线性规划应用案例

合集下载

线性规划应用举例

线性规划应用举例
线性规划应用举例 典型问题: 人力资源分配 套裁下料 配料问题
连续投资问题
例:人力资源分配的问题
例.某昼夜服务的公交线路每天各时间段内所需司机和乘务人 员数如下: 班次 时间 所需人数 1 60 6:00 —— 10:00 2 70 10:00 —— 14:00 3 60 14:00 —— 18:00 4 50 18:00 —— 22:00 5 20 22: —— 2:00 6 30 2:00 —— 6:00 设司机和乘务人员分别在各时间段一开始时上班,并连续 工作八小时,问该公交线路怎样安排司机和乘务人员,既能 满足工作需要,又配备最少司机和乘务人员?
假设 x1,x2,x3,x4,x5 分别为上面8种方案下料的原材料根数。这样我们建立 如下的数学模型。 目标函数: Min x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 约束条件: s.t. x1 + 2x2 + x4 + x6 ≥ 100 2x3 + 2x4 + x5 + x6 + 3x7 ≥ 100 3x1 + x2 + 2 x3 + 3x5 + x6 + 4x7 ≥ 100 x1,x2,x3,x4,x5 x6,x7 x8 ≥ 0
例:配料问题
例.某工厂要用三种原料1、2、3混合调配出三种不 同规格的产品甲、乙、丙,数据如下表。问:该厂 应如何安排生产,使利润收入为最大?
产品名称 甲 乙 丙 原材料名称 1 2 3 规格要求 单价(元/kg) 50 原材料 1 不少于 50%,原材料 2 不超过 25% 35 原材料 1 不少于 25%,原材料 2 不超过 50% 25 不限 每天最多供应量 100 100 60 单价(元/kg) 65 25 35

线性规划应用案例分析

线性规划应用案例分析

线性规划应用案例分析线性规划是一种在数学和运营管理中常见的优化技术。

它涉及到在一组线性不等式约束下,最大化或最小化一个线性目标函数。

这种技术可以应用于许多不同的领域,包括供应链管理、资源分配、投资组合优化等。

本文将探讨几个线性规划应用案例,以展示其在实际问题中的应用和价值。

某制造公司需要计划生产三种产品,每种产品都需要不同的原材料和生产时间。

公司的目标是最大化利润,但同时也受到原材料限制、生产能力限制以及每种产品市场需求限制的约束。

通过使用线性规划,该公司能够找到最优的生产计划,即在满足所有约束条件下,最大化利润。

某物流公司需要计划将货物从多个产地运输到多个目的地。

公司的目标是最小化运输成本,但同时也受到运输能力、货物量和目的地需求的约束。

通过使用线性规划,该公司能够找到最优的运输方案,即在满足所有约束条件下,最小化运输成本。

某投资公司需要将其资金分配给多个不同的投资项目。

每个项目都有不同的预期回报率和风险水平。

公司的目标是最大化回报率,同时也要保证投资风险在可接受的范围内。

通过使用线性规划,该公司能够找到最优的投资组合,即在满足所有约束条件下,最大化回报率。

这些案例展示了线性规划在实践中的应用。

然而,线性规划的应用远不止这些,它还可以用于诸如资源分配、时间表制定、路线规划等问题。

线性规划是一种强大的工具,可以帮助决策者解决复杂的问题并找到最优解决方案。

线性规划是一种广泛应用的数学优化技术,适用于在多种资源限制下寻求最优解。

这种技术涉及到各种领域,包括工业、商业、运输、农业、金融等,目的是在给定条件下最大化或最小化线性目标函数。

下面我们将详细讨论线性规划的应用。

线性规划是一种求解最优化问题的数学方法。

它的基本思想是在一定的约束条件下,通过线性方程组的求解,求得目标函数的最优解。

这里的约束条件通常表现为一组线性不等式或等式,而目标函数则通常表示为变量的线性函数。

工业生产:在工业生产中,线性规划可以用于生产计划、物料调配、人力资源分配等方面。

线性规划的实际应用举例

线性规划的实际应用举例

线性规划的实际应用举例为了便于同学们掌握线性规划的一般理论和方法,本文拟就简单的线性规划(即两个变量的线性规划)的实际应用举例加以说明。

1 物资调运中的线性规划问题例1 A,B两仓库各有编织袋50万个和30万个,由于抗洪抢险的需要,现需调运40万个到甲地,20万个到乙地。

已知从A仓库调运到甲、乙两地的运费分别为120元/万个、180元/万个;从B仓库调运到甲、乙两地的运费分别为100元/万个、150元/万个。

问如何调运,能使总运费最小?总运费的最小值是多少?解:设从A仓库调运x万个到甲地,y万个到乙地,总运费记为z元。

那么需从B仓库调运40-x万个到甲地,调运20-y万个到乙地。

从而有z=120x+180y+100(40-x)+150·(20-y)=20x+30y+7000。

作出以上不等式组所表示的平面区域(图1),即可行域。

令z'=z-7000=20x+30y.作直线l:20x+30y=0,把直线l向右上方平移至l l的位置时,直线经过可行域上的点M(30,0),且与原点距离最小,即x=30,y=0时,z'=20x+30y取得最小值,从而z=z'+7000=20x+30y+7000亦取得最小值,z min=20×30+30×0+7000=7600(元)。

