大学物理实验测量与误差
大学物理:物理实验误差理论
仪器误差(Error of Instrument)
注明 或 最小分度值的一半
单次测量 结果的误差可以取仪器误差; 多次测量 比较其误差和仪器误差,取两者
中较大的为结果的误差。
相对误差(Relative Uncertainty)
平均绝对误差、标准偏差、极限误差、仪器误差等,都是
有单位的,都是绝对误差,现在用 代x 表。
大学物理:物理实验误差理论
实验一 关于测量的基本理论
Exp.1 Basic Knowledge about Measurement
课程任务(Goal of Experiment)
➢培养实践、理论两方面的科学素养
➢培养和提高科学实验能力:准备实验, 使用仪器设备,观察分析判断,记录、 处理、报告实验过程和结果
Standard Deviation,Limited Error
标准偏差:
x
n
2
(xi x)
i 1
n 1
n
(xi )2
i 1
n 1
平均值的标准偏差:
x
n
n
2
(xi x)
i 1
n(n 1)
n
(xi )2
i 1
n(n 1)
根据例1的数据,计算标准偏差
科学计数法:形式 a 10n 1 a 10
有效数字由 a 确定,单位的变化只是引起 n 的变化。 例如:地球的半径可表示为:
r 6.371103km 6.371106m
如何确定测量结果的有效数字?
误差本身也是有效数字,记录测量数据的有效数字的 最后一位应该到误差发生的一位。
L (15.3 0.5)mm
大学物理实验测量不确定度与数据处理方法
0.0027m m
精选ppt
I 14 . 04 mA
电表额定误差:
AK %
( A 为使用的量程,
K 为电表精度等级)
仪 15 0 . 5 %
0 . 075 mA
uB
u仪
0 . 0075 3
0 . 0043 mA
u c ( I ) u B 0 . 0043 mA
38
j4 D I23 .1 4 1 4 0 ..5 0 42 0 46 9.0 9m 3/m A2m
测量不确定度是测量质量的表述,决 定了测量结果的使用价值,其值越小, 测量结果质量越高,使用价值也越高,
精选ppt
14
标准不确定度u:用标准偏差表示的测量 不确定度。
A类分标量准,不由确观定测度列分的量统u计A 分:析标评准定不。确又定称度
为统计不确定度。
B类标准不确定度分量u B:标准不确定度
分量,由不同于A类分量的其他方法确定。 又称非统计不确定度。
例:测量某物体长度
n
12
3
4
5
6
7
8
9
bmm 42.35 42.45 42.37 42.33 42.30 42.40 42.48 42.35 42.49
长度的最佳值:
b
1 9
9
bi
i 1
=42.369 mm
精选ppt
20
9 xi 42.3692 i1 91
=0.064mm
uA
b
n
0.064=0.021mm 9
次数 n时,t分布过渡到正态分布。
对有限次测量,要保持同样的置信概率 (P= 68.3 %),A类标准不确定度应表 示为
大学物理实验报告基本测量(1)
大学物理实验报告基本测量(1)大学物理实验报告基本测量一、引言实验是物理学学习的重要环节,而实验报告是实验的重要组成部分。
实验报告中基本测量是必须要进行的,本文将介绍实验报告基本测量的要求和相关事项。
二、基本测量1.测量原理和方法:指明测量所用的物理量和测量方法,并解释测量结果的意义。
2.测量精度和误差:首先进行误差分析,解释误差的来源,并计算总误差和测量结果的不确定度。
3.结果处理:包括数据处理、数据分析和数据展示三个方面。
数据处理包括原始数据处理、数据检查和数据样本处理;数据分析包括数据的平均值,标准差、相对误差等统计量;数据展示则包括图表、曲线等数据呈现方式。
4.实验结论:根据以上的测量结果,进一步得出实验的结论,即分析该实验所探讨的物理问题,进一步发现本实验中的物理规律。
三、实验报告基本要求1.实验目的:介绍该实验的目的和意义。
2.实验器材:详细介绍实验所用的仪器、量具和器材。
3.实验方法:介绍实验过程和操作。
4.实验结果:结合实验目标和仪器器材进行实验数据的统计、处理和分析,并提供数据表格、折线图、统计图等,方便读者直观地了解数据变化过程。
5.实验结论:在研究了实验结果及有关物理规律的基础上,得出本实验中的实验结论,并进行探讨。
四、实验报告注意事项1.报告应简洁明了,用词准确,不可出现错字和语法错误。
2.注意附上所有的数据和表格,并在文字中对其进行详细描述和解释,避免遗漏和误解。
3.实验数据的处理方法和结果分析过程应详尽和科学,以便于他人重现实验和进一步探究。
4.实验结果要充分表现出实验的特征和规律,使读者能够深刻理解实验原理和结果。
总而言之,基本测量是一份实验报告中必不可少的组成部分,通过准确测量,分析和处理实验数据,得出合理结论,既可以帮助提升实验结果的精确度,也可以促进对物理规律的深入了解,从而推动物理学研究的进一步发展。
大学物理实验—误差及数据处理
误差及数据处理物理实验离不开测量,数据测完后不进行处理,就难以判断实验效果,所以实验数据处理是物理实验非常重要的环节。
这节课我们学习误差及数据处理的知识。
数据处理及误差分析的内容很多,不可能在一两次学习中就完全掌握,因此希望大家首先对其基本内容做初步了解,然后在具体实验中通过实际运用加以掌握。
一、测量与误差1. 测量概念:将待测量与被选作为标准单位的物理量进行比较,其倍数即为物理量的测量值。
测量值:数值+单位。
分类:按方法可分为直接测量和间接测量;按条件可分为等精度测量和非等精度测量。
直接测量:可以用量具或仪表直接读出测量值的测量,如测量长度、时间等。
间接测量:利用直接测量的物理量与待测量之间的已知函数关系,通过计算而得到待测量的结果。
例如,要测量长方体的体积,可先直接测出长方体的长、宽和高的值,然后通过计算得出长方体的体积。
等精度测量:是指在测量条件完全相同(即同一观察者、同一仪器、同一方法和同一环境)情况下的重复测量。
非等精度测量:在测量条件不同(如观察者不同、或仪器改变、或方法改变,或环境变化)的情况下对同一物理量的重复测量。
2.误差真值A:我们把待测物理量的客观真实数值称为真值。
一般来说,真值仅是一个理想的概念。
实际测量中,一般只能根据测量值确定测量的最佳值,通常取多次重复测量的平均值作为最佳值。
误差ε:测量值与真值之间的差异。
误差可用绝对误差表示,也可用相对误差表示。
绝对误差=测量值-真值,反应了测量值偏离真值的大小和方向。
为了全面评价测量的优劣, 还需考虑被测量本身的大小。
绝对误差有时不能完全体现测量的优劣, 常用“相对误差”来表征测量优劣。
相对误差=绝对误差/测量的最佳值×100%分类:误差产生的原因是多方面的,根据误差的来源和性质的不同,可将其分为系统误差和随机误差两类。
