知识讲解力的合成与分解基础

合集下载

高一物理力的合成和分解知识点

高一物理力的合成和分解知识点

高一物理力的合成和分解知识点力的合成和分解是高中物理中一个非常重要的知识点,它是力学研究的基础。

在这篇文章中,我们将探讨力的合成和分解的概念、方法以及应用。

一、力的合成力的合成是指将多个力合成为一个力的过程。

当多个力作用于同一个物体时,可以将它们合成为一个等效的力。

1.1 向量图示法向量图示法是力的合成的一种常用方法。

我们将多个力用箭头表示,箭头的长度代表了力的大小,箭头的方向表示了力的方向。

将多个力的箭头连在一起,起点为物体的起始位置,终点为物体的终止位置,最后结果的箭头即为合成力。

1.2 分解求合分解求合是另一种常用的力的合成方法。

对于平行四边形法则中的图形,我们可以用三角形法则将合力分解为两个分力。

分解时,需要确定一个参考方向,将合力拆分为垂直于参考方向的两个分力。

二、力的分解力的分解是指将一个力分解为平行或垂直于某一方向的两个力的过程。

力的分解可以将一个复杂的问题简化为两个相对简单的问题,便于计算。

2.1 平行分解平行分解是将一个力分解为平行于某一参考方向的两个力的过程。

利用力的平行四边形法则,我们可以通过确定一个参考方向,将合力拆分为两个平行力。

2.2 垂直分解垂直分解是将一个力分解为垂直于某一参考方向的两个力的过程。

利用力的三角形法则,我们可以通过确定一个参考方向,将合力拆分为一个垂直于参考方向的力和一个平行于参考方向的力。

三、力的合成和分解的应用力的合成和分解在物理学中有广泛的应用。

下面我们将介绍几个常见的应用。

3.1 平面力问题在平面力问题中,物体受到多个平面力的作用。

利用力的合成和分解的方法,可以将这些力合成为一个等效力,从而简化问题的求解。

3.2 斜面上的力在斜面上,一个物体同时受到重力和斜面给予的支持力的作用。

利用力的分解,我们可以将这两个力分解为平行于斜面和垂直于斜面的两个力,以便求解问题。

3.3 物体受力平衡问题在物体受力平衡问题中,物体受到多个力的作用,且力的合力为零。

知识讲解 力的合成与分解 (基础)

知识讲解 力的合成与分解 (基础)

力的合成与分解要点一、力的合成要点诠释:合力与分力①定义:一个力产生的效果跟几个力的共同作用产生的效果相同,则这个力就叫那几个力的合力,那几个力叫做分力。

②合力与分力的关系:等效替代。

要点二、共点力要点诠释:1.共点力:一个物体受到两个或更多个力的作用,若它们的作用线交于一点或作用线的延长线交于一点,这一组力就是共点力。

说明:①平行四边形定则只适用于共点力的合成,对非共点力的合成不适用。

②今后我们所研究的问题,凡是涉及力的运算的题目,都是关于共点力方向的问题。

2.合力与分力的大小关系:由平行四边形可知:F1、F2夹角变化时,合力F的大小和方向也发生变化。

(1)合力F的范围:|F1-F2|≤F≤F1+F2。

①两分力同向时,合力F最大,F=F1+F2。

②两分力反向时,合力F最小,F=|F1-F2|。

③两分力有一夹角θ时,如图甲所示,在平行四边形OABC中,将F2平移到F1末端,则F1、F2、F围成一个闭合三角形。

如图乙所示,由三角形知识可知;|F1-F2|<F<F1+F2。

综合以上三种情况可知:①|F1-F2|≤F≤F1+F2。

②两分力夹角越大,合力就越小。

③合力可能大于某一分力,也可能小于任一分力.要点三、力的分解要点诠释:力的分解定则:平行四边形定则,力的分解是力的合成的逆运算.两个力的合力唯一确定,一个力的两个分力不是唯一的,如果没有其他限制,对于一条对角线,可以作出无数个不同的平行四边形(如图所示).即同一个力F可以分解成无数对大小、方向不同的分力.要点四、实际分解力的方法要点诠释:1.按效果进行分解在实际分解中,常将一个力沿着该力的两个效果方向进行分解,效果分解法的方法步骤:①画出已知力的示意图;②根据此力产生的两个效果确定出分力的方向;③以该力为对角线作出两个分力方向的平行四边形,即作出两个分力.2.利用平行四边形定则求分力的方法①作图法:利用平行四边形作出其分力的图示,按给定的标度求出两分力的大小,用量角器量出各分力与已知力间的夹角即分力的方向.②计算法:利用力的平行四边形定则将已知力按几何方法求解,作出各力的示意图,再根据解几何知识求出各分力的大小,确定各分力的方向.由上可知,解决力的分解问题的关键是根据力的作用效果,画出力的平行四边形,接着就转化为一个根据已知边角关系求解的几何问题.因此其解题的基本思路可表示为3.要点五、力的分解中定解条件要点诠释:将一个力F分解为两个分力,根据力的平行四边形定则,是以这个力F为平行四边形的一条对角线作一个平行四边形,在无附加条件限制时可作无数个不同的平行四边形,这说明两个力的合力可唯一确定,一个力的分力不是唯一的,要确定一个力的两个分力,一定要有定解条件.(1)已知合力(大小、方向)和两个分力的方向,则两个分力有唯一确定的值.如图甲所示,要求把已知力F分解成沿OA、OB方向的两个分力,可从F的矢(箭头)端作OA、OB的平行线,画出力的平行四边形得两个分力F1、F2.(2)已知合力(大小、方向)和一个分力(大小、方向),则另一个分力有唯一确定的值.如图乙所示,已知F(合力),分力F1,则连接F和F1的矢端,即可作出力的平行四边形得另一个分力F2.(3)已知合力(大小、方向)和两分力大小,则两分力有两组解,如图所示,分别以O点和F的矢端为圆心,以F1、F2大小为半径作圆,两圆交于两点,作出三角形如图.(4)已知合力(大小、方向)和一个分力的方向,则另一分力无确定值,且当两分力垂直时有最小值.如图所示,假设F1与F的夹角为θ,分析方法如下:以F的尾端为圆心,以F2的大小为半径画圆,看圆与F1的交点即可确定解释的情形.①当F2<Fsinθ时,圆(如圆①)与F1无交点,无解;②当F2=Fsinθ时,圆(如圆②)与F1有一交点,故有唯—解,且F2最小;③当Fsinθ<F2<F时,圆(如圆③)与F1有两交点,有两解;④当F2>F时,圆(如圆④)与F1有一交点,有唯—解.要点六、实验验证力的平行四边形定则要点诠释:1.实验目的:验证力的平行四边形定则2.实验器材:方木板、白纸、弹簧测力计(两个)、橡皮筋、细绳套(两个)、铅笔、三角板、刻度尺、图钉3.实验原理:结点受三个共点力作用处于平衡状态,则F1、F2之合力必与F3平衡,改用一个拉力F′使结点仍到O,则F必与F1、F2的合力等效,与F3平衡,以F1、F2为邻边作平行四边形求出合力F,比较F′与F的大小和方向,以验证力合成时的平行四边形定则。