答:从A仓库调运30万个到甲地,从B仓库调运10万个到甲地,20万个到乙地,可使总运费最小,且总运费的最小值为7600元。

2 产品安排中的线性规划问题例2某饲料厂生产甲、乙两种品牌的饲料,已知生产甲种饲料1吨需耗玉米0.4吨,麦麸0.2吨,其余添加剂O.4吨;生产乙种饲料1吨需耗玉米0.5吨,麦麸0.3吨,其余添加剂0.2吨。

每1吨甲种饲料的利润是400元,每1吨乙种饲料的利润是500元。

可供饲料厂生产的玉米供应量不超过600吨,麦麸供应量不超过500吨,添加剂供应量不超过300吨。

问甲、乙两种饲料应各生产多少吨(取整数),能使利润总额达到最大?最大利润是多少?分析:将已知数据列成下表1。

线性规划应用案例

线性规划应用案例

线性规划应用案例线性规划是一种在约束条件下寻找最优解的数学优化方法。

它在实际应用中广泛使用,涉及许多领域和行业。

本文将介绍两个典型的线性规划应用案例:运输问题和产能规划问题。

一、运输问题运输问题是线性规划最早发展起来的一个领域,它是指如何在各个供应地和需求地之间运输商品,以使得总运输成本最小。

一个典型的运输问题可以描述为:有m个供应地和n个需求地,每个供应地和需求地之间有一个固定的运输成本和一个固定的供应和需求量。

问题是如何确定每对供需地之间的运输量,以使得总运输成本最小。

举例来说,假设有三个供应地A、B、C,三个需求地X、Y、Z。

运输成本如下表所示:\begin{array}{ c c c c c c }&X&Y&Z&供应量\\A&10&12&8&100\\B&6&8&7&200\\C&9&10&11&300\\需求量&150&175&125&\\\end{array}求解此问题的线性规划模型如下:目标函数:minimize \quad Z = 10x_{11} + 12x_{12} + 8x_{13} + 6x_{21} + 8x_{22} + 7x_{23} + 9x_{31} + 10x_{32} + 11x_{33}约束条件:x_{11} + x_{12} + x_{13} \leq 100x_{21} + x_{22} + x_{23} \leq 200x_{31} + x_{32} + x_{33} \leq 300x_{11} + x_{21} + x_{31} \geq 150x_{12} + x_{22} + x_{32} \geq 175x_{13} + x_{23} + x_{33} \geq 125x_{ij} \geq 0, i = 1,2,3 \quad j = 1,2,3其中x_{ij}表示从供应地i到需求地j的运输量。

线性规划应用案例

线性规划应用案例

市场营销应用案例一:媒体选择在媒体选择中应用线性规划的目的在于帮助市场营销经理将固定的广告预算分配到各种广告媒体上,可能的媒体包括报纸、杂志、电台、电视和直接邮件。

在这些媒体中应用线性规划,目的是要使宣传范围、频率和质量最大化。

对于应用中的约束条件通常源于对公司政策、合同要求及媒体的可用性。

在下面的应用中,我们将介绍如何应用线性规划这一工具来建立模型进而解决媒体选择问题。

REL发展公司正在私人湖边开发一个环湖社区。

湖边地带和住宅的主要市场是距离开发区100英里以内的所有中上收入的家庭。

REL公司已经聘请BP&J 来设计宣传活动。

考虑到可能的广告媒体和要覆盖的市场,BP&J建议将第一个月的广告局限于5种媒体。

在第一个月末,BP&J将依据本月的结果再次评估它的广告策略。

BP&J已经收集到了关于受众数量、广告单价、各种媒体一定周期内可用的最大次数以及评定5种媒体各自宣传质量的数据。

质量评定是通过宣传质量单位来衡量的。

宣传质量单位是一种用于衡量在各个媒体中一次广告的相对价值的标准,它建立于BP&J在广告业中的经验,将众多因素考虑在内,如受众层次(年龄、收入和受众受教育的程度)、呈现的形象和广告的质量。

