最新八年级数学上册全册复习完整《人教版》课件PPT
合集下载
人教版 八年级数学上册第十二章:全等三角形复习课件(共15张PPT)
O
\ PD = PE
用途:证线段相等
E
角平分线性质的逆定理 到一个角的两边 的距离相等的点, 在这个角的平分线上。
∵ PD OA PE OB
PD = PE
\ OP 是 AOB 的平分线
用途:判定一条射线是角平分线
A C
P B
一、已知:如图∠B=∠DEF,BC=EF,补充条件 求证:ΔABC≌ ΔDEF (1)若要以“SAS”为依据,还缺条件 _A_B=_D_E _; (2) 若要以“ASA”为依据,还缺条件∠_A_CB_= _∠D;FE
E
O
B
C
6. 已知:BD⊥AM于点D,CE⊥AN于点E, BD、CE交于点F,CF=BF, 求证:点F在∠A的平分线上。
CM D
F
A
N EB
7、如图所示,DC=EC,AB∥CD,∠D=90°, AE⊥BC于E,求证:∠ACB=∠BAC.
8. 如图,四边形ABCD中,AC平分∠BAC, CE⊥AB于E,AD+AB=2AE, 求证:∠B与∠ADC互补。
2.如图(2),点D在AB上,点E在AC上, B
D
CD与BE相交于点O,且AD=AE,AB=AC.若 O
A
∠B=20°,CD=5cm,则 ∠C= 20°,BE= 5.说cm说理由.
E C 图(2)
3.如图(3),AC与BD相交于o,若
A
D
OB=OD,∠A=∠C,若AB=3cm3c,m 则
CD=
友情. 说提说示理:由公. 共边,公共角,B
(3) 若要以“AAS”为依据,还缺条件∠_A_=_∠__D ;
AD
B E CF
(4)若∠B=∠DEF=90°BC=EF,要以“HL” 为依据, 还缺条件_A_C=_D_F _
新人教版八年级上册数学全册课件
2020/10/21
注意:
A
知1-讲
c
b
1.三角形的三边用字母表示时,字
母没有顺序限制.
B
aC
2.三角形的三边,有时也用一个小写字母来表示.
如:△ABC的三边中,顶点A所对的边BC也可表示为a,
顶点B所对的边AC也可表示为b,顶点C所对的边AB也可
表示为c.
3.一般情况下,我们把边BC叫做 A的对边,AC,AB叫
2020/10/21
知2-讲
按 角 分
按 边 分
2020/10/21
三角形的分类
锐角三角形
直角三角形 钝角三角形
三边都不相等的三角形 底边和腰不相等
等腰三
三边都 角形
不相等
的三角 等边三
形
角形
等腰三角形 的等腰三角形
三角形
等边三角形
知2-练
1 下列说法:①等边三角形是等腰三角形;②等腰 三角形也可能是直角三角形;③三角形按边分类 可分为等腰三角形、等边三角形和三边都不相等 的三角形;④三角形按角分类应分为锐角三角形、 直角三角形和钝角三角形.其中正确的有( C ) A.1个 B.2个 C.3个 D.4个
同理有
AC+BC>AB,
②
AB+BC>AC.
③
一般地,我们有
三角形两边的和大于第三边. 由不等式②③移项可得BC>AB-AC,BC>AC-AB. 这就是说,三角形两边的差小于第三边.
2020/10/21
知3-导
例1 用一条长为18 cm的细绳围成一个等腰三角形. (1) 如果腰长是底边长的2倍,那么各边的长是多少? (2) 能围成有一边的长是4 cm的等腰三角形吗?为什么?
人教版八年级数学上册知识点复习课件(24张PPT)
2.线段的垂直平分线的性质: (1)线段垂直平分线上的点到这条线段两个端点的距离相等. (2)与一条线段两个端点距离相等的点在这条线段的垂直平分 线上. 3.用坐标表示轴对称: (1)点(x,y)关于x轴对称的点的坐标是(x,-y). (2)点(x,y)关于y轴对称的点的坐标是(-x,y).
