金属热处理总结
金属热处理原理与工艺总结 整理版
金属热处理原理与工艺一、热处理的概念热处理指的是将金属材料加热至一定温度,然后进行冷却或其他处理方法,以改变其组织结构、物理性能和化学性能的过程。
二、热处理的分类根据热处理的方式,可以将其分为以下几类:•退火(Annealing):在800-900℃的温度下,将金属材料慢慢地冷却,使其组织结构变得均匀,降低硬度,提高延展性和韧性。
•正火(Normalizing):在金属材料的贝氏体区域进行冷却,提高硬度和强度,但是会降低韧性。
•淬火(Quenching):将金属材料加热到临界温度(不同的金属有不同的临界温度),然后进行强制冷却,使其产生马氏体,提高硬度和强度。
•回火(Tempering):在淬火后,将金属材料加热到低于淬火温度的温度,然后进行冷却,使其产生新的组织结构,提高韧性和强度。
三、热处理中的关键因素1. 温度热处理中的温度是非常重要的因素。
不同的金属材料需要在不同的温度下进行热处理。
温度的高低会对金属材料的组织结构、物理性能和化学性能产生直接影响。
2. 时间热处理中的时间也是非常重要的因素。
不同的金属材料需要在不同的时间内进行热处理。
时间的长短会对金属材料的组织结构、物理性能和化学性能产生直接影响。
3. 冷却速率热处理中的冷却速率也是非常重要的因素。
冷却速度过快或过慢都会对金属材料的组织结构、物理性能和化学性能造成影响。
不同的金属材料需要在不同的冷却速率下进行热处理。
四、热处理的流程热处理的流程可以分为以下三个步骤:1. 加热将金属材料加热到一定的温度,使其达到预期的组织结构、物理性能和化学性能。
2. 保温在金属材料达到预期的温度后,需要将其保持一段时间,以便其达到平衡态。
3. 冷却冷却是热处理过程中非常重要的一步,冷却速率直接影响到金属材料的组织结构、物理性能和化学性能。
五、热处理的应用热处理被广泛应用于金属材料的加工和制造过程中。
例如,汽车制造、机械制造、航空航天、电子等行业都需要进行热处理。
金属热处理重点归纳
一名词解释1. 热处理:将钢在固态下进行加热、保温和冷却三个基本过程,以改变钢的内部组织结构,从而获得所需性能的一种加工工艺(P69)2. 同素异构转变:把同一元素或同一成分合金,在固态下随温度变化而具有不同晶体结构形态的转变3 . 过冷度:理论结晶温度与实际结晶温度的差。
(P11)4 . 变质处理:在液态金属结晶前,加入一些变质剂或形核剂作为现成晶核或用以抑制长大速度以细化晶粒,这种处理方法称为变质处理(P14)5. 淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示。
(P97)6. 晶內偏析:由于非平衡结晶造成晶体内化学成分不均匀的现象(P28)7 . 淬火:指将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上,保温并随之以大于临界冷却速度冷却,以得到介稳状态的马氏体或下贝氏体组织的热处理方式。
(P90)8 . 比重偏析: 当合金组成相与合金溶液之间密度相差较大时,初生相便会在液体中上浮或者下沉而造成的偏析。
(P32)9 .冷加工:指材料在再结晶温度以下所进行的塑性变形加工。
(P67)10 . 配位数:晶体中任意一个原子周围最近邻且等距的原子数目(P6)11 . 正火:指将材料加热到临界温度以上的适当温度,保温适当时间后以较快冷却速度冷却(空冷),以获得珠光体类型组织的热处理工艺。
(P85)12 . 致密度:晶体中原子所占体积与晶体体积的比值(P6)13.冷处理:指把淬冷至室温的钢继续冷却到一定低的温度,保持一段时间,使残余奥氏体在继续冷却的过程中转变为马氏体的处理方式。
(P94)14.回火:指将淬火钢加热到Ac1以下的某一温度保温后进行冷却的热处理工艺。
(P100)15. 加工硬化:随着变形量的增大,由于晶粒破碎和位错密度增加,晶体的塑性变形抗力迅速增大,强度和硬度明显升高,塑性和韧性下降的现象。
(P62)16 . 调制处理:淬火加高温回火相结合的热处理工艺(P102)17. 热加工:指在材料在结晶温度以上所进行的塑性变形加工工艺。
热处理工作总结7篇
热处理工作总结7篇第1篇示例:热处理是一种通过控制金属材料的加热、保温和冷却过程来改变其结构和性能的工艺。
作为热处理工程师,我们在日常工作中需要根据不同金属材料的性质和加工要求,选择合适的工艺参数和设备,进行热处理操作,以达到提高材料硬度、强度、耐磨性以及改善其工艺性能等目的。
在过去一段时间的工作中,我深刻体会到热处理工作的重要性和复杂性,也积累了一些经验和教训,下面我将就此进行总结。
热处理工作需要严格遵守操作规程和安全措施。
在进行热处理操作时,要严格按照工艺流程和规范操作,避免出现操作失误或疏忽造成材料受损或设备事故的情况。
要时刻注意工作场所的通风情况和防护设施的完好性,确保操作人员的安全。
在进行热处理操作前,要对设备进行检查和保养,确保设备运行正常,避免因设备故障导致操作中断或事故发生。
热处理工作需要具备良好的专业知识和技能。
热处理工程师需要了解不同金属材料的性质和特点,掌握各种热处理工艺参数的调节方法,以及相关设备的操作原理和维护技巧。
只有具备扎实的专业知识和技能,才能正确选择合适的热处理工艺方案,确保热处理效果达到预期目标。
要不断学习和提升自己的专业水平,跟上行业技术的发展动态,为工作提供更加有力的支持。
热处理工作需要注重团队合作和沟通。
在实际工作中,热处理工程师需要与生产、质检、技术等部门密切合作,共同制定热处理方案和解决实际问题,保障产品质量和生产进度。
要建立良好的团队合作精神,积极参与工作讨论和交流,及时沟通和协调各方需求,确保工作的顺利进行。
热处理工作需要不断总结经验和教训,持续改进和完善工作流程。
在实际操作中,可能会出现各种问题和挑战,比如材料变形、裂纹产生等,我们要及时总结经验教训,找出问题原因并寻求解决方案,避免类似问题再次发生。
要关注热处理工艺技术的发展动态,引进新技术、新设备,不断改进和完善工作流程,提高工作效率和质量。
热处理工作是一项重要而复杂的工作,需要我们不断学习和提升自己,保持专业水平和团队合作精神,不断总结经验和完善工作流程,以确保工作顺利进行并达到预期效果。
金属热处理总结
金属热处理总结第六章:1.理解概念:形变强化,细晶强化,滑移,滑移系,滑移面,滑移方向,临界分切应力,取向因子,软位向,硬位向,孪生,纤维组织,形变织构,临界变形度,回复,再结晶,冷加工,热加工,超塑性2.掌握塑性变形的特点及对组织和性能的影响3.4.5.掌握冷变形金属在加热时组织和性能的变化滑移的位错机制φλστcoscossk=软位相:最容易出现滑移硬位相:不能产生滑移6.3多晶体的塑性变形 1、特点:不同时性:只有处在有利位向(取向因子最大)的晶粒的滑移系才能首先开动不均匀性:每个晶粒的变形量各不相同,而且由于晶界的强度高于晶内,使得每一个晶粒内部的变形也是不均匀的。
协调性:多晶体的塑性变形是通过各晶粒的多系滑移来保证相互协调性。
根据理论推算,每个晶粒至少需要有五个独立滑移系。
2、晶粒大小对塑性变形的影响6.4塑性变形对金属组织与性能的影响组织的影响1.形成纤维组织:2.形成变形织构:晶体的择优选择3.亚结构细化:随着变形量的增加,位错交织缠结,在晶粒内形成胞状亚结构,叫形变胞4残余应力:残余内应力和点阵畸变. 宏观内应力:微观内应力:点阵畸变:金属在塑性变形中产生大量点阵缺陷(空位、间隙原子、位错等),使点阵中的一部分原子偏离其平衡位置,而造成的晶格畸变。
