Mg鄄8Gd鄄0郾 5Zstallization, critical strain
0摇 引言
镁是密排六方结构( hcp) 的金属,在室温下只有{0001}
掖1120业 和{1012} 掖1011业 两个滑移系,这就导致镁合金在室 温下具有较差的塑性变形能力,与传统的铝合金相比,其市 场应用受到很大的限制。 但是镁合金由于层错能较低[1鄄3] , 在塑性变形中更容易发生动态再结晶( DRX) ,从而显著细化 晶粒,提高强度和塑性。 目前,在热变形工艺、组织、性能及 机理方面研究较为成熟的合金有 AZ、ZK 等系列的变形镁合 金[4鄄8] 。 动态再结晶行为直接影响到变形后零件的性能,是 热变形中的研究重点。 有学者对镁合金的再结晶动力学和 临界条件进行了研究[9鄄11] 。 黄光杰等[5] 研究了 AZ31 镁合金 初始动态再结晶的临界条件,发现随着变形温度的升高和应 变速率的降低,合金的动态软化机制由非连续动态再结晶转 变为连续动态再结晶,并且再结晶在峰值应变之前就已经发 生。 Chang 等[6] 研究了 AZ31 镁合金再结晶晶粒尺寸( d) 和 Z 参数之间的关系,发现 lnd 和 lnZ 呈线性关系。 AZ 系列镁 合金中析出相与再结晶的关系也得到研究。 Xu 等[7] 研究了
Dynamic Recrystallization Behavior of Mg鄄8Gd鄄0郾 5Zr Alloy During Hot
Compression Deformation
ZHU Limin1,2 , LI Quanan1,2, , CHEN Xiaoya1,3 , ZHANG Qing1,2 , WANG Songbo1 , ZHANG Shuai1
2019,Vol郾 33,No郾 12摇 www. mater鄄rep. com

金属材料外文翻译Cu-0.36Cr-0.03Zr合金热压缩过程动态再结晶动力学研究

金属材料外文翻译Cu-0.36Cr-0.03Zr合金热压缩过程动态再结晶动力学研究

Cu-0.36Cr-0.03Zr合金热压缩过程动态再结晶动力学研究吉国良,秦方力,朱立元,李强,李磊摘要:基于Gleeble-3500热机模拟器在800-950℃温度范围和0.001-20 s21应变率范围内的压缩试验,开发了Cu-0.36Cr-0.03Zr合金的动态再结晶(DRX)动力学通过进一步分析真实的应力- 应变曲线并通过研究不同变形条件下的微观结构。

动态再结晶的动力学表达为改进的JMAK模型,研究了变形速率和温度对模型参数(包括临界应变,峰值应变和材料常数kd)的影响。

完整的DRX晶粒尺寸被描述为齐纳- 霍尔蒙蒙参数(Z)的幂律函数,并且它与实验数据非常吻合。

关键词:压缩试验,Cu-Cr-Zr合金,动态再结晶,显微组织1. 简介加工硬化(WH),动态恢复(DRV)和动态再结晶(DRX)是金属材料热加工过程中的重要物理金属现象,易于发生金属和具有低至中等层错能的合金的动态再结晶,如fcc金属,铜合金和镍合金。

在工业生产中,动态再结晶被用作改善微观结构和获得细晶和均匀晶粒的重要方法。

因此,揭示金属或合金用于制造具有细微结构和优异机械性能的零件的动态再结晶的演变机制是重要的。

迄今为止,对金属或合金的动态再结晶行为进行了广泛的研究,并提出了几种再结晶动力学和微观结构演化模型(参考文献1-4)。

这些模型可以主要分为两类:现象学模型和基于物理的内部变量模型。

现象模型描述了以Avrami方程形式的再结晶体积的演变,其中待确定的参数通常表示为初始晶粒尺寸,温度,应变和应变率的函数。

现象学模型已被商业有限元软件广泛采用,如FORGE和Deform-3D,以模拟金属或合金的再结晶演变。

Loyda等人(参考文献5)建立了Ni-Fe基高温合金动态再结晶(DRX),过渡态再结晶(MDRX),静态再结晶(SRX)和晶粒长大的动力学模型,并评估了平均晶粒尺寸和重结晶率通过在商业平台DEFORM-3D中实现以前的现象学模型,旋转锻造过程中的Ni-Fe基高温合金。