4.等腰三角形的性质与判定方法: (1)性质:①等腰三角形的两个底角相等(等边对等角); ②等腰三角形的顶角的平分线、底边上的中线、底边上的高 相互重合(三线合一). (2)判定方法:如果一个三角形有两个角相等,那么这两个角 所对的边也相等(等角对等边).
第十五章 分式
1.分式有意义的条件:分式的分母不能为0.
2.分式的B·C
,
A B
=
A÷C B÷C
(A,B,C是整式,
且C≠0).
3.分式的乘除: (1)分式乘法法则:ab·dc=ba··dc. (2)分式除法法则:ab÷dc=ab·dc=ab··dc.
4.分式的加减: (1)同分母分式相加减:ac±bc=a±cb. (2)异分母分式相加减:ba±dc=abdd±bbdc=adb±dbc.
5.平方差公式:(a+b)(a-b)=a2-b2. 6.完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab +b2. 7.添括号法则: a+b+c=a+(b+c),a-b-c=a-(b+c). 添括号时,如果括号前面是正号,括到括号里的各项都不变 符号;如果括号前面是负号,括到括号里的各项都改变符 号.
8.分解因式的方法——提公因式法: (1)公因式的构成: ①系数:各项系数的最大公约数;②字母:各项含有的相同 字母;③指数:相同字母的最低次数. (2)pa+pb+pc=p(a+b+c).
新人教版初中数学八年级上册全册精品课件(分章分课时来整理)-56.ppt
需要更完整的资源请到 新世纪教 育网 -
八年级 数学
第十一章 函数 一元函数与二元一次方程组
11.3用函数观点看方程(组)与不等式
练习
市内通话问题
全球通:月租费50元,0.4元/分 神州行:0.6元/分
如何选择计费方式更省钱?
需要更完整的资源请到 新世纪教 育网 -
需要更完整的资源请到 新世纪教 育网 -
八年级 数学
第十一章 函数 一元函数与二元一次方程组
11.3用函数观点看方程(组)与不等式
需要更完整的资源请到 新世纪教 育网 -
八年级 数学
第十一章 函数 一元函数与二元一次方程组
11.3用函数观点看方程(组)与不等式
11.3用函数观点看方程(组)与不等式
作业: P46页第6题、第9题
需要更完整的资源请到 新世纪教 育网 -
是方程组_______的解( D ) •
y 3x 6 A. 2 y x 4
x a 1.如果直线y=3x+6与y=2x-4交点坐标为(a,b),则 y b
( 11,4) .• y=-x+15和y=x-7的交点坐标是 ________ 7.已知函数y=mx-(4m-3)的图象过原点,则m 3 应取值为__________ . 4 8.直线y=2x-1与y=x+4的交点是(5,9),则当 >5 x_______ 时,直线y=2x-1• 上的点在直线y=x+4上 相应点的上方;当x_______ <5 时,直线y=2x-1上的 点在直线y=x+4上相应点的下方.
八年级 数学
第十一章 函数 一元函数与二元一次方程组
11.3用函数观点看方程(组)与不等式
人教版八年级数学上册课件:期末复习指导(共49张PPT)
类型 12 分式方程及其应用 【满分向导】 (1)解分式方程时可能产生增根,所以检验是解分式 方程的必要步骤;(2)用最简公分母乘方程两边各项时, 不要漏乘常数项,不要忘记给多项式分子添加括号;(3) 列分式方程解应用题的基本方法与列整式方程解应用题 的方法类似.
28. 如果分式方程xk2--11-x2-1 x=xk2-+5x有增根 x=- 1,那么 k 的值是 9 .
8. 如图,BD 是∠ABC 的平分线,DE⊥AB,垂足 为 E,若 S△ ABC=36 cm2,AB=18 cm,BC=12 cm,则 DE 的长是( A )
A. 2.4 cm B.6 cm C.4 cm D.2 cm
【解析】∵S△ ABC=S△ ABD+S△ DBC
1
1
1
1
=2AB·DE+2BC·DE,∴36=2×18×DE+2×12×DE,
22. 若 x2-y2=24,x+y=6,则 5x+3y= 28 .