(1)系统误差在相同条件下,多次测量同一物理量时,误差的大小和符号保持恒定,或按规律变化,这类误差称为系统误差。
大学物理实验绪论(不确定度)
∆ ρ = ρ ⋅ Er
17
从而,求得
ρ = ρ ± ∆ρ
§2 有效数字及运算法则 一、有效数字 1.定义:若干位可靠数字加一位可疑数字构成。 .定义:若干位可靠数字加一位可疑数字构成。 一位可疑数字构成 例:6.35mA 3位; 102.50Kg 5位;
l=10.34cm 4位。 注意: 数字前面“ ” 注意:①数字前面“0”不是有效数字
1.可靠与可靠 可靠 可靠与可靠→可靠 可靠与可靠
可靠 → 可疑 但进位是可靠的。 2.可疑与 但进位是可靠的。 可疑与 可疑
3.尾数的取舍原则: 4舍6入5凑偶。5凑偶后使末位 尾数的取舍原则: 舍 入 凑偶 凑偶。 凑偶后使末位 尾数的取舍原则 为偶数。 否则将5舍去 舍去。 为偶数 。 否则将 舍去 。 ( 不确定度的相关规定另 外说明) 外说明) ①加减法 结果的有效字位数与诸数中绝对误差最大者的有效数 字的末位对齐。 字的末位对齐。 例:6.35-1.7+5.003=9.6 -
3
结果: 结果: N = ( x − y ) ± ∆ N
15
2、函数关系为乘除的,先求相对不确定度 、函数关系为乘除的,
(1)将函数两边取对数,再对各自变量求偏导, )将函数两边取对数,再对各自变量求偏导, 再代入公式( ) 再代入公式(14)
( 2)
∆N 求出N并由 Er = N
求得 ∆ N = Er × N
(1)单次测量 △ A=0 )
7
(2)多次测量 ) N趋于无穷时, 服从正态分布 趋于无穷时, 趋于无穷时 服从正态分布, 而进行有限次测量,一般服从t分布 学生分布)。 分布(学生分布 而进行有限次测量,一般服从 分布 学生分布 。 大学物理实验中n的次数一般不大于 次 大学物理实验中 的次数一般不大于10次 , 的次数一般不大于 近似,置信概率p为 在5<n≤10时,作△A=Sx近似,置信概率 为0.95 < 时 或更大。所以作为简化计算,可直接把S 或更大。所以作为简化计算,可直接把 x的值当 作测量结果的总不确定度的A类分量 类分量△ 作测量结果的总不确定度的 类分量△A。
大学物理实验报告数据处理及误差分析
1测量与误差
一、测量及其分类
所谓测量,就是借助一定的实验器具,通过一定的实验方法,直接或间接地把待测量与选作计量单位的同类物理量进行比较的全部操作。简而言之,测量是指为确定被测对象的量值而进行的一组操作。
篇二:数据处理及误差分析
物理实验课的基本程序
物理实验的每一个课题的完成,一般分为预习、课堂操作和完成实验报告三个阶段。
1实验前的预习
为了在规定时间内,高质量地完成实验任务,学生一定要作好实验前的预习。
实验课前认真阅读教材,在弄清本次实验的原理、仪器性能及测试方法和步骤的基础上,在实验报告纸上写出实验预习报告。预习报告包括下列栏目:
4.选择速度B、C、D、E重复上述实验。B
C
6.实验小结
(1)对实验结果进行误差分析。
将B表中的数据保存为B.txt,利用以下Python程序对B组数据进行误差分析,结果为-2.84217094304e-13 import math g=9.8 v_sum=0 v1=0 v=[]
my_file=open("B.txt","r")
2.最佳值与偏差
在实际测量中,为了减小误差,常常对某一物理量x进行多次等精度测量,得到一系列测量值x1,x2,…,xn,则测量结果的算术平均值为
1??2n
n1ni(2)ni?1
算术平均值并非真值,但它比任一次测量值的可靠性都要高。系统误差忽略不计时的算术平均值可作为最佳值,称为近真值。我们把测量值与算术平均值之差称为偏差(或残差):
课程:大学物理实验学期:2014-2015学年第一学期任课教师:
大学物理实验中的误差和不确定性
大学物理实验中的误差和不确定性在大学物理实验中,误差和不确定性是无法避免的。
它们对实验结果的精确性和可靠性有很大影响。
本文将对大学物理实验中的误差来源、误差分析方法以及不确定性进行探讨,以期帮助读者更好地理解和处理实验数据。
一、误差来源1. 人为误差:人为误差源于实验者自身的不准确操作或测量判断。
例如,实验者在读数时可能存在读数不准确、操作不规范等情况,从而引入人为误差。
2. 仪器误差:仪器本身存在的误差也是实验中常见的来源之一。
不同仪器的精度和灵敏度不尽相同,所以在进行实验时需要仔细选择和使用仪器,以减小仪器误差对实验结果的影响。
3. 随机误差:随机误差是由一系列随机因素引起的误差。
例如,由于环境的微弱变化或测量手法的不完美,导致的重复测量结果不完全一致。
二、误差分析方法1. 重复测量法:重复测量法是通过多次重复测量同一物理量的数值,然后计算平均值和标准偏差,以减小随机误差对结果的影响。
重复测量法可以提高实验结果的可靠性和精确性。
2. 构造误差概率密度分布图:通过对测量数据进行概率密度分布图的构建,可以了解误差在整个测量范围内的分布情况。
常见的误差分布有正态分布、均匀分布等,通过分析误差的概率分布情况,可以更好地理解误差的特性。
3. 方差分析法:方差分析法可以用来分析不同因素对实验结果的影响程度。
通过对实验数据进行方差分析,可以确定主要误差来源,并且对影响程度较大的因素进行优化,提高实验的精确性。
三、不确定性不确定性是物理实验中非常重要的一个概念。
不确定性是对测量结果的不确定程度进行量化的指标,一般用标准不确定度或扩展不确定度来表示。
1. 标准不确定度:标准不确定度是测量结果的一种误差范围估计值,通常用统计学的方法计算得出。
标准不确定度用来表示一个测量结果的可靠性和精确性。
2. 扩展不确定度:扩展不确定度是对标准不确定度进行修正和扩展的一种误差范围估计值,一般是用于报告测量结果。
扩展不确定度是由标准不确定度与置信度相乘得到的。
大学物理实验测量误差及数据处理
公选课: 专利与发明创造
知识经济
本课内容:
呼唤专利
建立专利意识 探寻创意来源 掌握申请方法
实验三环节
1. 预习
预习--操作--数据处理
(报告样本)
简述主要内容、过程及注意事项;推导相关公式; 画出流程图、线路图、光路图及装置示意图等
专栏专用,可附页
设计数据记录表(其中一份为草稿)
1 n 1 可求平均值 x x i ( x1 x2 ... xn ) n i 1 n
x 是 x i 的最佳估计值 因为多次测量的平均值接近真值,我们 就以平均值代替真值
3.3.2 平均值的实验标准差
S( x) S ( xi ) n
(x
i 1
3.5 合成不确定度 3.5.1 在A、B两类不确定度分别计算、且互不相关时, 合成不确定度Uc(x)
2 2 2 uc ( x ) s(2x ) uB s ( x) 仪 ( x)
3.5.2 我们的实验中采用合成不确定度uc(不采用扩展 不确定度U).
