圆的组合图形面积及答案
六年级上册数学讲义-5.3圆和扇形组合图形面积(拓展)-人教版(含答案)
扇形和圆的组合图形的面积学生姓名年级学科授课教师日期时段核心内容扇形和圆的组合图形的面积课型一对一/一对N 教学目标掌握扇形和圆的组合图形的面积的计算重、难点1、会利用平面图形的周长和面积公式求平面图形的周长和面积。
2、会用割、补、分解、代换、增加辅助线等方法,将复杂问题变得简单。
课首沟通和学生交谈。
了解学生对圆的认识,对各计算公式是否掌握。
知识导图课首小测1.一个圆形花坛的半径是3m,它的面积是多少平方米?(已知圆的半径,求圆的面积)2.圆形花坛的直径是20m,它的面积是多少平方米?(已知圆的直径,求圆的面积)3.一个圆形蓄水池的周长是25.12m,这个蓄水池的占地面积是多少?(已知圆的周长,求圆的面积)4.求下图扇形的面积。
导学一:运用代换法将复杂的图形转化为简单的规则图形例 1. 图1中右半部分阴影面积比左半部分阴影面积大33平方厘米,AB=60厘米,CB垂直AB,求BC的长。
我爱展示1.如图1-1所示,两个圆的圆心分别为O1、O两圆半径都是1厘米,且图中两个阴影部分的面积相等。
求长方形ABO1O的面积。
2.如图1-2,所示,求右半部分阴影面积比左半部分阴影面积大多少平方厘米。
3.如图1-3:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少平方厘米?导学二:巧用各基本图形的计算公式求解知识点讲解 1:把R2看成一个整体例 1. 图2中已知阴影部分的面积是20平方分米,求环形的面积。
我爱展示1.下图中正方形的面积是8平方米,圆的面积是多少平方米?2.已知下图2-2中阴影部分三角形的面积是5平方米,求圆的面积。
3.已知下图2-3中阴影部分三角形的面积是7平方米,求圆的面积。
知识点讲解 2:从局部到整体,从整体到局部,牢记公式,巧妙应用。
例 1. 如图3,半圆S1的面积是14.13平方厘米,圆S2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?我爱展示1.下图3-1中,△ABC是等腰直角三角形,以为半径的圆弧交延长线于点,已知阴影部分的面积是求。
和圆有关的组合图形面积的计算
计算下面各图形的面积
6cm
3cm
3cm
3cm
4cm
3×4 =12(c㎡)
4cm
(6+4) ×3÷2 =15(c㎡)
3.14 ×32 =28.26(c㎡)
平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 圆的面积= 圆周率×半径的平方
引入
下面两个图形,你们见过吗? 组
合
怎么计算它们的面积呢?
课堂活动 求圆形花坛周围小路的面积:
花坛周围小路的面积 = 大圆面积 – 小圆面积
S环形 = π(R2 - r2 )
课堂活动
8m o
大圆面积:3.14×(8+2)2 =314(㎡)
10m 小圆面积:3.14 ×82 =200.96 (㎡)
小路面积:314-200.96=113.04(㎡)
2.先说出求下面涂色部分面积的解题思 路再列式计算。
6cm
10cm
涂色部分面积 =大圆面积-小圆面积
涂色部分面积 =4个扇形面积之和 =一个圆面积
巩固练习
3.旋转餐厅的直径为36m,旋转部分宽7m。 旋转部分的面积是多少平方米?
拓展练习 求阴影部分的面积?
3cm 3cm
答:花坛周围的小路的面积是113.04 ㎡。
比较总结
议一议: 阅览室窗户和环形小路两个图 形在求面积时有什么不同?求组合图形 的面积需要注意什么?
圆、半圆或其它基本的平面图形组合在 一起产生组合图形。在计算组合图形面积的 时候,先看清这个组合图形是由哪些基本图 形组成的,再根据组合的方式决定把基本图 形的面积相加还是相减。
图 形
环形
探究新知
学校阅览室的窗户如下图。窗户的面积约 是多少平方米?
【2019学年沪教版】第一学期六年级数学第17讲-圆的组合图形面积计算
第17讲-圆的组合图形面积计算1、上次课课后巩固作业处理,建议让学生互批互改,个别错题可以让学生进行分享,针对共性的错题教师讲解为主。
2、互动探索(上节课预习内容,教师检查正确率,根据学生做题情况,进行讲解)案例1:有一个著名的希波克拉蒂月牙问题.如图:以AB为直径作半圆,C是圆弧上一点,(不与A、B重合),以AC、BC为直径分别作半圆,围成两个月牙形(阴影部分).已知直径AC为6cm,直径BC为8cm,直径AB为10cm.(1)将直径分别为AB、AC、BC所作的半圆面积分别记作S AB、S AC、S BC.分别求出三个半圆的面积。
(2)请你猜测:这两个月牙形(阴影部分)的面积与三角形ABC的面积之间的数量关系,并说明理由。
2222221(1)512.539.25(cm )213 4.514.13(cm )214825.12(cm )2AB AC BC S S S ππππππ=⨯⨯===⨯⨯===⨯⨯==cm 2. (2)相等 AC BC AB ABC ABC S S S S S S =++-=月牙三角形三角形案例2:归纳总结以下基本图面积计算方法(1)扇形:扇形的面积=所在圆的面积360n ⨯; 扇形中的弧长部分=所在圆的周长360n ⨯扇形的周长=所在圆的周长360n ⨯+2⨯半径(易错点是把扇形的周长等同于扇形的弧长) (2)弓形面积:弓形面积=扇形面积-三角形面积.(除了半圆)③”弯角”面积:如图: 弯角的面积=正方形-扇形④”谷子”面积:如图:“谷子”的面积=弓形面积2⨯例题1: 如图,直径AB 为3厘米的半圆以A 点为圆心逆时针旋转60°,使AB 到达AC 的位置,求图中的阴影部分的面积。
