一阶偏微分方程
一阶偏微分方程的特征方程
![一阶偏微分方程的特征方程](https://img.taocdn.com/s3/m/086b0761bf23482fb4daa58da0116c175f0e1ebe.png)
一阶偏微分方程的特征方程(原创版)目录一、什么是特征方程二、特征方程与偏微分方程的关系三、如何使用特征方程求解偏微分方程四、特征方程在实际问题中的应用五、结论正文一、什么是特征方程特征方程是一种数学方程,它用于描述线性微分方程的特征根和特征向量。
在偏微分方程中,特征方程通常用于求解方程的通解。
对于一阶偏微分方程,特征方程的形式通常为:a(x, y) * u_x + b(x, y) * u_y + c(x, y) * u = 0其中,a(x, y)、b(x, y) 和 c(x, y) 是方程的系数,u_x 和 u_y 分别是 u 关于 x 和 y 的偏导数,u 是未知函数。
二、特征方程与偏微分方程的关系特征方程与偏微分方程的关系密切。
在求解偏微分方程时,我们首先需要找到特征方程的根,然后根据这些根构建特征向量,最后利用特征向量求解偏微分方程的通解。
具体来说,对于一阶偏微分方程,我们可以通过以下步骤求解:1.求特征方程的根:通过分离变量法或常数变易法等方法,将偏微分方程化为特征方程,并求解该方程的根。
2.构建特征向量:对于每个特征根,我们构造一个特征向量,使得该向量在偏微分方程的作用下发生变换。
3.求解通解:利用特征向量和特征根,我们可以求解偏微分方程的通解。
通常,通解的形式为:u(x, y) = C_1 * e^(r_1 * x) * (y - y_0)^(r_2) + C_2 * e^(r_3 * x) * (y - y_0)^(r_4)其中,C_1 和 C_2 是待定系数,r_1、r_2、r_3 和 r_4 是特征根,y_0 是特征向量的纵坐标。
三、如何使用特征方程求解偏微分方程在实际求解过程中,我们通常采用以下步骤:1.确定偏微分方程的类型:根据方程的系数和变量,判断方程是一阶还是高阶偏微分方程,是线性还是非线性偏微分方程。
2.求解特征方程:将偏微分方程化为特征方程,并求解该方程的根。
3.构建特征向量:对于每个特征根,我们构造一个特征向量,使得该向量在偏微分方程的作用下发生变换。
第七章一阶线性偏微分方程
![第七章一阶线性偏微分方程](https://img.taocdn.com/s3/m/83c620e619e8b8f67c1cb94b.png)
Ψ ϕ1(x1, · · · , xn), · · · , ϕn−1(x1, · · · , xn)
= 常数
xj =ψj (xn)
(2) µ0dx + µ1dy1 + · · · + µndyn是某个函数ϕ的全微分,则ϕ = c就是方程的一个首次积 分。
【例1】 求方程组
的通积分。 【例2】 解方程组
dx xz
=
dy yz
=
dz xy
dx x
=
dy y
=
z
+
dz x2 + y2 + z2
7.2.4 一阶齐次线性偏微分方程的求解
7.2 一阶线性偏微分方程的求解
7.2.1 首次积分
定义 7.1 含有n个未知函数的一阶常微分方程组
dy1 dx
dy2 dx
= f1(x, y1, y2, · · · , yn), = f2(x, y1, y2, · · · , yn),
x2,
·
·
·
,
xn)
∂u ∂xi
=
0
(7.3)
则称其为一阶线性齐次偏微分方程。 4. 非线性偏微分方程 不是线性的偏微分方程为非线性偏微分方程。 5. 拟线性偏微分方程 若非线性偏微分方程关于其最高阶偏导数是线性的,则称它是拟线性偏微分方程。 本章讨论如下的一阶拟线性偏微分方程
n j=1
bj
(x1,பைடு நூலகம்
7.2 一阶线性偏微分方程的求解
5
7.2.3 利用首次积分求解常微分方程组
定义 7.2 称 方 程 组(7.5)的n个 互 相 独 立 的 首 次 积 分 全 体ϕj(x, y1, · · · , yn) = cj,j = 1, 2, · · · , n为方程组(7.5)的通积分。
2. 一阶偏微分方程
![2. 一阶偏微分方程](https://img.taocdn.com/s3/m/570bee440b1c59eef8c7b448.png)
§2 一阶偏微分方程一、 柯西-柯娃列夫斯卡娅定理[一阶偏微分方程的通解] 一阶偏微分方程的一般形式 是0),,,,,,,,(2121=∂∂∂∂∂∂nn x ux u x u u x x x F或()0,,,,,,,211=n n p p p u x x F ,其中()n i x up ii ,,2,1 =∂∂=如解出p 1,可得:p 1 = f (x 1 , x 2 ,…, x n , u , p 2 ,…, p n )当方程的解包含某些“任意元素”(指函数),如果适当选取“任意元素”时,可得方程的任意解(某些“奇异解”除外),则称这样的解为通解.在偏微分方程的研究中,重点在于确定方程在一些附加条件(即定解条件)下的解,而不在于求通解.[一阶方程的柯西问题]()()⎪⎩⎪⎨⎧==∂∂=n x x n n x x u p p u x x x f x u,,|,,,,,,,22211011 ϕ 称为柯西问题,式中),,(2n x x ϕ为已知函数,对柯西问题有如下的存在惟一性定理.[柯西-柯娃列夫斯卡娅定理] 设 f ( x 1 , x 2 ,, x n , u , p 2 ,, p n ) 在点 ( x 10 , x 20 ,, x n 0 , u 0 , p 20 ,, p n 0 ) 的某一邻域内解析,而),,(2n x x ϕ在点( x 20 ,, x n 0 ) 的某邻域内解析,则柯西问题在点 ( x 10 ,, x n 0 ) 的某一邻域内存在着惟一的解析解.这个定理应用的局限性较大,因它要求f 及初始条件都是解析函数,一般的定解问题未必能满足这种条件.对高阶方程也有类似定理.二、 一阶线性方程1. 一阶齐次线性方程[特征方程∙特征曲线∙初积分(首次积分)] 给定一阶齐次线性方程()()0,,,,,,211211=∂∂++∂∂n n n n x ux x x a x u x x x a (1)式中a i 为连续可微函数,在所考虑的区域内的每一点不同时为零(下同).方程组在有些书中写作0),,,,,,,,,(121=∂∂∂∂∂∂nn x ux u t u u x x x t F()n i ix x x a tx ,,,d d 21 = ( i = 1,2,, n ) 或()()()n n n n n x x x a x x x x a x x x x a x ,,,d ,,,d ,,,d 2121222111 === (2) 称为一阶齐次线性偏微分方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n )满足特征方程(2),就称曲线l 为一阶齐次线性方程的特征曲线.如果函数ψ ( x 1 , x 2 ,, x n )在特征曲线),,2,1()(n i t x x i i ==上等于常数,即ψ ( x 1(t ) , x 2(t ) ,, x n (t ) ) = c 就称函数ψ ( x 1, x 2,, x n )为特征方程(2)的初积分(首次积分). [齐次方程的通解]1o 连续可微函数u = ψ ( x 1, x 2,, x n ) 是齐次线性方程(1)的解的充分必要条件是: ψ ( x 1, x 2,, x n )是这个方程的特征方程的初积分.2o 设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 是特征方程(2)在区域D 上连续可微而且相互独立的初积分(因此在D 内的每一点,矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂---n n n n n n x x x x x x x x x 121112221212111ψψψψψψψψψ的秩为n 1-) ,则u = ω ( ψ1 ( x 1 , x 2 ,, x n ) ,, ψn -1 ( x 1 , x 2 ,, x n ) ) 是一阶齐次线性方程(1)的通解,其中ω为n 1-个变量的任意连续可微函数. [柯西问题] 考虑方程的柯西问题()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni ini x x u x u x x x a ,,|0,,,2121011 ϕ 式中ϕ ( x2 ,, x n )为已知的连续可微函数.