Cu-0.33Cr-0.05Ti 合金时效相变动力学

Cu-0.33Cr-0.05Ti 合金时效相变动力学

Cu-0.33Cr-0.05Ti 合金时效相变动力学∗郑碰菊;李勇;张建波;刘耀;肖翔鹏【摘要】通过中频感应熔炼制备了 Cu-0.33Cr-0.05Ti 合金铸锭,铸锭经热挤压、固溶、冷拔和中间退火工序制备成直径2.1 mm 的线材,对合金线材进行时效处理,研究时效处理对合金导电率的影响并对该合金的时效动力学进行了分析.结果表明:Cu-0.33Cr-0.05Ti 合金在400℃×2 h 可获得较高的导电率,导电率为83.13%IACS,随保温时间的延长,合金的导电率变化趋于平缓.根据马基申-富列明格规律和Avrami 经验方程计算得到 Cu-0.33Cr-0.05Ti 合金在350,400及450℃的Avrami 方程分别为f =1-exp(-0.0199t 1.0555),f =1-exp(-0.0578t 0.8632)和 f =1- exp(-0.0613t 0.7724),并得到了合金时效时的等温脱溶转变曲线.%Cu-0.33Cr-0.05Ti alloy was prepared by atmosphere melted method.The process consists of hot extrusion,solid solution,cold drawing and intermediate annealing was subsequently carried out to prepare the wire rod with the diameter of Φ2.1 mm.The effect of aging treatment on electrical conductivity of Cu-0.33Cr-0.05Ti alloy is investigated.The precipitation kinetics of the alloy is also analyzed.The result shows that,the electrical conductivity of Cu-0.33Cr-0.05Ti alloy reached 83.13% IACS after aging at 400℃ for 2 h.With the increase of aging time,the value of electrical conductivity kept unchanging. According to the Matthiessen rule and phase transition dynamics Avrami conductivity equation, the Avrami experimental equations of Cu-0.33Cr-0.05Ti alloy at 350,400,450 ℃ was calculated,which were f =1-exp(-0.01 99t 1.05 5 5 ),f =1 - exp(-0.0578t 0.8632 ),and f = 1 - exp(-0.0613t 0.7 724 ),respectively. The isothermal transformation curves were obtained at last.【期刊名称】《材料研究与应用》【年(卷),期】2015(000)002【总页数】6页(P91-96)【关键词】Cu-Cr-Ti 合金;时效处理;导电率;相变动力学【作者】郑碰菊;李勇;张建波;刘耀;肖翔鹏【作者单位】江西理工大学材料科学与工程学院,江西赣州 341000;江西理工大学工程研究院,江西赣州 341000;江西理工大学工程研究院,江西赣州 341000; 浙江大学材料科学与工程学院,浙江杭州 310058;江西理工大学材料科学与工程学院,江西赣州 341000;江西理工大学工程研究院,江西赣州 341000【正文语种】中文【中图分类】TG146.1;TG156.92随着电气化铁路的快速发展,对接触线的性能提出了更高的要求,要求接触线不仅要有高的抗拉强度和良好的导电性能,还要有一定的抗软化性能[1-5].近年来,接触线材料向三元或多元合金发展,通过添加多种元素来改变合金的热力学和动力学环境,以此改善材料的综合性能[6-12].Cu-Cr系合金属于时效强化型合金,时效处理对该类合金的综合性能具有决定性的作用,形变强化也是提高Cu-Cr系合金强度的重要方法,如何调整时效和形变工艺以达到合金的综合性能良好匹配,对拓展该类合金的应用前景具有重要意义.Cu-Cr-Ti合金的时效过程是过饱和固溶体析出溶质原子形成析出相的相变过程,析出相的析出行为对合金的性能有很大的影响,所以开展Cu-Cr-Ti合金的时效析出动力学的研究对优化合金时效工艺具有重要的指导意义[13-18].