初中物理力的合成与分解知识点详解

初中物理力的合成与分解知识点详解

初中物理力的合成与分解知识点详解力是物理学中的基本概念之一,我们生活中处处可见力的存在和作用。

在初中物理学习中,学生们需要理解力的合成与分解,这是基础而重要的知识点。

本文将详细介绍初中物理力的合成与分解的相关知识。

一、力的合成1. 合力的定义与表示方法:合力是指多个力的作用效果等效于一个力的结果。

合力的大小、方向和作用点决定了合力的性质。

合力的大小等于各个力的矢量和的模,合力的方向与各个力的矢量和的方向相同或相反。

2. 力的合成原理:力的合成原理是指若有若干力同时作用于同一物体,则合力等于这些力的矢量和。

合力的作用效果与单个力的作用效果相同,合力是由多个力合成的结果。

3. 力的合成图解法:力的合成可以通过图解法来进行求解。

假设有两个力F₁和F₂作用于同一物体上,可以在力的作用点处画出表示F₁的矢量箭头,然后在其尾部画出表示F₂的矢量箭头,连接这两个箭头的起点和终点,得到一个表示合力的矢量箭头。

4. 力的合成应用:受到多个力的作用时,可以通过求解合力来确定物体的运动状态。

力的合成概念也在实际应用中有广泛的应用,如在机械工程、结构设计、航空航天等领域。

二、力的分解1. 力的分解定义与原理:力的分解是指将一个力分解为两个或多个互相垂直的力的过程。

力的分解原理是根据三角形法则或平行四边形法则,将一个力分解为两个或多个分力,使得这些分力的合成等效于原力。

2. 力的分解图解法:力的分解可以通过图解法来进行求解。

假设有一个力F作用于某一物体上,可以在力的作用点处画出表示F的矢量箭头,然后根据力的分解原理,通过绘制两个垂直方向的矢量箭头,将力F分解为两个互相垂直的力。

3. 分解力的大小与方向计算:分解力的大小可以通过三角函数的正弦定理和余弦定理进行计算。

根据力的分解图,根据相应的三角公式,可以得到分解力的大小与方向的具体数值。

4. 分解力的应用:一个斜向的力作用时,可以通过将力分解为水平方向力和垂直方向力的方法,来计算物体在水平和垂直方向上的加速度或位移。

第2章 3 力的合成与分解

第2章 3 力的合成与分解

第3课时力的合成与分解读基础知识基础回顾:一、力的合成1.合力与分力(1)定义:如果几个力共同作用产生的效果与一个力的作用效果相同,这一个力就叫做那几个力的合力,那几个力叫做这一个力的分力.(2)关系:合力与分力是等效替代关系.2.共点力作用在物体的同一点,或作用线交于一点的几个力.如图均为共点力.3.力的合成(1)定义:求几个力的合力的过程.(2)运算法则①平行四边形定则:求两个互成角度的分力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向.如图甲所示,F1、F2为分力,F为合力.②三角形定则:把两个矢量的首尾顺次连接起来,第一个矢量的首到第二个矢量的尾的有向线段为合矢量.如图乙,F1、F2为分力,F为合力.二、力的分解1.定义:求一个力的分力的过程.力的分解是力的合成的逆运算.2.遵循的原则(1)平行四边形定则.(2)三角形定则.3.分解方法(1)效果分解法.如图所示,物体重力G的两个作用效果,一是使物体沿斜面下滑,二是使物体压紧斜面,这两个分力与合力间遵循平行四边形定则,其大小分别为G1=G sinθ,G2=G cosθ.(2)正交分解法.三、矢量和标量1.矢量:既有大小又有方向的物理量,叠加时遵循平行四边形定则,如速度、力等.2.标量:只有大小没有方向的物理量,求和时按代数法则相加,如路程、速率等.自查自纠:(1)合力与它的分力的作用对象为同一个物体。

(√)(2)合力及其分力可以同时作用在物体上。

(×)(3)几个力的共同作用效果可以用一个力来代替。

(√)(4)在进行力的合成与分解时,都要应用平行四边形定则或三角形定则。

(√)(5)两个力的合力一定比其分力大。

(×)(6)互成角度(非0°或180°)的两个力的合力与分力间一定构成封闭的三角形。

(√)(7)既有大小又有方向的物理量一定是矢量。

(×)研考纲考题要点1力的合成问题1.共点力合成的常用方法(1)作图法:从力的作用点起,按同一标度作出两个分力F1和F2的图示,再以F1和F2的图示为邻边作平行四边形,画出过作用点的对角线,量出对角线的长度,计算出合力的大小,量出对角线与某一力的夹角确定合力的方向(如图所示)。

必修一物理力的分解合成知识点

必修一物理力的分解合成知识点

必修一物理力的分解合成知识点
必修一物理力的分解合成知识点包括以下几个方面:
1. 力的合成:当多个力作用于同一个物体时,可以将这些力按照大小和方向进行合成,得到合力。