3.53 要完整地评价测量结果,除近真值和不确 定度的数值外还应给出其分布、有效自由度、 置信概率等参量。学生实验中暂不作要求。
大学物理实验绪论
汪仕元 1355 888 6954 821815208@
前
人类知识分两类:
自然科学分两类:
言
社会人文学 自然科学
物理学 数学
物理学分两类:
理论物理
应用物理
物理实验是物理学的基础
实验生发理论 奥斯特做电学实验时发现电流的磁效应 伽利略从单摆实验中找到了等时性
实验检验理论 比萨斜塔抛物实验检出重物快落理论之谬 迈克尔逊干涉实验否定了以太理论证实了相对论
大学物理实验课程--测量误差与数据处理基础
物理上: 2 .8 5 2 .8 5 0 2 .8 5 0 0
②.小数点前面的 “0” 和紧接小数点后面 的 “0” 不算作有效数字
进行单位换算时,有效数字的位数不变。
编辑ppt
20
2).数值的科学记数法
数据过大或过小时,可以用科学记数法表达。
P
fd0.683
这个概率叫置信概率,也称为置信度。对应的区间叫置信
区间,表示为
m
f(δ)
f(x)
mm [ 2, + 2]P m m + 2 2 fx d x 0 .9 5 4
mm [ 3, + 3] P m m + 3 3 fx d x 0 .9 9 7
m m m+
δx 编辑ppt
10
2.2.2 误差的分类
任 何 根据误差性质和产生原因可将误差主要分为以下两类:
测
量
结
◆ 系统误差
果
都
◆ 随机误差
有
误
差!
编辑ppt
11
◆ 系统误差
▶ 定 义:在一定条件下,对同一物理量进行多次测量时,
其误差按一定的规律变化,测量结果都大于真值或都小于 真值。
▶ 产生原因:仪器,理论推导,实验方法,操作,环境等。
8
2) 等精度测量和非等精度测量 等精度测量:
在相同的条件下,对某一物理量 X进行多次测量得到的一 组测量值 X1、 X2、 称X3、 作 X 等n精度测量。
相同的条件:指同一时间地点、同一人、相同的测量仪器和 测量环境等条件。
非等精度测量:
在不同测量的条件下,对某一物理量进行多次测量, 所得的测量值的精确程度不能认为是相同的,称作非等 精度测量。
大学物理实验测量误差及数据处理
E N 100% N测 N 真 100%
N真
N真
结果表示:
N真 N测 N
N
E 100% N真
问:有了绝对误差,为什么还要引入相对 误差呢?
答:绝对误差反映的是误差本身的大小,但 它不能反映误差的严重程度。
例:两个绝对误差如下,哪个大,哪个严重?
2m
20m
我们不知道它们是在什么测量中产生的,所 以难以回答。
(2)指数函数的有效数字,可与指数的小数点后 的位数(包括紧接在小数点后的零)相同;
二、 标准偏差的传递公式(方和根合成)
N
(f )2
x
2 x
(f )2
y
2 y
( f z
)2
2 z
(1.4-6)
N
N
( ln x
f
)2
2 x
(
ln y
f
)2
2 y
(
ln z
f
)2
2 z
(1.4-7)
三、不确定度的传递公式
不确定度
uN
(
f x
ins
合成不确定度
置信系数
仪器的极 限误差
u
u2 A
u2 B
2( N
)
u
2 j
或
2(
N
)
u2 j
测量结果表示为: N u
相对不确定度: E u 100%
N
§1.3直接测量误差估算及评定
一、单次测量误差估算及评定 单次测量结果的误差估算常以测量仪
器误差来评定。 仪器误差:
《大学物理实验》-绪论-误差数据处理 2015.5.
t=10.13 0.02s t= 10.12 0.02s t= 10.14 0.02s
例: 算得R=910.12Ω,ΔR=1.234Ω
算得t =10.126 s, Δt=0.0123s 算得t =10.125 s, Δt=0.0123s 算得t =10.135 s, Δt=0.0113s
0 5 10 15 20mm
测量分:
ቤተ መጻሕፍቲ ባይዱ
直接测量
间接测量
直接测量:无需对被测量与其他实测量进行一定函 数关系的辅助计算而直接得到被测量值得测量。 也就是不用通过计算就可以得到被测量值的测量。 例:
0 5 10 15 20mm
间接测量: 通过直接测量与被测参数有已知函数关系的其他 量而得到该被测参数量值的测量。也就是必须通 过计算才能得到被测量值的测量。 例:
有效数字位数的多少不仅与被测对象本 身的大小有关,而且还与所选用的测量仪器 的精度有关。
通常情况下,仪器的精度越高,对于同一被 测对象,所得结果的有效数字位数越多。 米尺读到:0.1mm 50分度游标卡尺:0.02mm
请注意:
1) 有效数字的位数从第一个不是“0”的数字开始 算起,末位为“0”和数字中间出现“0”都属于 有效数字。
0 5 10 15 20mm
2) 有效数字的位数与小数点位置或单位换算无关。
例: 1.28m =128cm, 1.28m ≠ 1280mm,
因为前面的是三位有效数字,而后面的是四 位有效数字,它们表示的测量精度不相同。 它可以写成 1.28m = 1.28×103mm, 用科学记数法表示
3)自然数 1, 2, 3, …不是测量而得,可以视为无穷多
(2)将 m=1.750±0.001(kg)的单位变换成 g , mg , t 。
大学物理实验误差理论
的拐点
x2 x1
pxdx
σ小 σ大
x
ξ表示随机变量 x 在〔x1,x2〕区间出现的概率,称为置信概率。
实际测量的任务是通过测量数据求得μ 和σ的值。
lim
n
xi
n
lim n
xi 2
n
x x2 x3
0.683 0.954 0.997
大学物理实验误差理论
14
随机变量的分布
• 实际测量次数有限,可用 n 次测量值的x、sx 来估算μ、σ:
x
i 1
n 1
σx大,表示测得值很分散,随机误差分布范围宽,测量的精密度低;
σx小,表示测得值很密集,随机误差分布范围窄,测量的精密度高;
σx可由带统计功能的计算器直接求出。
大学物理实验误差理论
11
随机误差的处理举例
例:用50分度的游标卡尺测某一圆棒长度L,6次测量 结果如下(单位mm): 120.08,120.14,120.06, 120.10, 120.06, 120.10
则:测得值的最佳估计值为
LL12.0 09 mm
测量列的标准偏差
L
n
(Li L)2
i1
n1
0.03mm
大学物理实验误差理论
12
测量误差与不确定度
• 不确定度的权威文件是国际标准化组织(ISO)、国际
计量局(BIPM)等七个国际组织1993年联合推出的
Guide to the expression of Uncertainty in measurement
《大学物理实验》不确定度 基础知识
大学物理实验误差理论
1
主要内容
1 测量误差和不确定度估算的基础知识 2 实验数据有效位数的确定 3 作图法处理实验数据 4 数据的直线拟合(最小二乘法处理实验数据)
2020大学物理实验基础测量与误差(详细解释)
2020/3/12
大学物理实验中心
21
➢计算出平均值和标准偏差
长度A (10-3m)
宽度B (10-3m)
高度C (10-3m)
平均值 14.47 32.65 12.10
标准偏差 0.021 0.024 0.009
2020/3/12
大学物理实验中心
22
➢计算出不确定度
2020/3/12
UA
UB
U
UmA Sm 0.93Sm 0.032g n
UmB 0.04g
Um
U2 mA
U2
mB
0.051g
m m Um
=50.550.05 g
2020/3/12
大学物理实验中心
25
间接测量结果的不确定度的估 计
如果w = f ( x , y , z , ), 而x , y , z , 是彼此独立的直接测量,则总不确定度
2020/3/12
大学物理实验中心
17
直接测量结果的不确定度估计
直接测量结果的不确定度是A、B两类分量用方和根合成
A类不确定度分量 UA (统计方法评定),由标准偏差S乘以概率为0.95时的t因子得 到,
大学物理实验中心
18
直接测量结果的不确定度估计
B类不确定度分量 (根据经验和其它信息评估)
只考虑测量仪器误差或者测试条件不符合要求而引起的附加误差所带来的B类分量。 记为:UB = ins
2. 测量结果的末位数字(欠准数)与不确定度的 数字对齐;不确定度的首数字较小为1,2时, 建议取两位有效数字;在运算的中间过程,结果 一般可多保留 一位数字
大学物理实验中心
37
有效数字的正确使用 3. 数字前面的0只是表示小数点的位置,而非有效数字, 数字后面的0是有效数字, 表示测量的误差位,不能 随意舍去
大学物理实验-误差处理
逐差法是一种处理实验数据的方法,通过计算相邻数据之间的
差值,消除一些系统误差的影响,提高数据的精度。
逐差法应用
02
在处理具有周期性变化或线性关系的实验数据时,逐差法可以
有效地减小误差,提高数据的可靠性。
注意事项
03
在使用逐差法时,要注意数据的选择和处理方式,避免引入新
的误差。
最小二乘法拟合直线
最小二乘法概念
熟练技能
提高实验操作技能,减少操作过程中的随机误差。
多次测量
对同一物理量进行多次测量,以减小偶然误差的 影响。
环境条件对实验结果影响
温度
温度变化会影响仪器稳定性和测量准确度,需保持恒温环境。
湿度
湿度过高可能导致仪器受潮、生锈等问题,影响测量精度。
电磁干扰
电磁场会对电子仪器的测量结果产生干扰,需采取屏蔽措科研项目和学术活动,了解 学科前沿动态和最新研究成果,培养 科研素养和创新意识。
THANKS.
