概率论第一章1.3节
概率论与数理统计 第一章 1.3等可能概型
概率论
54 3 P(C) = 2 = . 所以 8 12 (2) 采取不放回抽样.
从箱子中任取两件产品,每次取一件,取法总数为12⋅ 11 . ⋅
⋅ 即样本空间中所含有的基本事件总数为 12⋅ 11 . 1 1 事件A 事件 中所含有的基本事件数为 C9C8 = 9⋅ 8 . 9⋅ 8 6 = . 所以 P( A) = 12⋅ 11 11 事件B 事件 中所含有的基本事件数为 C1C1 = 9⋅ 3 . 9 3 9⋅ 3 9 所以 P( B) = = . 12⋅ 11 44
8 5 1 9 4 6 7 2 3 10
概率论
我们用 i 表示取到 i 号球, 号球, i =1,2,…,10 . 则该试验的样本空间
如i =2
2
S={1,2,…,10} ,
且每个样本点(或者说基本 且每个样本点 或者说基本 事件)出现的可能性相同 事件 出现的可能性相同 . 称这样一类随机试验为古 称这样一类随机试验为古 典概型. 典概型
乘法原理
概率论
完成某件事情需先后分成m个步骤 做第一步有 完成某件事情需先后分成 个步骤,做第一步有 1 个步骤 做第一步有n 种方法,第二步有 种方法,依次类推 第二步有n 依次类推,第 步有 步有n 种方法 第二步有 2种方法 依次类推 第m步有 m种方 特点是各个步骤连续完成. 法,特点是各个步骤连续完成 特点是各个步骤连续完成 则完成这件事共有N=n1×n2×…×nm种不同的方法 则完成这件事共有 × 种不同的方法,
即样本空间中所含的基本事件数为122 . C1C1 = 92 . 事件A 事件 中所含有的基本事件数为 9 9 92 9 = 2 = . 所以 P( A) 12 16 C1C1 = 9⋅ 3 . 事件B 事件 中所含有的基本事件数为 9 3 9⋅ 3 3 所以 P( B) = 2 = . 16 12 事件C 事件 中所含有的基本事件数为
概率与统计课件(一)概率论的基本概念
2
0
A B
表示事件A与事件B中至少有一个事件发生,称此事
件为事件A与事件B的和(并)事件,或记为A+B. 事件A1,A2,…An 的和记为 ,或A1 ∪ A2 ∪ … ∪ An
上一页 下一页 返回
表示事件A与事件B同时发生, 称为事件A与事件B的 积(交)事件,记为AB。积事件AB是由A与B的公共
上一页
下一页
返回
例1.27 一张英语试卷,有10道选择填空题,每题有4 个选择答案,且其中只有一个是正确答案.某同学投机 取巧,随意填空,试问他至少填对6道的概率是多大?
解 设B=“他至少填对6道”.每答一道题有两个可能的 结果:A=“答对”及 =“答错”,P(A)=1/4,故 作10道题就是10重贝努里试验,n=10,所求概率为
定义1.2: 设事件A在n次重复试验中发生了k次, n很大时, 频率 稳定在某一数值p的附近波动,而随着试验次数 n的增加,波动的幅度越来越小,则称p为事件A发生的 概率,记为 P ( A) p
上一页
下一页
返回
2、概率的公理化定义
定义1.3
上一页
下一页
返回
概率的性质:
上一页
下一页
返回
上一页
解 设A1,A2,A3表示产品来自甲、乙、丙三个车间, B表示产品为“次品”的事件,易知A1,A2,A3是样本 空间Ω的一个划分,且有 P(A1)=0.45,P(A2)=0.35,P(A3)=0.2, P(B|A1)=0.04,P(B|A2)=0.02,P(B|A3)=0.05.
上一页 下一页 返回
第三节 条件概率、全概率公式
1、条件概率的定义
上一页
下一页
返回
• 考察有两个小孩的家庭,其样本空间为{bb,bg,gb,gg} • (1)事件A=“家中至少有一个女孩“发生的概率? • (2)若已知事件B=“家中至少有一个男孩”,再求事 件A发生的概率? •
1.3 等可能概型、几何概型
人们在长期的实践中总结得到“概率 很小的事件在一次实验中几乎是不发生的” (称之为实际推断原理)。这样小概率的 事件在一次抽卡的试验中就发生了,人们 有比较大的把握怀疑这是魔术. 具体地说,可以99.9%的把 握怀疑这是魔术.