合力的大小等于各个力大小的矢量和,合力的方向与各个力的方向相同或
相反,取决于各个力的大小和方向。

合力可以通过几何法、分解法或向量法进行计算。

2. 力的分解:当一个力作用于物体上时,可以将这个力分解为两个或多个分力,分力
的方向可以任意选择,但它们的合力必须等于原力。

分力的大小和方向可以通过三角
函数(如正弦、余弦)来计算。

3. 平行力的合成与分解:当多个平行力作用于同一个物体时,可以将这些力按照大小
和方向进行合成或分解。

平行力的合力等于各个力大小的代数和,方向与各个力的方
向相同或相反。

分解平行力时,可以根据力的大小和方向,按照比例关系将力分解为
若干个平行力的合力。

4. 力的分解中的特殊情况:在力的分解过程中,有几种特殊情况需要特别注意。

如力
的分解角度为45度时,分解的两个力大小相等;如果力的方向与坐标轴平行或垂直时,分解的力具有特殊的形式。

5. 力的分解与合成在实际问题中的应用:力的分解与合成经常应用于实际问题的求解中。

例如,可以将一个斜面上的重力分解为垂直于斜面的分力和平行于斜面的分力;
可以将一个物体沿斜面下滑的摩擦力分解为垂直于斜面的分力和平行于斜面的分力等。

以上是必修一物理力的分解合成的一些基本知识点,通过掌握这些知识点,可以更好
地理解力的作用与分析,并能够解决实际问题中与力有关的计算与推理。

力的合成与分解知识点梳理

力的合成与分解知识点梳理

力的合成与分解知识点梳理力的合成与分解是物理学中的基础知识,它们描述了多个力的作用和分解方式。

在本篇文章中,我们将讨论力的合成与分解的概念、方法以及相关应用。

以下是力的合成与分解的知识点梳理:一、力的合成1. 概念:力的合成是指将多个力按照一定规则相加得到合力的过程。

多个力的合成可以产生一个等效的力,这个等效的力被称为合力。

2. 方法:a. 图解法:将力的大小和方向用箭头表示,在力的起点将箭头首尾相接,合力的箭头即为首尾相连的箭头。

b. 分解为分力:将一个力分解为两个或多个分力,再将这些分力按照一定规则合成,得到合力。

c. 使用平行四边形法则:根据平行四边形法则,将两个力的起点相连,构成一个平行四边形,合力的箭头即为对角线的箭头。

二、力的分解1. 概念:力的分解是将一个力分解为两个或多个分力的过程。

力的分解可以将复杂的力的作用转化为较简单的力的作用,使问题求解更简便。

2. 方法:a. 分解为垂直方向的分力:根据力在直角坐标系中的分解,将力分解为垂直方向的分力和水平方向的分力。

b. 分解为平行和垂直于斜面的分力:对一个斜面上作用的力进行分解时,可以将力分解为平行和垂直于斜面的分力,以便求解问题。

c. 使用三角函数:根据力的大小和夹角,使用三角函数(如正弦、余弦)将力分解为不同方向的分力。

三、应用1. 力的合成与分解在静力学中的应用:通过将力的作用分解为水平和垂直方向的分力,可以分析物体在平衡状态下的受力情况。

2. 力的合成与分解在动力学中的应用:通过合成力,可以计算物体在多个不同方向上作用力的结果,进而分析物体的运动状态。

3. 力的合成与分解在斜面上的应用:通过分解斜面上的力,可以确定平行和垂直方向的分力,从而计算物体在斜面上的受力和运动情况。

4. 力的合成与分解在物体平衡条件的判断中的应用:分解物体所受外力得到水平方向分力的合力为零,垂直方向分力的合力为零即可判断物体是否处于平衡状态。

综上所述,力的合成与分解是物理学中重要的概念,它们描述了多个力的作用方式和分解方法。

2024高考物理力的合成与分解专题讲解

2024高考物理力的合成与分解专题讲解

2024高考物理力的合成与分解专题讲解在物理学中,力的合成与分解是一个重要的概念,特别是在解决力学问题时,它们被广泛应用。

本文将针对2024年高考物理题中与力的合成与分解相关的题目进行专题讲解,帮助同学们更好地理解和掌握这一知识点。

一、力的合成1. 什么是力的合成?力的合成是指当一个物体受到多个力的作用时,这些力的作用效果相当于一个合力的作用效果。

合力的大小和作用方向取决于这些力的大小和作用方向。

2. 力的合成的几何方法力的合成可以通过几何方法进行求解。

当多个力作用在同一个物体上时,可以使用力的几何图示来求得合力。

(示意图)如图所示,假设物体受到A、B两个力的作用,我们可以将它们按照比例画在一个力的几何图示中,然后连接起来。

连接起来的线段表示了合力的大小和作用方向。

3. 力的合成的数学方法力的合成也可以通过数学方法进行求解。

当多个力的大小和方向已知时,可以使用向量相加的方法获得合力的大小和方向。

(数学公式)如上图所示,假设物体受到A、B两个力的作用,力A的大小为F_A,方向为α,力B的大小为F_B,方向为β。

我们可以使用向量相加的方法,通过以下公式计算出合力的大小和方向:F = √(F_A^2 + F_B^2 + 2F_A・F_B・cos(α - β))4. 力的合成的应用力的合成在解决力学问题时具有广泛的应用。