本文通过研究时效处理工艺对Cu-0.33Cr-0.05Ti合金的导电性能的影响,测量合金导电率的变化,利用马基申-富列明格规律和Avrami经验方程,通过计算推导出Cu-0.33Cr-0.05Ti合金在不同温度下的时效动力学方程,最终得到合金的等温脱溶转变曲线.试验原材料选用纯度为99.99%的阴极铜,纯度为99.5%的铬和Cu-12%Ti中间合金,采用中频感应熔炼炉制备了Cu-0.33Cr-0.05Ti合金圆柱锭.使用石墨坩埚、木炭覆盖,Cu溶解后加入Cr,保温5 min后加入Cu-12%Ti中间合金并升温,保温7 min后浇铸.浇铸温度控制在1400 ℃左右,浇铸前浇铸模需预热至100 ℃左右.将铸锭铣面后经950 ℃×2 h保温,然后热挤压加工成直径15 mm的棒材,挤压桶温度为600 ℃.直径15 mm的棒材经950 ℃×2 h固溶处理后水淬.将固溶好的直径15 mm的棒材拉拔成直径2.1 mm的线材,加工形变量η为4.3,5.6及6.7,分别在形变量η为4.3和5.6时进行中间退火,退火温度及保温时间均为450 ℃×2 h,对直径2.1 mm的线材进行不同温度不同时间的时效处理,设定在350,400及450 ℃下各保温1,1.5,2,3及4 h的时效处理.采用QJ45型直流双臂电桥电阻率测试仪测定电阻值,从而计算出导电率.2.1 时效温度对合金导电率的影响在350,400及450 ℃时效温度下,Cu-0.33Cr-0.05Ti合金的导电率随时效时间的变化曲线如图1所示.由图1可见,在设定的时效温度下,合金的导电率随时效时间的增加先快速上升,之后趋于平缓,在3 h和4 h后虽然有所上升,但上升趋势不明显.在400 ℃的时效温度下,合金可获得较高的导电率,此时导电率稳定在83%IACS左右.由于Cu-0.33Cr-0.05Ti合金经固溶淬火后处于热力学不稳定状态,合金中有大量的过饱和溶质原子和空位,此时合金固溶体的晶格畸变程度较大,对于电子的散射作用较强,合金的电导率处于较低的水平,当温度提高时,原子的扩散能力提高,过饱和溶质原子逐渐析出,形成沉淀相及其过渡相[14],合金固溶体晶格畸变程度降低,因此,合金的电导率随之升高.随着时效时间的延长,过饱和溶质原子和空位浓度降低,析出动力降低,固溶体的晶格畸变程度基本不再改变,合金电导率的变化趋于平缓.2.2 时效过程中合金新相的转化比率合金在时效时,铜基体中的溶质原子会发生脱溶转化成为析出相,新相的体积分数f的计算公式为:式(1)中:Vp—合金新相在一定单位体积中某个时间点析出的体积;VBp—合金新相在一定单位体积中脱溶结束时间点析出的总体平衡体积.由于在时效前合金为冷拔态,这里设定时效前合金组织没有第二相析出,则时效前Vp=0,f=0,该状态下初始导电率为σ0,合金在一定温度下进行时效,时效时间分别为0,1,1.5,2,3和4 h,根据图1可知,合金在各温度下时效4 h后导电率趋于稳定,因此,4 h时合金新相基本完成转化,此时Vp=VBp,f=1.0,导电率最大值为σmax.从马基申-富列明格规律可知,合金的电阻值与固溶原子的体积分数之间存在着一定的线性关系,电阻率和导电率互为倒数,固溶原子的体积分数与析出相的体积分数之间也是线性关系,由此推断出合金的导电率与析出相体积分数之间也存在一定的线性关系[19-22],即:σ=σ0+αf.在合金时效过程中,由于相变转化需要一定的时间,当合金相变基本完成时,合金的导电率达到最大值,设σ=σmax,f=1,可以求出在此温度下时效参数α=σmax-σ0,可以根据相变完成转化时间点的导电率平均值计算出时效不同时间点的第二相体积分数.对于Cu-0.33Cr-0.05Ti合金,在450 ℃下,时效时间达到4 h时,导电率无明显变化,由于铜基中的Cr和Ti不能完全析出,故认为相变基本完成,此时σ=σmax=82.34%IACS,f=1,同理,得出合金在400 ℃和350 ℃时效下不同时间点的导电率及析出第二相的体积分数.Cu-0.33Cr-0.05Ti合金在不同时效温度下,不同时间点对应的导电率及析出的第二相的体积分数列于表1.2.3 相变动力学方程合金在时效过程中发生了相转变,其析出相体积分数f与时效时间t之间存在的函数关系遵循相变动力学Avrami的经验方程[23-24],即:f=1-exp(-btn).