表4-1列出了收集到的这些信息。

表4-1 REL发展公司可选的广告媒体REL发展公司提供给BP&J第一个月广告活动的预算是30000美元。

而且,REL公司对BP&J如何分配这些资金设置了如下限制:至少要使用10次电视广告,达到的受众至少要有50000人,并且电视广告的费用不得超过18000美元。

应当推荐何种广告媒体选择计划呢?案例二:市场调查公司开展市场营销调查以了解消费者个性特点、态度以及偏好。

专门提供此种信息的市场营销调查公司,经常为客户机构开展实际调查。

市场营销调查公司提供的典型服务包括涉及计划、开展市场调查、分析收集数据、提供总结报告和对客户提出意见。

线性规划运用举例

线性规划运用举例

线性规划运用举例线性规划是一种经济学和数学领域中的数学优化技术,其主要目的是将某些目标函数在满足一定的约束条件下最大或最小化。

线性规划在现代经济学、决策科学、制造业和生产管理等领域都有广泛的应用。

下面将举例说明线性规划在实际生产和管理中的应用。

1. 生产计划方案优化生产计划方案优化是一个很复杂的问题。

企业的目标是尽可能地减少生产和仓储成本,同时保证所生产的产品能满足市场需求。

线性规划可以帮助企业找到一个最优的计划方案,使得成本最小化,并能够满足市场需求。

例如,生产一种食品有两个不同的发酵温度可以选择。

这个决策需要考虑到提高产量的同时也要保证产品质量。

通过将这个问题转化为线性规划问题,可以确定最佳的温度条件,以最小化生产成本并且保证产品质量。

2. 资源分配问题企业在日常运营中需要管理各种资源,如员工,机器等。

为了确保资源的有效利用,企业需要通过资源分配来确保生产能力最优化。

线性规划可以帮助企业分配资源,使得资源利用更加高效,成本更加低廉和运营更加有效。

例如,在生产线上,可以通过线性规划算法来优化设备的分配和维护计划,使得设备的维护和使用更加平滑,减少因设备故障造成的损失和停机时间。

3. 市场销售策略线性规划也可以帮助企业确定最优的市场营销策略。

在一个竞争激烈的市场中,企业需要考虑产品的定价,销售渠道和营销推广策略等因素。

通过将这些因素转化为线性规划问题,企业可以找到最优的市场营销策略。

例如,在销售一种产品时,企业可以通过确定最优价格来最大化销售收入。

总之,线性规划在生产和管理中的应用非常广泛。

通过线性规划算法可以解决非常复杂的问题,帮助企业做出最优的决策,从而实现成本最小化和收益最大化。

线性规划 实际案例

线性规划 实际案例

线性规划是一种数学优化模型,用于解决在有一些约束条件下,如何使一个目标函数达到最优解的问题。

线性规划广泛应用于许多实际案例中,其中一些常见的案例如下:
1.生产规划:在生产过程中,企业可能需要在有限的生产资源和需求的限制下,决策
生产的数量、成本、产品组合等,以使生产效益最大化。

这就需要用到线性规划模
型来解决。

2.交通规划:在城市规划过程中,市政部门可能需要决策道路的建设、扩建、维护等,
以满足城市交通需求,并考虑到道路建设的成本和环境影响等因素。

这时候可以使
用线性规划模型来解决。

3.财务规划:在进行财务管理时,企业或个人可能需要在有限的资金和资产的限制下,
决策投资、储蓄、借贷等,以使财务效益最大化。

这时候可以使用线性规划模型来
解决。

4.供应链管理:在供应链管理过程中,企业可能需要决策采购、生产、运输、库存等
各个环节,以保证供应链的流畅运行并达到最优的效益。

这时候可以使用线性规划
模型来解决。

这些都是线性规划在实际案例中的应用,线性规划能够帮助企业和组织在有限的条件下,有效地规划和决策,并取得较好的效益。

线性规划运用举例

线性规划运用举例

3、排班问题 邮局一年356天都要有人值班,每天需要的职工人 数因业务忙闲而异,据统计邮局每天需要的人数按 周期变化,一周内每天需要的人数如下:
周一 周二 周三 周四 周五 周六 周日
17
13
15
19
14
16
11
排班要符合每周连续工作五天,休息两天的规定, 如何排班可使用人最少?
4、背包问题 例:一登山队员做登山准备,需要携带的物品有: 食品、氧气、冰镐、绳索、帐篷、照相机和通讯设 备。每种物品的重要性系数和重量见下表:
例:旅行推销商要走五个城市,各城市间的距离如 下表:
地区 1 2 3 4 5 1 0 13 22 16 6 2 13 0 29 20 8 3 22 29 0 11 30 4 16 20 11 0 20 5 6 8 30 20 0
xij = i原料调入各j产品的数量和
2、生产工艺优化问题 例:丽佳化工厂生产洗涤剂。原料可从市场上以每公斤5 元的价格买到。处理1公斤原料可生产0.5公斤洗衣粉和 0.3公斤洗涤剂。处理1公斤原料的费用为1元。工厂还可 继续对其进行精加工。用1公斤普通洗衣粉生产0.5公斤 浓缩洗衣粉,用1公斤普通洗涤剂生产0.25公斤高级洗涤 剂。工厂每日可处理4吨原材料。产品价格,生产成本指 标见表。如果市场和原料供应没有限制,问该工厂如何 生产才能使其利润最大?
1
2 3 4
210
300 100 130
150
210 60 80
5
260
180
2、特殊约束处理 • 互为矛盾的约束:须同时出现的矛盾约束; • 绝对值约束(改写成两个矛盾约束);
• 多种选一的约束(n个约束中只有一个约束有效);
• 描述互斥的选择,从多种方案中选择一个方案; • 逻辑关系约束(if then 约束)

线性规划案例(2)

线性规划案例(2)

饮食规划问题分析摘要本案例旨在解决一个与饮食规划相关的管理问题。

通过应用线性规划方法,我们将建立一个模型来帮助一个人根据营养需求和食材成本,制定最佳的饮食计划。

问题描述希望根据自己的营养需求,在预算限制下制定每日的饮食计划。

1确保摄入足够的蛋白质、碳水化合物、脂肪和维生素,并且希望最小化食材的总成本。

2已知不同食材的营养含量和价格,确定每种食材的最佳购买量,以满足所需的营养需求并节约成本。

模型的构建1. 变量定义:- Xi:购买的食材i的数量(单位:克)2. 目标函数:Minimize: ∑(i) Pi * Xi其中,Pi表示食材i的价格(单位:货币单位/克)3. 约束条件:蛋白质约束:∑(i) Ni * Xi ≥P碳水化合物约束:∑(i) Ci * Xi ≥C脂肪约束:∑(i) Fi * Xi ≥ F维生素约束:∑(i) Vi * Xi ≥V预算约束:∑(i) Pi * Xi ≤ B非负约束:Xi ≥0为了模拟数据,我们将使用一个简化的饮食规划问题来说明。