类型 10 因式分解 【满分向导】 (1)公式:①a2-b2=(a+b)(a-b);②a2±2ab+b2= (a±b)2;(2)分解因式的一般步骤:首先提取公因式,然 后考虑套公式;(3)分解因式时必须分解到每一个因式都 不能分解为止.
10. 已知点 P1(a-1,5)和 P2(2,b-1)关于 x 轴对称, 则(a+b)2018 的值为( C )
A.0
B.-1
C.1
D.(-3)2018
11. 如图,某小区有 1 、 2 、 3 栋楼房,A,B 为小区 内的两个点,要在小区道路 MN 上找一点 P,安装三个 摄像头,其中要有两个摄像头的张角相等,且三个摄像 头 相 邻 且 张 角和 为 180°, 三个 张 角 分 别 为 ∠MPA , ∠NPB,∠APB,请画出安装摄像头的点 P.
人教版数学八年级上册全套ppt课件讲义
三边均 不相等
有两条 边相等
腰
顶角 底角
三条边 均相等
不等边三角形
等腰三角形
等边三角形
底边
总结归纳
➢三条边各不相等的三角形叫做不等边三角形 ; ➢有两条边相等的三角形叫做等腰三角形; ➢三条边都相等的三角形叫做等边三角形.
思考:等边三角形和等腰三角形之间有什么关系?
我们可以把三角形按照三边情况进行分类
5个,它们分别是△ABE,△ABC,
D
△BEC,△BCD,△ECD.
A
(2)以AB为边的三角形有哪些?
E
△ABC、△ABE.
B
C
(3)以E为顶点的三角形有哪些?
△ ABE 、△BCE、 △CDE.
D A
(4)以∠D为角的三角形有哪些?
E △ BCD、 △DEC.
B
C
(5)说出△BCD的三个角和三个顶点所对的边.
基本要素:
三角形的边:边AB、BC、CA; 三角形的顶点:顶点A、B、C; 三角形的内角(简称为三角形的角):∠ A、 ∠ B、 ∠ C. 特别规定: 三角形ABC的三边,一般的顶点A所对的边记作 a,顶点B所对的边记作b,顶点C所对的边记作c.
找一找:(1)图中有几个三角形?用符号表示出这些三 角形?
由此可以得到:AC BC AB
AB BC AC AC AB BC
议一议 1.在同一个三角形中,任意两边之和与第三边有什么
大小关系?
2.在同一个三角形中,任意两边之差与第三边有什么 大小关系?
3.三角形三边有怎样的不等关系?
通过动手实验同学们可以得到哪些结论?理由是什么?
归纳总结
三角形两边的和大于第三边. 三角形两边的差小于第三边.
人教版八年级数学上册知识点总复习ppt精品课件
(等角对等 边)
第十二章 轴对称
• 五、(等边三角形)知识点回顾 • 1.等边三角形的性质: • 等边三角形的三个角都相等,并且每一个角都等于60°。 • 2、等边三角形的判定: • ①三个角都相等的三角形是等边三角形。 • ②有一个角是60 °的等腰三角形是等边三角形。 • 3.在直角三角形中,如果一个锐角等于30 ° ,那么它所对的直角边等于斜
正整数) • 幂的乘方,底数不变,指数相乘. (am)n= amn (m、n为正 • 积的乘方等于各因式乘方的积. (ab)n=anbn(n为正整数) • 同底数幂相除,底数不变,指数相减. am÷an= am-n (a≠
m、n都是正整数,且m>n)
第十五章 整式乘除与因式分解
• 零指数幂的概念: • a0=1 (a≠0) • 任何一个不等于零的数的零指数幂都等于l. • 负指数幂的概念: • a-p=a1/p (a≠0,p是正整数) • 任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数
p指数幂的倒数.