分析:从图中可以看出,阴影部分的面积等于图形总面积减去空白部分的面积(半圆)以AB (或AC )为直径的半圆面积称为a ,扇形ABC 的面积称为b ,则图形总面积为:a b +阴影部分的面积为:a b a b +-=2603 4.71360b π=⨯⨯= 答:阴影部分的面积是4.71平方厘米。
圆的组合图形的面积
假设有一个半径为5cm的圆 和一个底边长为8cm、高为 6cm的三角形,相交部分面
积为18.84cm^2。
05 圆的组合图形面积计算的 扩展应用
Байду номын сангаас
在几何图形设计中的应用
图案设计
圆的组合图形可以用于各种图案 设计,如地板、墙纸、纺织品等,
为设计提供丰富的视觉效果和创 意灵感。
建筑设计
在建筑设计中,圆的组合图形可以 用于外观设计、室内装饰和景观规 划,增加建筑的艺术感和美感。
微积分是通过微积分学中的定 积分概念,将不规则图形的面 积转化为求曲线下面积的问题 进行求解。
03 圆的组合图形面积计算
圆与圆的重叠
总结词
计算重叠部分的面积
详细描述
当两个或多个圆重叠时,需要分别计算各个圆的面积,并从总面积中减去重叠 部分的面积。重叠部分的面积可以通过计算重叠部分的弧长和半径来得出。
04 圆的组合图形面积计算实 例
实例一:圆与圆的重叠面积计算
总结词
计算重叠部分的面积
详细描述
当两个圆部分重叠时,需要计算重叠部分的面积。可以通 过计算两个圆的面积,然后减去两个圆不相交部分的面积 来实现。
公式
重叠部分的面积 = 两个圆的面积 - 不相交部分的面积
示例
假设有两个半径分别为3cm和5cm的圆,重叠部分面积为 12.56cm^2。
实例二:圆与矩形的组合面积计算
计算圆与矩形相交部分的面积
输入 标题
详细描述
当圆与矩形相交时,需要计算相交部分的面积。可以 通过计算矩形和圆的面积,然后减去矩形与圆不相交 部分的面积来实现。
总结词
公式
假设有一个半径为4cm的圆和一个长为8cm、宽为 6cm的矩形,相交部分面积为25.12cm^2。
沪教版六年级-圆的组合图形面积计算 专项,带答案
主 题 圆的组合图形面积计算 教学内容1.熟练掌握基本图形(圆、扇形、三角形、长方形、正方形、梯形等)的面积计算公式; 2.会利用基本图形的面积公式求组合图形的面积.(此环节设计时间在10-15分钟)回顾上次课的预习思考内容1.有一个著名的希波克拉蒂月牙问题.如图:以AB 为直径作半圆,C 是圆弧上一点,(不与A 、B 重合),以AC 、BC 为直径分别作半圆,围成两个月牙形(阴影部分).已知直径AC 为6cm ,直径BC 为8cm ,直径AB 为10cm .(1)将直径分别为AB 、AC 、BC 所作的半圆面积分别记作S AB 、S AC 、S BC .分别求出三个半圆的面积。
(2)请你猜测:这两个月牙形(阴影部分)的面积与三角形ABC 的面积之间的数量关系,并说明理由。
解析:(1)21512.539.252AB S ππ=⨯⨯==cm 2. 213 4.514.132AC S ππ=⨯⨯==cm 2. 214825.122BCS ππ=⨯⨯==cm 2. (2)相等AC BC AB ABC ABC S S S S S S =++-=月牙三角形三角形.(此环节设计时间在40-50分钟)例题1: 如果,直径AB 为3厘米的半圆以A 点为圆心逆时针旋转60°,使AB 到达AC 的位置,求图中的阴影部分的面积。
分析:从图中可以看出,阴影部分的面积等于图形总面积 减去空白部分的面积(半圆)以AB (或AC )为直径的半圆面积称为a 扇形ABC 的面积称为b 则图形总面积为:a b +阴影部分的面积为:a b a b +-=2603 4.71360b π=⨯⨯= 答:阴影部分的面积是4.71平方厘米。
试一试:如图,ABCD 是一个正方形,2ED DA AF ===,阴影部分的面积是多少? 解:S S S S S S S ∆∆=-+-+-正阴扇扇小扇 S S S =-正阴小扇224522 2.43360S π⨯⨯=-=阴或分步列式计算:(1)211222 1.1442π⨯⨯-⨯⨯= (2)12240.864π⨯-⨯⨯= (3)21452220.432360π⨯⨯-⨯= 1.140.860.43 2.43S =++=阴答:阴影部分的面积是2.43。
圆的周长和面积(组合图形)--六年级上册数学计算大通关(北师大版)(答案解析)
专题01 圆的周长和面积(组合图形)答案解析一.计算题(共20小题)1.计算下面图形阴影部分的周长和面积。
(单位:厘米)【分析】根据题意,圆的直径为(4×3)厘米,阴影部分的周长等于圆的周长的一半加上5条4厘米长的线段之和,利用圆的周长公式:C=πd,代入数据即可求出阴影部分的周长;阴影部分的面积等于圆的面积的一半减去边长为4厘米的正方形面积,分别利用圆的面积和正方形的面积公式求出这两个图形的面积,再相减即可得解。