假设我们有以下食材和相关参数:4 变量确定鸡胸肉:价格0.3 货币单位/克,蛋白质含量20g/100g,碳水化合物含量0g/100g,脂肪含量2g/100g,维生素含量0g/100g米饭:价格0.1 货币单位/克,蛋白质含量7g/100g,碳水化合物含量28g/100g,脂肪含量0.3g/100g,维生素含量0g/100g鸡蛋:价格0.2 货币单位/克,蛋白质含量13g/100g,碳水化合物含量1.1g/100g,脂肪含量10g/100g,维生素含量0.2g/100g个人营养需求:蛋白质需求:每日需要摄入至少50g碳水化合物需求:每日需要摄入至少150g脂肪需求:每日需要摄入至少30g维生素需求:每日需要摄入至少0.5g预算限制:每日食材购买总成本不超过10 货币单位5建立线性规划模型(1)变量定义:X1:购买的鸡胸肉数量(单位:克)X2:购买的米饭数量(单位:克)X3:购买的鸡蛋数量(单位:克)(2)目标函数:Minimize: 0.3 * X1 + 0.1 * X2 + 0.2 * X3(3)约束条件:蛋白质约束:20/100 * X1 + 7/100 * X2 + 13/100 * X3 ≥50碳水化合物约束:0/100 * X1 + 28/100 * X2 + 1.1/100 * X3 ≥150脂肪约束:2/100 * X1 + 0.3/100 * X2 + 10/100 * X3 ≥30维生素约束:0/100 * X1 + 0/100 * X2 + 0.2/100 * X3 ≥0.5预算约束:0.3 * X1 + 0.1 * X2 + 0.2 * X3 ≤10非负约束:X1 ≥0, X2 ≥0, X3 ≥06 模型的spss求解与分析我们将根据上述数据和模型构建的线性规划模型来进行分析。

实际问题中的线性规划思路

实际问题中的线性规划思路

实际问题中的线性规划思路线性规划是数学中的一种优化方法,可以帮助我们在实际问题中找到最佳的解决方案。

在解决实际问题时,我们可以运用线性规划的思路,通过建立数学模型来分析和解决问题。

下面,我将通过几个例子来说明实际问题中的线性规划思路。

例一:生产计划问题假设某工厂生产两种产品A和B,每天的生产时间为8小时。

产品A每件需要2小时,产品B每件需要3小时。

产品A的利润为100元,产品B的利润为150元。

如果每天至少要生产10件产品A和20件产品B,问该工厂每天最多能获得多少利润?解析:我们可以将该问题转化为线性规划模型。

设产品A的生产数量为x,产品B的生产数量为y。

根据题意,我们可以得到以下约束条件:2x + 3y ≤ 8(生产时间限制)x ≥ 10(产品A的最低生产数量)y ≥ 20(产品B的最低生产数量)目标是最大化利润,即最大化目标函数:Z = 100x + 150y通过求解上述线性规划模型,我们可以得到最大利润。

例二:资源分配问题假设某公司有两个项目,项目A和项目B,需要分配资源来完成。

项目A每天需要3个工人,项目B每天需要5个工人。

公司每天可用的工人总数为20人。

如果项目A的利润为2000元,项目B的利润为3000元,问该公司如何分配资源才能最大化利润?解析:同样地,我们可以将该问题转化为线性规划模型。

设项目A的分配工人数为x,项目B的分配工人数为y。

根据题意,我们可以得到以下约束条件:3x + 5y ≤ 20(工人数限制)目标是最大化利润,即最大化目标函数:Z = 2000x + 3000y通过求解上述线性规划模型,我们可以得到最大利润。