式(3)中:b是与温度、原始相的成分和晶粒尺寸等相关的常数;n是与相变类型和形核位置等相关的常数.b和n决定着合金时效温度下的Avrami经验式,为了求得常数b和n,对方程(3)做如下变形:exp(-btn)=1-f,将公式(4)两边取对数得:t.由公式(5)可知与lgt的函数关系是线性关系.根据Cu-0.33Cr-0.05Ti合金在450 ℃时效下已知的时间点t和与该时间点相对应的析出第二相的体积分数f,计算出对应时间点的函数的自变量与因变量的真实值.根据所求得的真实值拟合出Cu-0.33Cr-0.05Ti合金在时效过程中f与t的关系,得到与lgt之间的线性关系如图2所示.由公式(3)可知,n为斜率,lgb为截距,由图2的拟合直线可得出n=0.7724,lgb=-1.2126,b=0.6129,因此,Cu-0.33Cr-0.05Ti合金在450 ℃时效析出动力学方程为:f=1-exp(-0.6129t0.7724) .按同样的方法,可以得出Cu-0.33Cr-0.05Ti合金在350和400 ℃时效时的相转变方程,各个方程的关键参数α,b和n值及时效析出动力学方程列于表2.根据合金相转变方程(6)可以拟出合金在350,400和450 ℃下的等温脱溶转变动力学曲线如图3所示.由图3可以看出,在时效初始阶段,合金基体中的过饱和溶质原子开始脱溶并且成为新相,其转变速率较慢,随着时间的延长,新相的转变速率升高,且上升的速率较快,时间继续延长,受Cr和Ti溶质元素含量的限制,析出相的析出动力随时间的延长而降低,相转变变缓至相变结束[25-26].由式(4)及式(6)可以得出不同温度下的等温时效导电率方程:σ=74.3+8.89[1-exp(-0.0199t1.0555)](T=350℃),σ=74.3+8.99[1-exp(-0.0578t0.8632)](T=400℃),σ=74.3+8.04[1-exp(-0.0613t0.7724)](T=450℃).为验证式(7)~式(9)的导电率与实际是否相符,图4给出了实际测量值和等温时效导电率方程拟合曲线,从图(4)中可以看出,在350,400和450 ℃三个等温状态下,合金导电率的理论值与试验值基本吻合.定义析出相体积分数为10%和90%对应的时间分别为合金转变开始和终了时间,将相关系数n,b代入式(10),可计算出相变开始和结束时间,计算结果列于表3. Fig.4 Electrical conductivity curves of aged Cu-0.53Cr-0.05Ti alloy图5为Cu-0.33Cr-0.05Ti合金在350℃~450℃之间的等温转变曲线,由图5可知,合金在350 ℃时效时,第二相的转变结束所需时间最短.(1)Cu-0.33Cr-0.05Ti合金在400℃×2 h时效处理后可获得83.13%IACS的导电率,时效2 h后随着时间的增加,导电率变化趋于平缓.(2)根据马基申-富列明格规律和相变动力学Avrami经验方程,推导出Cu-0.33Cr-0.05Ti合金在350,400和450 ℃的时效动力学方程分别为:f=1-exp(-0.0199t1.0555),f=1-exp(-0.0578t0.8632)和f=1-exp(-0.0613t0.7724).(3)由Cu-0.33Cr-0.05Ti合金脱溶动力学曲线可知,时效初期,相转变速率较慢,随着时间的延长转变速率加快,转变即将完成时,相转变速度减慢直至结束. (4)由Cu-0.33Cr-0.05Ti合金在350~450 ℃之间的等温转变曲线可知,合金在400 ℃时相转变终了时间最短.【相关文献】[1] 陈思杰,唐恒娟,赵丕峰. 高速电气化铁路接触导线的瞬时液相扩散焊研究[J]. 热加工工艺,2014(9):209-211.[2] 张坚,谢斌,赵龙志,等. 高强高导铜合金的强化方法和研究进展[J]. 热加工工艺,2014,14:21-27.[3] 谢明,张吉明,王松,等. 高强高导CuCr合金的显微组织与性能研究[J]. 电工材料,2011(4):10-13.[4] 张蓓,张治国,李卫. 高强高导铜合金强化技术研究进展[J]. 材料导报,2012,21:92-95.[5] 陈舸,张修庆,刘秋月,等. Cu-Cr-Zr合金多次大塑性变形热处理工艺的研究[J]. 热加工工艺,2015(6):173-176.[6] 张巧霞,郭明星,胡晓倩,等. 汽车板用Al-0.6Mg-0.9Si-0.2Cu合金时效析出动力学研究[J]. 金属学报,2013,12:1604-1610.[7] 侯彬,陆亮亮,刘松,等. Cu-Cr-Zr-Mg-Ce合金微观组织及时效工艺[J]. 