××÷+×【解答】3.14(43)245×÷+=3.1412220+=18.8420=38.84(厘米)2××÷÷−×3.14(432)244=2×÷−3.146216×÷−=3.1436216−=56.5216=40.52(平方厘米)即阴影部分的周长是38.84厘米,面积是40.52平方厘米。
2.如图中,大圆的半径等于小圆的直径。
请计算阴影部分的周长。
【分析】观察图形可知,阴影部分的周长=大圆的周长+小圆的周长,再根据圆的周长公式:C=πd或C =2πr,据此进行计算即可。
【解答】3.14×2×4+3.14×4=6.28×4+3.14×4=25.12+12.56=37.68(cm)则阴影部分的周长为37.68cm。
3.计算下面图形的周长与面积。
【分析】周长等于大圆周长的一半加上两个半圆的周长(即一个小圆的周长);面积等于大圆面积的一半减去两个小圆面积的一半(即一个小圆的面积),据此解答。
【解答】周长:3.14×40÷2+3.14×(40÷2)=125.6÷2+3.14×20=62.8+62.8=125.6(cm)面积:3.14×(40÷2) 2÷2-3.14×(40÷4) 2=3.14×202÷2-3.14×10 2=3.14×400÷2-3.14×100=1256÷2-314=628-314=314(cm2)4.计算下边图形的周长和面积。
圆的组合图形面积及答案
圆的拉拢图形里积之阳早格格创做姓名:【知识取要领】要办理取圆有闭的题目,需要注意以下几面:1、流利掌握有闭圆的观念战里试公式:圆的里积= 圆的周少=扇形的里积= 扇形的弧少=(n是圆心角的度数)2、掌握解题本领妥协题要领:加减法、分隔沉组法、转动仄移法、对于合法、对消法、等积变形法、等量代换法、加辅帮线法.例1.供阳影部分的里积.(单位:厘米)解:那是最基原的要领:圆里积减去等腰曲角三角形的里积,×-2×1=1.14(仄圆厘米)例2.正圆形里积是7仄圆厘米,供阳影部分的里积.(单位:厘米)解:那也是一种最基原的要领用正圆形的里积减去圆的里积.设圆的半径为r,果为正圆形的里积为7仄圆厘米,所以=7,所以阳影部分的里积为:7-=7-×7=1.505仄圆厘米例3.供图中阳影部分的里积.(单位:厘米)解:最基原的要领之一.用四个圆组成一个圆,用正圆形的里积减去圆的里积,所以阳影部分的里积:2×2-π=0.86仄圆厘米.例4.供阳影部分的里积.(单位:厘米)解:共上,正圆形里积减去圆里积,16-π()=16-4π=3.44仄圆厘米例5.供阳影部分的里积.(单位:厘米)解:那是一个用最时常使用的要领解最罕睹的题,为便当起睹,咱们把阳影部分的每一个小部分称为“叶形”,是用二个圆减去一个正圆形,π()×2-16=8π-16=9.12仄圆厘米其余:此题还不妨瞅成是1题中阳影部分的8倍.例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空黑部分甲比乙的里积多几厘米?解:二个空黑部分里积之好便是二圆里积之好(齐加上阳影部分)π-π()=100.48仄圆厘米(注:那战二个圆是可相接、接的情况怎么样无闭)例7.供阳影部分的里积.(单位:厘米)解:正圆形里积可用(对于角线少×对于角线少÷2,供) 正圆形里积为:5×5÷2=12.5所以阳影里积为:π÷4-12.5=7.125仄圆厘米(注:以上几个题皆不妨间接用图形的好去供,无需割、补、删、减变形) 例8.供阳影部分的里积.(单位:厘米)解:左里正圆形上部阳影部分的里积,等于左里正圆形下部空黑部分里积,割补以去为圆,所以阳影部分里积为:π()=3.14仄圆厘米例9.供阳影部分的里积.(单位:厘米)解:把左里的正圆形仄移至左边的正圆形部分,则阳影部分合成一个少圆形,所以阳影部分里积为:2×3=6仄圆厘米例10.供阳影部分的里积.(单位:厘米)解:共上,仄移安排二部分至中间部分,则合成一个少圆形,所以阳影部分里积为2×1=2仄圆厘米(注: 8、9、10三题是简朴割、补或者仄移)11、例13.供阳影部分的里积.(单位:厘米)解: 连对于角线后将"叶形"剪启移到左上头的空黑部分,凑成正圆形的一半.所以阳影部分里积为:8×8÷2=32仄圆厘米12、例14.供阳影部分的里积.(单位:厘米)解:梯形里积减去圆里积,(4+10)×4-π=28-4π=15.44仄圆厘米 . 13、例16.供阳影部分的里积.(单位:厘米)解:[π+π-π]=π(116-36)=40π=125.6仄圆厘米14、例17.图中圆的半径为5厘米,供阳影部分的里积.(单位:厘米)解:上头的阳影部分以AB为轴翻转后,所有阳影部分成为梯形减去曲角三角形,或者二个小曲角三角形AED、BCD里积战.所以阳影部分里积为:5×5÷2+5×10÷2=37.5仄圆厘米16、例19.正圆形边少为2厘米,供阳影部分的里积.解:左半部分上头部分顺时针,底下部分顺时针转动到左半部分,组成一个矩形.所以里积为:1×2=2仄圆厘米17、例25.如图,四个扇形的半径相等,供阳影部分的里积.(单位:厘米)分解:四个空黑部分不妨拼成一个以2为半径的圆.