例三:运输问题假设某物流公司要从仓库A将商品运送到仓库B和仓库C。

仓库A有1000件商品可供运输,仓库B和仓库C的需求分别为500件和700件。

运输一件商品从仓库A到仓库B的成本为5元,从仓库A到仓库C的成本为8元。

问该物流公司如何安排运输才能最小化成本?解析:同样地,我们可以将该问题转化为线性规划模型。

线性规划综合案例

线性规划综合案例

X3 -1/2 -1/3 -4 -2/3 σ
2+(2/3)a 用 B-1 b= 11-(1/6)a 代替常数项
因为 a>6, 则1-(1/6) a<0,原始不可行, a>6, a<0,原始不可行, 但是对偶可行。用对偶单纯形法求解。 但是对偶可行。用对偶单纯形法求解。
cj
cB XB 19 X4
9 8 50 19 0 0 x1 x2 x3 x4 x5 x6 b 2 4/3 0 1 2/3 -10/3 2+(2/3)a 0 -1/6 4/3 1-(1/6)a 0 -13/3 -10/3 88+(13/3)a
当 a >6 , a<-3时,原最优基改 a<变了。 情形: 变了。下面讨论 a >6 情形:原 问题最优基。 问题最优基。
cj
cB 19 50
XB X4
9 x1 2
8 50 19 0 0 x2 x3 x4 x5 x6 b 4/3 0 1 2/3 -10/3 2 1 0 0 -1/6 4/3 1 0 -13/3 -10/3 88
X3 -1/2 -1/3 -4+a -2/3 σ
仅当 -4 + a<0时,即a<4,原最优 a<0时 a<4, 解不变,最优利润值还是88万元。 解不变,最优利润值还是88万元。 88万元 说明每万件A产品的利润不超过13 说明每万件A产品的利润不超过13万 13万 元时,原最优决策方案不变。 元时,原最优决策方案不变。 当a>4时,即每万件A产品的利润超 a>4时 即每万件A 过13万元时,B 已经不是最优基, 13万元时, 已经不是最优基, 万元时 继续进行最优化。 继续进行最优化。

线性规划应用案例

线性规划应用案例
的报告中有以下讨论: 1)推荐一份关于电视、广播和报纸广告应各用多少次以及各种媒体
的预算分配。列出广告的总宣传率并指出总的可以到达的潜在新客户 数。
2)如果广告预算增加10000美元,那么总的宣传率会怎么变化? 3)讨论目标函数系数的变化范围。该变化范围揭示了推荐的解决方 案对HJ的宣传率系数有多敏感? 4)在审阅了HJ的推荐方案后,火烈鸟烤肉饭店的管理层想要知道若 广告活动的目标变化最大化达到的潜在客户,则推荐方案会有什么变 化?在这个目标下构建媒体使用计划模型。 5)比较问题1和4中的推荐方案,你对于火烈鸟烤肉饭店的广告活动 有何建议?
火烈鸟公司管理层接受了最大化各种媒体总宣传率作为这次广告运
动的目标。由于管理层很在意吸引新的客户,因此希望这次广告活动至 少能达到100000个新客户。为了平衡广告宣传活动以及充分利用广告媒 体,火烈鸟公司管理团队还采纳了以下方针:
1) 广播广告运用的次数至少是电视广告的2倍; 2) 电视广告不能运用超过20次;
的不同。(目标函数系数的取值范围在这两种模型中的含义 有什么不同)
案例3 Cinergy煤分配
Cinergy公司为位于印第安纳、肯塔基及俄亥俄州的客户发电并配 送电力。该公司每年运作其燃煤及燃气发电厂所需的燃料花费为7.25亿 —7.5亿美元。发电厂所需的燃料中,92%—95%为煤炭。Cinergy公司 有10家燃煤发电厂,5家坐落在内陆,另外5家坐落在俄亥俄河上,有的 工厂不止一套发电设备。作为全美第7大燃煤单位,Cinergy公司每年使 用2800万—2900万吨煤,平均每天花费约200万元。
公司构造了一个模型,以确定每个发电单位需生产的电量【以百万 瓦时(mWh)为单位】及衡量发电单位的效率(以发热率为标准)。 发热率是指生产千瓦时(kWh)的电力所需的BTU总量。

线性规划应用举例

线性规划应用举例

解:设 xijk 表示第 i 种产品,在第 j 种工序上的第 k 种设备上加工 的数量。建立如下的数学模型: s.t. 5x111 + 10x211 7x112 + 6x121 + 4x122 7x123 8x221 ≤ 6000 ( 设备 A1 ) ( 设备 A2 ) ( 设备 B1 ) ( 设备 B2 ) ( 设备 B3 ) 9x212 + 12x312 ≤ 10000 ≤ 4000 + 11x322 ≤ 7000 ≤ 4000
x111+ x112- x121- x122- x123 = 0 (Ⅰ产品在A、B工序加工的数量相等) x211+ x212- x221 x312
- x322 = 0 (Ⅱ产品在A、B工序加工的数量相等) = 0 (Ⅲ产品在A、B工序加工的数量相等)
xijk ≥ 0 , i = 1,2,3; j = 1,2; k = 1,2,3
表 4 --6 表 4 7 ---
标准汽油 辛烷数 1 2 3 4 飞机汽 油 1 2 107.5 93.0 87.0 108.0 辛烷数 不小于91 不小于 不小于 100
蒸汽压力(g/cm2) 蒸汽压力 7.11×10-2 × 11.38 ×10-2 5.69×10-2 ×
目标函数为计算利润最大化,利润的计算公式为: 利润 = [(销售单价 - 原料单价)* 产品件数]之和 (每台时的设备费用*设备实际使用的总台时数)之和。 这样得到目标函数:
Max(1.25-0.25)(x111+x112)+(2-0.35)x221+(2.80-0.5)x312 – (2(2 300/6000(5x111+10x211)-321/10000(7x112+9x212+12x312)250/4000(6x121+8x221)-783/7000(4x122+11x322)200/4000(7x123).