特种铸造及有色合金,2014(1):16-19.[8] 王萌,宋峰,赵玛利,等. Surface modification of Cu-Cr complex by NIR and MIR laser[J]. Transactions of Tianjin University,2014(1):36-41.[9] DENG J Q,ZHANG X Q,SHANG S Z. Effect of Zr addition on the microstructure and properties of Cu-10Cr in situ composites[J]. Materials Design,2009,30(10):44-49.[10] WANG X F,ZHAO J Z,JIE H. Investigation on the microstructure and mechanical properties of the spray-formed Cu-Cr alloys[J]. Materials Science and EngineeringA,2007,460-461:69-76.[11] CHBIHI A,SAUVAGE X,BLAVENE D. Atomic scale investigation of Cr precipitation in copper[J]. Acta Materialia, 2012,60(11):4575-4595.[12] HUANG F X,MA J S,NING H L. Analysis of phases in a Cu-Cr-Zr alloy[J]. Scripta Materialia,2003,48: 97-102.[13] LI X F,DONG A P, MENG L. The stored energy in processed Cu-0.4wt.%Cr-0.12wt.%Zr-0.02wt.%Si-0.05wt.%Mg[J]. Journal of Alloys and Compounds,2011,509:4670-4675.[14] 王松,谢明,陈敬超,等. 高强高导电Cu-Cr-Zr合金时效过程中组织和性能的演化[J]. 电工材料,2015(1):15-18.[15] 李宝增,张红军,韩丽娟,等. Cu-0.8Cr-0.2Zr触头材料的组织与性能[J]. 特种铸造及有色合金,2015(2):137-139.[16] 王宏光,余新泉,陈锋,等. Cu-Zr和Cu-Ag-Zr合金时效与形变强化行为研究[J]. 现代冶金,2010(2): 5-9.[17] 张毅,李瑞卿,许倩倩,等. Cu-Cr-Zr合金热变形行为及动态再结晶[J]. 材料热处理学报,2014(5):74-78.[18] 邓猛,贾淑果,陈少华,等. 铜镍硅锌镁合金的时效析出动力学[J]. 机械工程材料,2014(3):10-13.[19] 王松,庄滇湘,谢明,等. 连续铸造Cu-Cr-Zr合金的时效动力学分析[J]. 电工材料,2014(2):13-16.[20] 沈斌,程建奕,李海英. Cu-Cr-Zr-Mg合金的相变动力学[J]. 材料热处理学报,2014(9):121-125.[21] 陈海军,马建辉,卢广玺,等. Sr对Al-Mg-Si-Cu合金时效析出动力学及拉伸性能的影响[J]. 轻合金加工技术,2011(3):57-60.[22] 张筱雯,王庆娟. Cu-Cr-Zr合金的析出相及物理性能研究进展[J]. 热加工工艺,2015(4):8-11.[23] 张彦敏,王海艳,罗钧,等. 直流电流下Cu-0.33Cr-0.06Zr合金的时效动力学[J]. 特种铸造及有色合金,2014(11):1123-1126.[24] 温盛发,周海涛,刘克明,等. Cu-1.0Cr-0.2Zr合金的时效析出研究[J]. 材料热处理技术,2010,39(12):113-116.[25] 李勇,易丹青. Cu-0.1Ag-0.1Fe合金的相变动力学[J]. 材料热处理学报,2010,31(5):49-52.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Cu-0.36Cr-0.03Zr合金热压缩过程动态再结晶动力学研究吉国良,秦方力,朱立元,李强,李磊摘要:基于Gleeble-3500热机模拟器在800-950℃温度范围和0.001-20 s21应变率范围内的压缩试验,开发了Cu-0.36Cr-0.03Zr合金的动态再结晶(DRX)动力学通过进一步分析真实的应力- 应变曲线并通过研究不同变形条件下的微观结构。