设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 为特征方程的任意n 1-个相互独立的初积分,引入参变量 i ψ (1,,2,1-=n i ),从方程组()()()⎪⎪⎩⎪⎪⎨⎧===--120112201212011,,,,,,,,,n n n n n x x x x x x x x x ψψψψψψ解出x 2 ,, x n 得()()⎪⎩⎪⎨⎧==--12112122,,,,,,n n nn x x ψψψωψψψω 则柯西问题的解为u = ϕ ( ω2 ( ψ1 , ψ2 ,, ψn -1 ) ,, ωn ( ψ1 , ψ2 ,, ψn -1 ) )2.非齐次线性方程它的求解方法与拟线性方程相同.三、 一阶拟线性方程一阶拟线性方程为()()∑==∂∂ni n in i u x x x R x uu x x x a 12121,,,,,,,, 其中a i 及R 为x 1 , x 2 ,, x n , u 的连续可微函数且不同时为零. [一阶拟线性方程的求解和它的特征方程]()()⎪⎩⎪⎨⎧===u x x x R tun i u x x x a t x n n i i,,,,d d ),,2,1(,,,,d d 2121 或()()()ux x R uu x x a x u x x a x n n n n n ,,,d ,,,d ,,,d 11111 === 为原拟线性方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n ) , u = u (t ) 满足特征方程,则称它为拟线性方程的特征曲线.设 ψi ( x 1 ,, x n ,u ) ( i = 1,2,, n ) 为特征方程的n 个相互独立的初积分,那末对于任何连续可微函数ω,ω ( ψ1 ( x 1,, x n , u ) , ψ2 ( x 1,, x n , u ) ,, ψn ( x 1,, x n , u ) ) = 0 都是拟线性方程的隐式解.[柯西问题] 考虑方程的柯西问题()()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni n i ni x x u u x x x R x u u x x x a ,,|,,,,,,,,212121011 ϕ ϕ为已知的连续可微函数.设 ψ1 ( x 1 , x 2 ,, x n , u ) ,, ψn ( x 1 , x 2 ,, x n , u ) 为特征方程的n 个相互独立的初积分,引入参变量 n ψψψ,,,21 , 从()()()⎪⎪⎩⎪⎪⎨⎧===nn n n n u x x x u x x x u x x x ψψψψψψ,,,,,,,,,,,,2012201212011解出 x 2 ,, x n , u()()()⎪⎪⎩⎪⎪⎨⎧===n n n n n u x x ψψψωψψψωψψψω,,,,,,,,,21212122 则由()()()()()()()0,,,,,,,,,,,,,,,,,,,,,,2121221221121=-≡n n n n n n u x x x u x x x u x x x V ψψψωψψψωϕψψω给出柯西问题的隐式解.四、 一阶非线性方程[完全解·通解·奇异解] 一阶非线性方程的一般形式为()()n i x u p p p p u x x x F ii n n ,,2,10,,,,,,,,2121 =∂∂==若一阶偏微分方程的解包含任意n 个独立的常数,则称这样的解为完全解(全积分). 若V ( x 1, x 2 ,, x n , u , c 1 , c 2,, c n ) = 0为方程的完全解,从()n i c VV i ,,2,10,0 ==∂∂= 消去c i ,若得一个解,则称它为方程的奇异解(奇积分).以两个独立变量为例说明完全解与通解、奇异解的关系,设方程()yzq x z p q p z y x F ∂∂=∂∂==,,0,,,,有完全解V (x ,y ,z ,a ,b )=0 ( a ,b 为任意常数),则方程等价于从方程组()⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂=0,00,,,,q z Vy V p z V x V b a z y x V 消去a ,b 所得的方程.利用常数变易法把a ,b 看作x , y 的函数,将V (x ,y ,z ,a ,b )=0求关于x , y 的偏导数,得00=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂ybb V y a a V q z V y V xbb V x a a V p z V x V那末0,0=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂y b b V y a a V x b b V x a a V 与V=0联立可确定a ,b .有三种情况:1︒ 0≡∂∂≡∂∂bV a V ,将其与V (x ,y ,z ,a ,b )=0联立可确定不含任意常数的奇异解.2︒ 如0=∂∂=∂∂=∂∂=∂∂y bx b y a x a ,即回到完全解.3︒ 当0/,0/≡∂∂≡∂∂b V a V 时,必有()()0,,=∂∂y x b a ,这时,如果不属于情形2︒ ,则a 与b 存在函数关系:b=ω(a ),这里ω为任意可微函数,并从方程V (x ,y ,z ,a ,b )=0和()∂∂∂∂ωV a Vba +'=0消去a ,b ,可确定方程的通解.定理 偏微分方程的任何解包含在完全解内或通解内或奇异解内. [特征方程·特征带·特征曲线·初积分] 在一阶非线性方程:()F x x x u p p p n n 12120,,,,,,,, =中,设F 对所有变量的二阶偏导数存在且连续,称()n i uF p x F t p p Fp t u p F t x i i i ni ii i i ,,2,1)(d d d d ,1 =∂∂+∂∂-=∂∂=∂∂=∂∂∑=或up x p up x p p Fp up x p xp x n n n ni iinn ∂+∂-==∂+∂-=∂∂=∂==∂=∂∑=d d d d d d 11112211为非线性方程的特征方程.设特征方程的解为x i =x i (t ), u=u (t ), p i =p i (t ) (i =1,2,…,n )称它为非线性方程的特征带.在x 1,x 2,, x n ,u 空间的曲线x i =x i (t ), u=u (t ) (i=1,2,…,n )称为非线性方程的特征曲线.如果函数()n n p p p u x x x G ,,,,,,,,2121 在特征方程的任一解x i =x i (t ) (i =1,2,, n ), u=u (t ), p i =p i (t ) (i =1,2,, n )上等于常数,即()()()()()()()()G x t x t x t u t p t p t p t C n n 1212,,,,,,,, =那末函数()n n p p p u x x x G ,,,,,,,,2121 称为特征方程的初积分.[求完全解的拉格朗日-恰比方法] 考虑两个变量的情况.对于方程F (x ,y ,z ,p ,q )=0,选择使雅可比式()()0,,≠∂∂q p G F 的一个初积分G (x ,y ,z ,p ,q ).解方程组 ()()F x y z p q G x y z p q a ,,,,,,,,==⎧⎨⎪⎩⎪0(a 为任意常数) 得p (x ,y ,z ,a )及q (x ,y ,z ,a ).则方程d z=p d x+q d y的通解V (x ,y ,z ,a ,b )=0(b 是积分d z=p d x+q d y 出现的任意常数)就是方程F (x ,y ,z ,p ,q )=0的完全解. 