线性规划问题应用举例

线性规划问题应用举例
截法 1 2 3 4 0.98m 5根 4根 3根 2根 0.78m 0根 1根 2根 3根 料头(m) 0.1 0.3 0.5 0.7
表5.19
5
6
1根
0根
5根
6根
0.12
0.32
巩固知识 典型例题
设采用第j种截法的钢管数为xj根(j=1,2,…6). 建立线性规划模型: 目标函数
min Z x j ,
利润为11250单位.
巩固知识 典型例题
案例3 环境保护问题 某河流旁设置有甲、乙两座化工厂,如图 5-11 所 示 , 已 知 流 经 甲 厂 的 河 水 日 流 量 为 500×104m3, 在两厂之间有一条河水日流量为 200×104m3的支流. 甲、乙两厂每天生产工业 污水分别为2×104m3和1.4×104m3 ,甲厂排出 的污水经过主流和支流交叉点 P后已有20%被 自然净化 . 按环保要求,河流中工业污水的含 量不得超过 0.2% ,为此两厂必须自行处理一 部分工业污水,甲、乙两厂处理每万立方米污 水的成本分别为1 000元和800元.问:在满足 环保要求的条件下,各厂每天应处理多少污水, 才能使两厂的总费用最少?试建立规划模型, 并求解.
满足
利用Excel软件求解: 结果为:xA=0, xB=4, xC=16 总费用最少为44.
巩固知识 典型例题
案例 5 运输问题 设有两座铁矿山 A 、 B ,另有三个炼铁厂甲、 乙、丙需要矿石,各矿日产量和各厂日需量及对 应的运价(元)如表5.18给出,问怎样调运送矿 石才能使总费用最小? 表5.18 铁矿山 A B 矿石需求量

0 x5 0 1 0
1 2
1 4 5 4
bi 8000 6000 0 5000 1500 7500 2500 250 11250

线性规划运用举例

线性规划运用举例

3、排班问题 邮局一年356天都要有人值班,每天需要的职工人 数因业务忙闲而异,据统计邮局每天需要的人数按 周期变化,一周内每天需要的人数如下:
周一 周二 周三 周四 周五 周六 周日
17
13
15
19
14
16
11
排班要符合每周连续工作五天,休息两天的规定, 如何排班可使用人最少?
4、背包问题 例:一登山队员做登山准备,需要携带的物品有: 食品、氧气、冰镐、绳索、帐篷、照相机和通讯设 备。每种物品的重要性系数和重量见下表:
大于等 于70 大于等 于80 大于等 于85
1200 1500
问题分析:最优调和方案 什么原料调入什么产品,调入的数量是多少 目标:调和方案的利润最大
利润=销售收入-调和成本
=产品价格*销售数量-原料成本*用量 变量:产品数量?原料数量?其他量?
j产品生产数量=各原料调入j产品数量和 i原料使用量=i原料调入各个产品的数量和
整数规划应用举例
• 整数变量
• 特殊约束处理
• 背包问题 • 集合覆盖问题 • 固定费用问题 • 旅行推销商问题
• 下料问题

1、整数变量 • 表示不可分割的数量; • 表示决策变量(0-1整数变量,具有很多优良特点);
• 表示决策变量之间的逻辑关系,例如,决策i必须以决策
j的结果为前提;
• 描述互斥的选择,从多种方案中选择一个方案;
产品 普通洗衣粉 普通洗涤剂 浓缩洗衣粉 高级洗衣剂 销售价格 元/公斤 8 12 24 55 加工成本 元/公斤 3 3
3、多周期动态生产计划问题 例:华新机器制造厂专为拖拉机厂配套生产柴油机。今年 头四个月收到的订单数量分别为3000,4500,3500,5000 台柴油机,该厂正常生产每月可生产柴油机3000台,利用 加班还可生产1500台。正常生产成本为每台5000元,加 班生产还要追加1500元成本,库存成本为每台每月200元。 华新厂如何组织生产才能使其生产成本最低?

线性规划应用案例

线性规划应用案例

板材下料优化方法案例本案例以上海某柴油机厂某车间某年某月所需3种2mm厚度的板材零件下料为例,说明线性规划在下料中的应用及其在提高材料利用率方面所能产生的显著经济效益。

同时,该案例所介绍的工作流程还是一种非常简单实用、便于操作、效果良好的板材下料优化方法,可供各企业在生产中参考运用。

一.板材下料优化方法的特点及其工作流程用线性规划求解最优下料方案,通常要求首先设计出所有可行合理的下料方式,然后建立LP模型求解最优下料方案。

由于板材下料是典型的二维下料,每一种下料方式对应一张排料图,在零件种类较多的情况下,要绘制出所有可行且合理的排料图,不仅工作量非常巨大,而且也是不现实的。

为减少绘制排料图的工作量,同时又能达到良好的效果,我们在此给出了一种高效的板材下料优化方法的工作流程。

该工作流程有如下特点:1.对绘制排料图的要求不高。

开始时,只需选作少量包含各种零件且材料利用率较高的排料图,这不仅可简化绘图工作量,还可简化模型。

2.对所得最优解进行最优化后分析。

若初始最优解效果不理想,则通过有针对性地再增绘少量排料图后重新求解,通常就可达到事半功倍的效果(该步骤属于将在第十一章介绍的敏感性分析中的“增加新的决策变量”,但我们是用计算机求解,故可不涉及敏感性分析的概念)。