例如,在斜面上放置一个物体,可以通过将重力分解为平行于斜面和垂直于斜面的分力,从而获得物体在斜面上的加速度。

二、力的分解1. 什么是力的分解?力的分解是指将一个力分解成多个力的过程。

通过力的分解,可以将一个力分解成与坐标轴方向垂直的两个力,使得问题的处理更加简单。

2. 力的分解的方法力的分解可以通过几何方法或数学方法进行求解。

几何方法是通过画力的几何图示,将一条力分解成两条力;数学方法则是通过向量的分解,将一个力分解成与坐标轴方向垂直的两个力。

3. 力的分解的应用力的分解在解决力学问题时也有广泛的应用。

力的合成与分解知识点总结

力的合成与分解知识点总结

力的合成与分解知识点总结力的合成与分解是力学中一个重要的概念,它能够帮助我们更好地理解和分析物体上所受到的力的作用情况。

在本文中,我将介绍力的合成与分解的概念、原理以及应用,并通过实例来加深理解。

一、力的合成力的合成是指将多个力作用于同一物体的情况下,通过某种方法将这些力合并成一个等效力的过程。

力的合成可以采用几何法进行图示,也可以使用向量法进行计算。

1. 几何法:几何法是通过图形的几何性质来进行力的合成。

当力的方向相同时,可以使用平行四边形法则进行合成。

当力的方向不同且作用在同一点上时,可以使用三角形法则进行合成。

2. 向量法:向量法是基于向量的数学运算来进行力的合成。

将力用向量表示,按照向量的加法规则进行合成。

合成后的力向量的大小和方向完全由各个力的大小和方向决定。

二、力的分解力的分解是指将一个力分解成几个分力的过程。

力的分解可以帮助我们研究物体上各个方向的力的作用情况,从而更好地分析和解决力的问题。

1. 平行分解:平行分解是将一个力分解成平行于两个特定方向上的两个分力的过程。

根据三角函数的关系,可以得到分力的大小和方向与原力之间的关系。

2. 垂直分解:垂直分解是将一个力分解成垂直于两个特定方向上的两个分力的过程。

同样地,通过三角函数的关系,可以得到分力的大小和方向与原力之间的关系。

三、力的合成与分解的应用力的合成与分解在实际应用中有着广泛的应用。

下面将介绍两个常见的应用场景。

1. 斜面上的物体:当物体位于斜面上时,会同时受到重力和斜面对物体的支持力。

我们可以通过将重力分解为平行于斜面和垂直于斜面的两个分力,来研究物体在斜面上的运动情况。

2. 物体受到的合力:当一个物体受到多个力的作用时,可以通过力的合成来求得合力的大小和方向。

合力的方向与合力分量的方向相同,大小等于合力分量的和。

这些应用场景只是力的合成与分解在实际问题中的一部分,通过力的合成与分解,我们能够更好地分析和解决力学问题。

总结:力的合成与分解是力学中重要的概念,通过合理运用合成与分解的方法,我们能够更好地理解和分析物体所受力的情况。

高一物理《力的分解与合成》知识点讲解

高一物理《力的分解与合成》知识点讲解

高一物理《力的分解与合成》知识点讲解力的分解与合成是物理学中一个重要的概念,它有助于我们理解多个力合成为一个力的效果,以及一个力如何分解为多个力的效果。

以下是对该知识点的讲解。

1. 力的分解力的分解是指将一个力分解为多个力的效果。

这样做有助于我们更好地理解和分析力的作用。

在力的分解中,我们常使用正交分解法和图解法。

1.1 正交分解法正交分解法是将一个力分解为两个分力,其中一个与给定方向垂直,另一个与给定方向平行。

这种方法常用于解决斜面问题和倾斜物体问题。

在正交分解时,我们可以根据三角函数关系来计算力的分解分量。

1.2 图解法图解法是通过绘制矢量图来展示力的分解。

我们可以使用比例尺来确定力的大小和方向。

通过观察图示,我们可以清楚地看到力的分解效果。

图解法常用于解决平面力系统和多个力合成问题。

2. 力的合成力的合成是指将多个力合成为一个力的效果。

这有助于我们将多个力简化为一个力进行分析。

力的合成有两种常见方法:向量法和平行四边形法。

2.1 向量法向量法是通过将多个力的矢量相加或相减来求得合成结果。

在向量法中,我们需要将各个力的大小和方向用矢量表示,然后按照矢量相加或相减的规则进行计算。

最终的合成力的大小和方向由向量相加或相减的结果得出。

2.2 平行四边形法平行四边形法是通过构造平行四边形来展示力的合成。

我们可以使用比例尺来确定力的大小和方向,并用图示表达力的合成效果。

通过观察平行四边形的对角线,我们可以得到合成力的大小和方向。

力的分解与合成是物理学中非常实用的技巧。

通过运用这些技巧,我们可以更好地分析和解决力的问题,提高问题解决的效率。

以上是对高一物理《力的分解与合成》知识点的简要讲解。

希望对您的学习有所帮助!。

力的合成与分解知识点与例题讲解

力的合成与分解知识点与例题讲解

千里之行,始于足下。

力的合成与分解知识点与例题讲解力的合成和分解是力学中的重要概念,它们用来描述多个力对物体产生的总效果以及将一个力分解成多个分力的过程。

以下是关于力的合成和分解的知识点与例题讲解。

一、力的合成力的合成是指将多个力按照一定的方法相加得到它们的合力。

合力是多个力的矢量和,可以用矢量图形法或分解法求得。

1. 矢量图形法首先,将力的大小按比例用箭头表示,箭头的长度表示力的大小,箭头的方向表示力的方向。

然后,将各个力的箭头按照规定的尺度和方向画在同一张纸上,箭头起点相同,终点相连,则合力的箭头就是从起点到终点的箭头。

2. 分解法将一个力按照一定的规则分解成两个或多个力的过程称为力的分解。

常用的分解方法有水平方向分解和垂直方向分解。

水平方向分解:将力按照水平方向分解为两个分力,一个是水平方向分力,另一个是垂直方向分力。

根据三角函数的定义,水平方向分力等于力的大小乘以力的水平方向的余弦值,垂直方向分力等于力的大小乘以力的垂直方向的正弦值。

垂直方向分解:将力按照垂直方向分解为两个分力,一个是水平方向分力,另一个是垂直方向分力。

根据三角函数的定义,水平方向分力等于力的大小乘以力的水平方向的正弦值,垂直方向分力等于力的大小乘以力的垂直方向的余弦值。

第1页/共3页锲而不舍,金石可镂。

二、力的分解力的分解是指将一个力分解成两个或多个部分力的过程。

分解力的目的是分析力的作用效果,常用的分解方法有水平方向分解和垂直方向分解。

1. 水平方向分解将一个力的大小和方向分解成水平方向分力和垂直方向分力,可以用以下公式表示:水平分力 = 力的大小× cosθ垂直分力 = 力的大小× sinθ其中,θ为力的方向与水平方向之间的夹角。

2. 垂直方向分解将一个力的大小和方向分解成水平方向分力和垂直方向分力,可以用以下公式表示:水平分力 = 力的大小× sinθ垂直分力 = 力的大小× cosθ其中,θ为力的方向与水平方向之间的夹角。

力的合成与分解知识点总结

力的合成与分解知识点总结

力的合成与分解知识点总结1500字力的合成与分解是力学中的重要内容,它将一个力分解为若干个力的合力,或将一个力分解为两个分力。

这个过程可以通过向量的几何方法或三角函数的方法进行求解。

下面是力的合成与分解的知识点总结:一、力的合成知识点总结:1. 合力的概念:若果有多个力作用于同一个物体,它们的合力是指这些力的几何和矢量和。

2. 合力的求解方法:- 向量法:将每个力用力向量表示,然后将这些力向量按照几何上的合成法则相加,得到合力的大小和方向。

- 平行四边形法则:如果合力的大小和方向已知,可以用平行四边形法求解。

- 三角法:如果合力的大小和方向已知,可以用三角法求解。

3. 合力的特点:- 若多个力在同一条直线上,其合力大小等于这些力的代数和。

- 若多个力不在同一条直线上,其合力大小小于这些力的代数和。

- 合力的方向与这些力都不一定相同。

4. 合力的两个特殊情况:- 平衡条件:如果多个力的合力为零,则物体处于力的平衡状态,不发生运动或转动。

- 平衡力:多个力的合力为零时,其中任意一个力都可以称为平衡力。

二、力的分解知识点总结:1. 分力的概念:如果一个力可以等效地分解为两个力,这两个力共同作用产生的效果与原力作用效果相同,这两个力可以称为分力。

2. 分力的求解方法:- 向量法:可以利用三角形或平行四边形法则进行分解。

- 三角函数法:利用三角函数的基本关系进行分解,可以计算分力的大小和方向。

3. 分力的特点:- 分力与原力的方向一致或相反。

- 分力的大小可以等于或小于原力的大小。

三、力的合成与分解的应用:力的合成与分解在物理学、工程学和实际问题中有着广泛的应用,如:1. 物体在多个力作用下的运动分析:可以通过将作用力进行合成,计算合力的大小和方向,从而分析物体的运动情况。