21-+=Kdo s σσ1.各向异性:形成了纤维组织和变形织构2.形变强化:变形过程中,位错密度升高,导致形变胞的形成和不断细化,对位错的滑移产生巨大的阻碍作用组织结构:形成纤维组织和变形织构;亚结构细化;点阵畸变机械性能:各向异性;形变强化/加工硬化;形成残余内应力6.5冷变形金属的回复与再结晶形变金属与合金退火过程示意图1.回复后的显微组织和性能:(去应力退火)1)金属的晶粒大小和形状不发生明显的变化2)亚结构变化3)金属的强度、硬度和塑性等机械性能变化不大4)内应力及电阻率等理化性能降低多边形化:实质上是位错从高能态的混乱状态向低能态的规则排列移动过程2.再结晶后的显微组织和性能1)金属的晶粒大小和形状发生明显的变化,形成等轴晶粒2)金属的强度、硬度有所降低,塑性、韧性有所提高3)内应力完全消除再结晶:冷变形后的金属加热到一定温度之后,在原来的变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化,并恢复到完全软化状态,这个过程称之为再结晶。
金属热处理原理及工艺总结-整理版
金属热处理原理及工艺总结-整理版引言金属热处理是一种通过改变金属内部结构来提高其性能的工艺。
它广泛应用于机械制造、航空航天、汽车工业等领域。
本文档旨在总结金属热处理的基本原理、常见工艺以及实际应用。
金属热处理的基本原理金属晶体结构金属晶体是由金属原子按一定规则排列形成的。
金属的物理性能,如硬度、韧性等,与其晶体结构密切相关。
相变理论金属在不同的温度下会发生相变,如奥氏体化、珠光体化等。
通过控制加热和冷却过程,可以改变金属的相组成,从而改善其性能。
扩散原理金属热处理过程中,原子的扩散是改善金属性能的关键。
通过高温加热,原子获得足够的能量进行扩散,实现组织结构的优化。
常见的金属热处理工艺退火退火是将金属加热到一定温度,保持一定时间后缓慢冷却的过程。
目的是降低硬度,消除内应力,提高塑性。
正火正火是将金属加热到一定温度后,保持一段时间,然后以较快速度冷却的过程。
它能改善金属的组织结构,提高硬度和强度。
淬火淬火是将金属加热到奥氏体化温度后迅速冷却,形成马氏体或其他硬化组织,显著提高金属的硬度和强度。
回火回火是淬火后的金属再次加热到一定温度,保持一段时间后冷却的过程。
它用于降低淬火后的脆性,提高韧性和塑性。
调质调质是将金属加热到奥氏体化温度后淬火,再进行高温回火的过程。
它综合了淬火和回火的优点,使金属具有较好的综合机械性能。
金属热处理工艺的实际应用钢铁材料的热处理钢铁材料是金属热处理的主要对象。
通过不同的热处理工艺,可以生产出不同性能的钢材,满足各种工程需求。
非铁金属材料的热处理非铁金属如铝合金、钛合金等,也可以通过热处理改善性能。
例如,铝合金通过固溶处理和时效处理提高强度。
表面热处理表面热处理如渗碳、氮化等,可以在金属表面形成一层硬度高、耐磨性好的化合物层,提高零件的使用寿命。
控制气氛热处理在控制气氛中进行热处理,可以防止金属氧化和脱碳,保持金属表面光洁,提高热处理质量。
结语金属热处理是材料科学中的一个重要分支。
2024年热处理年度工作总结范例(2篇)
2024年热处理年度工作总结范例尊敬的领导、同事们:您们好!我是热处理部门的一名普通员工,在过去的2024年里,我一直在这个岗位上努力工作,不断学习和提升自己。
经过一年的努力,我将我的工作总结如下。
一、指导思想在工作中,我始终坚持“追求卓越,责任至上”的原则。
每一项工作,我都严格要求自己,力求做到最好,以实际行动践行“质量第一、用户至上”的工作理念。
二、工作成果在2024年,我们热处理部门完成了各项工作任务,取得了一系列骄人的成绩:1. 提升工艺水平:我积极参与技术培训和学习,不断提升自己的知识和技能。
通过调研和参考优秀企业的先进经验,我们优化了热处理工艺流程,提高了产品的质量和工艺效率。
2. 技术创新:针对某些特殊材料的热处理难题,我积极与同事合作,开展技术攻关工作。
通过不断摸索和实践,我们克服了一系列技术难题,为公司的产品提供了更好的热处理解决方案。
3. 质量管理:我积极参与质量管理工作,认真执行各项质量标准和操作规程,严格控制产品的质量。
公司在2024年度的质量检查中,热处理部门被评定为优秀,得到了领导的表扬和肯定。
4. 安全生产:我始终把安全生产放在首要位置,严格按照相关规定和操作流程进行操作,积极参与安全培训和演练活动。
在2024年,热处理部门未发生任何安全事故,为公司的安全生产工作做出了贡献。
三、存在问题在本年度的工作中,我也发现了一些问题和不足:1. 学习不够深入:虽然我积极参加了技术培训和学习,但有时候对一些复杂技术的理解还不够深入,需要进一步加强学习,提升自己的专业水平。
2. 沟通不够顺畅:由于工作中的需要,我们经常需要与其他部门进行协作,但有时候沟通上存在一些问题,需要提高自己的沟通能力和团队合作精神。
3. 工作效率有待提高:由于工作量较大,我有时候会感到压力较大,可能会影响我的工作效率,需要进一步提高自己的工作效率和时间管理能力。
四、改进措施为了进一步提高自己的工作质量和效率,我制定了以下改进措施:1. 提高学习深度:我将利用业余时间加强学习,阅读更多的专业书籍和文献,参加更多的技术培训和学习交流活动,不断提升自己的专业水平。
热处理专业年度质量总结(3篇)
第1篇一、前言热处理作为材料加工的重要环节,在工业生产中发挥着至关重要的作用。
本年度,我国热处理行业在技术创新、质量管理、市场拓展等方面取得了显著成果。
现将本年度热处理专业质量工作总结如下:二、工作回顾1. 技术创新(1)研发新型热处理工艺:本年度,我国热处理行业在技术研发方面取得了丰硕成果,成功研发出新型热处理工艺,如真空热处理、激光热处理等,提高了产品质量和生产效率。
(2)优化现有热处理工艺:针对现有热处理工艺中存在的问题,通过优化工艺参数、改进设备等措施,降低了能耗,提高了热处理质量。
2. 质量管理(1)完善质量管理体系:本年度,我国热处理企业不断完善质量管理体系,严格执行ISO9001质量管理体系标准,确保产品质量。
(2)加强过程控制:在热处理过程中,严格控制工艺参数,确保产品质量稳定可靠。
同时,加强设备维护保养,降低设备故障率。
(3)提升员工素质:通过开展员工培训、技能竞赛等活动,提高员工的质量意识和操作技能,为产品质量提供有力保障。
3. 市场拓展(1)拓展国内外市场:本年度,我国热处理企业积极拓展国内外市场,与多家国内外知名企业建立了合作关系,产品远销欧美、东南亚等地区。
(2)参加行业展会:积极参加国内外热处理行业展会,展示企业实力,提升品牌知名度。
三、存在的问题及改进措施1. 存在问题(1)部分企业质量管理意识薄弱,质量管理体系不完善。
(2)热处理工艺水平有待提高,部分企业仍采用传统热处理工艺。
(3)市场竞争激烈,企业面临成本压力。
2. 改进措施(1)加强质量管理,完善质量管理体系,提高产品质量。
(2)加大技术研发投入,提高热处理工艺水平。
(3)优化生产流程,降低生产成本,提高企业竞争力。
四、展望展望未来,我国热处理行业将继续秉持“质量第一”的原则,以技术创新为动力,以市场为导向,不断提升产品质量,为我国制造业的发展贡献力量。