所以阳影部分的里积为梯形里积减去圆的里积,4×(4+7)÷2-π=22-4π=9.44仄圆厘米18、例27.如图,正圆形ABCD的对于角线AC=2厘米,扇形ACB是以AC为曲径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,供阳影部分的里积.解: 果为2==4,所以=2以AC为曲径的圆里积减去三角形ABC里积加上弓形AC里积,π-2×2÷4+[π÷4-2]=π-1+(π-1)=π-2=1.14仄圆厘米19、例28.供阳影部分的里积.(单位:厘米)解法一:设AC中面为B,阳影里积为三角形ABD里积加弓形BD的里积,三角形ABD的里积为:5×5÷2=12.5弓形里积为:[π÷2-5×5]÷2=7.125所以阳影里积为:12.5+7.125=19.625仄圆厘米20、例30.如图,三角形ABC是曲角三角形,阳影部分甲比阳影部分乙里积大28仄圆厘米,AB=40厘米.供BC的少度. 解:二部分共补上空黑部分后为曲角三角形ABC,一个为半圆,设BC少为X,则40X÷2-π÷2=28所以40X-400π=56 则X=32.8厘米21、例33.供阳影部分的里积.(单位:厘米)解:用大圆的里积减去少圆形里积再加上一个以2为半径的圆ABE里积,为(π+π)-6=×13π-6=4.205仄圆厘米22、例34.供阳影部分的里积.(单位:厘米)解:二个弓形里积为:π-3×4÷2=π-6 阳影部分为二个半圆里积减去二个弓形里积,截止为π+π-(π-6)=π(4+-)+6=6仄圆厘米。
苏教版五年级数学下册第六单元圆的面积及组合图形专项试卷附答案
苏教版五年级数学下册核心考点突破卷11.圆的面积及组合图形一、认真填空。
( 每空2 分,共28 分)1.把圆平均分成若干份,可以拼成一个近似的长方形。
拼成的长方形的长相当于圆的( ),宽相当于圆的( ),拼成的长方形的面积与圆的面积( ),所以说圆的面积计算公式是( )。
2.小伟的书桌上有一个底面半径是4 厘米的笔筒,这个笔筒的底面面积是( )平方厘米。
3.数学课上,老师想在黑板上画一个周长是31.4厘米的圆,那圆规两脚之间的距离是( )厘米,这个圆的面积是( )平方厘米。
4.有一面20米长的墙,爷爷想用一段长25.12米的篱笆靠墙围一个半圆形鸡舍。
这个鸡舍的半径是( )米,面积是( )平方米,如果每只鸡的活动面积是1.5平方米,这个鸡舍最多可以养鸡( )只。
5.已知大圆的半径是小圆半径的3倍,那大圆周长是小圆周长的( )倍,小圆面积是大圆面积的( )。
6.在一张周长是40厘米的正方形纸上剪一个最大的圆,这个圆的半径是( )米,剩下图形的面积是( )平方厘米。
二、慎重选择。
(将正确答案的字母填在括号里)(每小题2分,共12 分)1.我国古代的数学著作《周髀算经》中记载的“周三径一”是指在同一个圆中,( )的三倍。
A.直径是半径B.周长大约是半径C.周长大约是直径D.面积大约是半径2.一个圆的半径由5 cm增加到8 cm,面积就增加( )cm2。
A.3πB.9πC.39πD.39 3.如图,每个扇形的半径是3 cm,则涂色部分的面积和是( )cm2。
A.28.26B.14.13C.56.52D.20.134.如图,两个图形的涂色部分相比,( )。
A.周长相等,面积相等B.周长相等,面积不相等C.周长不相等,面积相等D.周长不相等,面积也不相等5.如图,长方形的面积是10 cm2,圆的面积是( )cm2。
A.78.5 B.31.4C.15.7 D.无法确定6.下列说法中不正确的是( )。
A.半径是2 cm的圆,它的周长和面积相等B.同一个圆中半圆形的面积就是圆面积的一半C.圆的半径越大,面积就越大D.圆的半径增加一倍,面积就增加3 倍三、计算下面阴影部分的周长和面积。
5.5 圆、正方形组成的组合图形
=3.14×126.5625-36
=397.40625-36
≈361.41(mm²)
答:这个铜钱的面积是361.41mm²。
正方形的边长圆的直径2m外方内圆组合图形正方形的面积224m圆的面积3141314m阴影部分面积正方形面积圆的面积4314086m外圆内方组合图形教版数学六年级(上册)
我们先来看看台湾小学生 们的数学狂想
数学狂想曲
我本来认为数学是一堆数字的 +-×÷,但我发现,身边的 事物都是数学,所以,数学真
阴影部分面积=圆的面积-2个三角形面积 1 =3.14×1²-( ×2×1)×2 2 =3.14-2 =1.14(m²)
做一做
下图是一面我国唐代外圆内方的铜镜。铜镜的直径是 24cm。 外面的圆与内部的正方形之间的面积是多少? 3.14×(24÷2)²-24×12÷2×2
=452.16-288
=164.16(cm²)
伟大!
数学狂想曲
我的感觉是:
1.原来数学也可以用来玩
游戏。
2.让我觉得数学很奇妙, 能解决各种问题。
3.不要把数学想得太复杂。
数学狂想曲
感觉数学是我们的好朋友,
在日常生活中不可少,有时 候觉得很麻烦,有时候又觉
得很好玩。
我的数学狂想曲
请用力想想
数学的影子在哪里!
数学的影子
3
中国建筑中经常能见到“外方内圆”和“外圆内方” 的设计。上图中的两个圆半径都是1m,你能求出正方 形和圆之间部分的面积吗?