2. 斜面问题的求解:可以将斜面的支撑力分解为垂直方向的分力和平行方向的分力,用分力的知识进行求解。

3. 桥梁和承重结构的设计:在桥梁和承重结构的设计中,需要分析各个支撑点的受力情况,可以利用力的分解方法进行求解。

物理高一力的合成与分解知识点

物理高一力的合成与分解知识点

物理高一力的合成与分解知识点力是物理学中一个重要的概念,对于力的合成与分解的理解与应用是初学者在物理学习中的关键之一。

本文将详细介绍高一物理中与力的合成与分解相关的知识点,并通过实例进行说明。

一、力的合成力的合成是指将多个力按照一定的几何关系合成为一个力的过程。

常见的力的合成方式有以下两种:1. 平行力的合成当几个力的作用线方向相同时,它们的合力即为这些力的矢量和。

合力的大小等于所有力的矢量和的大小,合力的方向与矢量和的方向相同。

2. 非平行力的合成当几个力的作用线不重合或方向不同的时候,可以采用三角形法则或平行四边形法则进行力的合成。

三角形法则是以力的起点为基点,将力按照顺序画成相邻的三角形,合力的方向与最后一条边的方向相同,合力的大小等于最后一条边的长度。

平行四边形法则是以力的起点为基点,将力按照顺序画成相邻的四边形,合力的方向与对角线的方向相同,合力的大小等于对角线的长度。

二、力的分解力的分解是将一个力按照一定的几何关系分解为多个部分力的过程。

常见的力的分解方式有以下两种:1. 平行力的分解将一个力按照相互垂直的两条方向进行分解,分解后的两个力称为合力的两个分力。

分力的大小等于合力与分解方向夹角的余弦值乘以合力的大小,分力的方向与分解方向相同。

2. 非平行力的分解将一个力按照一条方向进行分解,分解后的两个力分别为合力的两个分力。

分力的大小等于合力与分解方向夹角的余弦值乘以合力的大小,分力的方向与分解方向相同。

三、力的合成与分解实例解析下面通过一个实例来说明力的合成与分解的过程。

假设有一物体受到两个力的作用,力1的大小为F1,方向为α角;力2的大小为F2,方向为β角。

我们需要计算合力的大小与方向。

1. 合力的大小根据三角形法则,我们可以将力1和力2的矢量图画出,并通过矢量和的方法得到合力的大小。

2. 合力的方向根据三角形法则,合力的方向与力1和力2的矢量和的方向相同。

四、力的合成与分解在实际生活中的应用力的合成与分解在实际生活中有广泛的应用,下面举两个例子进行说明。

力的合成与分解 知识点总结与典例

力的合成与分解 知识点总结与典例

力的合成与分解知识要点一、力的合成1.合力与分力(1)定义:如果一个力的作用效果跟几个力共同作用的效果相同,这一个力就叫那几个力的合力,那几个力就叫这个力的分力。

(2)逻辑关系:合力和分力是一种等效替代关系。

2.共点力:作用在物体上的力的作用线或作用线的反向延长线交于一点的力。

3.力的合成的运算法则(1)平行四边形定则:求两个互成角度的共点力F1、F2的合力,可以用表示F1、F2的有向线段为邻边作平行四边形,平行四边形的对角线(在两个有向线段F1、F2之间)就表示合力的大小和方向,如图甲所示。

(2)三角形定则:求两个互成角度的共点力F1、F2的合力,可以把表示F1、F2的线段首尾顺次相接地画出,把F1、F2的另外两端连接起来,则此连线就表示合力的大小和方向,如图乙所示。

4.力的合成方法及合力范围的确定(1)共点力合成的方法①作图法②计算法:根据平行四边形定则作出示意图,然后利用解三角形的方法求出合力。

(2)合力范围的确定①两个共点力的合力范围:|F1–F2|≤F≤F1+F2,即两个力的大小不变时,其合力随夹角的增大而减小。

当两个力反向时,合力最小,为|F1–F2|;当两个力同向时,合力最大,为F1+F2。

②三个共点力的合成范围A.最大值:三个力同向时,其合力最大,为F max=F1+F2+F3。

B.最小值:以这三个力的大小为边,如果能组成封闭的三角形,则其合力的最小值为零,即F min=0;如果不能,则合力的最小值的大小等于最大的一个力减去另外两个力和的绝对值,即F min=F1–|F2+F3|(F1为三个力中最大的力)。

(3)解答共点力的合成问题时的两点注意①合成力时,要正确理解合力与分力的大小关系。

合力与分力的大小关系要视情况而定,不能形成合力总大于分力的思维定势。

②三个共点力合成时,其合力的最小值不一定等于两个较小力的和与第三个较大的力之差。

二、力的分解1.概念:求一个力的分力的过程。

2.遵循的原则:平行四边形定则或三角形定则。

物理基础复习:《力的合成与分解》课件

物理基础复习:《力的合成与分解》课件
【例4】F1与F2合力方向竖直向下,若保持F1的大 小和方向都不变,保持F2的大小不变,而将F2的方 向在竖直平面内转过60°,合力的方向仍竖直向下, 下列说法正确的是(AC) A.F1一定大于F2 B.F1可能小于F2 C.F2的方向与水平方向成30°角
D.F1的方向和F2的方向成60°
能力· 思维· 方法
二、力的合成 1.力的合成:求几个力的合力的过程.
2.力的合成遵循平行四边形定则.
3.力的合成和分解都是根据等效性进行的, 即合力和分力的作用效果相同.
要点· 疑点
三、力的分解 1.力的分解:求一个力的分力的过程.
2.力的分解也要遵循平行四边形定则.
3.同一个力可以分解成无数多个大小、方向 不同的分力,但一般情况下,应根据力的作用 效果进行分解才有实际意义.
能力· 思维· 方法
由直角三角形知识可得
F G F1 tga tg 30 F G F2 sin a sin 30 F1 sin 30 3 F2 tg 30 2
能力· 思维· 方法
因为AB、AC能承受的最大作用力之比为
F1max 2000 3 2 F2 max 1000 2
能力· 思维· 方法
能力· 思维· 方法
【解析】将力F沿与劈侧面垂直直的方向分解如图1-3-7, F1、F2的大小即为刀刃对侧面压力大小.由几何关系可得, △AOB与劈的纵截面三角形相似,则F/d=F1/L=F2/L,可证 得F1=F2=(L/d)F.
能力· 思维· 方法
从上式可知,F一定的条件下,劈的两个侧面夹 角越小,即L/d越大,F1、F2也就越大,也就是说, 越锋利的切削工具,越容易劈开物体.
能力· 思维· 方法
在图1-3-5中,画出几个可能 的平行四边形,其中T1和T2, T′1和T′2,T″1和T″2分别表 示OB不同方向时,两绳中拉力 该变化过程,可以选取两绳夹 角分别为60°、90°、120° 时的方向来作图,从图中不难 看出:OA绳中拉力逐渐增大; 而OB绳中拉力则先减小后增大, 当OB与OA垂直时,该力最小.

力的合成与分解归纳总结

力的合成与分解归纳总结

力的合成与分解知识要点归纳一、力的合成1.合力与分力:如果几个力共同作用产生的效果与某一个力单独作用时的效果相同,则这一个力为那几个力的,那几个力为这一个力的.2.共点力:几个力都作用在物体的同一点,或者它们的作用线相交于一点,这几个力叫做共点力.3.力的合成:求几个力的的过程.4.平行四边形定则:两个力合成时,以表示这两个力的线段为作平行四边形,这两个邻边之间的就表示合力的大小和方向.二、力的分解1.力的分解:求一个力的的过程,力的分解与力的合成互为.2.矢量运算法则:(1)平行四边形定则(2)三角形定则:把两个矢量的首尾顺次连结起来,第一个矢量的首到第二个矢量的尾的为合矢量.3.力的分解的两种方法1)力的效果分解法①根据力的实际作用效果确定两个实际分力的方向;②再根据两个实际分力方向画出平行四边形;③最后由平行四边形和数学知识(如正弦定理、余弦定理、三角形相似等)求出两分力的大小.2)正交分解法①正交分解方法:把一个力分解为互相垂直的两个分力,特别是物体受多个力作用时,把物体受到的各力都分解到互相垂直的两个方向上去,然后分别求出每个方向上力的代数和.②利用正交分解法解题的步骤首先:正确选择直角坐标系,通常选择共点力的作用点为坐标原点,直角坐标系的选择应使尽量多的力在坐标轴上.其次:正交分解各力,即分别将各力投影在坐标轴上,然后求各力在x 轴和y 轴上的分力的合力F x 和F y :F x =F 1x +F 2x +F 3x +…,F y =F 1y +F 2y +F 3y +…再次:求合力的大小F =F x 2+F y 2 ,确定合力的方向与x 轴夹角为θ=arctan F y F x. 4.将一个力分解的几种情况:①已知合力和一个分力的大小与方向:有唯一解②已知合力和两个分力的方向:有唯一解③已知合力和两个分力的大小(两分力不平行):当F1+F2<F 时无解;当F1+F2>F 时有两组解④已知一个分力F 1的方向和另一个分力F 2的大小,对力F 进行分解,如图4所示则有三种可能:(F 1与F 的夹角为θ) 当F 2<F sin θ时无解;当F 2=F sin θ或F 2≥F 时有一组解;当F sin θ<F 2<F 时有两组解.5.注意:(1)合力可能大于分力,可能等于分力,也可能小于分力的大小。