扩展不确定度及应用
扩展不确定度定义
扩展不确定度是在合成不确定度的基础上, 考虑包含因子而得到的更广泛意义上的不确 定度。它表示了测量结果可能落入的区间范 围。
扩展不确定度的应用
扩展不确定度在科研、工程等领域中具有广 泛的应用。它可以帮助研究人员了解测量结 果的可靠性,为决策提供依据。同时,扩展 不确定度也是实验结果比较、仪器校准、标 准制定等方面的重要参考指标。
问题解决能力
面对实验中遇到的问题和困难,我能够积极思考并寻找解决方法,问题解决能力得到了提 高。
对未来学习建议
深入学习误差理论
建议进一步学习误差理论的相关知识,掌握更复杂的误差 处理方法和技术,提高实验数据的准确性和可靠性。
大学物理实验报告数据处理及误差分析_0
大学物理实验报告数据处理及误差分析篇一:大学物理实验报告数据处理及误差分析力学习题误差及数据处理一、指出下列原因引起的误差属于哪种类型的误差?1.米尺的刻度有误差。
2.利用螺旋测微计测量时,未做初读数校正。
3.两个实验者对同一安培计所指示的值读数不同。
4.天平测量质量时,多次测量结果略有不同。
5.天平的两臂不完全相等。
6.用伏特表多次测量某一稳定电压时,各次读数略有不同。
7.在单摆法测量重力加速度实验中,摆角过大。
二、区分下列概念1.直接测量与间接测量。
2.系统误差与偶然误差。
3.绝对误差与相对误差。
4.真值与算术平均值。
5.测量列的标准误差与算术平均值的标准误差。
三、理解精密度、准确度和精确度这三个不同的概念;说明它们与系统误差和偶然误差的关系。
四、试说明在多次等精度测量中,把结果表示为x?????(单位)的物理意义。
五、推导下列函数表达式的误差传递公式和标准误差传递公式。
1.V?2.g?432st2?r32d?11???a??3.?2s?t2t1??六、按有效数字要求,指出下列数据中,哪些有错误。
1.用米尺(最小分度为1mm)测量物体长度。
3.2cm50cm78.86cm6.00cm16.175cm2.用温度计(最小分度为0.5℃)测温度。
68.50℃31.4℃100℃14.73℃七、按有效数字运算规则计算下列各式的值。
1.99.3÷2.0003=?2.?6.87?8.93???133.75?21.073?=?3.?252?943.0??479.0???1.362?8.75?480.0??62.69?4.1864.?751.2?23.25?14.781??????八、用最小分度为毫米的米尺测得某物体的长度为L=12.10cm(单次测量),若估计米尺的极限误差为1mm,试把结果表示成L???L?的形式。
九、有n组?x,y?测量值,x的变化范围为2.13~3.25,y的变化范围为0.1325~0.2105,采用毫米方格纸绘图,试问采用多大面积的方格纸合适;原点取在何处,比例取多少?十、并排挂起一弹簧和米尺,测出弹簧下的负载m和弹簧下端在米尺上的读数x如下表:长度测量1、游标卡尺测量长度是如何读数?游标本身有没有估读数?2、千分尺以毫米为单位可估读到哪一位?初读数的正、负如何判断?待测长度如何确定?3、被测量分别为1mm,10mm,10cm时,欲使单次测量的百分误差小于0.5%,各应选取什么长度测量仪器最恰当?为什么?物理天平侧质量与密度1、在使用天平测量前应进行哪些调节?如何消除天平的不等臂误差?2、测定不规则固体的密度时,若被测物体进入水中时表面吸有气泡,则实验所得的密度是偏大还是偏小?为什么?用拉伸法测量金属丝的杨氏模量1、本实验的各个长度量为什么要用不同的测量仪器测量?2、料相同,但粗细、长度不同的两根金属丝,它们的杨氏模量是否相同?3、本实验为什么要求格外小心、防止有任何碰动现象?精密称衡—分析天平的使用1、如果被测物体的密度与砝码的密度不同,即使它们的质量相等,但体积不同,因而受到空气浮力也不同,便产生浮力误差。
大学物理实验中的测量误差与数据分析
大学物理实验中的测量误差与数据分析在大学物理实验中,测量误差和数据分析是不可或缺的关键要素。
无论是在力学、电磁学、光学还是其他领域,准确测量和正确分析数据都对研究和实验的成功至关重要。
本文将探讨在大学物理实验中测量误差的来源,如何评估和减小误差,并介绍数据分析的基本原则。
**1. 测量误差的来源**测量误差可以分为系统误差和随机误差两类。
系统误差是由于仪器或测量方法的固有缺陷引起的,通常会在一系列测量中保持恒定。
随机误差则是由无法完全控制的因素引起的,例如温度变化、电磁干扰等。
了解误差的来源对准确实验至关重要。
**2. 评估误差**为了评估误差,我们通常使用标准差和均值。
标准差衡量了数据集的离散程度,而均值代表了中心值。
较小的标准差意味着测量值更接近平均值,从而表明较低的随机误差。
大学物理实验中,标准差的计算对于确定测量的可靠性非常重要。
**3. 减小误差**减小误差的关键是使用适当的仪器和测量方法。
确保仪器精度高,避免环境因素对测量的干扰,以及进行多次测量以减小随机误差。
此外,仪器校准也是减小系统误差的一种有效方法。
**4. 数据分析**在收集数据后,正确的数据分析是确保实验成功的另一个重要因素。
以下是一些基本的数据分析原则:- 绘制图表:将数据以图表的形式呈现可以帮助我们更清晰地理解实验结果。
通常,散点图和曲线图是常见的选择。
- 拟合曲线:根据实验数据,我们可以尝试拟合适当的数学模型来描述现象。
这可以帮助我们了解实验背后的物理原理。
- 计算误差传递:当进行多步计算时,要考虑误差的传递。
这可以帮助我们确定最终结果的不确定性。
- 讨论结果:在数据分析的最后阶段,我们需要讨论实验结果并提出可能的误差来源。
这有助于更好地理解实验的局限性。
**5. 结论**大学物理实验中,测量误差和数据分析是确保实验结果可信度的关键因素。
了解误差来源、评估误差、减小误差以及正确的数据分析方法可以帮助学生和研究者获得准确和可靠的实验结果。
大物实验第一课 测量误差分析