总之,本年度我国热处理专业在技术创新、质量管理、市场拓展等方面取得了显著成果。
金属材料热处理工作总结
金属材料热处理工作总结
金属材料热处理是一项重要的工艺,通过对金属材料进行加热、保温和冷却等
操作,改变其组织结构和性能,从而达到提高材料硬度、强度、耐磨性和耐腐蚀性的目的。
作为一名从业多年的金属材料热处理工程师,我对这项工作有着丰富的经验和深刻的理解。
在这篇文章中,我将对金属材料热处理工作进行总结,分享一些经验和心得。
首先,金属材料热处理工作需要严格控制加热、保温和冷却的温度、时间和速度。
不同的金属材料对热处理工艺的要求各不相同,需要根据具体材料的特性和要求进行合理的工艺设计。
在实际操作中,我们需要根据材料的种类和要求选择合适的热处理工艺参数,确保每一道工序都能够达到预期的效果。
其次,金属材料热处理工作还需要对设备进行维护和保养。
热处理设备是保证
工艺质量的重要条件,只有设备运行稳定、精度高,才能够保证金属材料热处理的效果。
因此,我们需要定期对设备进行检修和保养,确保设备的正常运行和精度稳定。
此外,金属材料热处理工作还需要严格执行操作规程和质量标准。
在实际操作中,我们需要严格按照操作规程进行操作,确保每一道工序都符合标准要求。
同时,我们还需要对成品进行质量检验,确保金属材料的性能达到预期要求。
总的来说,金属材料热处理工作是一项需要细致认真和严谨细致的工作。
通过
对金属材料进行合理的热处理工艺设计和严格的操作执行,我们可以提高金属材料的性能,满足不同工程领域的需求。
希望通过我的总结,能够对金属材料热处理工作有所帮助,也希望能够与更多从业者进行交流和分享经验,共同进步。
金属热处理原理及工艺期末总结
金属热处理原理及工艺期末总结第一篇:金属热处理原理及工艺期末总结正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。
退火:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺固溶热处理:将合金加热至高温单相区恒温保持,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体的热处理工艺时效:合金经固溶热处理或冷塑性形变后,在室温放置或稍高于室温保持时,其性能随时间而变化的现象。
Al-4Cu合金在时效过程中,过饱和固溶体的各个沉淀阶段,其顺序可概括为:α过饱和→G.P.区θ''→过渡相θ'→过渡相θ→(CuAl2)稳定相固溶处理:使合金中各种相充分溶解,强化固溶体并提高韧性及抗蚀性能,消除应力与软化,以便继续加工成型时效处理:在强化相析出的温度加热并保温,使强化相沉淀析出,得以硬化,提高强度时效处理有自然时效和人工时效两种。
淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺调质处理:将钢件淬火,随之进行高温回火,这种复合工艺称调质处理。
表面热处理:改变钢件表面组织或化学成分,以其改面表面性能的热处理工艺。
表面淬火:是将钢件的表面通过快速加热到临界温度以上,但热量还未来得及传到心部之前迅速冷却,这样就可以把表面层被淬在马氏体组织,而心部没有发生相变,这就实现了表面淬硬而心部不变的目的。
适用于中碳钢。
化学热处理:是指将化学元素的原子,借助高温时原子扩散的能力,把它渗入到工件的表面层去,来改变工件表面层的化学成分和结构,从而达到使钢的表面层具有特定要求的组织和性能的一种热处理工艺渗碳:向钢的表面渗入碳原子,提高表面含碳量,提高材料表面硬度、抗疲劳性和耐磨性。
金属热处理实训心得
2022金属热处理实训心得在参加2022年度的金属热处理实训之前,我对金属热处理的了解比较浅显,只知道在工业生产中可以通过加热、冷却等方式对金属材料进行处理和加工,使得其材料性能得以改善。
经过一段时间的实训,我逐渐深入了解了金属热处理的原理、方法以及重要性。
金属热处理原理金属热处理是将金属材料加热到高温,再通过冷却等方式使其在晶体结构、硬度、强度、韧性等方面产生变化的一项重要技术。
其理论基础是金属的组织结构及其性质的变化规律。
金属材料由许多微观结构单位组成,这些微观结构单位在材料中排列有序,并依据其空间排列方式而形成不同的结晶方式和晶体结构。
当金属材料经历一定的热力作用时,这些结构单位就会发生一些变化,从而改变了金属材料的性质。
金属热处理的方法金属热处理有许多不同的方法,其中常见的包括退火、正火、淬火、回火、调质等。
每一种方法在实践应用中具有不同的效果和作用。
1.退火退火是指将硬化工艺后的金属材料加热到一定温度,然后缓慢冷却的过程。
这种方法可使金属材料中的应力得到释放,结晶粗化,改善材料的塑性和韧性,同时还能消除合金元素的过度溶解和析出,从而良好地控制材料宏观结构。
2.正火正火是一种热处理方法,需要将金属材料加热到一定温度,待其均匀加热后以适当的速度冷却。
这种方法常应用于改善材料的硬度和强度,并使金属材料达到所需的微观结构。
3.淬火淬火是将金属材料加热到淬火区域区间(特定温度段),并经过快速冷却。
这种方法可使金属材料的硬度和强度得到显著的提高,但也容易出现硬度不均匀和开裂等问题,因此需要进行适当的后续处理。
4.回火回火是指将已淬火的金属材料重新加热到一定温度,在特定时间内冷却。
这种方法可改善材料的塑性和韧性,并消除残余硬度。
5.调质调质是对已经经过淬火和回火处理的金属材料进行加工处理,使其得到所要求的硬度和强度公差。
这种方法适用于对金属材料的适当调整和加工。
实际操作过程在实际操作过程中,我们通过对不同的金属材料进行加热、淬火、回火、调质等处理,不仅熟悉了这些处理方法的基本原理和操作流程,同时掌握了不同金属材料之间相应处理方法的差异。
热处理个人工作总结3篇
热处理个人工作总结热处理个人工作总结精选3篇(一)热处理个人工作总结1. 工作概述:在热处理部门工作期间,我负责执行热处理工艺,对不同材料进行调质、淬火、回火等处理,以满足产品的强度和硬度要求。
2. 工作成果:在过去一年的工作中,我成功处理了大量的产品,并保证了产品的质量和稳定性。
通过对工艺参数的精确控制,我成功提高了产品的强度和硬度,并减少了退火处理所需的时间,提高了生产效率。
3. 问题解决:在工作中,我遇到了一些材料内部应力过大导致的变形和裂纹问题。
通过分析材料的热处理历史和工艺参数,我成功调整了工艺,解决了变形和裂纹问题,达到了产品的要求。
4. 与团队合作:在热处理部门,我与同事密切合作,共同解决工艺问题,并分享经验和知识。
我也积极参加部门的技术交流会议,与同行进行讨论和学习,不断提高自己的热处理技能和知识。
5. 绩效评估:我的工作表现得到了上级的认可和表扬,我的处理产品的质量稳定性得到了客户的高度评价。
在团队评比中,我也获得了最佳员工奖,成为了团队的榜样。
6. 总结:通过在热处理部门的工作,我不仅提高了自己的技术能力,还学到了很多团队合作和问题解决的经验。
我将继续努力,不断提升自己的热处理技能,为公司的发展做出更大的贡献。
热处理个人工作总结精选3篇(二)在热处理实习期间,我有幸参与了许多项目,并与一些经验丰富的热处理工程师一起工作。
通过这个实习经历,我受益匪浅,并且对热处理工艺和技术有了更深入的理解。
首先,在实习期间,我学习了许多热处理工艺的基本知识和技巧。