“外方内圆”组合图形
正方形的边长=圆的直径=2m 正方形的面积=2×2=4(m²) 圆的面积=3.14×1²=3.14(m²) 阴影部分面积=正方形面积-圆的面积 =4-3.14 =0.86(m²)
小升初圆与组合图形面积专题(含解析)
小学数学圆与组合图形面积专题1.如图所示,大正方形与小正方形的面积之差为50平方厘米,阴影部分的面积是( )平方厘米.A .33.5πB .37.5πC .40πD .47.5π2.如图中,三角形ABC 是等腰直角三角形,图中阴影部分和空白部分的面积相比较,()A .阴影部分的面积大B .空白部分的面积大C .面积一样大D .无法判断3.计算如图阴影部分面积,正确的列式是( )A .266 3.14() 3.142⨯-⨯B .22166 3.14() 3.1422⨯⨯-⨯C .2216[6 3.14() 3.14]22⨯⨯-⨯D .1(62 3.146 3.14)2⨯⨯⨯-⨯4.下面是两张同样大小的正方形纸,分别剪出不同规格的圆片,剩下的面积( )A .第一张纸剩下的面积大B .第二张纸剩下的面积大C .两张纸剩下的面积一样大5.如图,长方形ABCD 的面积是26m ,圆的面积是 2m6.如图两个圆的半径都是4厘米,涂色部分的面积之和是 平方厘米.7.长方形里有两个圆(如图),阴影部分的面积是27cm ,那么一个圆的面积是 平方厘米.8.如图,这个图形的周长是 厘米.9.如图阴影部分的面积是25cm ,环形的面积是 2cm .三.计算题(共7小题)10.如图中正方形的边长为4cm ,求阴影部分的面积.11.求如图阴影部分的面积.(单位:厘米)12.计算如图图形中阴影部分的面积.13.求如图阴影部分的面积.14.求图中阴影部分面积.15.如图中,已知圆的周长是25.12厘米,圆的面积与长方形的面积相等,图中阴影部分的面积是多少平方厘米?cm16.求阴影部分的面积.(单位:)17.求如图阴影部分的面积和周长.面积:.周长:.18.如图,三角形ABC是等腰直角三角形,8C∠=︒,求:==,45AB AC cm(1)弧AD的长度;(2)图中阴影部分的面积.19.如图,三角形ABC是等腰直角三角形,D是圆周的中点,BC是半圆的直径,已知==厘米,求阴影部分的面积.AB BC1020.如图,ABCD是一个长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路,求小路的面积.21.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为多少平方厘米?22.如图所示的多边形是由一个三角形和三个长方形组成的.已知三个长方形的面积分别是12平方厘米、4平方厘米和6平方厘米.三角形面积是多少平方厘米?23.公园里有一块长方形的草坪,为方便游客,在草坪中间开辟了两条小路(如图).现在m草坪的面积是多少?(单位:)24.如图,已知大圆半径为6cm,四个小圆的面积相等.阴影部分面积是多少平方厘米?(分合割补法)25.一个容积为550mL的水瓶,里面装了一些水,正放时,水面高20cm,倒放时,空气高7.5cm.求水有多少升?26.如图是直角三角形中有一个内接正方形,求图中阴影部分的面积.单位:厘米.提示:分拆图形时常用“分割、填补、组合、旋转”等方法.27.如图四边形ABCD中,角DAB和角DCB都是直角,边CD和边BC的长度相等,从点C 到边AB的垂线CE长为10厘米,求四边形ABCD的面积.28.图形计算(1)求下图阴影部分的周长和面积.(单位:厘米)(2)三条边长分别是6厘米、8厘米、10厘米的直角三角形.将它的最短边对折到斜边相重合,(如图)图中阴影部分面积是 平方厘米.29.如图,1S 的面积比2S 的面积大多少?30.图中正方形的边长是10厘米,三角形甲的面积比三角形乙的面积少20平方厘米,求线段AB 的长.圆与组合图形面积专题参考答案与试题解析一.选择题(共4小题)1.如图所示,大正方形与小正方形的面积之差为50平方厘米,阴影部分的面积是( )平方厘米.A .33.5πB .37.5πC .40πD .47.5π【解答】解:235037.5()4cm ππ⨯⨯= 答:阴影部分的面积是37.5π平方厘米. 故选:B .2.如图中,三角形ABC 是等腰直角三角形,图中阴影部分和空白部分的面积相比较,()A .阴影部分的面积大B .空白部分的面积大C .面积一样大D .无法判断【解答】解:根据分析可得,②=③+④=三角形ABC 面积的一半,①=③那么,空白部分的面积=②+③=三角形ABC 面积的一半+③ 阴影部分的面积=①+④=③+④=三角形ABC 面积的一半 所以,空白部分的面积大; 故选:B .3.计算如图阴影部分面积,正确的列式是( )A .266 3.14() 3.142⨯-⨯B .22166 3.14() 3.1422⨯⨯-⨯C .2216[6 3.14() 3.14]22⨯⨯-⨯D .1(62 3.146 3.14)2⨯⨯⨯-⨯【解答】解:2216[6 3.14() 3.14]22⨯⨯-⨯127 3.142=⨯⨯ 42.39=(平方厘米)答:阴影部分面积是42.39平方厘米; 故选:C .4.下面是两张同样大小的正方形纸,分别剪出不同规格的圆片,剩下的面积( )A .第一张纸剩下的面积大B .第二张纸剩下的面积大C .两张纸剩下的面积一样大 【解答】解:第一张纸剩下的面积是:244 3.14(42)⨯-⨯÷ 16 3.144=-⨯ 1612.56=- 3.44=第二张纸剩下的面积是:244 3.14(422)4⨯-⨯÷÷⨯ 16 3.1414=-⨯⨯ 1612.56=- 3.44=所以两张纸剩下的一样多.答:剪完圆后,两张纸剩下的一样多. 故选:C .二.填空题(共5小题)5.如图,长方形ABCD 的面积是26m ,圆的面积是 9.42 2m【解答】解:623÷=(平方米) 3.1439.42⨯=(平方米)答:圆的面积是9.42平方米. 故答案为:9.42.6.如图两个圆的半径都是4厘米,涂色部分的面积之和是 12.56 平方厘米.【解答】解:23.1444⨯÷ 50.244=÷12.56=(平方厘米)答:阴影部分的面积是12.56平方厘米. 故答案为:12.56.7.长方形里有两个圆(如图),阴影部分的面积是27cm ,那么一个圆的面积是 21.98 平方厘米.【解答】解:设圆的半径为r 厘米, 227r r ⨯÷=27r =3.14721.98⨯=(平方厘米)答:一个圆的面积是 21.98平方厘米.故答案为:21.98.8.如图,这个图形的周长是 23.98 厘米.【解答】解:3.1462 3.1482(86)⨯÷+⨯÷+-9.4212.562=++23.98=(厘米)答:这个图形的周长是 23.98厘米.故答案为:23.98.9.如图阴影部分的面积是25cm ,环形的面积是 31.4 2cm .【解答】解:设大圆的半径为R ,小圆的半径为r ,因为2211522R r -=, 则2210R r -=,环形的面积:223.14()R r ⨯-3.1410=⨯31.4=(平方厘米)答:环形的面积是31.4平方厘米.故答案为:31.4.三.计算题(共7小题)10.如图中正方形的边长为4cm ,求阴影部分的面积.【解答】解:244 3.14(42)⨯-⨯÷16 3.144=-⨯1612.56=-23.44()cm =答:阴影部分的面积是23.44cm .11.