动态再结晶的动力学表达为改进的JMAK模型,研究了变形速率和温度对模型参数(包括临界应变,峰值应变和材料常数kd)的影响。

完整的DRX晶粒尺寸被描述为齐纳- 霍尔蒙蒙参数(Z)的幂律函数,并且它与实验数据非常吻合。

关键词:压缩试验,Cu-Cr-Zr合金,动态再结晶,显微组织1. 简介加工硬化(WH),动态恢复(DRV)和动态再结晶(DRX)是金属材料热加工过程中的重要物理金属现象,易于发生金属和具有低至中等层错能的合金的动态再结晶,如fcc金属,铜合金和镍合金。

在工业生产中,动态再结晶被用作改善微观结构和获得细晶和均匀晶粒的重要方法。

因此,揭示金属或合金用于制造具有细微结构和优异机械性能的零件的动态再结晶的演变机制是重要的。

迄今为止,对金属或合金的动态再结晶行为进行了广泛的研究,并提出了几种再结晶动力学和微观结构演化模型(参考文献1-4)。

这些模型可以主要分为两类:现象学模型和基于物理的内部变量模型。

现象模型描述了以Avrami方程形式的再结晶体积的演变,其中待确定的参数通常表示为初始晶粒尺寸,温度,应变和应变率的函数。

现象学模型已被商业有限元软件广泛采用,如FORGE和Deform-3D,以模拟金属或合金的再结晶演变。

Loyda等人(参考文献5)建立了Ni-Fe基高温合金动态再结晶(DRX),过渡态再结晶(MDRX),静态再结晶(SRX)和晶粒长大的动力学模型,并评估了平均晶粒尺寸和重结晶率通过在商业平台DEFORM-3D中实现以前的现象学模型,旋转锻造过程中的Ni-Fe基高温合金。

陈等人。

(参考文献6)提出了分段动力学模型来描述典型镍基高温合金在热变形过程中的动态再结晶行为,并且所提出的分段模型可以准确而精确地估计所研究的高温合金的DRX的体积分数。

基于描述位错密度演化,成核和晶粒生长的DRX内部变量模型,细胞自动机(CA)方法可以代表时间和空间尺度上的生长动力学和微观结构演变(参考文献7)。

CA重结晶算法使用状态变量如位错密度来创建更现实的再结晶动力学表示(参考文献8),并且DRX通常是否发生可以通过比较晶界中的位错密度和临界位错密度来判断。

雷耶斯等人。

(参考文献9)利用元胞自动机方法成功地模拟了Inconel 718合金的DRX,并用CA模拟了初始晶粒局部变化对完全和部分再结晶组织的影响,并与等温热压结果进行了比较。