力的合成与分解知识点总结

力的合成与分解知识点总结

力的合成与分解知识点总结在物理学中,力的合成与分解是非常重要的概念,对于理解物体的受力情况以及运动状态的改变有着关键作用。

下面我们来详细总结一下力的合成与分解的相关知识点。

一、力的合成1、定义力的合成是指求几个力的合力的过程。

合力是指如果一个力产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力。

2、平行四边形定则这是力的合成的基本法则。

以两个共点力 F₁和 F₂为邻边作平行四边形,那么合力 F 的大小和方向就可以用这两个邻边之间的对角线表示。

3、合力的计算(1)若两个力 F₁和 F₂在同一直线上且方向相同,则合力 F =F₁+ F₂,方向与这两个力的方向相同。

(2)若两个力在同一直线上但方向相反,则合力 F =|F₁ F₂|,方向与较大力的方向相同。

(3)当两个力不在同一直线上时,可以通过构建平行四边形,利用三角函数来计算合力的大小和方向。

4、多个力的合成可以先求出其中两个力的合力,再将这个合力与第三个力合成,依次类推,最终求出所有力的合力。

二、力的分解1、定义力的分解是力的合成的逆运算,将一个已知力按照要求分解为两个或多个分力。

2、分解原则(1)按照力的实际作用效果分解。

(2)正交分解:将一个力分解为相互垂直的两个分力。

3、力的分解方法(1)已知合力和两个分力的方向,求两个分力的大小,有唯一解。

(2)已知合力和一个分力的大小和方向,求另一个分力的大小和方向,有唯一解。

(3)已知合力和一个分力的方向以及另一个分力的大小,可能有一解、两解或无解。

三、力的合成与分解的应用1、共点力的平衡当物体受到多个力作用处于平衡状态(静止或匀速直线运动)时,合力为零。

可以通过力的合成与分解来求解各个力的大小和方向。

2、动态平衡问题通过分析力的变化,利用力的合成与分解来判断物体的运动趋势和状态的变化。

3、实际生活中的应用例如,在拉车时,人们可以通过改变拉力的方向和大小来更省力地拉动车辆;在搭建桥梁时,工程师需要考虑桥梁所受的各种力,并进行合理的力的分解和合成,以确保桥梁的稳固和安全。

高一力的合成和分解知识点

高一力的合成和分解知识点

高一力的合成和分解知识点高一力的合成和分解知识点是物理学中的重要概念,涉及到物体受力时的合力与分力的作用。

本文将介绍高一力的合成和分解知识点的基本概念、原理及其应用。

一、合成力合成力是指将多个力合成为一个力的过程。

物体所受合成力的结果可以看作是多个力的矢量相加得到的。

合成力的计算可以采用几何方法或代数方法。

1. 几何方法几何方法是通过在力的方向上绘制力的向量,并使用平行四边形法则进行合成计算。

当多个力共线时,合成力等于这些力的代数和。

当多个力不共线时,可以绘制一个封闭的图形来计算合成力。

2. 代数方法运算来计算合成力。

对于共线力,合成力等于这些力的代数和。

对于不共线力,可以将它们沿坐标轴分解为水平力和垂直力,然后再计算合成力。

二、分解力分解力是指将一个力拆分为多个力的过程。

物体所受分解力的结果可以看作是一个力分解为多个力的矢量相加得到的。

分解力的计算可以采用几何方法或代数方法。

1. 几何方法几何方法是通过在力的方向上绘制力的向量,并使用平行四边形法则进行分解计算。

当力与某个坐标轴垂直时,它只能沿该坐标轴进行分解。

当力与坐标轴夹角不是90度时,可以将其分解为水平力和垂直力。

2. 代数方法运算来计算分解力。

将力的大小和方向用三角函数表示,即力的水平分量和垂直分量。

通过根据夹角和力的大小计算三角函数值来计算分解力。

三、应用高一力的合成和分解知识点在物理学中有丰富的应用。

以下是几个常见的应用领域:1. 静力平衡合成和分解力在静力平衡问题中起着重要作用。

通过将物体所受的各个力分解为水平力和垂直力,可以分析物体的平衡条件,求解未知的力和角度。

2. 斜面运动合成和分解力在斜面运动问题中也起着关键作用。

将物体所受的重力分解为沿斜面的力和垂直于斜面的力,可以分析物体在斜面上的运动情况,求解加速度和其他相关参数。

3. 力的合成与分解实验合成和分解力的知识点可以通过实验来验证。

例如,可以使用弹簧测力计来测量合成力或分解力的大小,通过改变力的方向和大小,进一步验证相应的合成和分解原理。

高二物理《力的合成与分解》知识点总结

高二物理《力的合成与分解》知识点总结

高二物理《力的合成与分解》知识点总结
一、共点力的合成
1. 合力的大小范围
(1)两个共点力的合成:|F1-F2|≤F合≤F1+F2,即两个力大小不变时,其合力随夹角的增大而减小,当两力反向时,合力最小;当两力同向时,合力最大。

(2)三个共点力的合成
①最大值:三个力共线且同向时,其合力最大,为F1+F2+F3.
②最小值:任取两个力,求出其合力的范围,如果第三个力在这个范围之内,则三个力的合力的最小值为零,如果第三个力不在这个范围内,则合力的最小值为最大的一个力减去另外两个较小的力的大小之和.
2.共点力合成的方法
(1)作图法.
(2)计算法.
3. 几种特殊情况的共点力的合成
二、力分解的两种常用方法
1. 效果分解法
按力的作用效果分解(思路图) 2. 正交分解法
(1)定义:将已知力按互相垂直的两个方向进行分解的方法.
(2)建立坐标轴的原则:一般选共点力的作用点为原点,在静力学中,以少分解力和容易分解力为原则(使尽量多的力分布在坐标轴上);在动力学中,往往以加速度方向和垂直加速度方向为坐标轴建立坐标系.
(3)方法:物体受到多个力F 1、F 2、F 3、…作用,求合力F 时,可把各力向相互垂直的x 轴、y 轴分解.
x 轴上的合力F x =F x 1+F x 2+F x 3+…
y 轴上的合力F y =F y 1+F y 2+F y 3+…
合力大小F =F 2x +F 2y
合力方向:与x 轴夹角为θ,则tan θ=F y F x
.。