例 求方程()z p q x y 22222+=+的完全解.解 方程的特征方程为()()()qy x z y qp q p z x p q p z z q z y p z x 22222222222d 22d 2d 2d 2d +-=+-=+== 这里成立zpxx p z z p d d d =+ 所以特征方程的一个初积分为z 2p 2 -x 2 .解方程组 ()()z p q x y z p x a22222222+-+=-=⎧⎨⎪⎩⎪ (a 为任意常数) 得 p a x zq y az=+=-22, 积分微分方程得完全解z x x a y y a a x x a y y ab 22222=++-++++-+ln(b 为任意常数)[某些容易求完全解的方程] 1︒ 仅含p ,q 的方程F (p ,q )=0G =p 是特征方程的一个初积分.从F (p ,q )=0与p=a (a 为任意常数)得q=ψ(a ),积分d z=a d x+ψ(a )d y得完全解z=ax+ψ(a )y+b (b 为任意常数)2︒ 不显含x ,y 的方程F (z ,p ,q )=0 特征方程为z Fqqz F p p q F q p F p z q F y p F x ∂∂-=∂∂-=∂∂+∂∂=∂∂=∂∂d d d d d 因此q d p-p d q =0,显然G qp=为一个初积分,由F (z ,p ,q )=0,q=pa (a 为任意常数)解得p=ψ(z ,a ).于是由d z=ψ(z ,a )d x+a ψ(z ,a )d y得()⎰++=b ay x a z z,d ψ (b 为任意常数) 可确定完全解.3︒ 变量分离形式的方程()f x p i i i i n,=∑=10特征方程为nn n ni iiinn n x f p x f p p f p zp f x p f x ∂∂-==∂∂-=∂∂=∂∂==∂∂∑=d d d d d 1111111可取初积分G i =f i (x i ,p i ) , (i =1,2,, n ).从f i (x i ,p i )=a i (i =1,2,, n )解出p i =ϕi (x i ,a i )得完全解()∑⎰=+=ni i i i i b x a x z 1d ,ϕ式中a i ,b 为任意常数,且a i i n=∑=10.[克莱罗方程] 方程()z p x f p p p i i n i n=+=∑121,,,称为克莱罗方程,其完全解为()z c x f c c c i i n i n=+=∑121,,,对c i 微分得x fc i i=-∂∂ (i =1,2,…,n ) 与完全解的表达式联立消去c i 即得奇异解.例 求方程z -xp -yq -pq =0的完全解和奇异解. 解 这是克莱罗方程,它的完全解是z=ax+by+ab对a,b 微分,得x=-b,y=-a ,消去a ,b 得奇异解z=-xy[发甫方程] 方程P (x,y,z )d x+Q (x,y,z )d y+R (x,y,z )d z=0 (1) 称为发甫方程,如果P,Q,R 二次连续可微并满足适当条件,那末方程可积分.如果可积分成一关系式时,则称它为完全可积.1︒ 方程完全可积的充分必要条件 当且仅当P,Q,R 满足条件0)()()(=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂yP x Q R x R z P Q z Q y R P (2) 时,存在一个积分因子μ(x,y,z ),使d U 1=μ(P d x+Q d y+R d z )从而方程的通解为U 1(x,y,z )=c特别,当0,0,0=∂∂-∂∂=∂∂-∂∂=∂∂-∂∂yPx Q x R z P z Q y R 时,存在一个函数U (x,y,z )满足zUR y U Q x U P ∂∂=∂∂=∂∂=,, 从而 d U=P d x+Q d y+R d z 所以方程的通解为U (x,y,z )=c 所以完全可积的发甫方程的通解是一单参数的曲面族.定理 设对于发甫方程(1)在某区域D 上的完全可积条件(2)成立,则对D 内任一点M (x,y,z )一定有方程的积分曲面通过,而且只有一个这样的积分曲面通过. 2︒ 方程积分曲面的求法设完全可积条件(2)成立.为了构造积分曲面,把z 看成x,y 的函数(设R (x,y,z )≠0),于是原方程化为y RQ x R P z d d d --=由此得方程组()()()()⎪⎪⎩⎪⎪⎨⎧≡-=∂∂≡-=∂∂4,,3,,11z y x Q R Q y z z y x P R P x z发甫方程(1)与此方程组等价.把方程(3)中的y 看成参变量,积分后得一个含有常数 c 的通解()cy x z ~;,ϕ= 然后用未知函数()~cy 代替常数 c ,将()()z x y c y =ϕ,;~代入方程(4),在完全可积的条件下,可得()~cy 的一个常微分方程,其通解为 ()()~,cy y c =ψ c 为任意常数,代回()()z x y cy =ϕ,;~中即得发甫方程的积分曲面 z=ϕ(x,y,ψ(y,c ))由于发甫方程关于x,y,z 的对称性,在上面的讨论中,也可把x 或y 看成未知函数,得到同样的结果.例 求方程yz d x+2xz d y+xy d z=0的积分曲面族.解 容易验证完全可积条件成立,显然存在一个积分因子μ=1xyz,用它乘原方程得 0d d 2d =++zz y y x x 积分后得积分曲面族xy 2z=c也可把方程化为等价的方程组⎪⎪⎩⎪⎪⎨⎧-=∂∂-=∂∂y z yz x z xz 2 把y 看成参变量,积分xzx z -=∂∂得通解 zx c= 用未知函数()~cy 代替 c ,将()y c zx ~=代入方程y z y z 2-=∂∂得 ()()yy cy y c ~2d ~d -= 积分后有()~cy c y =2所以原方程的积分曲面族是xy 2z=c五、 一阶线性微分方程组[一阶线性偏微分方程组的一般形式] 两个自变量的一阶线性方程组的形式是()n i F u C x u B t u A i n j j ij n j n j jij j ij ,,2,10111 ==++∂∂+∂∂∑∑∑=== 或()n i f u b x u a t u i n j j ij n j j ij i,,2,1011 ==++∂∂+∂∂∑∑== (1) 其中A ij ,B ij ,C ij ,F i ,a ij ,b ij ,f i 是(x,t )的充分光滑函数.[特征方程·特征方向·特征曲线]⎩⎨⎧=≠==-ji ji txa ij ij ij ,1,0,0)d d det(δδ称为方程组(1)的特征方程.在点(x,t )满足特征方程的方向txd d 称为该点的特征方向.如果一条曲线l ,它上面的每一点的切线方向都和这点的特征方向一致,那末称曲线l 为特征曲线.[狭义双曲型方程与椭圆型方程] 如果区域D 内的每一点都存在n 个不同的实的特征方向,那末称方程组在D 内为狭义双曲型的.如果区域D 内的每一点没有一个实的特征方向,那末称方程组在D 内为椭圆型的. [狭义双曲型方程组的柯西问题] 1︒ 化方程组为标准形式——对角型因为det(a ij -δij λ)=0有n 个不同的实根λ1(x,t ) ,, λn (x,t ),不妨设),(),(),(21t x t x t x n λλλ<<<那末常微分方程()()n i t x txi ,,2,1,d d ==λ的积分曲线l i (i =1,2,…,n )就是方程组(1)的特征曲线. 方程()()aijk ij k i i n-==∑λδλ1的非零解(λk (1) ,, λk (n ))称为对应于特征方向λk 的特征矢量.作变换()()n i u v nj jj i i ,,2,11==∑=λ可将方程组化为标准形式——对角型()()()()n i t x v t x a x v t x t v i nj j ij ii i ,,2,1,,,1=+=∂∂+∂∂∑=βλ 所以狭义双曲型方程组可化为对角型,而一般的线性微分方程组(1)如在区域D 内通过未知函数的实系数可逆线性变换可化为对角型的话,(此时不一定要求 λi 都不相同),就称这样的微分方程组在D 内为双曲型的. 