求如图阴影部分的面积.(单位:厘米)【解答】解:633-=(厘米)(63)32+⨯÷272=÷13.5=(平方厘米)答:阴影部分的面积是13.5平方厘米.12.计算如图图形中阴影部分的面积.【解答】解:222020 3.14204 3.14(202)2⨯-⨯÷+⨯÷÷400314157=-+243=(平方厘米)答:阴影部分的面积是243平方厘米.13.求如图阴影部分的面积.【解答】解:26226()cm ⨯÷=答:阴影部分的面积是26cm .14.求图中阴影部分面积.【解答】解:8822⨯÷÷6422=÷÷16=(平方厘米)答:图中阴影部分的面积是16平方厘米.15.如图中,已知圆的周长是25.12厘米,圆的面积与长方形的面积相等,图中阴影部分的面积是多少平方厘米?【解答】解:半径:25.12 3.1424÷÷=(厘米)233.1444⨯⨯3.1412=⨯37.68=(平方厘米)答:阴影部分的面积是37.68平方厘米.16.求阴影部分的面积.(单位:)cm【解答】解:(47)42+⨯÷112=⨯22=(平方厘米)答:阴影部分的面积是22平方厘米.四.解答题(共14小题)17.求如图阴影部分的面积和周长.面积:9平方厘米.周长:.【解答】解:面积:6(62)2⨯÷÷632=⨯÷9=(平方厘米)周长:3.14626⨯÷+9.426=+15.42=(厘米)故答案为:9平方厘米,15.42厘米.18.如图,三角形ABC是等腰直角三角形,8AB AC cm==,45C∠=︒,求:(1)弧AD的长度;(2)图中阴影部分的面积.【解答】解:(1)因为45n=︒,8r=厘米所以弧AD的长为:45 3.148180⨯⨯2 3.14=⨯6.28=(厘米)答:弧AD的长度6.28厘米.(2)22 180 3.144145 3.148(88)3602360⨯⨯⨯⨯-⨯⨯-8 3.14(328 3.14)=⨯--⨯16 3.1432=⨯-18.24=(平方厘米)答:阴影部分的面积是18.24平方厘米.19.如图,三角形ABC是等腰直角三角形,D是圆周的中点,BC是半圆的直径,已知10AB BC==厘米,求阴影部分的面积.【解答】解:连接BD 、OD 、OA ,由于DO BC ⊥,AB BC ⊥,所以//DO AB , 则AOD BOD S S ∆∆=,而阴影部分的面积AOB AOD BOD S S S ∆∆=+-扇形,AOB BOD BOD S S S ∆∆=+-扇形, 211101*********()242222π=⨯⨯÷+⨯⨯-⨯⨯ 2519.62512.5=+-,32.125=(平方厘米).20.如图,ABCD 是一个长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路,求小路的面积.+⨯-⨯=(平方米),【解答】解:小路面积为:(2014)22264答:小路的面积是64平方米.21.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为多少平方厘米?【解答】解:如图,,阴影部分A的面积等于空白部分B的面积,阴影部分C的面积等于空白部分D的面积,所以阴影部分的面积和等于正方形面积的一半,⨯÷=(平方厘米)4428答:图中阴影部分的面积为8平方厘米.22.如图所示的多边形是由一个三角形和三个长方形组成的.已知三个长方形的面积分别是12平方厘米、4平方厘米和6平方厘米.三角形面积是多少平方厘米?【解答】解:如图,设三角形面积为x平方厘米,则2:126:4x=x⨯=⨯42126x=872x÷=÷887289x=答:三角形面积是9平方厘米.23.公园里有一块长方形的草坪,为方便游客,在草坪中间开辟了两条小路(如图).现在m草坪的面积是多少?(单位:)⨯-⨯+⨯+⨯,【解答】解:2012(212220)22240(2440)4=-++,=-+,240644=(平方米);180答:现在草坪的面积是180平方米.24.如图,已知大圆半径为6cm,四个小圆的面积相等.阴影部分面积是多少平方厘米?(分合割补法)【解答】解:阴影部分的面积:(62)(62)2⨯⨯⨯÷,12122=⨯÷,1442=÷,272()cm =.答:阴影部分的面积是72平方厘米.25. 一个容积为550mL 的水瓶,里面装了一些水,正放时,水面高20cm ,倒放时,空气高7.5cm .求水有多少升?【解答】解:因为水的体积是不变的,瓶内空余部分的体积也是不变的, 所以水体积是空余部分体积的8207.53÷=倍, 885505504008311⨯=⨯=+毫升0.4=升, 答:水有0.4升.26.如图是直角三角形中有一个内接正方形,求图中阴影部分的面积.单位:厘米.提示:分拆图形时常用“分割、填补、组合、旋转”等方法.【解答】解:根据题干分析可得:18122108⨯÷=(平方厘米), 答:图中阴影部分的面积是108平方厘米.故答案为:108平方厘米.27.如图四边形ABCD 中,角DAB 和角DCB 都是直角,边CD 和边BC 的长度相等,从点C到边AB 的垂线CE 长为10厘米,求四边形ABCD 的面积.【解答】解:将三角形CEB 以C 点为中心顺时针旋转90度,如下图,四边形ABCD 的面积与新得到的正方形相等,所以面积为:1010100⨯=(平方厘米). 答:四边形ABCD 的面积是100平方厘米.28.图形计算(1)求下图阴影部分的周长和面积.(单位:厘米)(2)三条边长分别是6厘米、8厘米、10厘米的直角三角形.将它的最短边对折到斜边相重合,(如图)图中阴影部分面积是 6 平方厘米.【解答】解:(1)如图,阴影部分的周长:903.141022 3.1410231.415.747.1360︒⨯÷⨯+⨯⨯⨯=+=︒(厘米); 两个直角等腰三角形的面积:(直角边2+直角边22)210÷=(斜边2)2100250÷=÷=(平方厘米);阴影部分的面积:2903.141078.55028.5360︒⨯⨯-=-=︒(平方厘米). 答:阴影部分的周长是47.1厘米,面积是28.5平方厘米.(2)阴影部分大直角边长:1064-=(厘米);阴影部分小直角边长:623÷=(厘米);阴影部分面积:4326⨯÷=(平方厘米).答:图中阴影部分面积是6平方厘米.故答案为:(1)47.1厘米,28.5平方厘米;(2)629.如图,1S 的面积比2S 的面积大多少?【解答】解:如图:12S S -12()()BCGF BCGF S S S S =+-+ABC BCGE S S =-10(68)2106=⨯+÷-⨯7060=-10=(平方厘米)答:1S 的面积比2S 的面积大10平方厘米.30.图中正方形的边长是10厘米,三角形甲的面积比三角形乙的面积少20平方厘米,求线段AB 的长.【解答】解:三角形甲的面积比三角形乙的面积小20平方厘米;根据图形可得:三角形DCB的面积比正方形CDEA的面积大20平方厘米,所以三角形DCB的面积为:10102010020120⨯+=+=(平方厘米)又因为正方形的边长10CD=厘米所以CB的长度是:12021024⨯÷=(厘米)所以AB的长度为:241014-=(厘米)答:AB的长度是14厘米.。
圆的组合图形的面积计算
答:光盘的面积是32π平方厘米。
如果我们用S 表示圆环的面积,R 表示大圆的 圆环
半径,r 表示小圆的半径。圆环的面积公式可以怎 么表达?