力的合成和分解知识点总结

力的合成和分解知识点总结

力的合成和分解知识点总结力的合成和分解是力学中的基础概念之一。

通过合成和分解,我们可以更好地理解力的作用和存在,以及力的相互影响和平衡。

一、力的合成力的合成是指在一个物体上同时作用多个力时,将这些力合成为一个力的过程。

合成后的力被称为合力,合力的大小和方向可根据力的性质进行计算。

1. 矢量表示法矢量表示法是一种常用的力的合成方法,通过矢量的代数运算可以得到合力的大小和方向。

矢量表示法的基本步骤如下:(1)将每个力用向量表示,选择一个适当的比例尺,并规定各向量的长度代表力的大小;(2)按照所给力的方向将各向量画在同一坐标系中;(3)将所画向量的首尾相连,连接最后一个向量的尾部与第一个向量的头部;(4)连接合力向量的起点与坐标原点,合力向量的长度即为合力的大小,箭头方向指向合力的方向。

2. 三角形法则三角形法则是力的合成中常用的图示方法,通过画出力向量的三角形来表示力的合成。

三角形法则的具体操作如下:(1)将力的向量按照比例尺画出,并标上力的大小;(2)按所给的力的方向,将力的向量依次按顺序连接起来,形成一个闭合的三角形;(3)从三角形的起点和终点画出一条直线,该直线即为合力的向量,直线的长度即为合力的大小。

二、力的分解力的分解是指将一个力分解为两个或多个部分力的过程,这些部分力的合力等于原来的力。

通过力的分解,我们可以更好地理解复杂的力作用情况。

1. 矢量分解法矢量分解法是一种常用的力的分解方法,通过将一个力分解为两个或多个互相垂直的力的矢量和,来表示原力的作用情况。

矢量分解法的基本原理如下:(1)确定一个力的方向作为参考方向,将该力的向量绘制在坐标系中;(2)在参考方向上选择一个垂直方向,将原力分解为该垂直方向上的力和与参考方向上的力;(3)根据三角函数的关系,计算分解后的力的大小。

2. 线性分解法线性分解法也是一种常用的力的分解方法,适用于将一个力分解为两个部分力的情况。

线性分解法的具体操作如下:(1)选择一个适当的坐标系,并确定力的方向;(2)根据力的方向和坐标轴的垂直关系,将力分解为坐标轴方向上的力和垂直于坐标轴的力;(3)分别计算两个部分力的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

力的合成与分解【学习目标】1. 知道合力与分力的概念2. 知道平行四边形定则是解决矢量问题的方法,学会作图,并能把握几种特殊情形3. 知道共点力,知道平行四边形定则只适用于共点力4. 理解力的分解和分力的概念,知道力的分解是力的合成的逆运算5. 会用作图法求分力,会用直角三角形的知识计算分力6. 能区别矢量和标量,知道三角形定则,了解三角形定则与平行四边形定则的实质是一样的【要点梳理】要点一、力的合成要点诠释:1.合力与分力①定义:一个力产生的效果跟几个力的共同作用产生的效果相同,则这个力就叫那几个力的合力,那几个力叫做分力。

②合力与分力的关系。

a.合力与分力是一种等效替代的关系,即分力与合力虽然不同时作用在物体上,但可以相互替代,能够相互替代的条件是分力和合力的作用效果相同,但不能同时考虑分力的作用与合力的作用。

b.两个力的作用效果可以用一个力替代,进一步想,满足一定条件的多个力的作用效果也可由一个力来替代。

2.力的合成①定义:求几个力的合力的过程叫做力的合成。

②说明:力的合成的实质是找一个力去替代作用在物体上的几个已知的力,而不改变其作用效果的方法。

3.平行四边形定则①内容:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,这个法则叫做平行四边形定则。

说明:平行四边形定则是矢量运算的基本法则。

②应用平行四边形定则求合力的三点注意a.力的标度要适当;b.虚线、实线要分清,表示分力和合力的两条邻边和对角线画实线,并加上箭头,平行四边形的另两条边画虚线;c.求合力时既要求出合力的大小,还要求出合力的方向,不要忘了用量角器量出合力与某一分力间的夹角。

要点二、共点力要点诠释:1.共点力:一个物体受到两个或更多个力的作用,若它们的作用线交于一点或作用线的延长线交于一点,这一组力就是共点力。

2.多个力合成的方法:如果有两个以上共点力作用在物体上,我们也可以应用平行四边形定则求出它们的合力:先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。