第十五章 整式乘除与因式分解
• 单项式的乘法法则: • 单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于
在一个单项式里含有的字母,则连同它的指数作为积的一个因式 • 单项式与多项式的乘法法则: • 单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再
所得的积相加. • 多项式与多项式的乘法法则: • 多项式与多项式相乘,先用一个多项式的每一项与另一个多项式
• 三、函数中自变量取值范围的求法:
• (1).用整式表示的函数,自变量的取值范围是全体实数。
• (2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
• (3)用奇次根式表示的函数,自变量的取值范围是全体实数。
第十二章 轴对称
• 五、(等边三角形)知识点回顾 • 1.等边三角形的性质: • 等边三角形的三个角都相等,并且每一个角都等于60°。 • 2、等边三角形的判定: • ①三个角都相等的三角形是等边三角形。 • ②有一个角是60 °的等腰三角形是等边三角形。 • 3.在直角三角形中,如果一个锐角等于30 ° ,那么它所对的直角边等于斜
正整数) • 幂的乘方,底数不变,指数相乘. (am)n= amn (m、n为正 • 积的乘方等于各因式乘方的积. (ab)n=anbn(n为正整数) • 同底数幂相除,底数不变,指数相减. am÷an= am-n (a≠
m、n都是正整数,且m>n)
第十五章 整式乘除与因式分解
• 零指数幂的概念: • a0=1 (a≠0) • 任何一个不等于零的数的零指数幂都等于l. • 负指数幂的概念: • a-p=a1/p (a≠0,p是正整数) • 任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数
p指数幂的倒数.
第十五章 整式乘除与因式分解
• 单项式的乘法法则: • 单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于
在一个单项式里含有的字母,则连同它的指数作为积的一个因式 • 单项式与多项式的乘法法则: • 单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再
所得的积相加. • 多项式与多项式的乘法法则: • 多项式与多项式相乘,先用一个多项式的每一项与另一个多项式
• 三、函数中自变量取值范围的求法:
• (1).用整式表示的函数,自变量的取值范围是全体实数。
• (2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
• (3)用奇次根式表示的函数,自变量的取值范围是全体实数。
人教版八年级数学上册全册课件
人教版八年级数学上册全册课件
11.2 与三角形有关的角
人教版八年级数学上册全册课件
阅读与思考 为什么要证明
人教版八年级数学上册全册课件
11.3 多边形及其内角和
第十一章 三角形
人教版八年级数学上册全册课件
11.1 与三角形有关的线段
人教版八年级数学上册全册课件
信息技术应用 画图找规律
人教版八年级数学上册全册课件
数学活动
人教版八年级数学上册全册课件
小结
人教版八年级数学上册全册课件 目录
0002页 0103页 0168页 0243页 0348页 0381页 0434页 0466页 0493页 0641页 0760页 0798页 0828页 0891页 0953页 1043页 1073页
第十一章 三角形 信息技术应用 画图找规律 阅读与思考 为什么要证明 数学活动 复习题11 12.1 全等三角形 信息技术应用 探究三角形全等的条件 数学活动 复习题12 13.1 轴对称 信息技术应用 用轴对称进行图案设计 实验与探究 三角形中边与角之间的不等关系 数学活动 复习题13 14.1 整式的乘法 阅读与思考 杨辉三角 数学活动
人教版八年级数学上册全册课件
信息技术应用 探究三角形全等 的条件
人教版八年级数学上册全册课件
12.3 角的平分线的性质
人教版八年级数学上册全册课件
数学活动
人教版八年级数学上册全册课件
人教版八年级数学上册全册课件
复习题11
人教版八年级数学上册全册课件
第十二章 全等三角形
人教版八年级数学上册全册课件
1பைடு நூலகம்.1 全等三角形
人教版八年级数学上册全册课件
12.2 三角形全等的判定
11.2 与三角形有关的角
人教版八年级数学上册全册课件
阅读与思考 为什么要证明