我学会了如何选择合适的加热温度和保温时间,以及如何控制冷却速率和温度梯度。
我学会了使用不同的热处理设备,如炉子、淬火槽等,并且熟悉了它们的操作和维护。
其次,我参与了几个热处理实验项目,并独立完成了一些热处理工艺的设计和实施。
通过这些实验,我学会了如何设计合适的试样和实验方案,并对热处理结果进行分析和评价。
这些实验不仅加深了我对热处理工艺的理解,还提高了我的独立思考和问题解决能力。
金属学与热处理期末复习总结
一、名词解释:1热强性:在室温下,钢的力学性能与加载时间无关,但在高温下钢的强度及变形量不但与时间有关,而且与温度有关,这就是耐热钢所谓的热强性;2形变热处理:是将塑性变形同热处理有机结合在一起,获得形变强化和相变强化综合效果的工艺方法;3热硬性:热硬性是指钢在较高温度下,仍能保持较高硬度的性能;4固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到的热处理工艺;5回火脆性:是指回火后出现韧性下降的;6二次硬化:某些铁碳合金如高速钢须经多次回火后,才进一步提高其硬度;7回火稳定性:在时,抵抗强度、硬度下降的能力称为回火稳定性;8淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示;9水韧处理:将钢加热至奥氏体区温度1050-1100℃,视钢中碳化物的细小或粗大而定并保温一段时间每25mm壁厚保温1h,使铸态组织中的碳化物基本上都固溶到奥氏体中,然后在水中进行淬火,从而得到单一的奥氏体组织;10分级淬火:将奥氏体状态的工件首先淬入温度略高于钢的Ms点的盐浴或碱浴炉中保温,当工件内外温度均匀后,再从浴炉中取出空冷至室温,完成马氏体转变;11临界淬火冷却速度:是过冷奥氏体不发生分解直接得到全部马氏体含残留奥氏体的最低冷却速度;12季裂:它指的是经冷变形后的金属内有拉伸应力存在又处于特定环境中所发生的断裂; 13奥氏体化:将钢加热至临界点以上使形成奥氏体的金属热处理过程;14本质晶粒度:本质晶粒度用于表征钢加热时晶粒长大的倾向;二、简答:1 何为奥氏体化简述共析钢的奥氏体化过程;答:1、将钢加热至临界点以上使形成奥氏体的金属热处理过程;2、它是一种扩散性相变,转变过程分为四个阶段;1形核;将珠光体加热到Ac1以上,在铁素体和渗碳体的相界面上奥氏体优先形核;珠光体群边界也可形核;在快速加热时,由于过热度大,铁素体亚边界也能形核;2长大;奥氏体晶粒长大是通过渗碳体的溶解、碳在奥氏体和铁素体中的扩散和铁素体向奥氏体转变;为了相平衡,奥氏体的两个相界面自然地向铁素体和渗碳体两个方向推移,奥氏体便不断长大;3残余渗碳体的溶解;铁素体消失后,随着保温时间的延长,通过碳原子扩散,残余渗碳体逐渐溶入奥氏体;4奥氏体的均匀化;残余渗碳体完全溶解后,奥氏体中碳浓度仍是不均匀的;只有经长时间的保温或继续加热,让碳原子进行充分地扩散才能得到成分均匀的奥氏体;2 奥氏体晶粒大小对冷却转变后钢的组织和性能有何影响简述影响奥氏体晶粒大小的因素;答:1、奥氏体晶粒度大小对钢冷却后的组织和性能有很大影响;奥氏体晶粒度越细小,冷却后的组织转变产物也越细小,其强度也越高,此外塑性,韧性也较好;但奥氏体化温度过高或在高温下保持时间过长会显着降低钢的冲击韧度、减少裂纹扩展功和提高脆性转变温度;2、奥氏体晶粒大小是影响使用性能的重要指标,主要有下列因素影响奥氏体晶粒大小;1加热温度和保温时间的影响加热温度越高,保温时间越长,奥氏体晶粒越粗大;2加热速度的影响加热速度越快,奥氏体的实际形成温度越高,形核率和长大速度越大,则奥氏体的起始晶粒越细小,但快速加热时,保温时间不能过长,否则晶粒反而更加粗大;3钢的化学成分的影响在一定含碳量范围内,随着奥氏体中含碳量的增加,碳在奥氏体中的扩散速度及铁的自扩散速度增大,晶粒长大倾向增加,但当含碳量超过一定限度后,碳能以未溶碳化物的形式存在,阻碍奥氏体晶粒长大,使奥氏体晶粒长大倾向减小;4钢的原始组织的影响钢的原始组织越细,碳化物弥散速度越大,奥氏体的起始晶粒越细小,相同的加热条件下奥氏体晶粒越细小;3 简述影响过冷奥氏体等温转变的因素;答:奥氏体成分含碳量、合金元素、奥氏体状态钢的原始组织、奥氏体化的温度和保温时间及应力和塑性变形;1、含碳量的影响亚共析钢随奥氏体含碳量增加,使C曲线右移,Ms和Mf点降低;过共析钢随含碳量的增加,使C曲线向左移,Ms和Mf点降低;2、合金元素的影响除Co、AlWAl>%外,所有合金元素的溶解到奥氏体中后,都增大过冷奥氏体的稳定性,使C曲线右移,Ms和Mf点降低;3、奥氏体状态的影响奥氏体化温度越低,保温时间越短,奥氏体晶粒越细小,C曲线左移;4、应力和塑性变形的影响在奥氏体状态下承受拉应力会加速奥氏体的等温转变,承受压应力则会阻碍这种转变;对奥氏体进行塑性变形有加速奥氏体转变的作用,C曲线左移;4简述片状珠光体和粒状珠光体的组织和性能;答:1、片状珠光体组织:WC=%的奥氏体在近于平衡的缓慢冷却条件下形成的珠光体是由铁素体和渗碳体组成的片层相间的组织;性能:主要决定于片间距;片间距越小,钢的断裂强度和硬度均随片间距的缩小而增大;随片间距减小,钢的塑性显着增加;片间距减小,塑性变形抗力增大,故强度;硬度提高;2、粒状珠光体组织:渗碳体呈颗粒状分布在连续的铁素体基体中的组织性能:主要取决于渗碳体颗粒的大小,形态与分布;钢的成分一定时,渗碳体颗粒越细,相界面越多,则刚的硬度和强度越高;碳化物越接近等轴状、分布越均匀,则钢的韧性越好;粒状珠光体的硬度和强度较低,塑性和韧性较好,冷变形性能,可加工性能以及淬火工艺性能都比珠光体好;5何为马氏体简述马氏体的晶体结构、组织形态、性能及转变特点;答:是碳在α-Fe中过饱和的间隙固溶体;2、马氏体的晶体结构在钢中有两种:体心正方结构WC<%,c/a=1;体心正方结构WC>%,c/a>1;组织形态:板条马氏体、片状马氏体200℃以上,WC<%,完全形成板条马氏体,因其体内含有大量位错又称位错马氏体;特点强而韧%<WC<1%,为板条马氏体和片状马氏体的混合物;200℃以下,WC>%,完全形成片状马氏体,因其亚结构主要为孪晶又称孪晶马氏体;特点硬而脆4、1马氏体的显着特点是高硬度和高强度,原因包括固溶强化、相变强化、时效强化、原始奥氏体晶粒大小及板条马氏体束大小;马氏体的硬度主要取决于马氏体的含碳量;合金元素对马氏体的硬度影响不大,但可以提高其强度;2马氏体的塑性和韧性主要取决于马氏体的亚结构;5、1无扩散性;奥氏体成分保留在马氏体中2马氏体转变的切变共格性3马氏体转变具有特定的惯习面和位向关系4马氏体转变是在一定温度范围内进行的6 简述淬火钢的回火转变、组织及淬火钢在回火时的性能变化;答:1、钢的回火转变包括五个方面180℃-100℃以下温度回火,马氏体中碳的偏聚,组织是马氏体马氏体:碳溶于α-Fe的过饱和的固溶体280℃-100℃回火,马氏体开始分解,组织是回火马氏体回火马氏体:低碳马氏体和ε碳化物组成的混合物,称为回火马氏体;3200℃-300℃回火,残余奥氏体开始转变,组织是回火马氏体4200℃-400℃回火,碳化物的转变为Fe3C,组织是回火托氏体回火托氏体:由针状α相和无共格联系的细粒状渗碳体组成的机械混合物;5500℃-650℃渗碳体的聚集长大和α相回复或再结晶,组织是回火索氏体回火索氏体:回复或再结晶的铁素体和粗粒状渗碳体的机械混合物;2、回火时力学性能变化总的趋势是随回火温度提高,钢的抗拉强度、屈服强度和硬度下降,塑性、韧性提高;7 