3.通常板材下料问题中的变量应当是整数,若采用整数规划求解,则显然会使材料利用率降低。

这里我们先采用线性规划求解,对得到的最优解通过舍去小数部分取整,对取整后的零件短缺数,再绘制少量排料图解决。

此“取整修正”方法可比使用整数变量求解得到更高的材料利用率。

图1 板材下料优化方法工作流程二.实际操作中的几点注意事项1.绘制排料图时的注意事项为简化排料图的绘制,排料前应先将零件进行分类,一般可分为以下三类:(1)零件边长大于钢板短边的一类。

此类零件在钢板上只有一种排法,对材料利用率影响较大,应注意利用余料安排其他尺寸较小的零件。

(2)零件两边均小于钢板短边的一类。

线性规划应用 例题及作业

线性规划应用  例题及作业

第五节 线性规划应用举例例1 生产计划问题某工厂可以生产n A A A 、、、 21共n 种产品,生产中需要消耗m B B B 、、、 21共m 种资源。

生产每单位产量的A j 产品需要消耗B i 种资源的数量为a ij ,各种产品每单位的利润分别为n c c c 、、、 21。

工厂的资源是有限的,每种资源的数量分别为m b b b 、、、 21。

上述情况可表示在如下生产情况表中。

解:设:n A A A 、、、 21的产量分别为n x x x 、、、 21。

问题的线性规划模型为:,,,z max 21221122222121112121112211≥≤+++≤+++≤++++++=n m n mn m m n n n n nn x x x b x a x a x a b x a x a x a b x a x a x a x c x c x c例2.货运问题某企业租用了一节火车车皮运送甲、乙两种货物到外地销售。

这两种货物每箱的重量分别为:甲—0.2吨,乙—0.3吨;每箱的体积分别为:甲—1米3,乙—0.6米3;每箱可获得的利润分别为:甲—500元,乙—400元。

一节车皮的有效载重为56吨,有效容积为180米3。

问:为获得最大利润,甲、乙各应运载多少箱?可将该问题视为一个生产计划问题,产品为甲、乙,资源为载重量和容积,可列出相应的生产情况表如下:解:设甲、乙货物的运送两分别为x 1、x 2。

模型为:,1805.0563.02.0400500z max 21212121≥≤+≤++=x x x x x x x x解得:x 1=130,x 2=100,z =105000例3:混合配料问题某饲养厂每天需要1000公斤饲料,其中至少要含7000克蛋白质、300克矿物质、1000毫克维生素。

现有五种饲料可供使用,各种饲料每公斤营养含量及价格如下表所示:解:设每天各种饲料的选用量依次为:54321,,,,x x x x x 。

(完整版)线性规划案例

(完整版)线性规划案例

(完整版)线性规划案例1.人力资源分配问题设司机和乘务人员分别在各时间段开始时上班,并连续工作8小时,问该公交线路应怎样安排司机和乘务人员,既能满足工作需要,又使配备司机和乘务人员的人数最少?解:设x i 表示第i班次时开始上班的司机和乘务人员数,这样我们建立如下的数学模型。

目标函数:Min x1 + x2 + x3 + x4 + x5 + x6约束条件:s.t. x1 + x6 ≥60x1 + x2 ≥70x2 + x3 ≥60x3 + x4 ≥50x4 + x5 ≥20x5 + x6 ≥30x1,x2,x3,x4,x5,x6 ≥0运用lingo求解:Objective value: 150.0000ariable Value Reduced Cost X1 60.00000 0.000000X2 10.00000 0.000000X3 50.00000 0.000000X4 0.000000 0.000000X5 30.00000 0.000000X6 0.000000 0.000000例2.一家中型的百货商场,它对售货员的需求经过统计分析如下表所示。

为了保证售货人员充分休息,售货人员每周工作5天,休息两天,并要求休息的两天是连续的。

问应该如何安排售货人员的作息,既满足工作需要,又使配备的售货人员的人数最少?解:设x i ( i = 1,2,…,7)表示星期一至日开始休息的人数,这样我们建立如下的数学模型。

目标函数:Min x1 + x2 + x3 + x4 + x5 + x6 + x7约束条件:s.t. x1 + x2 + x3 + x4 + x5 ≥28x2 + x3 + x4 + x5 + x6 ≥15x3 + x4 + x5 + x6 + x7 ≥24x4 + x5 + x6 + x7 + x1 ≥25x5 + x6 + x7 + x1 + x2 ≥19x6 + x7 + x1 + x2 + x3 ≥31x7 + x1 + x2 + x3 + x4 ≥28x1,x2,x3,x4,x5,x6,x7 ≥0lingo求解Objective value: 36.00000Variable Value Reduced Cost X1 12.00000 0.000000X2 0.000000 0.3333333 X3 11.00000 0.000000X4 5.000000 0.000000X5 0.000000 0.000000X6 8.000000 0.000000X7 0.000000 0.000000例3. 某储蓄所每天的营业时间为上午9:00到下午17:00,根据经验,每天不同时间段所需要储蓄所可以雇佣全时和半时两类服务员。