人教版八年级数学上册全册课件
11.3 多边形及其内角和
第十一章 三角形
人教版八年级数学上册全册课件
11.1 与三角形有关的线段
人教版八年级数学上册全册课件
信息技术应用 画图找规律
人教版八年级数学上册全册课件
数学活动
人教版八年级数学上册全册课件
小结
人教版八年级数学上册全册课件 目录
0002页 0103页 0168页 0243页 0348页 0381页 0434页 0466页 0493页 0641页 0760页 0798页 0828页 0891页 0953页 1043页 1073页
第十一章 三角形 信息技术应用 画图找规律 阅读与思考 为什么要证明 数学活动 复习题11 12.1 全等三角形 信息技术应用 探究三角形全等的条件 数学活动 复习题12 13.1 轴对称 信息技术应用 用轴对称进行图案设计 实验与探究 三角形中边与角之间的不等关系 数学活动 复习题13 14.1 整式的乘法 阅读与思考 杨辉三角 数学活动
人教版八年级数学上册全册课件
信息技术应用 探究三角形全等 的条件
人教版八年级数学上册全册课件
12.3 角的平分线的性质
人教版八年级数学上册全册课件
数学活动
人教版八年级数学上册全册课件
人教版八年级数学上册全册课件
复习题11
人教版八年级数学上册全册课件
第十二章 全等三角形
人教版八年级数学上册全册课件
1பைடு நூலகம்.1 全等三角形
人教版八年级数学上册全册课件
12.2 三角形全等的判定
人教版八年级上册数学复习-完整PPT课件
1、完成下表 抢答
已知点
(2,-3) (-1,2) (-6,-5) (0,-1.6) (4,0)
关于x轴的对称点 关于y轴的对称点
2, 3 -1,-2 -2, -3 1, 2
-6, 5 6, -5
2、已知点2ab,-3a与点’8,b2
0,16 4,0 0, -16 -4,0
若点与点’关于轴对称,则a=_____ 2b=______4_
4.三角形的分类:
1:按边分类
不 等 边 三 角 形 三 角 形 等 腰 三 角 形 腰 腰 与 与 底 底 不 相 相 等 等 的 的 等 等 边 腰 三 三 角 角 形 形
2:按角分类
直角三角形 三角形斜三角形锐 钝角 角三 三角 角形 形
5、三角形的稳定性 6、三角形内角和定理: 1什么是三角形内角和定理?
三角形的外角与内角的关系:
1:三角形的一个外角与它相邻的内角互补; 2:三角形的一个外角等于它不相邻的两个内角的和;
3:三角形的一个外角大于任何一个与它不相邻的内角。
4:三角形的外角和为360°。
8、多边形
(1)n边型内角和等于(n-2)180° (2)多边形的外角和等于360° (3)从n边形一个顶点可以作(n-3)条对角线, 把n边形分成(n-2)个三角形。
使DC=BC,连接AD
第十三章 轴对称
一轴对称图形
1、轴对称图形:
• 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称 图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
•
2、轴对称: •把一个图形沿着某一条直线折叠,如果它能与另 一个图形完全重合,那么就说这两个图关于这条 直线对称。这条直线叫做对称轴。折叠后重合的 点是对应点,叫做_对称点
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)文字证明题的书写格式要标准。
首先要分清题设和结论,然后按要求画出图 形,根据题意写出已知求证后,再写出证明过程。
(二)辅助线的运用。
平行线是辅助线中非常重要的一种
证明三角形内角和定理的方法
添加辅助线思路: 1、构造平角
A
B
图1
D
E
12
C DB
A
E
1
2
CB 图2
A
F E
12
D
C
图3
添加辅助线思路: 2、构造同旁内角
3.三角形的三线(高、中线、角平分线、)
(1 )三角形的高:从三角形的一个顶点向它的对边所在 的直线作垂线,顶点和垂足之间的线段.
A
表示法:① AD是△ABC的BC上的高线. ② AD⊥BC于D. ③ ∠ADB=∠ADC=90°.
B
注意:
DC
① 三角形的高是线段;
② 锐角三角形三条高全在三角形的内部;
考点四:三角形内角和定理:
例3 如图,点O是△ABC内一点,∠A=80°, ∠1=15°,∠2=40°,则∠BOC等于( )
A. 95° B. 120° C. 135° D. 650
分析与解: ∠O=180°-(∠OBC+∠OCB) =180°-(180°-(∠1+∠2+∠A) =∠1+∠2+∠A=135°.