简述回火脆性的分类、特点及如何消除;答:1分类:第一类回火脆性低温回火脆性250℃-400℃和第二类回火脆性高温回火脆性450℃-650℃2特点第一类回火脆性:1具有不可逆性第二类回火脆性:1具有可逆性;2与后的有关3与组织状态无关,但以M的脆化倾向3如何消除第一类回火脆性:无法消除,合金元素会提高脆化温度;第二类回火脆性:1选择含杂质元素极少的优质钢材以及采用形变热处理;2加入适量的Mo、W等合金元素阻碍杂质元素在晶界上便聚;3对亚共析钢在A1~A3临界区可采用4采用高温回火后快冷的方法可抑制回火脆性,但不适用于对回火脆性敏感的较大工件;8 叙述淬透性和淬硬性及淬透性和实际条件下淬透层深度的区别;答:1、淬透性:是指奥氏体化后的钢在淬火时获得马氏体的能力,它反映过冷奥氏体的稳定性,与钢的临界冷却速度有关;临界冷却速度越慢,淬透性越大;其大小以钢在一定条件下淬火获得的淬透层深度和硬度分布来表示;2、淬硬性:是指奥氏体化后的钢在淬火时硬化的能力,主要取决于马氏体中的含碳量,含碳量越高,淬硬性越大;用淬火马氏体可能达到的最高硬度来表示;3、实际条件下的淬透层深度:是指具体条件下测定的半马氏体区至表面的深度;4、区别:1同一材料的淬透层深度与工件尺寸、冷却介质有关.工件尺寸小、介质冷却能力强,淬透层深;2淬透性与工件尺寸、冷却介质无关,它是钢的一种属性;相同奥氏体化温度下的同一钢种,其淬透性是确定不不变的;9 何谓淬火热应力、组织应力影响因素都是什么简述热应力和组织应力造成的变形规律;答:1、淬火热应力:工件在加热或冷却时由于内外的温度差异导致热涨或冷缩的不一致所引起的内应力;2、组织应力:工件在冷却过程中,由于内外温差造成组织转变不同时,引起内外比体积的不同变化而引起的内应力;3、影响因素:1含碳量的影响:随着含碳量的增加热应力作用逐渐减弱组织应力逐渐增强;2合金元素的影响:加入合金元素热应力和组织应力增加;3工件尺寸的影响:a.在完全淬透的情况下随着工件直径的增大淬火后残余应力将由组织应力性逐渐变成热应力性;b.在未完全淬透的情况下所产生的应力特性是与热应力相似的,工件直径越大淬硬层越薄,热应力特性越明显;4淬火介质和冷却方法的影响:如果在高于Ms点以上的温度区域冷却速度快而在温度低于Ms点区域冷却速度慢则为热应力性,反之则为组织应力型;4、变形规律:1热应力引起的变形①沿最大尺寸方向收缩,沿最小尺寸方向伸长;②平面凸起,直角变钝,趋于球形;③外径胀大,内径缩小;2组织应力引起变形与热应力相反;10 何谓回火叙述回火工艺的分类,得到的组织,性能特点及应用;答:1、回火:回火是指将淬火钢加热到A1以下的某温度保温后冷却的工艺;2、分类: 低温回火:1得到回火马氏体;2在保留高硬度、高强度及良好的耐磨性的同时又适当提高了韧性,降低内应力;3适用于刀具、量具、滚动轴承、渗碳件及高频表面淬火件;中温回火:1得到回火托氏体;2基本消除了淬火应力,具有高的弹性极限,较高的强度和硬度,良好的塑性和韧性;3适用于弹簧热处理及热锻模具;高温回火:1得到回火索氏体;2获得良好的综合力学性能,即在保持较高的强度同时,具有良好的塑性和韧性;3广泛用于各种结构件如轴、齿轮等热处理;也可作为要求较高精密件、量具等预备热处理;11 简述化学热处理的一般过程;渗碳的工艺、渗层深度、渗碳后表层含碳量、用钢、热处理、组织和应用;答:1、过程:1介质渗剂的分解2工件表面的吸收3原子向内部扩散;2、渗碳工艺:气体渗碳法,固体渗碳,离子渗碳3、渗碳层厚度由表面到过度层一半处的厚度:一般为-2mm;4、渗碳层表面含碳量:以%%为最好;5、用刚:为含的低碳钢和低碳合金钢;碳高则心部韧性降低;6、热处理:常用方法是渗碳缓冷后,重新加热到Ac1+30-50℃淬火分三类:遇冷直接淬火、一次淬火、二次淬火+低温回火;7、组织:表层:高碳M回+颗粒状碳化物+A少量心部:低碳M回+铁素体淬透时、铁素体+索氏体8、应用:拖拉机履带板,坦克履带板。
金属热处理期末总结
金属热处理期末总结一、引言金属热处理是制造业中非常重要的一部分,通过改变金属材料的组织及性能,来满足产品的使用要求。
在本学期学习金属热处理课程中,我对金属热处理的基本原理、工艺及设备有了更深入的了解。
通过实验操作与课堂学习相结合,我对金属热处理的理论知识有了更加系统的认识,并且对实际操作有了更强的操作能力。
在本篇期末总结中,我将分别从金属热处理的基本原理、工艺、设备及常见问题等方面进行总结。
二、金属热处理的基本原理金属热处理是指通过加热、保温和冷却等一系列工艺操作,使金属材料的组织及性能发生改变的过程。
金属热处理的基本原理可以归纳为三个方面:1.固溶处理:固溶处理是指将固溶体形态的材料在合适的温度范围内进行加热并保温,使合金元素得以溶解在基体中形成固溶体。
固溶处理可以提高金属材料的硬度、强度和耐腐蚀性能等。
2.时效处理:时效处理是指将固溶体形态的材料经过固溶处理后立即进行冷却到室温,并进行适当的加热保温,以增强材料的一些性能。
时效处理可以提高材料的强度、韧性和疲劳寿命等。
3.相变处理:相变处理是指将材料由一种晶体结构转变为另一种晶体结构的过程。
相变处理可以改变材料的硬度、强度、韧性等性能,同时也能改变材料的热处理工艺。
三、金属热处理的工艺金属热处理的工艺可以分为加热、保温和冷却三个阶段。
1.加热:加热是指将金属材料加热至所需的温度范围。
加热的目的是使金属材料达到固溶或相变的温度,以改变材料的组织结构。
加热的方式主要有火焰加热、电加热和电磁加热等。
2.保温:保温是指将金属材料在高温状态下保持一定的时间。
保温的过程是固溶、时效和相变等处理的基础。
保温的时间与温度应根据金属材料和所需的热处理效果进行合理选择。
3.冷却:冷却是指将金属材料从高温迅速冷却到室温或较低温度。
冷却的速度会直接影响到金属材料的组织结构及性能。
常见的冷却方法有水淬、油淬和风冷等。
四、金属热处理的设备金属热处理的设备有多种多样,根据加热方式可分为火焰加热设备、电加热设备和电磁加热设备。
热处理实践心得体会
一、引言热处理是金属加工中一项重要的工艺,通过对金属工件进行加热、保温、冷却等过程,使其组织结构发生变化,从而提高材料的性能。
在我国制造业中,热处理工艺得到了广泛的应用,对于提高产品质量、延长使用寿命具有重要意义。
在本次热处理实践过程中,我深刻体会到了热处理工艺的重要性,以下是我对热处理实践的心得体会。
二、热处理实践过程1. 热处理工艺原理热处理工艺主要包括退火、正火、淬火、回火等几种基本工艺。
退火是将金属工件加热到一定温度,保温一段时间,然后缓慢冷却,以消除内应力、细化晶粒、改善组织结构。
正火是在较高温度下加热,然后缓慢冷却,使金属工件获得一定的硬度和韧性。
淬火是将金属工件加热到一定温度,然后迅速冷却,使其获得较高的硬度和耐磨性。
回火是在淬火后对工件进行加热,以降低硬度,提高韧性。
2. 热处理实践步骤(1)工件准备:首先对工件进行表面处理,如清洗、去油等,确保工件表面干净、无杂质。
(2)装炉:将工件装入炉内,注意工件之间要保持一定距离,避免相互接触。
(3)加热:根据工件材质和热处理要求,设定合适的加热温度和时间。
加热过程中,要控制炉内温度均匀,防止工件产生热应力。
(4)保温:加热到规定温度后,保持一定时间,使工件内部温度均匀。