S =πR²-πr² 圆环
或 S 圆环=π(R²-r²)
一扇窗户由一个正方形和一个半圆形组合而成 (如右图)。这扇窗户的面积是多少平方米?
圆的组合图形的面积计算
五年级数学·(下册)
复习 平面图形的面积计算公式
长方形面积 = 长×宽
三角形面积 =底×高÷2
正方形面积 =边 长×边长
梯形面积 =( 上底+下底)×高÷2
平行四边形面积 = 底×高
圆的面积 s=πr²
r
求下面各圆的面积。
(1)r=7dm
π×7²= 49 π(dm²)
(2)d=1.2m
π×112÷2-π×5.5²÷2
面积之和
16
24
涂色部分的面积=长方形的面积+半圆的面积 16÷2=8(毫米)……圆的半径
24×16+ π×82÷2
14
面积之差
涂色部分的面积=半圆的面积-三角形的面积 14×2=28(毫米)……三角形的底
π×142÷2-28×14÷2
计算组合图形的面积我们可以分几步走?
1.看 2.想 3.算
看组合图形是由哪些基本图形组合而成的。
想组合图形的面积是这些基本图形的面积之和 还是面积之差。
找到数据之间的相互联系,正确地运用公式进 行计算。
课后作业
课后作业
感谢您的莅临指导
长方形面积:8×4=32(cm2)
= 9π÷2
半圆面积: π×42找÷2到数据之间)
圆的组合图形面积及重点标准答案
圆旳组合图形面积姓名:【知识与措施】要解决与圆有关旳题目,需要注意如下几点:1、纯熟掌握有关圆旳概念和面试公式:圆旳面积= 圆旳周长=扇形旳面积= 扇形旳弧长=(n是圆心角旳度数)2、掌握解题技巧和解题措施:加减法、分割重组法、旋转平移法、对折法、抵消法、等积变形法、等量代换法、添辅助线法。
例1.求阴影部分旳面积。
(单位:厘米)解:这是最基本旳措施:圆面积减去等腰直角三角形旳面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分旳面积。
(单位:厘米)解:这也是一种最基本旳措施用正方形旳面积减去圆旳面积。
设圆旳半径为r,由于正方形旳面积为7平方厘米,因此=7,因此阴影部分旳面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分旳面积。
(单位:厘米)解:最基本旳措施之一。
用四个圆构成一种圆,用正方形旳面积减去圆旳面积,因此阴影部分旳面积:2×2-π=0.86平方厘米。
例4.求阴影部分旳面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分旳面积。
(单位:厘米)解:这是一种用最常用旳措施解最常用旳题,为以便起见,我们把阴影部分旳每一种小部分称为“叶形”,是用两个圆减去一种正方形,π()×2-16=8π-16=9.12平方厘米此外:此题还可以当作是1题中阴影部分旳8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆旳3倍,问:空白部分甲比乙旳面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆与否相交、交旳状况如何无关)例7.求阴影部分旳面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5。
五年级奥数第十三讲圆的组合图形面积
第十三讲有关圆的知识:组合图形(一)【知识提纲】同学们都知道我国的“神舟五号”载人飞船于2003年10月15日9:00顺利升空,航天英雄杨利伟于2003年10月16日6:51从太空返回地球,实现了中华民族的航天梦。
飞船绕地球飞行14圈,其中10圈在沿着离343千米的圆形轨道上飞行。
那么飞船在沿着这个圆形轨道飞行了多少千米呢?(地球半径6371千米,圆周率取 3.14)你们可以计算出来吗?其实这是一道有关圆的周长的问题,当我们学习了圆的有关知识后,这样的计算并不困难。
圆的周长=直径×π圆的面积=半径×半径×π【典型例题1】下图是一个操场,请你求出绕着它跑一周的距离。
(单位:米)【思路解析】:观察图形可以发现:绕操场一圈的距离就是两个半圆加上两条线段的总长度,而两个半圆的长度正好是一个整圆的长度。
解:根据题意得3.14×60+100×2= 188.4+200= 388.4(米)答:绕着它跑一周的距离是388.4米。
【随堂练习1】(1)夏天到了,爸爸到超市买了4瓶可乐,每瓶可乐的瓶底直径是7里面。
超市把可乐捆扎在一起,如图,若用绳子捆5圈,至少要用绳子多少厘米?【典型例题2】已知AB=100厘米,求图中各圆的周长的和。
【思路解析】:由图可知一共有5个圆。
我们设5个圆的直径分别为d1、d2、d3、d4、d5厘米,那么5个圆的周长总和为:πd1+πd2+πd3+πd4+πd5=π(d1+d2+d3+d4+d5)d1+d2+d3+d4+d5=AB=100厘米。
解:根据题意3.14×100=314(厘米)答:图中各圆的周长的和是314厘米。
【随堂练习2】等边三角形边长是10厘米,求阴影部分周长。
【典型例题3】求图中阴影部分的面积。
(单位:厘米)【思路解析】:由图形可知,如果直接计算阴影部分的面积是很困难的,但我们很容易计算出梯形ABCD 与扇形AOC 的面积。
最权威圆的面积大全组合图形
组合图形
姓名:1、求下列组合图形阴影部分的面积。
2、①求它的周长和面积。
(单位:厘米) ②圆的周长是18.84cm,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面积. (单位:分米)
⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,
①比阴影②面积少3cm2,求EC的长。
AB=40cm,求BC的长.