说明:①平行四边形定则只适用于共点力的合成,对非共点力的合成不适用。

②今后我们所研究的问题,凡是涉及力的运算的题目,都是关于共点力方向的问题。

3.合力与分力的大小关系:由平行四边形可知:F1、F2夹角变化时,合力F的大小和方向也发生变化。

(1)合力F的范围:|F1-F2|≤F≤F1+F2。

①两分力同向时,合力F最大,F=F1+F2。

②两分力反向时,合力F最小,F=|F1-F2|。

③两分力有一夹角θ时,如图甲所示,在平行四边形OABC中,将F2平移到F1末端,则F1、F2、F围成一个闭合三角形。

如图乙所示,由三角形知识可知;|F1-F2|<F<F1+F2。

综合以上三种情况可知: ①|F1-F2|≤F≤F1+F2。

②两分力夹角越大,合力就越小。

③合力可能大于某一分力,也可能小于任一分力.要点三、力的分解要点诠释:1.分力:几个力,如果它们产生的效果跟原来一个力产生的效果相同,这几个力就叫做原来那个力的分力.注意:几个分力与原来那个力是等效的,它们可以相互替代,并非同时存在.2.力的分解:求一个已知力的分力叫力的分解.3.力的分解定则:平行四边形定则,力的分解是力的合成的逆运算.两个力的合力唯一确定,一个力的两个分力不是唯一的,如果没有其他限制,对于一条对角线,可以作出无数个不同的平行四边形(如图所示).即同一个力F可以分解成无数对大小、方向不同的分力.要点四、实际分解力的方法要点诠释:1.按效果进行分解在实际分解中,常将一个力沿着该力的两个效果方向进行分解,效果分解法的方法步骤:①画出已知力的示意图;②根据此力产生的两个效果确定出分力的方向;③以该力为对角线作出两个分力方向的平行四边形,即作出两个分力.2.利用平行四边形定则求分力的方法①作图法:利用平行四边形作出其分力的图示,按给定的标度求出两分力的大小,用量角器量出各分力与已知力间的夹角即分力的方向.②计算法:利用力的平行四边形定则将已知力按几何方法求解,作出各力的示意图,再根据解几何知识求出各分力的大小,确定各分力的方向.由上可知,解决力的分解问题的关键是根据力的作用效果,画出力的平行四边形,接着就转化为一个根据已知边角关系求解的几何问题.因此其解题的基本思路可表示为3.力按作用效果分解的几个典型实实分地面上物体受斜向上的拉,拉一方面使物体沿水平面前进,另一方面向上提物体,因此拉可分解为水平向的和竖直向上的质量的物体静止在斜面上,其重力产生两个效果:一是物体具有沿斜面下滑趋势的分;二是使物体压紧斜面的mg simg co质量的光滑小球被竖直挡板挡住而静止于斜面上时.其力产生两个效果:一是使球压紧板的分;二是使球压紧面的分mg ta质量的光滑小球被悬线挂靠在竖直墙壁上,其重力产生个效果:一是使球压紧竖直墙壁的分;二是使球拉紧悬的分mg tacom两点位于同一平面上,质量的物体AB两线住,其重力产生两个效果:一是使物体拉A线的分F二是使物体拉B线的分力质量的物体被支架悬挂而止,其重力产生两个效果:一是拉A的分;二是压B的分2sim质量的物体被支架悬挂而静止,其重力产生两个效果:一是拉伸AB的分力F1;二是压缩BC的分力F2,1tanFmg??,2cosmgF??要点五、力的分解中定解条件要点诠释:将一个力F分解为两个分力,根据力的平行四边形定则,是以这个力F为平行四边形的一条对角线作一个平行四边形,在无附加条件限制时可作无数个不同的平行四边形,这说明两个力的合力可唯一确定,一个力的分力不是唯一的,要确定一个力的两个分力,一定要有定解条件.(1)已知合力(大小、方向)和两个分力的方向,则两个分力有唯一确定的值.如图甲所示,要求把已知力F分解成沿OA、OB方向的两个分力,可从F的矢(箭头)端作OA、OB的平行线,画出力的平行四边形得两个分力F1、F2.(2)已知合力(大小、方向)和一个分力(大小、方向),则另一个分力有唯一确定的值.如图乙所示,已知F(合力),分力F1,则连接F和F1的矢端,即可作出力的平行四边形得另一个分力F2.(3)已知合力(大小、方向)和两分力大小,则两分力有两组解,如图所示,分别以O点和F的矢端为圆心,以F1、F2大小为半径作圆,两圆交于两点,作出三角形如图.(4)已知合力(大小、方向)和一个分力的方向,则另一分力无确定值,且当两分力垂直时有最小值.如图所示,假设F1与F的夹角为θ,分析方法如下:以F的尾端为圆心,以F2的大小为半径画圆,看圆与F1的交点即可确定解释的情形.①当F2<Fsinθ时,圆(如圆①)与F1无交点,无解;②当F2=Fsinθ时,圆(如圆②)与F1有一交点,故有唯—解,且F2最小;③当Fsinθ<F2<F时,圆(如圆③)与F1有两交点,有两解;④当F2>F时,圆(如圆④)与F1有一交点,有唯—解.要点六、实验验证力的平行四边形定则要点诠释:1.实验目的:验证力的平行四边形定则2.实验器材:方木板、白纸、弹簧测力计(两个)、橡皮筋、细绳套(两个)、铅笔、三角板、刻度尺、图钉3.实验原理:结点受三个共点力作用处于平衡状态,则F1、F2之合力必与F3平衡,改用一个拉力F′使结点仍到O,则F必与F1、F2的合力等效,与F3平衡,以F1、F2为邻边作平行四边形求出合力F,比较F′与F的大小和方向,以验证力合成时的平行四边形定则。

4.实验步骤:(1)用图钉把白纸钉在方木板上。

(2)把方木板平放在桌面上,用图钉把橡皮条的一端固定在A(3)用两只弹簧秤分别钩住细绳套,互成角度的拉橡皮条,使橡皮条伸长到某一位置O(如图所示)用铅笔描下O点的位置和两条细绳的方向,并记录弹簧秤的读数。

注意在使用弹簧秤的时候,要使细绳与木板平面平行。

(4)用铅笔和刻度尺从力的作用点(位置O)沿着两条绳套的方向画直线,按选定的标度作出这两只弹簧秤的拉力F1和F2的图示,以F1和F2为邻边利用刻度尺和三角板作平行四边形,过O点画平行四边形的对角线,即为合力F的图示。

(5)只用一只弹簧秤通过细绳套把橡皮条的结点拉到同样的位置O,记下弹簧秤的读数和细绳的方向,用刻度尺从O点按选定的标度沿记录的方向作出这只弹簧秤的拉力F′的图示。

(6)比较一下,力F′与用平行四边形法则求出的合力F在大小和方向上是否相同。

(7)改变两个力F1、F2的大小和夹角,再重复实验两次。

5.注意事项:(1)弹簧测力计在使用前应检查、校正零点,检查量程和最小刻度单位。

(2)用来测量F1和F2的两个弹簧测力计应用规格、性能相同,挑选的方法是:将两只弹簧测力计互相钩着,向相反方向拉,若两弹簧测力计对应的示数相等,则可同时使用。

(3)使用弹簧测力计测拉力时,拉力应沿弹簧测力计的轴线方向,弹簧测力计、橡皮筋、细绳套应位于与木板平行的同一平面内,要防止弹簧卡壳,防止弹簧测力计或橡皮筋与纸面摩擦。

拉力应适当大一些,但拉伸时不要超出量程。

(4)选用的橡皮筋应富有弹性,能发生弹性形变,实验时应缓慢地将橡皮筋拉伸到预定的长度.同一次实验中,橡皮筋拉长后的结点位置必须保持不变。

(5)准确作图是本实验减小误差的重要一环,为了做到准确作图,拉橡皮筋的细绳要长一些;结点口的定位应力求准确;画力的图示时应选用恰当的单位标度;作力的合成图时,应尽量将图画得大些。

(6)白纸不要过小,并应靠木板下边缘固定,A点选在靠近木板上边的中点为宜,以使O点能确定在纸的上侧。

【典型例题】类型一、合力与分力的关系例1、关于F1、F2及它们的合力F,下列说法中正确的是( ) A.合力F一定与F1、F2共同作用产生的效果相同B.两力F1、F2一定是同种性质的力C.两力F1、F2一定是同一个物体受到的力D.两力F1、F2与F是物体同时受到的三个力【思路点拨】合力与分力之间满足平形四边形定则。

【答案】AC【解析】只有同一个物体受到的力才能合成,分别作用在不同物体上的力不能合成.合力是对原来几个分力的等效替代,两力可以是不同性质的力,但合力与分力不能同时存在.所以,正确选项为A、C.【点评】解答本题的关键是明确合力的作用效果与几个分力同时作用的效果相同,合力与分力是等效替代关系.举一反三【高清课程:力的合成与分解例题2】【变式1】若两个共点力F1、F2的合力为F,则有( )A.合力F一定大于任何一个分力B.合力F至少大于其中的一个分力C.合力F可以比F1、F2都大,也可以比F1、F2都小D.合力F不可能与F1、F2中的一个大小相等【答案】C【变式2】两个共点力的合力为F,如果它们之间的夹角θ固定不变,使其中一个力增大,则()A.合力F一定增大B.合力F的大小可能不变C.合力F可能增大,也可能减小D.当0°<θ<90°时,合力F一定减小【答案】BC类型二、两个力合力的范围例2、力F1=4N,方向向东,力F2=3N,方向向北.求这两个力合力的大小和方向.【思路点拨】通过作图和计算即可计算出合力的大小和方向。

相关文档
最新文档