5第一章 测量、误差和数据处理1.测量与误差1.1 测量在科学实验中,一切物理量都是通过测量得到的.所谓测量,就是用一定的工具或仪器,通过一定的方法,直接或间接地与被测对象进行比较.著名物理学家伽利略有一句名言:“凡是可能测量的,都要进行测量,并且要把目前无法度量的东西变成可以测量的”.物理测量的内容很多,大至日、月、星辰,小到原子、分子.现在人们能观察和测量到的范围,在空间方面已小到10-14~10-15 cm ,大到百亿光年,大小相差在1040倍以上.在时间方面已短到10-23 ~10-24 s 的瞬间,长达百亿年,两者相差也在1040倍以上.在定量地验证理论方面,也需要进行大量的测量工作.因此可以说,测量是进行科学实验必不可少的极其重要的一环.测量分直接测量和间接测量.直接测量是指把待测物理量直接与认定为标准的物理量相比较,例如用直尺测量长度和用天平测物体的质量.间接测量是指按一定的函数关系,由一个或多个直接测量量计算出另一个物理量,例如测物体密度时,先测出该物体的体积和质量,再用公式算出物体的密度.在物理实验中进行的测量,大多属于间接测量.一个测量数据不同于一个数值,它是由数值和单位两部分组成的.一个数值有了单位,才具有特定的物理意义,这时它才可以称之为一个物理量.因此测量所得的值(数据)应包括数值(大小)和单位,两者缺一不可.1.2 误差从测量的要求来说,人们总希望测量的结果能很好地符合客观实际.但在实际测量过程中,由于测量仪器、测量方法、测量条件和测量人员的水平以及种种因素的局限,不可能使测量结果与客观存在的实际值(真值)完全相同,我们所测得的只能是某物理量的近似值.也就是说,任何一种测量结果的量值与真值之间总会或多或少地存在一定的差值,将其称为该测量值的测量误差,简称“误差”,误差的大小反映了测量的准确程度.测量误差的大小可以用绝对误差表示,也可用相对误差表示 绝对误差 = 测量值-真值,100%真值绝对误差相对误差⨯=E .测量总是存在着一定的误差,但实验者应该根据要求和误差限度来制订或选择合理的测量方案和仪器.不能不切合实际地要求实验仪器的精度越高越好;环境条件总是恒温、恒湿、越稳定越好;测量次数总是越多越好.一个优秀的实验工作者,应该是在一定的要求下,以最低的代价来取得最佳的实验结果.要做到既保证必要的实验精度,又合理地节省人力与物力.误差自始至终贯穿于整个测量过程之中,为此必须分析测量中可能产生各种误差的因素,尽可能消除其影响,并对测量结果中未能消除的误差做出评价.1.3 误差的分类6误差的产生有多方面的原因,从误差的来源和性质上可分为“偶然误差”和“系统误差”两大类.1.3.1 系统误差在相同条件下,多次测量同一物理量时,测量值对真值的偏离(包括大小和方向)总是相同的,这类误差称为系统误差.系统误差的来源大致有以下几种:(1)理论公式的近似性:例如单摆的周期公式g l T π2 成立的条件之一是摆角趋于零,而在实验中,摆角为零的条件是不现实的.(2)仪器结构不完善:例如温度计的刻度不准,天平的两臂不等长,示零仪表存在灵敏阈等.(3)环境条件的改变:例如在20℃条件下校准的仪器拿到-20℃环境中使用.(4)测量者生理心理因素的影响:例如记录某一信号时有滞后或超前的倾向,对准标志线读数时总是偏左或偏右、偏上或偏下等.系统误差的特点是恒定性,不能用增加测量次数的方法使它减小.在实验中发现和消除系统误差是很重要的,因为它常常是影响实验结果准确程度的主要因素.能否用恰当的方法发现和消除系统误差,是测量者实验水平高低的反映,但是又没有一种普遍适用的方法去消除误差,主要靠对具体问题作具体的分析与处理,要靠实验经验的积累.1.3.2 偶然误差 偶然误差是指在相同条件下,多次测量同一物理量,其测量误差的绝对值和符号以不可预知的方式变化.这种误差是由实验中多种因素的微小变动而引起的,例如实验装置和测量机构在各次调整操作上的变动,测量仪器指示数值的变动,以及观测者本人在判断和估计读数上的变动等等.这些因素的共同影响就使测量值围绕着测量的平均值发生涨落,这变化量就是各次测量的偶然误差.偶然误差的出现,就某一测量值来说是没有规律的,其大小和方向都是不能预知的,但对一个量进行足够多次的测量,则会发现它们的偶然误差是按一定的统计规律分布的,常见的分布有正态分布、均匀分布、t 分布等. 常见的一种情况是:正方向误差和负方向误差出现的次数大体相等,数值较小的误差出现的次数较多,数值很大的误差在没有错误的情况下通常不出现.这一规律在测量次数越多时表现得越明显,它就是一种最典型的分布规律——正态分布规律.1.3.3 系统误差和偶然误差的关系 系统误差和偶然误差的区别不是绝对的,在一定条件下,它们可以相互转化.比如称量的砝码误差,对于制造厂家来说,它是偶然误差,对于使用者来说,它又是系统误差.又如测量对象的不均匀性(如小球直径、金属丝的直径等),既可以当作系统误差,又可以当作偶然误差.有时系统误差和偶然误差混在一起,也难于严格加以区分.例如测量者使用仪器时的估读误差往往既包含有系统误差,又包含有偶然误差.这里的系统误差是指他读数时总是有偏大或偏小的倾向,偶然误差是指他每次读数时偏大或偏小的程度又是互不相同的.2.测量的不确定度和测量结果的表示2.1 测量的不确定度 测量误差存在于一切测量中,由于测量误差的存在而对被测量值不能确定的程度即为测量的不确定度,它给出测量结果不能确定的误差范围.一个完整的测量结果不仅要标明7其量值大小,还要标出测量的不确定度,以表明该测量结果的可信赖程度. 目前世界上已普遍采用不确定度来表示测量结果的误差.我国从1992年10月开始实施的《测量误差和数据处理技术规范》中,也规定了使用不确定度评定测量结果的误差. 通常不确定度按计算方法分为两类,即用统计方法对具有随机误差性质的测量值计算获得的A 类分量∆A ,以及用非统计方法计算获得的B 类分量∆B . 2.2 偶然误差与不确定度的A 类分量 2.2.1 偶然误差的分布与标准偏差 偶然性是偶然误差的特点.但是,在测量次数相当多的情况下,偶然误差仍服从一定的统计规律.在物理实验中,多次独立测量得到的数据一般可近似看作为正态分布,正态分布的特征可以用正态分布曲线形象地表示出来,如图1所示.当测量次数n 趋于∞时,测量值x 将成为连续型随机变量,其概率密度分布为正态函数,形式为⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--=221exp 21)(σμπσx x f (1)其中,µ 表示x 出现概率最大的值,在消除系统误差后,µ为真值.σ 称为标准偏差,它反映了测量值的离散程度.定义21()d xx f x x ξ=⎰,表示变量x 在(x 1,x 2)区间出现的概率,称为置信概率.x 出现在(µ-σ,µ+σ)之间的概率为()d 0.683f x x μσμσξ+-==⎰(2)说明对任一次测量,其测量值出现在(µ-σ,µ+σ)区间的可能性为0.683.为了给出更高的置信水平,置信区间可扩展为(µ-2σ,µ+2σ)和(µ-3σ,µ+3σ),其置信概率分别为22()d 0.954f x x μσμσξ+-==⎰和 33()d 0.997f x x μσμσξ+-==⎰(3)2.2.2 多次测量平均值的标准偏差和算术平均值标准误差尽管一个物理量的真值µ是客观存在的,但由于随机误差的存在,企图得到真值的愿望仍不现实,我们只能估算µ值.根据偶然误差的特点,可以证明如果对一个物理量测量了相当多次后,分布曲线趋于对称分布,其算术平均值就是接近真值µ的最佳值.