5、三角形的稳定性 6、三角形内角和定理:
(1)什么是三角形内角和定理? 三角形三个内角的和等于180°
(一 )从折叠可以看出:∠A+∠B+∠C=180º
(二) 从剪拼可以看出:∠A+∠B+∠C=180º
(三) 由推理证明可知:∠A+∠B+∠C=180º
(2)三角形内角和定理的证明需要不 需要学生掌握?
课件目录
第十一章 第十二章 地十三章 地十四章 第十五章
三角形 全等三角形 轴对称 整式的乘法与因式分解 分式
第十一章 三角形中的边角关系
1.三角形的概念
不在同一直线上的三条线段首尾顺次相接组成 的图形叫做三角形.
注意: 1:三条线段要不在同一直线上,且首尾顺次相接; 2:三角形是一个封闭的图形; 3:△ABC是三角形ABC的符号标记,单独的△没有意 义
直角三角形有两条高是直角边,另一条在内部;
钝角三角形有两条高在三角形外,另一条在内部。
③ 三角形三条高所它对边中点的线段.
A
表示法:
① AD是△ABC的BC上的中线.
② BD=DC=½BC.
B
D
C
注意:
①三角形的中线是线段;
②三角形三条中线全在三角形的内部;
例4:下列说法错误的是( B) A:三角形的三条中线都在三角形内。 B:直角三角形的高线只有一条。 C:三角形的三条角平分线都在三角形内。 D:钝角三角形内只有一条高线。
例5:在三条边都不相等的三角形中,同一条边上的中 线,高和这边所对角的角平分线,最短的是(B )
A:中线。 B:高线。 C:角平分线。 D:不能确定。
③三角形三条中线交于三角形内部一点;
④中线把三角形分成两个面积相等的三角形.
4.三角形的分类:
1:按边分类
不 等 边 三 角 形 三 角 形 等 腰 三 角 形 腰 腰 与 与 底 底 不 相 相 等 等 的 的 等 等 边 腰 三 三 角 角 形 形
2:按角分类
直角三角形 三角形 斜三角形 锐 钝角 角三 三角 角形 形
2.三角形的三边关系
三角形的任意两边之和大于第三边; 三角形的任意两边之差小于第三边.
注意:
1:三边关系的依据是:两点之间线段最短 2:判断三条线段能否构成三角形的方法:
只要满足较小的两条线段之和大于第三条线段, 便可构成三角形;若不满足,则不能构成三角形. 3:三角形第三边的取值范围是:
两边之差<第三边<两边之和
1 B
A
O 2 C
图1
考点五:特色图形
.1 已知:如图,AB∥CD,直线EF分别交AB、
CD于点E、F,∠BEF的平分线与∠DFE的平分线 相交于点P.求证∠P=90°.
2.如图,已知,直线AB ∥ CD,证明: ∠A+∠C=∠AEC.
3.如图,已知,直线AD∥BC, A 求证: ∠D + ∠C + ∠E =180°
E
A
E
A
F
B 图1
12 3 4
C
B
D
C
图2
7.三角形的外角
三角形的外角的定义: 三角形一边与另一边的延长线 组成的角,叫做三角形的外角.
三角形的外角与内角的关系:
1:三角形的一个外角与它相邻的内角互补; 2:三角形的一个外角等于它不相邻的两个内角的和;
3:三角形的一个外角大于任何一个与它不相邻的内角。
方法指引
证明两个三角形全等的基本思路:
找第三边 (SSS)
(1)已知两边---- 找夹角 (SAS)
找是否有直角 (HL)
已知一边和它的邻角
(2)已知一边一角---
找这边的另一个邻角(ASA)
• (2):全等三角形的周长相等、面积相等。
• (3):全等三角形的对应边上的对应中线、 角平分线、高线分别相等。
知识回顾: 包括直角三角形
一般三角形 全等的条件:
1.定义(重合)法;
解题 2.SSS;
中常 3.SAS;
不包括其它形
用的 4种
4.ASA;
状的三角形
方法 5.AAS.