2013年7月29日星期一
中央财经大学《概率统计》课件--孙 博
第一章 第三节 --第3页--
例如,一个袋子中装有 10个大小、形状完全相同 的球. 将球编号为1-10 . 把球搅匀,蒙上眼睛,从 中任取一球.
8 5 1 9 4 6 7 2 3 10
2013年7月29日星期一
中央财经大学《概率统计》课件--孙 博
i 1, 2,, n .
中央财经大学《概率统计》课件--孙 博
其中
2013年7月29日星期一
n
第一章 第三节 --第6页--
古典概型的概率计算(概率的古典定义)
确定试验的基本事件总数
设试验结果共有n个基本事件ω1,ω2,...,ωn , 而且这些事件的发生具有相同的可能性
确定事件A包含的基本事件数
P ( A1 A2 Ak ) P ( A1) P ( A2 ) P ( Ak ) 可列可加性
排列组合是计算古典概率的重要工具 .
2013年7月29日星期一 中央财经大学《概率统计》课件--孙 博 第一章 第三节 --第8页--
“等可能性”是一种假设,在实际应用中, 需要根据实际情况去判断。在许多场合, 由对称性和均衡性,我们就可以认为基本 事件是等可能的并在此基础上计算事件的 概率.
2013年7月29日星期一 中央财经大学《概率统计》课件--孙 博 第一章 第三节 --第10页--
概率论第三讲
P( A∪ B) = P( A) + P(B) P( AB) = 0.8
P ( A B ) = P( A ∪ B) = 0.2
陕西科技大学
3 September 2007
第一章 随机事件与概率
第11页
课后同学问: 上例 中小王他能答出第一类问题的概 率为0.7, 答出第二类问题的概率为0.2, 两 类问题都能答出的概率为0.1. 为什么不是 0.7×0.2 ? 若是的话, 则应有 P ( A1 A2 ) = P ( A1 ) P ( A2 ) 而现在题中并未给出这一条件. 在§1.5中将告诉我们上述等式成立的 条件是 :事件A1,A2 相互独立.
3 September 2007
陕西科技大学
第一章 随机事件与概率
第16页
思考题
口袋中有2个白球,每次从口袋中随 机地摸出一球,并换入一只黑球. 求第k 次取到黑球的概率.
3 September 2007
陕西科技大学
第一章 随机事件与概率
第17页
例1.3.4
一颗骰子掷4次,求至少出现一次6点的概率. 解:用对立事件进行计算, 记 A=“至少出现一次6点”, 则所求概率为
3 September 2007
陕西科技大学
第一章 随机事件与概率
第20页
利用对称性
甲掷硬币n+1次,乙掷n次. (习题1.3第10题) 求甲掷出的正面数比乙掷出的正面数多的概率. 解:记甲正=甲掷出的正面数,乙正=乙掷出的正面数. 甲反=甲掷出的反面数,乙反=乙掷出的反面数. 因为 P(甲正>乙正)= P(n+1-甲反> n-乙反) = P(甲反-1<乙反)= P(甲反≤乙反) (对称性) = 1P(甲正>乙正) 所以 2P(甲正>乙正)=1, 由此得 P(甲正>乙正)=1/2
第一章概率论的基本概念
例1.6.1 在10个产品中有7个正品,3个次品, 按不放回抽样,每次一个,抽取两次,求 ①两次都取到次品的概率; ②第二次才取到次 品的概率; ③已知第一次取到次品,第二次又 取到次品的概率。
解:设A={第一次取到次品},B={第二次取到次品},
(1)P(AB)=(3×2)/(10×9) =1/15 (2)P( A B )=(7×3)/(10 × 9)=7/30 (3)P(B|A)=2/9=P(AB)/P(A)= (1/15)/(3/10)
第1.6节 条件概率、全概率公式及贝叶斯公式
一、条件概率 1、定义 对于两个事件A、B,若P(A)>0, 则称P(B|A)=P(AB)/P(A)为事件A出现 的条件下,事件B出现的条件概率。 注意:区别P(B|A)与P(AB). 例 有10个人,其中色盲者3人,从这10人中每次任取 一人,共取两次。 设A={第一次取出色盲} B= {第二次取出色盲} 则 P(B|A)=2/9 P(AB)=1/15 P(A)=3/10
1.5.2. 设事件A发生的概率是0.6,A与B都发生的概率是0.1,A
与B 都 不发生 的概率为 0.15 ,求 A发生B不发生的概率;B 发生 A不发生的概率及P(A+B). 解:由已知得,P(A)=0.6,P(AB)=0.1,P( B )=0.15, A
则 P(A-B)=P(A-AB)=P(A)-P(AB)=0.5 P(B-A)=P(B)-P(AB)
解:设A = { 取 到 的 两 个 都 是 次 品},B={取到的两个中正、 次品各一个}, C={取到的两个中至少有一个正品}. (1)基本事件总数为62,有利于事件A的基本事件数为22, 所以P(A)=4/36=1/9 (2)有利于事件B的基本事件数为4×2+2×4=16, 所以P(B)=16/36=4/9 (3)有利于事件C的基本事件数为62-2×2=32, P(C)=32/36=8/9 注意①若改为无放回地抽取两次呢? ②若改为一次抽取两个呢?