2︒ 对角型方程组的柯西问题 考虑对角型方程组的柯西问题()()()()()()n i x x v t x v t x a x v t x tv i inj i j ij i i i,,2,10,,,,1 =⎪⎩⎪⎨⎧=+=∂∂+∂∂∑=ϕβλϕi (x )是[a,b ]上的连续可微函数.设αij ,βi ,λi 在区域D 内连续可微,在D 内可得相应的积分方程组()()()n i tv x t x v il i n j j ij i i i ,,2,1d ,~1 =⎥⎦⎤⎢⎣⎡++=⎰∑=βαϕ 式中 l i 为第i 条特征曲线l i 上点(x,t )与点(x i ,0)之间的一段,(x i ,0)为l i与x 轴上[a,b ]的交点.上式可以更确切地写为()()[]()[]()[]()[]⎰∑⎭⎬⎫⎩⎨⎧+⋅+==t n j i i i j i ij i i i t x x t x x v t x x a t x x t x v 01d ,,,,,,,,,0,,,τττβττττϕ(i =1,2,, n )式中x i =x i (x ︒,t ︒,t )为过点(x ︒,t ︒)的第i 条特征曲线,利用逐次逼近法可解此积分方程.为此令()()()[]()()()()[]()[]()()[]()[]()()()()[]()[]()()[]()[]()n i t x x t x x v t x x a t x x t x v n i t x x t x x v t x x a t x x t x v n i t x x t x v i i tnj i k j i ij i i k ii i tn j i j i ij i i ii i i ,,2,1d ,,,,,,,,,0,,,,,2,1d ,,,,,,,,,0,,,,,2,10,,,}{}{01101010=+⋅+==+⋅+===⎰∑⎰∑=-=τττβττττϕτττβττττϕϕ序列{v i(k )} (k =0,1,2 ,)一致收敛于积分方程的连续可微解v i (x,t ) (i =1,2,, n ),这个v i (x,t )也就是对角型方程组的柯西问题的解.设在区域D 内对角型方程组的柯西问题的解存在,那末解与初值有下面的关系:(i) 依赖区间:过D 中任意点M (x,t )作特征曲线l 1,l n ,交x 轴于B,A ,称区间[A,B ]为M 点的依赖区间(图14.1(a )),解在M 点的值由区间[A,B ]的初值确定而与[A,B ]外的初值无关.(ii) 决定区域:过点A,B 分别作特征曲线l n ,l 1,称l n ,l 1 与区间[A,B ]围成的区域D 1为区间[A,B ]的决定区域(图14.1(b )),在区域D 1中解的值完全由[A,B ]上的初值决定.(iii) 影响区域:过点A,B 分别作特征曲线l 1,l n ,称l 1,l n 与[A,B ]围成的区域D 2为区间[A,B ]的影响区域(图14.1(c )).特别当区间[A,B ]缩为一点A 时,A 点的影响区域为D 3(图14.1(d )).在区域D 2中解的值受[A,B ]上的初值影响,而在区域D 2外的解的值则不受[A,B ]上的初值影响.图14.1[线性双曲型方程组的边值问题] 以下列线性方程组来说明:()⎪⎪⎩⎪⎪⎨⎧<++=∂∂+∂∂++=∂∂+∂∂2122221111λλλλc v b u a x v t v c v b u a xu t u (1) 1︒ 第一边值问题(广义柯西问题) 设在平面(x,t )上给定曲线段⋂AB ,它处处不与特征方向相切.过A,B 分别引最左和最右的特征曲线l 1及l 2.要求函数u (x,t ),v (x,t )在⋂AB ,l 1及l 2围成的闭区域D 上满足方程组,且在⋂AB 上取给定的函数值(图14.2(a )).2︒ 第二边值问题(古沙问题) 设l 1是过P 点的第一族特征线,l 2是第二族特征线,在l 1的一段PA 上给定v (x,t )的数值,在l 2的一段PB 上给定u (x,t )的数值,过A 点作第二族特征线,过B 点作第一族特征线相交于Q .求在闭区域PAQB 上方程组的解(图14.2(b )).3︒ 第三边值问题 设AB 为非特征曲线的曲线弧,AC 为一特征线弧,且在AB 与AC 之间不存在过A 点的另外特征曲线,过C 点作第二族特征线与过B 点的第一族特征线交于E 点,在AC 上给定v (x,t )的数值,在AB 上给定u (x,t )的数值,求ACEBA 所围成的闭区域D 上的方程组的解(图14.2(c )).图14.2[边值问题的近似解——特征线法] 以上定解问题,可用逐步逼近法求解,也可用特征线法求解的近似值.以第一边值问题为例说明.在曲线AB 上取n 个分点A 1,A 2,, A n ,并记A 为A 0,B 为A n +1,过A 0按A 0的第二特征方向作直线与过A 1按A 1的第一特征方向作直线相交于B 0;过A 1按A 1第二特征方向作直线与过A 2按A 2的第一特征方向作直线相交于B 1,最后得到B n (图14.3).用如下的近似公式来确定方程组(1)的解u (x,t ),v (x,t )在B i (i =0,1,2,…,n )的数值:()()()()()()(){}()[]()()()()()()(){}()[]u B u A B A a A u A b A v A c A A v B v A B A a A u A b A v A c A A i i i i i i i i i i i i i i i i i i i i -=++⨯+-=++⨯+⎧⎨⎪⎩⎪+++++++--11111111112122212121211λλ于是在一个三角形网格的节点上得到u,v 的数值.再经过适当的插值,当n 相当大,A i 、A i +1的距离相当小时,就得到所提问题的足够近似的解.[特殊形式的拟线性方程组——可化约系统] 一般的拟线性方程组的问题比较复杂,目前研究的结果不多,下面介绍一类特殊形式的拟线性方程组——可化约系统.如果方程组⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂0022221111x v D t v C x u B t u A x v D t v C x u B t uA 中所有的系数只是u,v 的函数,称它为可化约系统.考虑满足条件()()0,,≠∂∂t x v u 的方程组的解u=u (x,t ),v=v (x,t ).x,t 可以表示成u,v 的函数,且图14.3()()()()()()()()v u t x u tx vv u t x u x t v v u t x v tx u v u t x v xtu,,,,,,,,,,∂∂∂∂=∂∂∂∂∂∂-=∂∂∂∂∂∂-=∂∂∂∂∂∂=∂∂ 原方程化为⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂-∂∂-∂∂=∂∂+∂∂-∂∂-∂∂0022221111u t D u x C v t B vx A u t D u x C v t B v xA 这是关于自变量u,v 的线性方程组.这样就把求拟线性方程组满足()()0,,≠∂∂tx v u 的解,化为解线性方程组的问题.而此线性方程组满足条件()()0,,≠∂∂v u t x 的解,在(x,t )平面上的象即为原来拟线性方程组的解.。
一阶偏微分方程基本知识
![一阶偏微分方程基本知识](https://img.taocdn.com/s3/m/93d03ed0bcd126fff6050b54.png)
一阶偏微分方程根本知识这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。
一阶常微分方程组的首次积分首次积分的定义从第三章我们知道,n阶常微分方程y n fx,y',y'', ,y n1,〕在变换yy,yy',L,ynyn112〕之下,等价于下面的一阶微分方程组dy1f1x,y1,y2,L,yn,dxdy2f2x,y1,y2,L,y n,dxMMMMdy nf n x,y1,y2,L,y n.dx〔〕在第三章中,已经介绍过方程组〔〕通解的概念和求法。
但是除了常系数线性方程组外,求一般的〔〕的解是极其困难的。