直角三角形 全等特有的条件:HL.
B
4.如图,求证: ∠BOC=∠A+∠B+∠C.
D E
C
第十二章 全等三角形
一.全等三角形:
1:什么是全等三角形?
能够完全重合的两个三角形叫做全等三角 形。
一个三角形经过哪些变化可以得到它的全等 形?
一个三角形经过平移、翻折、旋转可以得到它 的全等形。
2:全等三角形有哪些性质?
• (1):全等三角形的对应边相等、对应角相等。
考点二:三角形三边关系
例2 :已知四组线段的长分别如下,以各组线段 为边,能组成三角形的是( C )
A.1,2,3 C.3,4,5
B.2,5,8 D.4,5,10
例3.△ABC的三边长分别为4、9、x, ⑴ 求x的取值范围; ⑵ 求△ABC周长的取值范围;
两边之差<第三边<两边之和
考点三:三角形的三线
4:三角形的外角和为360°。
8、多边形
(1)n边型内角和等于(n-2)x180° (2)多边形的外角和等于360° (3)从n边形一个顶点可以作(n-3)条对角线, 把n边形分成(n-2)个三角形。
(4)n边形最多可以作
n(n-3) 2
条对角线。
考点一:数三角形的个数
例1 图中三角形的个数是( B ) A.8 B.9 C.10 D.11
首先要分清题设和结论,然后按要求画出图 形,根据题意写出已知求证后,再写出证明过程。
(二)辅助线的运用。
平行线是辅助线中非常重要的一种
证明三角形内角和定理的方法
添加辅助线思路: 1、构造平角
A
B
图1
D
E
12
C DB
A
E
1
2
CB 图2
A
F E
12
D
C
图3
添加辅助线思路: 2、构造同旁内角
3.三角形的三线(高、中线、角平分线、)
(1 )三角形的高:从三角形的一个顶点向它的对边所在 的直线作垂线,顶点和垂足之间的线段.
A
表示法:① AD是△ABC的BC上的高线. ② AD⊥BC于D. ③ ∠ADB=∠ADC=90°.
B
注意:
DC
① 三角形的高是线段;
② 锐角三角形三条高全在三角形的内部;
考点四:三角形内角和定理:
例3 如图,点O是△ABC内一点,∠A=80°, ∠1=15°,∠2=40°,则∠BOC等于( )
A. 95° B. 120° C. 135° D. 650
分析与解: ∠O=180°-(∠OBC+∠OCB) =180°-(180°-(∠1+∠2+∠A) =∠1+∠2+∠A=135°.
5、三角形的稳定性 6、三角形内角和定理:
(1)什么是三角形内角和定理? 三角形三个内角的和等于180°
(一 )从折叠可以看出:∠A+∠B+∠C=180º
(二) 从剪拼可以看出:∠A+∠B+∠C=180º
(三) 由推理证明可知:∠A+∠B+∠C=180º
(2)三角形内角和定理的证明需要不 需要学生掌握?
课件目录
第十一章 第十二章 地十三章 地十四章 第十五章
三角形 全等三角形 轴对称 整式的乘法与因式分解 分式
第十一章 三角形中的边角关系
1.三角形的概念
不在同一直线上的三条线段首尾顺次相接组成 的图形叫做三角形.
注意: 1:三条线段要不在同一直线上,且首尾顺次相接; 2:三角形是一个封闭的图形; 3:△ABC是三角形ABC的符号标记,单独的△没有意 义
直角三角形有两条高是直角边,另一条在内部;
钝角三角形有两条高在三角形外,另一条在内部。
③ 三角形三条高所它对边中点的线段.
A
表示法:
① AD是△ABC的BC上的中线.
② BD=DC=½BC.