如对物8理量x 测量n 次,每一次测量值为x i ,则算术平均值x 为nxx ni i∑==1(4)x 的标准偏差(Standard Deviation)可用贝塞尔公式估算为1)(12--=∑=n x xni ix σ (5)其意义为任一次测量的结果落在)(x x σ-到)(x x σ+区间的概率为0.683.由于算术平均值是测量结果的最佳值,最接近真值,因此我们更希望知道x 对真值的离散程度.误差理论可以证明x 的标准误差(Standard Error)为()()nn n x x xix σσ=--=∑12(6)上式说明,平均值的标准差是n 次测量中任意一次测量值标准差的n /1,显然x σ小于x σ.x σ的意义是待测物理量处于x x σ±区间内的概率为0.683.从上式中可以看出,当n为无穷大时,0=x σ,即测量次数无穷多时,平均值就是真值.2.2.3 有限次测量的情况和t 因子值得注意的是测量次数相当多时,测量值才近似为正态分布,上述结果才成立.在测量次数较少的情况下,测量值的概率密度曲线将呈t 分布(图2).测量次数较少时,t 分布相比正态分布变得平坦,当测量次数较多时(例如多于10次)t 分布趋于正态分布,当测量次数趋于无限时,t 分布过渡到正态分布.对有限次测量的结果,要保持与正态分布同样的置信概率,显然要扩大置信区间,将置信区间乘以一个大于1的t 因子,则)/(n t x t x x x x σσξξ±=±=的置信概率与正态分布的置信概率ξ相同.在物理实验中,我们建议置信概率采用0.95,因子95.0t 和n t /95.0的值见表1.表1 95.0t 和n t /95.0与n 的关系92.2.4 不确定度的A 类分量不确定度的A 类分量∆A 是重复测量时用统计学方法计算的分量,当重复测量次数为n 时, n t t x x A /Δξξσσ⋅==.当实验中取置信概率为0.95,且n =6时,有x A σ05.1=∆.通常在大学物理实验中,当n =6时,由于有1/95.0≈n t ,取∆A = σx ,即在置信概率为0.95的前提下,A 类不确定度∆A 可用测量值的标准偏差σx 估算.2.3 不确定度的B 类分量不确定度的B 类分量∆B 是用非统计方法计算的分量,如仪器误差等.一般而言,不确定度的B 类分量∆B 记为仪器标定的最大允差∆仪/C ,其中C 为置信系数,通常情况下C 取1,即∆B = ∆仪.某些常用实验仪器的最大允差∆仪见表2.表2 常用实验仪器的最大允差102.4 测量结果的表示 2.4.1 测量结果的表示若用不确定度表征测量结果的可靠程度,则测量结果需写成下列标准形式⎪⎩⎪⎨⎧⨯=±=%100x u u u x x xx r x (7)式中x 为多次测量的平均值,u 为合成不确定度,u r 为相对不确定度.合成不确定度u 由A 类不确定度∆A 和B 类不确定度∆B 采用均方根合成方式得到22B A x u ∆+∆=(8)若A 类分量有n 个,B 类分量有m 个,那么合成不确定度为∑∑==∆+∆=mi B ni A x i iu 1212(9)2.4.2 直接测量的不确定度计算过程 (1)单次测量时,通常有三种情况:(a )仪器精度较低,偶然误差很小,多次测量读数相同,不必进行多次测量; (b )对测量的准确程度要求不高,只测一次就够了; (c )因测量条件的限制,不可能多次重复测量.单次测量的结果也用(7)式表示测量结果.这时u 常用极限误差∆表示.∆的取法一般有二种:一种是仪器标定的最大允差∆仪;另一种是根据不同仪器、测量对象、环境条件、仪器灵敏阈等估计一个极限误差.两者中取数值较大的作为∆值.(2)多次测量时,不确定度以下面的过程进行计算:(a )修正已知的系统误差,得到测量值(如螺旋测微器必须消除零误差);(b )求测量数据的算术平均值:nxx i∑=;(c )用贝塞尔公式计算标准偏差:()12--=∑n x x ixσ;(d )标准偏差乘以一置信参数n t /95.0,求得∆A ; (e )根据仪器标定的最大允差∆仪 确定∆B : ∆B = ∆仪; (f )由∆A 、∆B 计算合成不确定度:22B A x u ∆+∆=;11(g )计算相对不确定度:%100⨯=xu u xr x ; (h )给出测量结果:⎪⎩⎪⎨⎧⨯=±=%100x u u u x x xr x x .例:在室温23℃下,用共振干涉法测量超声波在空气中传播时的波长λ,数据见表:试用不确定度表示测量结果. 解:波长λ的平均值为()mm 64.46161==∑=i i λλ任意一次波长测量值的标准偏差为()()mm)(03.0510109164612≈⨯=--=-∑iλλσλ实验装置的游标示值误差为:∆仪 = 0.02 mm波长不确定度的A 类分量为:∆A =1.05σλ ≈σλ = 0.03mm B 类分量为:∆B = ∆仪 = 0 .02 mm 于是,波长的合成不确定度为()()04.002.003.02222≈+=∆+∆=B A u λ(mm )相对不确定度为 %9.0%100=⨯=λλλu u r测量结果表达为:()⎩⎨⎧=±=%9.004.064.4λλr u cm122.4.3 间接测量不确定度的计算间接测量量是由直接测量量根据一定的数学公式计算出来的.这样一来,直接测量量的不确定度就必然影响到间接测量量,这种影响的大小也可以由相应的数学公式计算出来.设间接测量所用的数学公式可以用如下的函数形式表示),,,( z y x F N = (10)式中的N 是间接测量量,x ,y ,z ,…是直接测量量,它们是互相独立的量.设x ,y ,z ,…的不确定度分别为u x ,u y ,u z ,…,它们必然影响间接测量量,使N 值也有相应的不确定度u .由于不确定度都是微小的量,相当于数学中的“增量”,因此间接测量的不确定度的计算公式与数学中的全微分公式基本相同.不同之处是:1.要用不确定度u x 等替代微分dx 等;2.要考虑到不确定度合成的统计性质,一般是用“方和根”的方式进行合成.于是,在普通物理实验中用以下两式来简化地计算不确定度+∂∂+∂∂+∂∂=222222)()()()()()(z y x u zFu y F u x F u (11)+∂∂+∂∂+∂∂==222222)()ln ()()ln ()()ln (z y x N r u zF u y F u x F N u u (12)(11)式适用于N 是和差形式的函数,(12)式适用于N 是积商形式的函数.用间接测量不确定度表示结果的计算过程如下: (1)先写出(或求出)各直接测量量的不确定度.