然而在某些情况下,可以使用所谓“可积组合〞法求通积分,下面先通过例子说明“可积组合〞法,然后介绍一阶常微分方程组“首次积分〞的概念和性质,以及用首次积分方法来求解方程组〔〕的问题。
先看几个例子。
例1求解微分方程组--WORD格式--可编辑--dx yxx2y21,dy xyx2y2 1.dt dt〔〕解:将第一式的两端同乘x,第二式的两端同乘y,然后相加,得到x dx y dy x2y2x2y21,dt dt1dx2y2x2y2x2y21dt。
2这个微分方程关于变量t和x2y2是可以别离,因此不难求得其解为x2y21e2t C1,x2y2〔〕C1为积分常数。
〔〕叫做〔〕的首次积分。
注意首次积分〔〕的左端V x,y,t作为x,y,和t的函数并不等于常数;从上面的推导可见,当xx(t),y y(t)时微分方程组〔〕的解时,Vx,y,t才等于常数C1,这里的常数C1应随解而异。
因为式〔〕是一个二阶方程组,一个首次积分〔〕缺乏以确定它的解。
为了确定〔〕的解,还需要找到另外一个首次积分。
将第一式两端同乘y,第二式两端同乘x,然后用第一式减去第二式,得到y dx x dy x2y2,dt dt即x dy y dx x2y2,dt dt亦即d arctan yx。
一阶偏微分方程求解方法
![一阶偏微分方程求解方法](https://img.taocdn.com/s3/m/5943f117192e45361066f59f.png)
加权余量法
在求解场域内,偏微分方程的真解为 ,近似解为 它由一组简单函数
ψi 的线性组合表达,表达中有待定系数 Ci 即:
近似解
问题的自 由度
n
Ci i i 1
简单函数,一般选用 简单形式的函数,一 旦选定就是已知的了
待定系数是真 正的求解目标
3.电磁场位函数偏微分方程的数值求解方法-加权余量法
2
w*j
(
n
(2)) d
wj (2 q) d
1 w*j ((1) g) d
2
w*j
(
n
h)
d
n
其中近似解: Ci i ,理论上尝试函数可任意选,
i 1
但适当的选取(作限制)可简化计算,
常常选取 i,使得 =g,则第一类边界条件自动满足
如选取加权函数:w
=
j
w*j,则上式被大大简化
由于近似解在1类边界 上常数,所以此项为0
选取特殊加权函数后,两 项和为0
第二类边界条件也消失了,说 明已经自动满足了
5. 加权余量法求解一般化方法的进一步优化
令加权余数为0即可得到求解原微分方程的一组代数方程:
Fj(R) wj d wjq d 2 wjh d 0
例1.两极电容板内部电场分布问题: 根据问题特点将3维问题简化为2维, 进一步简化为1维。 该问题是静态电场问题, 偏微分方程和边界条件:
2 0 0 0; d 10;
3. 加权余量法--例
加权余量法求解: 1.选取尝试函数、构造近似解:
理论上任意选取, 操作中越简单越好
一阶偏微分方程的解法
![一阶偏微分方程的解法](https://img.taocdn.com/s3/m/2adbdcd380c758f5f61fb7360b4c2e3f57272519.png)
一阶偏微分方程的解法偏微分方程是数学里一个广泛应用的领域。
其中,一阶偏微分方程是最为基础的一类,也是最常见的一类偏微分方程。
本文将介绍一阶偏微分方程的解法,希望能够对学习和应用偏微分方程的人们提供一定的帮助。
一、基础概念在介绍一阶偏微分方程的解法之前,我们需要先了解一些基础概念。
偏微分方程中的“偏”表示该方程与多个变量有关,微分方程表示该方程中包含有未知函数的导数项,即该方程描述了一个函数在不同变量下的变化。
一阶偏微分方程中,未知函数的偏导数项最高只有一次,且只涉及到一个变量。
方程中的未知函数只依赖于某一个变量,它的解也只涉及到一个变量。
因此,一阶偏微分方程通常可以写成以下的形式:$$ F(u_x, u_y, u_{xx}, u_{yy}, u_{xy}, x, y) = 0 $$其中,$u_x, u_y, u_{xx}, u_{yy}, u_{xy}$分别表示未知函数在不同变量下的偏导数,$x, y$是独立变量。
为了解决该方程,需要找到一个函数 $u(x,y)$,使得它满足该方程。
二、解法分析接下来,我们将介绍一阶偏微分方程的解法。
我们将着重介绍三种解法,分别是:特征线法、变换法和分离变量法。
1. 特征线法特征线法是一种经典的解法,适用于一些特殊的偏微分方程。
特征线法的基本思路是寻找一些特殊的曲线,这些曲线上的函数值保持不变,可以将函数沿这些曲线推进求解。
以以下方程为例:$$ u_x + u_y = x $$我们可以通过特征线法求解。
我们先假设存在某个变换,将$x,y$变为$\xi,\eta$,使得方程能够写成:$$ u_\xi + u_\eta = 1 $$这时,可以通过对$\xi, \eta$求偏导数,得到:$$ \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} +\frac{\partial u}{\partial \eta}\frac{\partial \eta}{\partial x} $$$$ \frac{\partial u}{\partial y} = \frac{\partial u}{\partial \xi}\frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial \eta} $$接着,我们可以找到一条特殊的曲线$\xi = \eta$,使得沿着该曲线推进方程不变:$$ \frac{du}{d\xi} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta} = 1 $$在这个方程中,$u$ 只与$\xi$有关,因此可以直接求解得到:$$ u = \frac{1}{2}\xi^2 + C $$将$\xi,\eta$变回$x,y$,得到:$$ u = \frac{1}{2}(x-y)^2 + C $$2. 变换法变换法是一种寻求自变量的新变换,使得原方程可以转化为一些已知的方程的方法。
偏微分方程的一阶与高阶解法
![偏微分方程的一阶与高阶解法](https://img.taocdn.com/s3/m/663652d418e8b8f67c1cfad6195f312b3169eba1.png)
偏微分方程的一阶与高阶解法偏微分方程是数学中的一个重要分支,用于描述具有多个变量的函数的行为。
它在物理学、工程学和经济学等领域具有广泛的应用。
解决偏微分方程的问题通常需要使用一阶和高阶解法。
本文将介绍偏微分方程的一阶与高阶解法,并对其进行详细的说明。
一阶偏微分方程的解法通常可以通过变量分离、特征线法或格林函数法来求解。
其中,变量分离法是最常见的解法之一。
变量分离法的基本思想是将多个变量的偏导数进行分离,从而得到可分离变量的方程。
例如,在求解一维热传导方程时,可以通过变量分离法将时间和空间变量分离,然后独立求解两个方程,并将它们的解进行组合,得到原方程的解。
另一种常见的一阶解法是特征线法。
特征线法适用于具有特殊结构的偏微分方程,它利用特征曲线对方程进行变换,将原方程转化为简化的形式。
通过对特征曲线方程进行求解,可以得到原方程的解。
格林函数法也是一种常见的一阶解法。
格林函数是指满足特定边界条件的偏微分方程的解,它可以用来表示其它边界条件下的解。
格林函数的求解通常需要使用积分变换等技巧,但是一旦求得格林函数,就可以通过与边界条件进行卷积得到方程的解。
除了一阶解法,偏微分方程还可以通过高阶解法进行求解。
高阶解法通常是指使用数值方法进行近似求解。
常见的高阶解法包括有限差分法、有限元法和边界元法等。
有限差分法是一种常见且简单易用的高阶解法。
它将偏微分方程中的导数用差分近似表示,将偏微分方程转化为代数方程组,然后通过迭代求解这个方程组来得到近似解。
有限差分法的求解过程需要选择合适的网格和差分格式,并且需要注意数值稳定性和精度的问题。
有限元法是一种更为通用的高阶解法。
它将求解区域进行离散化,并建立一个离散的函数空间,然后通过逼近这个函数空间中的函数来得到原方程的近似解。
有限元法相比于有限差分法更加灵活,可以适应更加复杂的几何形状和边界条件,并且具有较高的精度。
边界元法是另一种常见的高阶解法。
它将偏微分方程的解表示为给定边界上的积分形式,通过求解这个积分方程得到原方程的解。