(5)冷却:根据工件材质和热处理要求,选择合适的冷却方式,如水冷、油冷、空气冷却等。
(6)检验:热处理完成后,对工件进行外观检查、硬度测试、金相分析等,以确保热处理质量。
三、热处理实践心得体会1. 热处理工艺的重要性通过本次热处理实践,我深刻认识到热处理工艺在金属加工中的重要性。
热处理可以改善金属材料的性能,提高其强度、硬度、耐磨性、耐腐蚀性等,从而延长工件的使用寿命,降低生产成本。
2. 热处理工艺的复杂性热处理工艺涉及多个因素,如加热温度、保温时间、冷却速度等。
在实际操作中,要充分考虑这些因素,确保热处理质量。
此外,热处理工艺对设备、人员素质要求较高,需要不断学习和积累经验。
金属学与热处理总结5则范文
金属学与热处理总结5则范文第一篇:金属学与热处理总结名词解释:退火:将钢加热到临界点Ac1以上或以下温度,保温以后随炉冷却以获得近于平衡状态组织的热处理工艺。
正火:将钢加热到Ac3(或Acm)以上适当温度,保温以后在空气中冷却得到珠光体类组织的热处理工艺。
淬火:将钢加热到临界点Ac3或Ac1以上一定温度,保温后以大于临界冷却速度的速度冷却得到马氏体(或下贝氏体)的热处理工艺。
回火:将淬火钢在A1以下温度加热,使其转变为稳定的回火组织,并以适当方式冷却到室温的工艺过程。
表面淬火:将工件快速加热到淬火温度,然后快速冷却,仅使表面层获得淬火组织的热处理方法。
渗碳:将低碳钢件放入渗碳介质中,在900-950加热保温,使活性原子渗入钢件表面并获得高渗碳体的工艺方法。
渗氮:向钢件表面渗入氮元素,形成富氮硬化层的化学热处理。
淬透性:钢材淬火时获得马氏体能力的特征。
淬硬性:钢材淬火时淬成马氏体可能得到的最高硬度。
回火稳定性:淬火钢对回火时发生软化过程的抵抗能力。
回火脆性:钢在一定温度范围内回火时,其冲击韧度显著下降,这种脆化现象叫做钢的回火脆性热应力:工件在加热(或冷却)时,由于不同部位的温度差异,导致热胀(或冷缩)的不一致所引起的应力称为热应力。
组织应力:由于工件不同部位组织转变不同时性而引起的内应力。
过冷奥氏体:在临界温度以下处于不稳定状态的奥氏体称为过冷奥氏体。
退火的目的:均匀钢的化学成分及组织;细化晶粒;调整硬度,消除内应力和加工硬化,改善钢的成形及切削加工性能,为淬火做好组织准备。
正火的目的:改善钢的切削加工性能;消除热加工缺陷;消除过共析钢的网状碳化物,便于球化退火;提高普通结构零件的力学性能。
淬火目的:提高工具、渗碳零件和其它高强度耐磨机器零件等的硬度、强度和耐磨性;回火目的:减少或消除淬火应力,保持相变的组织转变,提高钢的塑形和韧性,获得硬度强度塑形和韧性的适当结合1.试述奥氏体钢的形成过程及控制奥氏体晶粒的方法制定合适的加热规范,包括控制加热温度和保温时间;碳含量控制在一定范围内,并在钢中加入一定阻碍奥氏体晶粒长大的合金元素;考虑原始组织的影响2.珠光体、贝氏体、马氏体的特征、性能特点是什么?珠光体:片状珠光体,片间距越小,强度越高,塑性、韧性也越好;粒状珠光体,Fe3C颗粒越细小,分布越均匀,合金的强度越高。
超全的金属热处理知识大汇总!
超全的金属热处理知识大汇总!总类1)热处理采用适当的方式对金属材料或工件(以下简称工件)进行加热、保温和冷却以获得预期的组织结构与性能的工艺。
2)整体热处理对工件整体进行穿透加热的热处理。
3)化学热处理将工件置于适当的活性介质中加热、保温,使一种或几种元素渗入其表层,以改变其化学成分、组织和性能的热处理。
4)化合物层化学热处理、物理气相沉积和化学气相沉积时在工件表面形成的化合物层。
5)扩散层化学热处理时工件化合物层之下的渗层和化学气相沉积时化合物溶解并进行扩散的内层,统称扩散层。
6)表面热处理为改变工件表面的组织和性能,仅对其表面进行热处理的工艺。
7)局部热处理仅对工件的某一部位或几个部位进行热处理的工艺。
8)预备热处理为调整原始组织,以保证工件最终热处理或(和)切削加工质量,预先进行热处理的工艺。
9)真空热处理在低于1×105 Pa(通常是10-1~10-3 Pa)的环境中加热的热处理工艺。
10)光亮热处理工件在热处理过程中基本不氧化,表面保持光亮的热处理。
11)磁场热处理为改善某些铁磁性材料的磁性能而在磁场中进行的热处理。
12)可控气氛热处理为达到无氧化、无脱碳或按要求增碳,在成分可控的炉气中进行的热处理。
13)保护气氛热处理在工件表面不氧化的气氛或惰性气体中进行的热处理。
14)离子轰击热处理在低于1×105Pa(通常是10-1~10-3Pa)的特定气氛中利用工件(阴极)和阳极之间等离子体辉光放电进行的热处理。
15)流态床热处理工件在由气流和悬浮其中的固体粉粒构成的流态层中进行的热处理。
16)高能束热处理利用激光、电子束、等离子弧、感应涡流或火焰等高功率密度能源加热工件的热处理工艺总称。
17)稳定化处理为使工件在长期服役的条件下形状和尺寸变化能够保持在规定范围内的热处理。
18)形变热处理将塑性变形和热处理结合,以提高工件力学性能的复合工艺。
19)复合热处理将多种热处理工艺合理组合,以便更有效地改善工件使用性能的复合工艺。
金属材料与热处理总结
金属材料与热处理总结金属材料是工程领域中最常用的材料之一,其性能和用途很大程度上取决于其热处理过程。
热处理是通过控制金属材料的温度、时间和冷却速率来改变其内部结构和性能的工艺。
本文将对金属材料的热处理方法和效果进行总结,以期为工程实践提供参考。
首先,我们来谈谈金属材料的热处理方法。
常见的热处理方法包括退火、正火、淬火和回火。
退火是将金属材料加热至一定温度,然后缓慢冷却至室温,以消除内部应力和改善塑性。
正火是将金属材料加热至适当温度,然后在空气中冷却,以提高硬度和强度。
淬火是将金属材料加热至临界温度,然后迅速冷却至室温,以获得高硬度和强度。
回火是将淬火后的金属材料重新加热至适当温度,然后进行缓慢冷却,以降低硬度和提高韧性。
其次,我们来探讨金属材料热处理的效果。
热处理可以显著改变金属材料的组织结构和性能。
通过退火,金属材料的晶粒得以细化,内部应力得以消除,从而提高其塑性和韧性。
通过正火,金属材料的碳化物颗粒得以析出,晶粒得以再结晶,从而提高其硬度和强度。
通过淬火,金属材料的组织得以马氏体化,从而获得极高的硬度和强度。
通过回火,金属材料的马氏体得以转变,内部应力得以释放,从而平衡硬度和韧性。
最后,我们需要注意的是金属材料的热处理过程中需要严格控制温度、时间和冷却速率。
温度过高或时间过长会导致晶粒长大,从而降低金属材料的性能;冷却速率过快会导致金属材料产生裂纹或变形。
因此,在实际工程中,需要根据金属材料的具体成分和要求,合理选择热处理方法和工艺参数,以获得最佳的性能和效果。
总之,金属材料的热处理是工程领域中不可或缺的工艺之一,通过合理的热处理方法和工艺参数,可以显著改善金属材料的性能和用途。
因此,在工程实践中,我们需要深入理解金属材料的热处理原理和方法,灵活运用于实际生产中,以满足不同工程需求。
金属热处理原理及工艺总结_整理版
5.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响?答:如果金属中无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加。
因此,无论点缺陷,线缺陷和面缺陷都会造成晶格崎变,从而使晶体强度增加。
同时晶体缺陷的存在还会增加金属的电阻,降低金属的抗腐蚀性能。