(2)依据),,,( z y x F N =的关系求出x F ∂∂,y F ∂∂…,或x F ∂∂ln ,yF ∂∂ln …. (3)用(11)式或(12)式求出u 和u r ,亦可用传递公式直接用各直接测量量不确定度进行计算u 和u r (见表3).(4)给出实验结果⎪⎩⎪⎨⎧⨯=+=%100N uu uN N r,其中),,,(⋅⋅⋅=z y x f N . 例:已知金属环的内径D 1 = 2.880±0.004 cm ,外径D 2 = 3.600±0.004 cm ,高度 H = 2.575±0.004 cm ,求金属环的体积,并用不确定度表示实验结果. 解:求金属的体积()()3222122cm 436.9575.2880.2600.344=⨯-⨯=-=ππH D DV求偏导:13H H V D D D D V D D D D V 1ln ,2ln ,2ln 212211212222=∂∂--=∂∂-=∂∂%8.0008.0)(22222122122122212===⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-==代入数据H u D D u D D D u D V u u H D D VrV求3cm 08.0008.0436.9≈⨯==rV V u V u实验结果:⎩⎨⎧=±=%8.0cm 08.044.93rV u V .表3 常用函数的不确定度传递公式3.有效数字及其运算规则3.1 有效数字的概念 任何一个物理量,其测量结果既然都包含误差,那么该物理量数值的尾数不应该任意取舍.在进行具体的数字运算前,按照一定的规则确定一致的位数,然后舍去某些数字后面多余的尾数的过程被称为数字修约,指导数字修约的具体规则被称为数字修约规则.根据数值修约规则(按国家标准文件:GB8170-87),测量结果只写到开始有误差的那一或两位数,以后的数按“4舍6入5看右,5后有数进上去, 尾数为0向左看,左数奇进偶舍弃”修约.对于“5”后尾数都为0的情况,则看“5”前一位,前一位是奇数,则将5进上,使有误差末位为偶数,若5的前一位是偶数则将5舍去.我们把测量结果中可靠的几位数字加上有误差的一到两位数字称为测量结果的有效数字.或者说,有效数字中最后一到两位数字是不确定的.显然,有效数字是表示不确定度的一种粗略的方法,而不确定度则是对有效数字中最后一到两位数字不确定程度的定量描述,它们都表示含有误差的测量结果.有效数字的位数与小数点的位置无关.如1.23与123都是三位有效数字.关于“0”是不是有效数字的问题,可以这样来判别:从左往右数,以第一个不为零的数字为起点,它左边的“0”不是有效数字,它右边的“0”是有效数字.例如0.0123是三位有效数字,0.01230是四位有效数字.作为有效数字的“0”,不可以省略不写.例如,不能将1.3500 cm 写作1.35 cm,因为它们的准确程度是不同的.有效数字位数的多少,大致反映相对误差的大小.有效数字位数越多,则相对误差越小,测量结果的准确度越高.3.2 数值书写规则测量结果的有效数字位数由不确定度来确定.由于不确定度本身只是一个估计值,一般情况下,不确定度的有效数字位数只取一到两位.测量值的末位须与不确定度的末位取齐.在初学阶段,可以认为有效数字只有最后一位是不确定的,相应地不确定度也只取一位有效数字,例如L =(1.00±0.02)cm.一次直接测量结果的有效数字,由仪器极限误差或估计的不确定度来确定.多次直接测量算术平均值的有效数字,由计算得到平均值的不确定度来确定.间接测量结果的有效数字,也是先算出结果的不确定度,再由不确定度来确定.当数值很大或很小时,用科学计数法来表示.如:某年我国人口为七亿五千万,极限误差为二千万,就应写作:(7.5±0.2)×104万,其中(7.5±0.2)表明有效数字和不确定度,104万表示单位.又如,把(0.000623±0.000003) m写作(6.23±0.03)×10-4 m,看起来就简洁醒目了.3.3 有效数字的运算规则在有效数字运算过程中,为了不致因运算而引进“误差”或损失有效位数,影响测量结果的精度,统一规定有效数字的近似运算规则如下:(1)诸量相加(或相减)时,其和(或差)数在小数点后所应保留的位数与诸数中小数点后位数最少的一个相同;(2)诸量相乘(或除)后保留的有效数字,只须与诸因子中有效数字最少的一个相同.(3)乘方与开方的有效数字与其底的有效数字位数相同.(4)一般来说,函数运算的位数应根据误差分析来确定.在物理实验中,为了简便和统一起见,对常用的对数函数、指数函数和三角函数作如下规定:对数函数运算后的尾数取得与真数的位数相同;指数函数运算后的有效数字的位数可与指数的小数点后的位数相同(包括紧接小数点后的零);三角函数的取位随弧度的有效数字而定;(5)在运算过程中,我们可能碰到一种特定的数,它们叫作正确数.例如将半径化为直径d = 2r时出现的倍数2,它不是由测量得来的.还有实验测量次数n,它总是正整数,没有可疑部分.正确数不适用有效数字的运算规则,只须由其他测量值的有效数字的多少来决定运算结果的有效数字;(6)在运算过程中,我们还可能碰到一些常数,如π、g之类,一般我们取这些常数与测量的有效数字的位数相同.例如:圆周长l =2πR,当R=2.356 mm时,此时π应取143.142.在实际运算过程中,为减少舍入误差,其数值的修约可以暂时多保留一位,但运算得到最后结果时,再根据有效位数弃去多余的数字。
基本物理量的测量与误差分析实验报告
二、验证单摆摆长与振动周期平方成正比的关系。
1、设置摆长为 50 cm,每次增加摆长 5 cm 直至 80 cm,用秒表测量单摆摆动 50 个周期的
时间。
摆长与摆动周期关系
摆长 l(cm)
50
55
60
65
70
75
80
周期 T(s) 1.4182
1.4840
1.5538
1.6170
1.6748
1.7354
+
K I0
Φ
=
0
(18)
此方程是一个常见的简谐振动微分方程,它的振动周期应是
T0 = 2π
I0 K
(19)
(19)式中钢丝的扭转系数 K 和摆动物体绕轴的转动惯量 I0 可以通过实验测得,方法如下。
首先测得转动系统本身(爪手)绕轴摆动的周期 T0,这时转动系统的转动惯量为 I0,如图 4,
再将一个已知内外直径、高度和质量的圆环水平放在爪手上,测得爪手与圆环一起绕钢丝转动的
n i=1
⎛∂ln f ⎜ ⎝ ∂xi
⎞⎟2uc2 ⎠
(xi )
= 0.002
∑ U(I) =
n ⎛ ∂ln f ⎜
i=1 ⎝ ∂xi
⎞⎟2uc2 (xi )
⎠
= 0.002
四、用扭摆法测量钢丝的切变模量 G。 计算钢丝或铜丝的切变模量 G 和不确定度,写出结果表达式。
G=
8π L R4
.