一阶偏微分方程求解方法
![一阶偏微分方程求解方法](https://img.taocdn.com/s3/m/0b0621a6112de2bd960590c69ec3d5bbfd0ada2c.png)
VS
举例2
求解一阶偏微分方程时,遇到边界条件为 y'(0)=1,y'(1)=2的情况,可以通过有限差 分法进行处理。
感谢您的观看
THANKS
03
3. 求解参数方程
通过求解参数方程,得到 (t = x^2/2 + C) ,其中 (C) 是常数。
02
2. 建立参数方程
根据参数 (t) 的定义,建立参数方 程 (u'(x) = x + t) 。
04
4. 求得原方程的解
将 (t) 关于 (x) 的表达式代入原方 程,得到原方程的解 (u(x) = x^2/2 + C) 。
04 参数法
适用条件
适用于具有特定形式的一阶偏微分方程,如形如 (u'(x) = f(x, u(x))) 的方程。
适用于已知函数 (f(x, u)) 的情况,且在某些特定点上,方程的解 (u(x)) 可以表示为参数 (x) 的函数。
求解步骤
1. 确定参数
选择一个参数 (t) ,使得方程的解 (u(x)) 可以表示为 (t) 的函数。
乘积或商。
03 偏微分方程中的未知函数可以表示为某种周期函 数的乘积或商。
求解步骤
01
1. 将偏微分方程中的未知函数表示为多个函数的乘积
或商。
02 2. 将每个函数分别求解,得到每个函数的解。
03
3. 将所有函数的解组合起来,得到偏微分方程的解。
举例说明
考虑一阶偏微分方程 $$ frac{partial u}{partial x} + u = f(x) $$ 其中 $u = u(x)$ 是未知函数,$f(x)$ 是已知函数。
(e^{int f(x) dx} y' = f(x) e^{int f(x) dx})
第三章 一阶偏微分方程
![第三章 一阶偏微分方程](https://img.taocdn.com/s3/m/d36e158289eb172ded63b78f.png)
(r)
➢ 处理含间断问题的原则:分段求解
第三章一阶偏微分方程——追赶现象
例1 含有激波的追赶问题
间断条件
h, q 1 h2
2
dxs dt
1 2
hl2
1 2
hr2
hl hr
1 2
(hl
hr )
初值
t / h0 xs
第三章一阶偏微分方程——追赶现象
➢ 图象
h
t=0
h0
t</h0
t=/h0
通解
g1(x, y,u) k1, g2 (x, y,u) k2
初始曲线限制
F(k1, k2 ) 0
解曲面
F(g1(x, y,u), g2 (x, y,u)) 0
第三章一阶偏微分方程——特征线法
➢ 例2.3
特征方程 通解 解曲面 由初值 得解
u u 1
x y
( 为常数)
dy , du 1
kc
dx
v
dt
1
(1
NK
Kc)2
第三章一阶偏微分方程——追赶现象
➢
dt (c n)l (c n)r 1 nl nr
cl cr
➢ 特征线光滑解
dc k c dx v
c
c0
exp(
k v
x)
(x xs )
第三章一阶偏微分方程——追赶现象
➢ 原因:形成强间断——激波,微分方程失效
问题:补充间断面上的关系
第三章一阶偏微分方程——追赶现象
3。激波间断关系
q r
t x
l, ql
dxs/dt
r, qr
0
xl
xs
xr
一阶偏微分方程的特征线法
![一阶偏微分方程的特征线法](https://img.taocdn.com/s3/m/f5e272d7760bf78a6529647d27284b73f24236a3.png)
一阶偏微分方程的特征线法
一阶偏微分方程的特征线法是一种在求解偏微分方程的一种有效的数
值解法,也可以称之为特征线的数值测试。
它将一维特征线作为解决
方案,根据微分方程的偏导数在一条离散特征线上求解,使得问题变
得相对简单,方便求解。
这种方法不仅可以用于一阶偏微分方程,而
且还可用于多维偏微分方程。
特征线法对解偏微分方程有很大的帮助。
特征线实际上是由微分方程
构成的,特征线是方程的特征方程的解,这种方法的最大优点是可以
明确其数学形式,这样就可以利用离散化方法求解一般的微分方程,
它更加的方便快捷。
此外,特征线法有其独特性,它将问题分解为一维离散问题,只要将
原始方程变形成特征型方程,就可以将复杂的多元方程转换为一维的
特征型方程,由于特征线方程的特殊性,可以在离散点间计算出特征
线的值,从而获得解决方案,这样的方法有效的避免了复杂的数值分
析求解方法所带来的复杂性,使得问题更易于处理和解决。
总之,特征线法在求解偏微分方程中有着重要的作用,由于其独特的
特性,可以有效的将复杂的多维微分方程简化成一维特征线,由于离
散性,可以很容易的计算出特征线上各个离散点间的值,从而获得解。
微分方程解法
![微分方程解法](https://img.taocdn.com/s3/m/a45361ec0975f46527d3e1c3.png)
(a1 ( x1 , " , x n )," , a n ( x1 ," , x n ))
称为方程(1.3)在点 ( x1 ," , x n ) 处的特征方向函数.沿着这个方向的方向导数就 是
∑
i =1
n
n ai ∂u ∂u . ai ⋅ 2 ⋅ 2 1/ 2 ∑ ∂xi ∂xi (a1 + " + a n ) i =1
(2.2)
和
dxi = ai x1 ,", x n , i = 1,", n, dt du = 0 dt
若方程组(2.2)的解为
x1 = x1 (t ),", x n = x n (t ), t ∈ I
则方程(2.1)的全特征为
(2.3)
x1 = x1 (t ),", x n = x n (t ), u (t ) = c, t ∈ I
由此及(1.11)得到
ut ≡ Φ ( x1 (t ), " , x n (t )) , | t − τ |≤ h ,
这就是所要证明的. 在以下的讨论中,我们还要涉及通解的概念.一个一阶偏微分方程的通解我 们将理解为含某些任意元素的解的表达式.当适当选取所含任意元素时,除个别 例外,可以得到方程的任一解.看下面的例子 例 1.1 设自变量是 x, y ,未知函数是 u .则方程
故若 u = u ( xi ," , x n ) 是方程(1.3)的解,则它沿着(1.4)化成了常微分方程:
du = c( x1 (t ),", x n (t ), u ). dt
2
常微分方程组(1.5)称为方程(1.3)的特征方程组其解(1.4)在 ( x1 ,", x n ) 空 间的图象称为方程(1.3)的特征.常微分方程组
2一阶偏微分方程的求解方法
![2一阶偏微分方程的求解方法](https://img.taocdn.com/s3/m/b02b7862a8956bec0975e3f6.png)
1)
(6.23)
由假设(6.18), f j (x1, x2,, xn) 在某区域 D 内处处不同时为零, 这意
味着上述以 f j (x1, x2,, xn) ( j 1, 2,, n )为变量的线性方程组在区 域 D 内有非零解, 所以其系数行列式在区域 D 内必为零, 即
u x1
(u, u1 ,, un 1 ) (x1, x2,, xn )
(6.20 )
通过这 n 1个独立的首次积分, 我们可以获得偏微分方程(6.17)
的通解结构.
.
例6.6 试求偏微分方程 u u 0 的通解.
x y
解: 作自变量变换
x
y
1 (t 2 1 (t
s) s)
Байду номын сангаас
2
则
u u x u y 1 (u u ) 0 s x s y s 2 x y
6.24
其中 (,) 是任意的二元连续可微函数. 确定某函数关系 0 使得(6.24)满足初始条件 u |z1 xy, 我们有
0 ( x y , 2 y ) xy.
令 x y, 2 y. 解之得
x ( 1)2, y 12.
2
4
故可确定
0 为
0 (
,)
xy
1 (
4
1)2 2.
2
回代通解内可得满足满足初始条件的解:
例6.7 求解偏微分方程
(x y) u (x y) u 0,
x
y
其中 x2 y2 0.
解: 特征方程为
dx dy , xy xy
它有一个首次积分:
x2
y2
arctan y
ex
C.