刘等人。

(参考文献10)通过实验和元胞自动机模型研究了Inconel 718合金的动态再结晶行为,发现随着动态再结晶体积分数的增加,DRX晶粒逐渐变得均匀。

陈等人。

(参考文献11)使用元胞自动机方法研究了奥氏体不锈钢中的动态再结晶。

Huang等人(参考文献12)回顾了各种金属材料在不同热机械加工条件下发生的动态再结晶(DRX)机制。

它包括以下三类:不连续动态再结晶(DDRX),连续动态再结晶(CDRX)和几何动态再结晶(GDRX)。

Chen和Lin(参考文献13)研究了镍基高温合金的动态再结晶(DRX)晶粒和位错子结构的演变。

发现位错子结构对变形程度,应变速率和变形温度也很敏感。

随着变形程度的增加,位错子结构的演化可表征为:高位错密度fi错位网络亚晶粒DRX晶粒。

Lin等人(参考文献14)研究了典型的镍基高温合金在DRX过程中的微观组织演变。

发现微观结构变化表明连续动态再结晶(CDRX)和不连续动态再结晶(DDRX)在热变形过程中发生。

因为优良的热或电传导性和高强度的Cu-Cr-Zr合金组织被广泛应用于各种功能和结构应用,例如集成电路引线框架,对于电阻焊接,高速铁路接触导线,热核反应器和铸造电极结晶器。

最近,许多关于Cu-Cr-Zr系合金的研究主要集中在通过固溶和时效处理改善合金的物理和机械性能,如强度和导电性(参考文献15,16),延性(参考文献17)和热稳定性(参考文献18,19)。

然而,Cu-Cr-Zr系合金的热变形机制鲜有报道。

丁等人。

(参考文献20)研究了Cu-0.6Cr-0.03Zr合金在550-850℃和应变速率范围为0.01-5s-1的温度范围内的流动应力行为。

强化机制包括550℃和650℃的动态析出粗化和加工硬化。

流动应力行为是加工硬化的特征,伴随着750和850℃的动态再结晶。

晶粒细长,在550和650℃变形的Cu-Cr-Zr合金中发现剪切带;动态再结晶在750和850℃完全发展。

Shakhova等人。

(参考文献21)研究了Cu-0.3%Cr-0.5%Zr合金在300和673 K的多向锻造过程中溶液处理样品和老化处理样品的结构变化。

结构变化与连续动态再结晶的发展有关。

经过10次随后的锻造,在300和673K下达到4的总应变,在溶液处理和老化样品中获得约11μm的平均晶粒尺寸。

Cu-0.36Cr-0.03Zr合金的铸锭将经历热轧或挤压以生产板材或棒材。

为了通过控制Cu-0.36Cr-0.03Zr合金的热挤压过程获得细化的再结晶组织,研究动态再结晶动力学和组织演变具有重要的实际意义。

在这项研究中,基于Gleeble 3500热机模拟器在800-950℃的温度范围和0.001-20s-1的应变率范围内的压缩测试,动态再结晶(DRX)动力学的唯象模型由进一步分析应力- 应变曲线并研究不同变形条件下的微观结构。

详细研究了应变速率和温度等热机参数对模型参数和DRX微结构演化的影响。

2. 材料和实验程序将经过在线固溶处理的直径为[36mm的Cu-0.36Cr-0.03Zr合金的热挤压棒材冷拉至[20mm,然后在600℃下老化5h,最后在轴线上方向机加工成圆柱形样品直径[10毫米,长度15毫米。

在Gleeble-3500热机模拟器上,在800-950℃的温度范围和0.001-20s-1的应变率范围内进行压缩试验。

试样以5℃/ s的速率加热到预设温度,浸泡3分钟以确保整个试样的温度均匀,高度压缩65%,然后水冷至室温以获得变形高温下的微观结构。

为了降低热压缩过程中的摩擦效应,应用高温石墨润滑剂。

将热压缩的样品抛光并用蚀刻剂(FeCl3 / 5g + HCl / 50ml + C2H5OH / 90ml)蚀刻。

通过OLYMPUS PMG3光学显微镜检查显微结构,并通过线性截取法(这里使用ASTM标准E112-12)测定晶粒尺寸。

老化的Cu-0.36Cr-0.03Zr合金的显微组织如图1所示,初始晶粒尺寸为18.6 lm,这表明存在大量的析出物。

根据关于三元Cu-Cr-Zr合金时效析出的研究结果(参考文献22-24),图1中的圆/椭圆形析出物被认为是富Cr的fcc相,微小的纳米尺度析出物为Heusler相CrCu2Zr,并且它们解释了三元Cu-Cr-Zr合金的高电导率和强度。