T12
I1
L
UL <
×1%, 2
T
UT < 2
×1% 2
(8)
(8)式指明:若要求 Ur (y) < 1 %,摆长的测量误差要小于 UL,周期的测量误差要小于 UT。 若单摆摆长 L≈50cm,周期 T≈1.4s,由(8)式得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UN
f x
2
U
2 x
f y
2
U
2 y
f z
2
U
2 z
UN
k
2U
2 x
m2U
2 y
n2U
2 z
若N x y,则U N
U2 x
U
2 y
不确定度传递公式——举例
(2) 倍数关系
y kx
U y
(
f x
x
n
4.常用仪器的误差
仪器误差Δ仪
指针式电表 Δ仪=量程×精度% 精度级别分为0.1、0.2、0.5、1.0、1.5、2.5、 5.0七级。
例 计算量程为30mA 、0.5 级的安培表的仪器误差:
△仪=30 mA×0.5%=0.2 mA
4.常用仪器的误差
仪器误差Δ仪
钢直尺 Δ仪=0.5 mm(最小分度的一半)
2.04
1.98
1.97
2.01)
2.00cm
n
(ai a)2
Sa
i 1
n 1
(2.01 2.00)2 (1.99 2.00)2 (2.04 2.00)2 (1.98 2.00)2 (1.97 2.00)2 (2.01 2.00)2 6 1
如函数关系式为混合运算,则由不确定度的 传递公式推导。
N f (x, y, z )
测量结果表示:物体的长度的真值有95%以上的可能位 于区间(10.10,10.20)cm.
1.测量
直接测量:用仪器直接测量出被测量 的大小。
间接测量:用若干直接测量量代入一 定的函数式计算得出的物理量的大小。
1.测量
用钢直尺分别测量圆柱体的直径D、高 度H和体积V。
V 1 D2H
4
UN
Ux x ln10
和差关系——先求UN较方便, 乘除关系(含幂次关系——先求EN较方便。
N kx my nz
UN
k
2U
2 x
m2U
2 y
n
2U
2 z
N Ax k ym zn
EN
k
2 Ex2
m2
E
2 y
n2 Ez2
EN
UN N
由 EN 可求出 U N 由 U N 可求出 EN
误差
设x0为真值,x为测量值,误差ε=x- x0 常用多次测量的算术平均值来近似代替真值,称 为近似真值。
偏差
偏差 x x x
3.误差的性质和分类
按误差产生的原因和特性,误差可分为: (1)系统误差 (2)随机误差
3.1系统误差的定义
在相同测量条件下多次测量同一物理量 时,误差的绝对值和符号保持恒定,或 在测量条件改变时,按某一确定规律变 化的误差。
)2U
x
2
kUx
不确定度传递公式——举例
(3)乘除关系 N xy
UN
f x
2
U
2 x
f y
2
U
2 y
UN
y
2U
2 x
x
2U
2 y
EN
UN N
EN
y 2U
2 x
x2U
2 y
( yU x )2 ( xU y )2
( U x )2 ( U y )2
间接测量结果的表达
2.间接测量不确定度的合成(不确定度的估算)
若Ux、Uy、Uz、 …为已知,由误差理论可 以证明,N的不确定度传递的近似公式为:
UN
( f )2 x
U2x
(f )2 y
U2y
此式称为不确定度的传递公式。
间接测量结果的表达
3.间接测量结果的表达
N (N UN ) 单位
当重复测量的次数达到一定数量时, 就误差 的整体而言,这些误差具有统计规律,其中 一种是正态分布(见图).
3.2随机误差的性质
进行了n次等精密度测量,获得了n个数据
x1, x2, x3, …… xn
及它们的误差 ε1,ε2,ε3,……εn
1.有界性 , f ( ) 0
2.单峰性 1 2 f (1 ) f (2 )
未定系统误差:原因复杂,用误差限的 方法进行估算。
3.1系统误差的性质
系统误差总是使测量结果偏向一边,即 或者偏大,或者偏小,因此多次测量不 能减小和消除系统误差。
3.2随机误差的定义与性质
在相同测量条件下多次测量同一物理量时, 误差的绝对值和符号随机变化,时大时小, 时正时负,以不可预定方式变化。
不确定度表征被测量的真值以一定的概率 落在某一量值的估算。不确定度的大小,反映 了测量结果的可信赖度。
不确定度是对测量误差的一种综合评价。
5.测量误差用不确定度表示
不确定度划分为两类:
A类分量ΔA,用统计方法估算,如标准差S;
B类分量ΔB,用其他方法估算,
如仪器误差Δ仪。
5.测量误差用不确定度表示
4. 求不确定度 Ux 2A 2B
5. 写出最终表示式 x x Ux 单位
多次直接测量例题
用钢直尺测量一正方形,边长数据为 ai(cm):2.01,1.99,2.04,1.98,1.97,2.01,试用不确定度表示 边长a的测量结果。
a
1 6
6
ai
i1
1 6
(2.01 1.99
3.对称性 f ( ) f ( )
4.抵偿性
lim
n
1 n
n i 1
i
0
f( )
1
e
2 2 x
2
2 x
x
2 i
标准误差
n
当 0,f ( )出现峰值 1 2 x
f( )
1
e
2 2 x
2
2 x
x2
ΔA由标准偏差 S x 估算:
S
A
x
n
(
x i
x)2
i 1
n 1
(当 5<n≤10 时,置信概率接近或大于95%).
A tsx
(n 5) n
直接测量结果的表达
ΔB约等于仪器误差,置信概率≥95%
B 仪
U
2 2
A
B
S2 x
2 仪
多次直接测量结果的计算归纳
xy
xy
xy
x
y
EN
Ex2
E
2 y
不确定度传递公式——举例
(4)幂次关系
N xk ym zn
f Aym znkxk1 x
f Ax k z nmy m1 y
f Axk ym (nzn1) z
EN
UN N
k
2 (U x
)2
m
2
U (
y
)2
n2 (U z
置信系数t( p, n 1)
图 t分布曲线 k=n-1=1, 2,5, ∞
置信系数t( p, n 1)
测量次数 4
5
6
7
8
9
10
n
t(p=0.683) 1.198 1.142 1.111 1.091 1.077 1.067 1.019
t(p=0.95) 3.183 2.776 2.571 2.447 2.365 2.306 2.262
0.03cm
A=Sa 0.03cm
△B= △仪= 0.05cm
多次直接测量例题
Ua
2 A
ቤተ መጻሕፍቲ ባይዱ
2 B
0.032 0.052 0.06cm
a (a Ua ) (2.00 0.06)cm
Ea
Ua a
100%
0.06 2
100%
3%
单次直接测量结果的表达
4
5
6
t(p=0.95)
t(p=0.95)/ n
3.183 1.592
2.776 1.241
2.571 1.050
7 2.447 0.925
8 2.365 0.836
9 2.306 0.769
10 2.262 0.751
当5
n
10时,x
x
tsx n
简化为
x
x
sx ,
p 95%
当n 5时,x x ts x tsx , p 95%
3.1系统误差的定义
R测
U I
R真
3.1系统误差的来源
理论和方法原因(伏安法测电阻时 没 有考虑电表的内阻)
仪器和设备原因(天平不等臂或 没调水平,电表零点不准)
环境原因或个人原因等(环境温度随时间 变化)
3.1系统误差的分类
系统误差按可掌握的程度可分为:
可定系统误差:可设法减小或修正。
不确定度可近似等于A类分量和B 类分量的方和根,
U 2 2
A
B
5.测量误差用不确定度表示
测量结果的最终表达形式
x (x U ) 单位 ( p 0.95) x U
E x 100% xx