B
D
C
注意:
①三角形的中线是线段;
②三角形三条中线全在三角形的内部;
例4:下列说法错误的是( B) A:三角形的三条中线都在三角形内。 B:直角三角形的高线只有一条。 C:三角形的三条角平分线都在三角形内。 D:钝角三角形内只有一条高线。
例5:在三条边都不相等的三角形中,同一条边上的中 线,高和这边所对角的角平分线,最短的是(B )
A:中线。 B:高线。 C:角平分线。 D:不能确定。
③三角形三条中线交于三角形内部一点;
④中线把三角形分成两个面积相等的三角形.
4.三角形的分类:
1:按边分类
不 等 边 三 角 形 三 角 形 等 腰 三 角 形 腰 腰 与 与 底 底 不 相 相 等 等 的 的 等 等 边 腰 三 三 角 角 形 形
2:按角分类
直角三角形 三角形 斜三角形 锐 钝角 角三 三角 角形 形
2.三角形的三边关系
三角形的任意两边之和大于第三边; 三角形的任意两边之差小于第三边.
注意:
1:三边关系的依据是:两点之间线段最短 2:判断三条线段能否构成三角形的方法:
只要满足较小的两条线段之和大于第三条线段, 便可构成三角形;若不满足,则不能构成三角形. 3:三角形第三边的取值范围是:
两边之差<第三边<两边之和
1 B
A
O 2 C
图1
考点五:特色图形
.1 已知:如图,AB∥CD,直线EF分别交AB、
CD于点E、F,∠BEF的平分线与∠DFE的平分线 相交于点P.求证∠P=90°.
2.如图,已知,直线AB ∥ CD,证明: ∠A+∠C=∠AEC.
3.如图,已知,直线AD∥BC, A 求证: ∠D + ∠C + ∠E =180°
E
A
E
A
F
B 图1
12 3 4
C
B
D
C
图2
7.三角形的外角
三角形的外角的定义: 三角形一边与另一边的延长线 组成的角,叫做三角形的外角.
三角形的外角与内角的关系:
1:三角形的一个外角与它相邻的内角互补; 2:三角形的一个外角等于它不相邻的两个内角的和;
3:三角形的一个外角大于任何一个与它不相邻的内角。
方法指引
证明两个三角形全等的基本思路:
找第三边 (SSS)
(1)已知两边---- 找夹角 (SAS)
找是否有直角 (HL)
已知一边和它的邻角
(2)已知一边一角---
找这边的另一个邻角(ASA)
• (2):全等三角形的周长相等、面积相等。
• (3):全等三角形的对应边上的对应中线、 角平分线、高线分别相等。
知识回顾: 包括直角三角形
一般三角形 全等的条件:
1.定义(重合)法;
解题 2.SSS;
中常 3.SAS;
不包括其它形
用的 4种
4.ASA;
状的三角形
方法 5.AAS.
直角三角形 全等特有的条件:HL.
B
4.如图,求证: ∠BOC=∠A+∠B+∠C.
D E
C
第十二章 全等三角形
一.全等三角形:
1:什么是全等三角形?
能够完全重合的两个三角形叫做全等三角 形。
一个三角形经过哪些变化可以得到它的全等 形?
一个三角形经过平移、翻折、旋转可以得到它 的全等形。
2:全等三角形有哪些性质?
• (1):全等三角形的对应边相等、对应角相等。
考点二:三角形三边关系
例2 :已知四组线段的长分别如下,以各组线段 为边,能组成三角形的是( C )
A.1,2,3 C.3,4,5
B.2,5,8 D.4,5,10
例3.△ABC的三边长分别为4、9、x, ⑴ 求x的取值范围; ⑵ 求△ABC周长的取值范围;
两边之差<第三边<两边之和
考点三:三角形的三线
4:三角形的外角和为360°。
8、多边形
(1)n边型内角和等于(n-2)x180° (2)多边形的外角和等于360° (3)从n边形一个顶点可以作(n-3)条对角线, 把n边形分成(n-2)个三角形。
(4)n边形最多可以作
n(n-3) 2
条对角线。
考点一:数三角形的个数
例1 图中三角形的个数是( B ) A.8 B.9 C.10 D.11