6.为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。
7.过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响?答:①冷却速度越大,则过冷度也越大。
②随着冷却速度的增大,则晶体内形核率和长大速度都加快,加速结晶过程的进行,但当冷速达到一定值以后则结晶过程将减慢,因为这时原子的扩散能力减弱。
③过冷度增大,ΔF大,结晶驱动力大,形核率和长大速度都大,且N的增加比G增加得快,提高了N与G的比值,晶粒变细,但过冷度过大,对晶粒细化不利,结晶发生困难。
8.金属结晶的基本规律是什么?晶核的形成率和成长率受到哪些因素的影响?答:①金属结晶的基本规律是形核和核长大。
②受到过冷度的影响,随着过冷度的增大,晶核的形成率和成长率都增大,但形成率的增长比成长率的增长快;同时外来难熔杂质以及振动和搅拌的方法也会增大形核率。
9.在铸造生产中,采用哪些措施控制晶粒大小?在生产中如何应用变质处理?答:①采用的方法:变质处理,钢模铸造以及在砂模中加冷铁以加快冷却速度的方法来控制晶粒大小。
②变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒。
③机械振动、搅拌。
第二章金属的塑性变形与再结晶2.产生加工硬化的原因是什么?加工硬化在金属加工中有什么利弊?答:①随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大,晶粒破碎的程度愈大,这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长。
热处理个人工作总结9篇
热处理个人工作总结9篇第1篇示例:热处理是一种重要的金属材料加工工艺,我在这个岗位上工作了一段时间,通过不断的学习和实践,我对热处理工艺有了更深刻的了解,也积累了一定的经验。
在这里,我总结了一下我的工作情况,希望对自己的工作有一个清晰的认识,也希望我的总结能够对热处理工艺有所帮助。
我在热处理工作中积累了丰富的经验。
热处理是一项技术含量较高的工作,所以我在工作中注重积累经验,总结不同工件的热处理特点和要求,不断总结和归纳出适合不同材料的热处理工艺和方法,提高了工作的效率和质量。
通过对不同工件的热处理实践,我也学会了如何根据工件的材料、形状、尺寸等特点来选择合适的热处理工艺,保证工件的质量和性能。
我在工作中不断学习和提高自己的技能。
热处理工艺是一个不断发展和变化的领域,新的材料、新的工艺不断涌现,所以我始终保持对相关知识的学习和研究。
通过参加热处理相关的培训和学习,我不仅了解了最新的热处理工艺和设备,也学到了新的热处理方法和技巧,为自己的工作注入了新的动力和活力。
我还和同事们一起探讨和交流热处理的经验和技巧,相互学习,共同进步。
我在工作中非常重视质量和安全。
热处理工艺是一项关乎产品质量和安全的工作,所以在我工作中,我始终把质量和安全放在首位,严格按照工艺要求和作业规程进行操作,确保热处理工艺的稳定性和可靠性,杜绝产品质量问题和安全事故的发生。
我也积极参与公司的质量管理和安全培训,提高自己的专业知识和技能,做到知识更新。
我在工作中注重团队合作和沟通。
热处理工艺需要多个岗位之间的协作和配合,所以我在工作中注重团队合作和沟通,和生产、技术、质检等部门紧密配合,共同解决工艺中出现的问题,确保热处理工艺的顺利进行。
我也主动参与部门的讨论和交流,表达自己的看法和建议,为工艺的改进和优化提供有益的建议和决策。
热处理工艺是一个细致和重要的工作,我在这个岗位上工作以来,通过努力学习和实践,积累了丰富的经验,提高了自己的技能,也注重质量和安全,注重团队合作和沟通。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章:1. 理解概念:形变强化,细晶强化,滑移,滑移系,滑移面, 滑移方向,临界分切应力,取向因子,软位向,硬位向,孪生,纤维组织,形变织构,临界变形度,回复,再结晶,冷加工,热加工,超塑性2. 掌握塑性变形的特点及对组织和性能的影响3. 掌握冷变形金属在加热时组织和性能的变化滑移的位错机制软位相:最容易出现滑移 硬位相:不能产生滑移φλστcos cos s k =6.3多晶体的塑性变形 1、特点:不同时性:只有处在有利位向(取向因子最大)的晶粒的滑移系才能首先开动不均匀性:每个晶粒的变形量各不相同,而且由于晶界的强度高于晶内,使得每一个晶粒内部的变形也是不均匀的。
协调性:多晶体的塑性变形是通过各晶粒的多系滑移来保证相互协调性。
根据理论推算,每个晶粒至少需要有五个独立滑移系。
2、晶粒大小对塑性变形的影响6.4塑性变形对金属组织与性能的影响 组织的影响1.形成纤维组织:2.形成变形织构:晶体的择优选择3.亚结构细化:随着变形量的增加,位错交织缠结,在晶粒内形成胞状亚结构,叫形变胞4残余应力:残余内应力和点阵畸变. 宏观内应力: 微观内应力:点阵畸变:金属在塑性变形中产生大量点阵缺陷(空位、间隙原子、位错等),使点阵中的一部分原子偏离其平衡位置,而造成的晶格畸变。
1.各向异性:形成了纤维组织和变形织构2.形变强化:变形过程中,位错密度升高,导致形变胞的形成和不断细化,对位错的滑移产生巨大的阻碍作用组织结构:形成纤维组织和变形织构;亚结构细化;点阵畸变 机械性能:各向异性;形变强化/加工硬化;形成残余内应力6.5冷变形金属的回复与再结晶形变金属与合金退火过程示意图21-+=Kd o s σσ1.回复后的显微组织和性能:(去应力退火)1)金属的晶粒大小和形状不发生明显的变化2)亚结构变化3)金属的强度、硬度和塑性等机械性能变化不大4)内应力及电阻率等理化性能降低多边形化:实质上是位错从高能态的混乱状态向低能态的规则排列移动过程2.再结晶后的显微组织和性能1)金属的晶粒大小和形状发生明显的变化,形成等轴晶粒2)金属的强度、硬度有所降低,塑性、韧性有所提高3)内应力完全消除再结晶:冷变形后的金属加热到一定温度之后,在原来的变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化,并恢复到完全软化状态,这个过程称之为再结晶。
3.再结晶晶粒大小的控制1)冷变形程度:变形度越大,晶粒越细小,大于临界变形度时2)原始晶粒尺寸:原始晶粒越细,再结晶晶粒越细3)杂质与合金元素:杂质与合金元素,细化晶粒4)变形温度:变形温度越高,再结晶晶粒越粗5)退火温度:退火温度越高,再结晶晶粒越粗T再(K)= (0.35~0.4) T熔(K)影响再结晶温度的因素1)变形度:变形度越大,再结晶温度越低2)金属的纯度:纯度越高,再结晶温度越低3)加热速度和保温时间:加热速度十分缓慢或和加热时间长,则再结晶温度升高;但过快或时间短,则来不及形核和长大4)原始晶粒尺寸:原始晶粒尺寸越细,再结晶温度越低6.6金属的热加工1) 改善铸锭和钢坯的组织,提高材料性能a)提高金属致密度b)细化晶粒c)打碎粗大组织,并均匀分布d)消除偏析(2) 出现纤维组织,材料各向异性在热加工过程中铸态金属的偏析、夹杂物、第二相、晶界等逐渐沿变形方向延展,在宏观工件上勾画出一个个线条,这种组织也称为纤维组织。
---------流线顺着纤维方向强度高,而在垂直于纤维的方向上强度较低。