⑦平行四边形的面积是30cm2, ⑧一个圆的半径是4cm,求阴影部分面
积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求三角形AEF的面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白⒀阴影部分比空白部分大6cm2,求S阴。
部分12平方厘米,求阴影部分面积。
3、求下列图形的体积。
(单位:厘米)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的组合图形面积
姓名:
【知识与方法】
要解决与圆有关的题目,需要注意以下几点:
1、熟练掌握有关圆的概念和面试公式:
圆的面积= 圆的周长=
扇形的面积= 扇形的弧长=
(n是圆心角的度数)
2、掌握解题技巧和解题方法:加减法、分割重组法、旋转平移法、对折法、抵消法、等积变形法、等量代换法、添辅助线法。
例1.求阴影部分的面积。
(单位:厘米)
解:这是最基本的方法:圆面积减去等腰直角三角形的面积,
×-2×1=1.14(平方厘米)
例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)
解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,
所以阴影部分的面积为:7-=7-×7=1.505平方厘米
例3.求图中阴影部分的面积。
(单位:厘米)
解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,
所以阴影部分的面积:2×2-π=0.86平方厘米。
解:同上,正方形面积减去圆面积,
16-π()=16-4π
=3.44平方厘米
例5.求阴影部分的面积。
(单位:厘米)
解:这是一个用最常用的方法解最常见的题,为方便起见,
我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,
π()×2-16=8π-16=9.12平方厘米
另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)
π-π()=100.48平方厘米
(注:这和两个圆是否相交、交的情况如何无关)
例7.求阴影部分的面积。
(单位:厘米)
解:正方形面积可用(对角线长×对角线长÷2,求)
正方形面积为:5×5÷2=12.5
所以阴影面积为:π÷4-12.5=7.125平方厘米
(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)
例8.求阴影部分的面积。
(单位:厘米)
解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米
解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米
例10.求阴影部分的面积。
(单位:厘米)
解:同上,平移左右两部分至中间部分,则合成一个长方形,
所以阴影部分面积为2×1=2平方厘米
(注: 8、9、10三题是简单割、补或平移)
11、例13.求阴影部分的面积。
(单位:厘米)
解: 连对角线后将"叶形"剪开移到右上面的空白部分,凑成正方形的一半.
所以阴影部分面积为:8×8÷2=32平方厘米
12、例14.求阴影部分的面积。
(单位:厘米)
解:梯形面积减去圆面积,
(4+10)×4-π=28-4π=15.44平方厘米 .
13、例16.求阴影部分的面积。
(单位:厘米)
解:[π+π-π]
=π(116-36)=40π=125.6平方厘米
14、例17.图中圆的半径为5厘米,求阴影部分的面积。
(单位:厘米)
解:上面的阴影部分以AB为轴翻转后,整个阴影部分成为梯形减去直角三角形,或两个小直角三角形AED、BCD面积和。
所以阴影部分面积为:5×5÷2+5×10÷2=37.5平方厘米
15、例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周
长。
解:阴影部分的周长为三个扇形弧,拼在一起为一个半圆弧,
所以圆弧周长为:2×3.14×3÷2=9.42厘米
16、例19.正方形边长为2厘米,求阴影部分的面积。
解:右半部分上面部分逆时针,下面部分顺时针旋转到左半部分,组成一个矩形。
所以面积为:1×2=2平方厘米
17、例25.如图,四个扇形的半径相等,求阴影部分的面积。
(单位:厘米)
分析:四个空白部分可以拼成一个以2为半径的圆.
所以阴影部分的面积为梯形面积减去圆的面积,
4×(4+7)÷2-π=22-4π=9.44平方厘米
18、例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积。
解: 因为2==4,所以=2
以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积,
π-2×2÷4+[π÷4-2]
=π-1+(π-1)
=π-2=1.14平方厘米
19、例28.求阴影部分的面积。
(单位:厘米)
解法一:设AC中点为B,阴影面积为三角形ABD面积加弓形BD的面积,
三角形ABD的面积为:5×5÷2=12.5
弓形面积为:[π÷2-5×5]÷2=7.125
所以阴影面积为:12.5+7.125=19.625平方厘米
20、例30.如图,三角形ABC是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米。
求BC的长度。
解:两部分同补上空白部分后为直角三角形ABC,一个为半圆,设BC长为X,则
40X÷2-π÷2=28
所以40X-400π=56 则X=32.8厘米
21、例33.求阴影部分的面积。
(单位:厘米)
解:用大圆的面积减去长方形面积再加上一个以2为半径的圆ABE面积,为
(π+π)-6
=×13π-6
=4.205平方厘米
22、例34.求阴影部分的面积。
(单位:厘米)
解:两个弓形面积为:π-3×4÷2=π-6
阴影部分为两个半圆面积减去两个弓形面积,结果为
π+π-(π-6)=π(4+-)+6=6平方厘米。