一阶常系数偏微分方程解析解
![一阶常系数偏微分方程解析解](https://img.taocdn.com/s3/m/0483eea870fe910ef12d2af90242a8956aecaa47.png)
一阶常系数偏微分方程解析解偏微分方程(PDE)是一类重要的数学模型,它们在大多数科学和工程领域中表示物理现象、运动规律和格局。
一阶常系数偏微分方程(OCPDE)是一类常见的PDE,它们的函数形式如下:$$a(x,y)frac{partial u}{partial x} + b(x,y)frac{partial u}{partial y} + c(x,y) = 0$$其中,$u=u(x,y)$未知函数,$a(x,y),b(x,y),c(x,y)$已知函数。
OCPDE以分为两类:齐次型(Homogeneous)和非齐次型(Nonhomogeneous)。
齐次型 OCPDE是 $c(x,y) = 0$,也就是当方程左边所有成分相加等于 0;非齐次型 OCPDE味着方程左边成分相加不等于 0。
解析解方法可以分为拉普拉斯变换和积分变换等。
拉普拉斯变换是一种专门用来求解 OCPE特殊技术。
拉普拉斯变换的主要思想是用有限个前缀来替换原问题,这样就将原问题转换为更简单的形式,解决它更容易。
拉普拉斯变换的具体步骤如下:1.用Laplace变换将原函数$u$替换为$U$;2.将OCPDE替换为一个形式简单的常微分方程;3.求出$U$的表达式;4.用Laplace反变换将$U$替换回$u$;5.得到$u$的表达式。
另一种解析解方法是积分变换,它的思路是将OCPDE转换为某些特定的微分方程,然后用积分变换法对其进行解析。
为了有效地解决OCPDE问题,我们通常需要确定恰当的积分变换。
大多数情况下,我们可以考虑用柯西变换和高斯变换替换未知函数$u$,例如:$$u(x,y)=int_a^bint_c^d f(x,y)dydx$$其中,$f(x,y)$示定义在 $[a,b] times [c,d]$ 上的函数,将积分变换用于 OCPDE题可以将非常复杂的问题转化为更加容易求解的常微分方程系统或者积分方程系统。
OCPDE一类常见的PDE,为了有效地解决 OCPDE题,我们可以使用拉普拉斯变换和积分变换等解析解方法。
一阶偏微分方程教程
![一阶偏微分方程教程](https://img.taocdn.com/s3/m/ddf4830a79563c1ec5da714a.png)
方程的解:若函数u连续并具有方程所涉及的连续 方程的解:若函数 连续并具有方程所涉及的连续 的各阶偏导数, 的各阶偏导数 , 且该函数代入方程使得方程在某 区域内成为恒等式, 区域内成为恒等式 , 则称该函数为方程在该区域 内的解 古典解) 内的 解 ( 古典解 ) 。 满足某些特定条件的解称为 特解,这些条件称为定解条件 一般情况下, 定解条件。 特解 , 这些条件称为 定解条件 。 一般情况下 , 一 个具有n个自变量的 阶方程的解可以含有 个n-1 个具有 个自变量的m阶方程的解可以含有 个自变量的 阶方程的解可以含有m个 元任意函数,这样的解称为通解。 元任意函数,这样的解称为通解。 通解 定解问题 : 定解条件通常包括 边界条件 和 初始条 定解问题:定解条件通常包括边界条件 边界条件和 两种。含有定解条件的方程求解问题称为定解 件 两种 。 含有定解条件的方程求解问题称为 定解 问题, 包括初值问题( 问题) 问题 , 包括初值问题 ( Cauchy问题 ) 、 边值问 问题 题和混合问题。 题和混合问题。
u u u P ( x, y , z ) + Q ( x, y , z ) + R ( x, y , z ) x y z = f ( x, y, z )u + g ( x, y, z )
为已知函数。 其中 f , g为已知函数。 为已知函数 其特征方程组为
(6)
dx dy dz du = = = P Q R fu + g
12
于是
Φ ( t , s ) = f (± t + y , ± t + y s )
2 0 2 0
从而原Cauchy问题的解为 问题的解为 从而原
u = Φ ( x2 y 2 , x2 z 2 )
一阶线性偏微分方程
![一阶线性偏微分方程](https://img.taocdn.com/s3/m/d4389212551810a6f424862a.png)
第七章 一阶线性偏微分方程7-1求下列方程组的通积分及满足指定条件的解。
1)⎪⎪⎩⎪⎪⎨⎧++=+=t y x dtdy y x dtdx2) ,当时,⎪⎪⎩⎪⎪⎨⎧-=-=y x dtdy y x dtdx20=t 1==y x 3)xy dzz x dy y z dx -=-=-解 1) 方程组的两式相加,得。
t y x dty x d ++=+)(2)(令 ,上方程化为一阶线性方程y x z +=,t z dtdz+=2解之得412121--=t e C z t 即得一个首次积分为。
121)4121(),,(C e t y x y x t t =+++=Φ- 方程组的两式相减,得,t dty x d -=-)(解之得另一个首次积分为 。
22221),,(C t y x y x t =+-=Φ 易验证 。
021111det det 2211≠-=⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂Φ∂∂Φ∂∂Φ∂∂Φ∂x x y x因此,和是两个独立的首次积分,11),,(C y x t =Φ22),,(C y x t =Φ所以,方程组的通积分为,121)4121(),,(C e t y x y x t t =+++=Φ-。
22221),,(C t y x y x t =+-=Φ从中可解得通解为。
⎪⎪⎩⎪⎪⎨⎧--+'-'=---'+'=81414181414122212221t t C e C y t t C e C x t t2)方程组的两式相比,得,yx yx dy dx --=2变形得恰当方程 ,02=--+xdy ydx ydy xdx 解之得一个首次积分为 ,12222C xy y x =-+即 。
=Φ),,(1y x t 2122)(C y y x =+-给方程组第一式乘以,第二式乘以,再相减得y x ,])[()22(2222y y x xy y x y x x y +--=-+-='-',1)(22-=+-'+'-'-'y y x y y y x y y x y 1)(22=+-'+'-'-'-y y x y y y x y y x y 两边积分,得另一个首次积分为,=Φ),,(2y x t 2arctanC t yx y=--易验证 和是两个独立的首次积分,211),,(C y x t =Φ22),,(C y x t =Φ 所以,方程组的通积分为,,2122)(C y y x =+-2arctanC t yx y=--通解为,其中,⎩⎨⎧'+'='-'+'+'=tC t C y t C C t C C x sin cos sin )(cos )(211212211sin C C C ='。
一阶偏微分方程的特征方程
![一阶偏微分方程的特征方程](https://img.taocdn.com/s3/m/7b1e545f640e52ea551810a6f524ccbff121caf1.png)
一阶偏微分方程的特征方程摘要:一、引言二、一阶偏微分方程的特征方程的概念和求解方法1.特征方程的定义2.求解特征方程的步骤三、特征方程在偏微分方程求解中的应用1.特征方程与通解的关系2.特征方程在求解偏微分方程中的优势四、结论正文:一、引言偏微分方程是数学中的一个重要分支,它在物理、工程、生物等多个领域中都有着广泛的应用。
在求解偏微分方程时,特征方程是一个非常重要的工具。
本文将从一阶偏微分方程的特征方程出发,详细介绍特征方程的概念、求解方法以及在偏微分方程求解中的应用。
二、一阶偏微分方程的特征方程的概念和求解方法1.特征方程的定义特征方程是指在求解偏微分方程时,通过变量代换,将偏微分方程化为一个关于特征变量的代数方程。
这个代数方程称为特征方程。
特征方程的解称为特征根,特征根的个数决定了偏微分方程的解的个数。
2.求解特征方程的步骤求解特征方程的一般步骤如下:(1)根据偏微分方程的原始形式,确定特征方程的形式。
(2)进行变量代换,将偏微分方程中的变量替换为特征变量。
(3)将替换后的偏微分方程化为关于特征变量的代数方程。
(4)解出特征方程,得到特征根。
(5)根据特征根的个数和性质,确定偏微分方程的解的个数和性质。
三、特征方程在偏微分方程求解中的应用1.特征方程与通解的关系在求解偏微分方程时,特征方程和通解有着密切的关系。
通解是指偏微分方程在一定条件下的解,而特征方程则是求解通解的一种方法。
对于一阶偏微分方程,特征方程的解即为通解。
2.特征方程在求解偏微分方程中的优势特征方程在求解偏微分方程中具有以下优势:(1)特征方程可以将复杂的偏微分方程化为简单的代数方程,降低了求解的难度。
(2)通过特征方程,可以直接得到偏微分方程的解的个数和性质,为后续求解提供了重要信息。
(3)特征方程适用于各种类型的偏微分方程,具有较强的通用性。
四、结论一阶偏微分方程的特征方程是一种求解偏微分方程的有效方法,通过特征方程,可以简化偏微分方程的求解过程,提高求解效率。
一阶偏微分方程的特征方程
![一阶偏微分方程的特征方程](https://img.taocdn.com/s3/m/971629b2bb0d4a7302768e9951e79b896902686f.png)
一阶偏微分方程的特征方程摘要:I.引言- 介绍一阶偏微分方程- 说明特征方程的重要性II.一阶偏微分方程的特征方程- 定义特征方程- 介绍特征方程的求解方法- 分析特征方程的性质III.特征方程的应用- 举例说明特征方程在实际问题中的应用- 强调特征方程在偏微分方程解析解中的关键作用IV.结论- 总结特征方程的重要性- 展望特征方程在未来研究中的发展正文:I.引言一阶偏微分方程广泛应用于物理、化学、生物等领域的科学问题。
在求解一阶偏微分方程时,特征方程是一个重要的工具。
特征方程不仅可以帮助我们求解偏微分方程,还能揭示偏微分方程的性质。
本文将重点介绍一阶偏微分方程的特征方程及其应用。
II.一阶偏微分方程的特征方程特征方程是偏微分方程的一个重要概念,它表示了偏微分方程的解的性质。
对于一阶偏微分方程,特征方程形式如下:λ* u = f(x, y)其中,λ是特征根,u 是函数,f(x, y) 是已知函数。
求解特征方程,可以得到偏微分方程的通解。
求解特征方程的方法有很多,如直接求解法、替换法、反常积分法等。
这些方法都有各自适用的范围和局限性。
例如,直接求解法适用于简单的一阶偏微分方程,而替换法适用于较复杂的一阶偏微分方程。
特征方程的性质对于研究偏微分方程的解具有重要意义。
例如,特征方程的根与偏微分方程的解有关,特征方程的解的稳定性取决于特征根的实部。
III.特征方程的应用特征方程在实际问题中有着广泛的应用。
例如,在流体力学中,特征方程可以用来描述流速和压力的变化;在传热学中,特征方程可以用来描述温度和热流密度的变化。
在偏微分方程的解析解中,特征方程起关键作用。
通过求解特征方程,我们可以得到偏微分方程的解析解,从而更好地理解偏微分方程所描述的物理现象。
IV.结论总之,特征方程在研究一阶偏微分方程中起着重要作用。
通过特征方程,我们可以更好地理解偏微分方程的解的性质,求解偏微分方程,以及应用偏微分方程解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章一阶偏微分方程——特征线法
? 一般的一阶拟线性偏微分方程的问题
P (x, y, u) ?u ? Q(x, y, u) ?u ? R(x, y,u)
?x
?y
I:u ? u0 (? ), x ? x0 (? ), y ? y0 (? )
第三章一阶偏微分方程——特征线法
§1.2 特征线法的几何原理
?????ct
?