在制订热加工工艺时,要尽可能使纤维流线方向与零件工作时所受的最大拉应力的方向一致,并在零件内部封闭。
(3) 形成带状组织,性能明显降低复相合金中的各个相,在热加工时沿着变形方向交替地呈带状分布,这种组织称为带状组织横向的塑性和韧性明显降低,切削性能恶化消除:正火:适用于变温单相的金属高温扩散退火:严重磷偏析(4) 晶粒大小变化正确制定工艺,细化晶粒,提高性能变形量:变形量越大,晶粒越细,但避免临界变形度范围,且变形均匀热加工温度:变形量较大,变形温度过高,易引起二次再结晶终锻温度:终锻温度过高,晶粒粗大;终锻温度过低,造成加工硬化和残余应力冷拉钢丝卷制弹簧时,在卷成之后,要在250~300进行退火,以降低其内应力并使之定型,而硬度和强度基本保持不变。
钢的热处理原理与热处理工艺主要内容:一、钢的热处理原理(五大转变):1.碳钢在加热时的组织转变─奥氏体化过程2.碳钢冷却时的组织转变—珠光体转变;贝氏体转变;马氏体转变;3. 回火转变(合金的时效;调幅分解)二、热处理工艺(四把火):退火;正火;淬火;回火学习要求:一、钢的热处理原理1.掌握等温转变曲线和连续冷却转变曲线2.掌握碳钢在加热和冷却时的组织转变过程和转变产物的性能3.掌握合金的时效和调幅分解过程二、热处理工艺掌握退火、正火、淬火和回火工艺的目的、温度和冷却方式,正确制定工艺第七章钢在加热和冷却时的转变热处理定义将钢在固态下加热到预定的温度,保温预定的时间,然后以预定的方式冷却下来的一种热加工工艺。
普通工艺流程:冶炼、浇注(成分,结晶)→→塑性变形(均匀组织,产生加工硬化)→→预备热处理(降低硬度、细化组织)→→切削加工(初步形状,但性能不好)→→最终热处理(调整性能,决定性能)→→精加工(定形,不影响性能)钢的临界点A1---P向γ转变温度A3---发生先共析α与γ转变温度Acm---发生渗碳体与γ转变温度7.2钢在加热时的转变奥氏体形成的热力学条件△G <0以共析钢为例:孕育期影响奥氏体形成速度的因素加热温度:扩散速度,相变驱动力原始组织:形核位置,碳扩散距离化学成分:碳,合金元素影响奥氏体晶粒大小的因素加热温度和保温时间加热速度化学成分:碳,合金元素7.3钢的过冷奥氏体转变曲线冷却方式:等温冷却;连续冷却等温转变曲线————“C”曲线/ TTT曲线连续冷却转变曲线---CCT曲线eSVGGGG∆+∆+∆=∆相同点:都具有珠光体P和马氏体M转变区不同点:T曲线在TTT曲线右下方;T没有贝氏体B转变区;3.转变产物不同§7.4 珠光体转变珠光体转变:是过冷奥氏体在临界温度A1以下较高的温度范围内进行的转变(共析钢在A1~550℃之间),又称高温转变。
是典型的扩散型相变。
珠光体形态:片状:奥氏体分解;粒状:调质处理或者球化退火1、片状珠光体的组织形态珠光体索氏体屈氏体/托氏体2.片状珠光体的性能珠光体层片间距S0 与性能,S0 越小,性能越好珠光体转变的主要特点1)在A1温度以下的高温区进行的相变,对非合金钢约在550~720℃;(2)是渗碳体和铁素体交替组成的片层状组织,为共析转变;(3)在渗碳体和铁素体形核和长大的过程中,必须依靠碳的扩散,是扩散型相变;(4)珠光体的形核率随转变温度的降低而增大,而原子的扩散随温度的降低而困难,故珠光体转变的温度—时间曲线呈C字形。
片状珠光体:组织:( F + 片状渗碳体)三种:①珠光体②索氏体③屈氏体性能:取决于片层间距的大小。
较高的强度,塑韧性偏低。
片层间距愈小,其强度、硬度愈高,同时塑性、韧性也有所改善。
片间距影响因素:过冷度(珠光体形成粒状珠光体:组织:(F + 粒状渗碳体)性能: 取决于粒状渗碳体的大小、形态和分布。
具有较高的强度,较好的切削加工性能(塑韧性好)及淬火工艺性能。
颗粒越细,强度越高;颗粒越均匀,韧性越好。
在硬度相同的条件下,P粒状比P片拉伸性能好获得:球化退火、淬火+ 回火晶体结构:体心正方性能:强度和硬度;塑性和韧性;比容原因:固溶强化;相变强化;时效强化;细晶强化马氏体相变强化机制:a. 固溶强化: 过饱和的间隙原子碳在α相晶格中造成晶格的正方畸变,形成一个很强的应力场,该应力场阻碍位错的运动,从而提高马氏体的强度和硬度。
b. 相变强化: 马氏体转变时,在晶体内造成晶格缺陷密度很高的亚结构。
这些缺陷都将阻碍位错的运动,使马氏体得到强化。
c. 时效强化: 马氏体形成以后,在随后的放置过程中,碳和合金元素的原子会向位错线等缺陷处扩散而产生偏聚,发生“自回火”,使位错难以运动,从而造成马氏体的强化。
d. 晶界强化: 通常情况下,原始奥氏体晶粒越细小,所得到的马氏体板条束也越细小,而马氏体板条束阻碍位错的运动,使马氏体得到强化。
板条马氏体高塑韧性机制:a. 亚结构: 胞状位错亚结构中存在低密度位错区,能缓和局部应力集中;且不存在显微裂纹。
b. 含碳量: 含碳质量份数低,晶格畸变小,淬火应力小。
马氏体的组织、性能比较板条马氏体: (位错马氏体)片状马氏体: (孪晶马氏体)显微组织:相互平行排列的板条针状或竹叶状空间形态: 扁条状凸透镜状亚结构:高密度的位错孪晶含碳量:低/中碳钢高碳钢性能: 强韧性硬而脆转变特点:热力学;晶体学;动力学贝氏体转变的主要特点:中温相变上贝氏体下贝氏体形成温度: 550 ~ 350℃350℃~ Ms相组成:成束分布、平行排列的铁素体含碳过饱和的片状铁素体和其内部沉和夹与其间的断续的条状渗碳体淀的碳化物显微组织:羽毛状针状或片状亚结构:位错位错(密度较高)性能:强度和韧性均较低强度高,韧性好获得:等温淬火魏氏组织:形成条件;消除方法转变产物定义组织结构性能奥氏体碳在γ-Fe中的固溶体等轴状多边形晶粒面心立方强度低、塑性高、比容最小珠光体铁素体和渗碳体的混合物层片状强度较高、塑性较好贝氏体含碳碳过饱和的铁素体和渗碳体的混合物羽毛状或竹叶状强度不等、塑性不等马氏体碳在α-Fe中的过饱和固溶体板条状或片状体心正方强度高、比容最大第八章钢的回火转变及合金时效钢的回火转变和合金时效学习要求1.掌握淬火钢的回火转变过程。
掌握回火转变产物的组织和性能。
正确制定回火工艺。
2.理解时效、脱溶概念,掌握合金脱溶过程,掌握时效后合金性能变化。
3.了解调幅分解概念及产生条件。
淬火钢的回火转变过程1.马氏体中碳的偏聚:20~100℃2.马氏体分解:80~350℃3.残余奥氏体转变:200~300℃4.碳化物的转变:250~400℃5.基体α相的回复、再结晶和碳化物的聚集长大:400~650℃钢的回火转变索氏体回火索氏体组织小片状(F+ Fe3C)等轴的F +粗粒状Fe3C性能对比较差较好,综合性能好屈氏体回火屈氏体组织细小片状(F+Fe3C)针状F +细小粒状Fe3C性能对比较差较好,σe高马氏体回火马氏体组织过饱和度的F 一定过饱和度的F+共格ε碳化物性能对比较差较好,耐磨性好3、韧性回火脆性:有些钢在一定的温度范围内回火时,其冲击韧性显著下降的脆化现象。
1.第一类回火脆性:250~400 ℃,低温回火脆性.钢种:工业用钢产生原因:M分解时沿M条或片的边界析出断续的薄壳状碳化物,降低了晶界的断裂强度.消除:无法消除抑制:避免在脆化温度内回火2.第二类回火脆性:450~650℃,高温回火脆性,钢种:合金钢产生原因:杂质元素在原A晶界偏聚或以化合物形式析出,降低了晶界的断裂强度.消除:重新回火后,快速冷却抑制:加入合金元素Mo、W可以抑制杂质元素向晶界偏聚;对脆性敏感的小工件进行高温回火后快速冷却。