图1老化的Cu-0.36Cr-0.03Zr合金的初始显微组织3. 结果与讨论3.1 应力- 应变曲线的修正3.1.1 应力- 应变曲线的摩擦校正由于压缩试验中存在摩擦,即使采用了必要的润滑措施以尽量减少这种摩擦,单轴变形也可以变为三维,并且实验数据可以远离其准确值。

这导致不均匀变形和应力显着增加。

因此,摩擦效应的修正对于我们了解热变形的真实行为非常重要。

大多数研究人员(参考文献25-27)使用下面的关系式来校正高温下真实应力- 应变曲线中的摩擦效应。

其中σ是校正应力,是测量应力,是测量应变,r0和h0分别是试样的初始半径和高度,m是摩擦系数。

显然,m值的确定对于高精度地计算修正应力数据非常重要。

通常采用Ebrahimi和Naja fi zadeh(参考文献28)提出的方法来计算摩擦系数。

摩擦校正流量应力如图2所示。

图2(a)20s-1,(b)10s-1和(c)1s-1的应变率下的摩擦和/或温度校正应力- 应变曲线3.1.2温度校正应力应变曲线已知在金属材料热变形过程中会发生微观结构变化和温升,这是仪器和设备提供的瞬时功率消散的方式。

在均匀温度和恒定应变率的热压下,Gleeble-3500热机模拟器通过实时闭环伺服控制系统调节试样的温度。

然而,由于时间极短,高应变率下产生的热量不能马上进行,导致试样温度显着升高。

所以,实际上高应变率下的热压缩是一个绝热过程。

因此,为了理解真实的微观结构变化,有必要消除测量的应力- 应变曲线中的加热效应。

校正的等温应力r可以通过计算在给定的应变和应变率下测得的应力r相对于实际温度T的导数而得到,并且其表示如下:幸运的是,在Gleeble-3500thermomechanical模拟器上进行热压缩时,压力,应变和温度的数据可以自动记录下来。

所以它们可以用来通过直接应用公式2来计算校正后的等温应力。

在这里,应该注意的是,测量的应力r应该用摩擦校正后的应力代替。

记录的温度数据表明,1和20s-1的应变速率可能导致最大温度变化分别为5℃和35℃。

因此,在测量真应力- 应变曲线的摩擦校正之后,我们进一步对应变率为1,10和20 s-1的真应力- 应变曲线进行温度校正。

温度校正的流动应力如图2所示。

发现Cu-0.36Cr-0.03Zr合金的摩擦和/或温度校正真应力- 真应变曲线表现出动态回复或动态再结晶的典型特征,如图3所示。

图3(a)800℃,(b)900℃和(c)950℃下摩擦和/或温度校正的应力- 应变曲线3.2动态再结晶过程中的组织演变图4显示了Cu-0.36Cr-0.03Zr合金在900℃的温度和0.001至20s-1的应变率下变形后的光学显微组织。

测得的平均晶粒尺寸为46.35,41.48,30.99,22.74,16.8和17.17μm,应变速率分别为0.001,0.01,0.1,1,10 s-1和20 s-1,这表明动态再结晶晶粒尺寸基本上随着应变速率的增加而改善。

这主要是因为较高的应变速率会导致较高的变形储能,因此增加了动态再结晶的成核速率,并使再结晶晶粒长大的时间很少。

然而,在这个实验中很少例外,20s-1时的平均晶粒尺寸大于10s-1时的平均晶粒尺寸。

由于高应变率下的热压缩是绝热过程,热压缩过程中的应变率越大,实际温度越高。

它可能是导致晶粒大小的一些实验结果偏离晶粒尺寸的一般变化规律与应变速率的原因。

图4(a)0.001s-1,(b)0.01s-1,(c)0.1s-1,(d)1s-1,(e)10s的应变速率在900℃变形的微观组织-1,(f)20s-1图5显示了这种合金在应变速率为0.01s-1,温度分别为800和950℃时的显微组织。

相关文档
最新文档