v?c ?x
?
?rA(c)
??t ? 0, c ? f(x)
(?? ? x? ? ,0 ? t ? ? )
? 初、边值问题(Riemann 问题)
? ?c
? ?
?t
?
v ?c ?x
?
? rA(c)
?t ? 0, c ? f (x)
? ?
x
?
0,
c ? g (t)
?
(0 ? x ? ? ,0 ? t ? ? )
第三章一阶偏微分方程——特征线法
? 解曲面由以下双参变量形式给出
x ? x(s,? ) y ? y(s,? ) u ? u(s,? )
参变量s 沿特征曲线方向变化,
参变量? 沿初始曲线方向变化。
第三章一阶偏微分方程——特征线法
? 例2.1
特征线方程 初始曲线
? ?u
? ?
?x
?
u
?u ?y
?
1
??u(0, y) ? ? y
dx ? 1, dy ? u , du ? 1
ds
ds
ds
s ? 0: x ? 0, y ? ? , u ? ??
第三章一阶偏微分方程——特征线法
解出 消去参变量
x? s
y ? s 2 ? ?? s ? ?
2
u ? s ? ??
y ? x2
u?? 2 ?x 1? ? x
第三章一阶偏微分方程——特征线法
P (x, y,u) ?u ? Q(x, y,u) ?u ? R(x, y,u)
?x
?y
? 向量 ( P, Q, R ) 与解曲面u=u(x,y)的法线方向
(u x , u y , ? 1) 相互垂直,与 ( P, Q, R ) 共线的线元(dx, dy, du)必定
满足偏微分方程,称为特征曲线,经过初始曲线的特征
? 特征线方程
dx ? P ( x, y, u ) ds dy ? Q ( x, y, u ) ds du ? R ( x, y, u ) ds
? 解x=x(s), y=y(s), u=u(s) 含任意常数,由初始曲线 I:u ? u0 (? ), x ? x0 (? ), y ? y0 (? )
确定
第三章一阶偏微分方程——特征线法
特征线 初始曲线 解得
dt ? 1, ds s ? 0:
dx ? v, dc ? 0
ds
ds
t ? 0, x ? ?
x-vt=ξ
?0
c(? )
?
? ?c0
?? 0
x ? vt ? 0 ? a ? x ? vt ? 0
x ? vt ? ? a
第三章一阶偏微分方程——特征线法
? 以积分常数形式给出的特征线解
特征方程
dy
?
Q(x, y, u ) ,
du ? R(x, y, u)
dx P (x, y, u ) dx P ( x, y, u)
通解
g1 ( x, y, u) ? k1 , g2 (x, y, u) ? k2
初始曲线限制 解曲面
F (k1, k2 ) ? 0
F (g1(x, y,u), g2 (x, y,u)) ? 0
曲线的全体构成解曲面u=u(x,y) 。
第三章一阶偏微分方程——特征线法
第三章一阶偏微分方程——特征线法
第三章一阶偏微分方程——特征线法
? 因此,特征线法的求解思路是 ——用特性曲线来编织解曲面
1。求出与向量场( P, Q, R ) 共线的特征曲线;
2、让该曲线通过初始曲线
第三章一阶偏微分方程——特征线法
t ? ? x?? ,
x
?
t
?
c(x,t) ? g (t ? ? x),
x? t
?
第三章一阶偏微分方程——特征线法
x-t 平面的特征线
第三章一阶偏微分方程——特征线法
斜坡输入时的图象
特征线
dt ? 1? ? K ? ?
dx v
第三章一阶偏微分方程——特征线法
? x轴给出的初值的解
s ? 0 : t ? 0, x ? ? , c ? f (? ) ? ? 0
t ? ? (x? ?)
c( x, t) ?
f
(
x
?
t
?
),
? t 轴给出的边值
s ? 0 : x ? 0, t ? ? , c ? g(? ) ? ? 0
第三章一阶偏微分方程——特征线法
? 例2.3
特征方程 通解 解曲面 由初值 得解
?u ? ? ?u ? 1
?x ?y
(? 为常数)
dy ? ? , du ? 1
dx
dx
y?? x ? k1, u ? x ? k2
u ? x ? f ( y ? ? x)
u(0, y) ? ? ( y)
u ? x ? ? ( y ? ? x)
化工问题的建模 与数学分析方法
—— Modelling and Analytical Methods for Problems in Chemical Engineering
第三章 一阶偏微分方程
1、特征线法 2、非线性波与追赶现象
第三章一阶偏微分方程——特征线法
§1.1 一阶偏微分方程的定解问题
? 偏微分方程与常微分方程求解思路的不同
常微分方程:求方程通解,初、边值定常数 一阶偏微分:求方程通解,初、边值确定任意函数 二阶偏微分:不求通解,从问题出发求解
例,一阶PDE 通解
?u ? c ?u ? 0 ?x ?y
u ? f ( y ? cx)
第三章一阶偏微分方程——特征线法
? 初值问题(Cauchy 问题)
第三章一阶偏微分方程——特征线法
§1.3 特征线法的物理意义
波 动——物理量在空间的传播过程
特征线——物理量的传播轨迹,沿该轨迹的变化关系
例1.管道中的溶质输送问题
?c ? v ?c ? 0 ?t ?x
?0 c(x,0) ? ??c0
?? 0
(?? ? x ? ? )
x? 0 ?a ? x? 0
x? ?a
图象——矩形方波以速度v 传播
c
t =0 v
0
t =t1 v
t =t2 v
x
第三章一阶偏微分方程——特征线法
x-t 平面的特征线及图解法
t 1/ v ( x, t )
第三章一阶偏微分方程——特征线法
例2.线性色谱问题
v ?c ? (1? ? K) ?c ? 0
?x
?t
t ? 0 : c ? f (x), x ? 0 x ? 0 : c ? g(t), t ? 0