线性规划算法的应用案例

线性规划算法的应用案例

线性规划算法的应用案例线性规划是应用最广泛的数学优化方法之一,也是一种非常有效的运筹学技术。

它的基本思想是将问题建模成一组线性方程和线性不等式的组合,通过寻找最优解来实现目标最大化或最小化。

线性规划算法广泛应用于制造业、金融、物流和交通等领域,以下将介绍几个重要的应用案例。

1. 生产计划和调度线性规划算法可以用于制造业的生产计划和调度。

例如,在一家造纸厂中,有若干个可用的生产线、仓库和运输车辆,需要考虑原材料的成本、工人的人工费用、工厂的能耗费用以及运输的成本等因素,制定出最佳的生产计划和调度方案。

对于这类问题,可以将目标函数设置为生产成本最小化或产出效率最大化,约束条件包括原材料的库存量、生产线的容量和物流的时间窗口等。

通过使用线性规划算法,可以得到最佳的生产计划和调度方案,使得企业的生产效率和盈利能力得到提升。

2. 市场营销和广告投放线性规划算法可以帮助企业制定最佳的市场营销和广告投放方案。

例如,在一家快递公司中,需要制定如何调整价格策略、开拓市场份额、投放广告等方案,以达到最大化利润或最小化成本的目标。

对于这类问题,可以将目标函数设置为销售额最大化或成本最小化,约束条件包括市场份额的限制、广告投放预算的限制等。

通过使用线性规划算法,可以得到最佳的市场营销和广告投放方案,提高企业的营销效率和市场竞争力。

3. 交通运输和物流配送线性规划算法可以用于交通运输和物流配送领域。

例如,在一个物流中心中,需要规划配送路线和运输车辆的分配,以最小化交通堵塞和物流成本的影响。

对于这类问题,可以将目标函数设置为运输成本最小化或配送效率最大化,约束条件包括车辆数量的限制、货物配送时间的限制等。

通过使用线性规划算法,可以得到最佳的路线规划和车辆分配方案,提高企业的配送效率和物流运转效率。

4. 金融投资和风险管理线性规划算法可以用于金融投资和风险管理领域。

例如,在一个投资银行中,需要制定最佳的投资组合和股票交易策略,以最大化收益和降低风险。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

市场营销应用
案例一:媒体选择
在媒体选择中应用线性规划的目的在于帮助市场营销经理将固定的广告预算分配到各种广告媒体上,可能的媒体包括报纸、杂志、电台、电视和直接邮件。

在这些媒体中应用线性规划,目的是要使宣传范围、频率和质量最大化。

对于应用中的约束条件通常源于对公司政策、合同要求及媒体的可用性。

在下面的应用中,我们将介绍如何应用线性规划这一工具来建立模型进而解决媒体选择问题。

REL发展公司正在私人湖边开发一个环湖社区。

湖边地带和住宅的主要市场是距离开发区100英里以内的所有中上收入的家庭。

REL公司已经聘请BP&J 来设计宣传活动。

考虑到可能的广告媒体和要覆盖的市场,BP&J建议将第一个月的广告局限于5种媒体。

在第一个月末,BP&J将依据本月的结果再次评估它的广告策略。

BP&J已经收集到了关于受众数量、广告单价、各种媒体一定周期内可用的最大次数以及评定5种媒体各自宣传质量的数据。

质量评定是通过宣传质量单位来衡量的。

宣传质量单位是一种用于衡量在各个媒体中一次广告的相对价值的标准,它建立于BP&J在广告业中的经验,将众多因素考虑在内,如受众层次(年龄、收入和受众受教育的程度)、呈现的形象和广告的质量。

表4-1列出了收集到的这些信息。

表4-1 REL发展公司可选的广告媒体
REL发展公司提供给BP&J第一个月广告活动的预算是30000美元。

而且,REL公司对BP&J如何分配这些资金设置了如下限制:至少要使用10次电视广告,达到的受众至少要有50000人,并且电视广告的费用不得超过18000美元。

应当推荐何种广告媒体选择计划呢?
案例二:市场调查
公司开展市场营销调查以了解消费者个性特点、态度以及偏好。

专门提供此种信息的市场营销调查公司,经常为客户机构开展实际调查。

市场营销调查公司提供的典型服务包括涉及计划、开展市场调查、分析收集数据、提供总结报告和对客户提出意见。

在调查设计阶段,应当对调查对象的数量和类型设定目标或限额。

市场营销调查公司的目标是以最小的成本满足客户要求。

市场调查公司(MSI)专门评定消费者对新的产品、服务和广告活动的反映。

一个客户公司要求MSI帮助确定消费者对一种近期推出的家具产品的反应。

在与客户会面的过程中,MSI统一开展个人入户调查,以从有儿童的家庭和无儿童的家庭获得回答。

而且MSI还同意同时开展日间和晚间调查。

尤其是,客户的合同要求依据以下限制条款进行1000个访问:
●至少访问400个有儿童的家庭;
●至少访问400个无儿童的家庭;
●晚间访问的家庭数量必须不少于日间访问的家庭数量;
●至少40%有儿童的家庭必须在晚间访问;
●至少60%无儿童的家庭必须在晚间访问。

因为访问有儿童的家庭需要额外的访问时间,而且晚间访问者要比日间访问者获得更多收入,所以成本因访问的类型不同而不同。

基于以往的调查研究,预计的访问费用如下表所示:
以最小总访问成本满足合同要求的家庭——时间访问计划是什么样的呢?。

相关文档
最新文档