(完整版)《概率论与数理统计》讲义
第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。
)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。
例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。
例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。
例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
第1.3节 等可能概型
定义:
概率论所讨论的问题中,有一类问题最简单直观,这类问题
所涉及到的试验具有下面两个特征:
1)(有限性)试验的样本空间的元素只有有限个; 2)(等可能性)试验中每个基本事件发生的可能性相同. 把具有上述两个特征的试验称为等可能概型或古典概型.
例如,抛一枚质地均匀的硬币,或者出现正面或者出现反面,只
方法2 (利用对立事件的概率关系)
P ( A ) 1 P ( A ) 1 P ( A0 ) 1 C 20
甲、乙两人同时向目标射击一次,设甲击中的概率
为 0.85 ,乙击中的概率为 0.8 .两人都击中的概率为
0.68 .求目标被击中的概率.
解
设A表示甲击中目标,B表示乙击中目标,
有两种结果,且每种结果出现的可能性相同.又如抛一颗骰子, 观察出现的点数,则共有6种结果,且每一种结果出现的可能性 相同.
设古典概率 E 的样本空间为 S e1 , e2 , , en .
由于在试验中每个基本事件发生的可能性相同 , 即
P e1 P e 2 P e n
得 P(A1)
m A1 n
3 8
.
( 2 ) A 2 { HHH , HHT , HTH , THH , HTT , THT , TTH }.
因此
P(A2)
m A2 n
7 8
.
例 2 一口袋装有 6 只球,其中 4 只白球、 只红球. 从 2 袋中取球两次,每次随机地取一只.考虑有放回和无放 回两种抽样,试分别就这两种情况求:(1) 取到的两只 球都是白球的概率,(2) 取到的两只球颜色相同的概 率,(3) 取到的两只球中至少有一只是白球的概率.
概率论与数理统计 1-3
3
1. 条件概率的定义
设A、B是两个事件,且P(A)>0,则称 P(B | A) P( AB) (1) P( A)
为在事件A发生的条件下,事件B的条件概率.
1.3条件概率
B ABA
S
若事件A已发生, 则为使 B也发 生 , 试验结果必须是既在 B 中又在 A中的样本点 , 即此点必属于AB. 由于我们已经知道A已发生, 故A变 成了新的样本空间 , 于是 有(1).
3
P( Ai ) P(A1)P(A2 / A1)P(A3 / A1A2 )
i 1
※想一想: ①应如何推导此式? ② n个事件的公式如何写呢?
7
1.3条件概率
例2 一批零件共100个,其中有10个是次品。今从这批零
件中随机抽取,每次一件,1)若不放回地抽取3次,求3次都 取得合格品的概率;2)若有放回地抽取2次,求2次都取得合 格品的概率。
注 通常, P(B|A) ≠ P(B)
4
2. 条件概率P(.|A)的性质
1.3条件概率
(1)非负性 对每一个事件B, P(B|A) ≧0 概
(2)规范性 对必然事件S, P(S|A) =1
率
定
(3)可列可加性 若B1, B2 ,是两两互不相容的事件,则有
P Bi | A P(Bi | A)
解 记 Ai=“第i次取得合格品”,i=1,2,3;
1) 若不放回地抽,则
P
(
A1
)
90 100
,
P(
A2
|
A1 )
89 99
,
P(
A3
|
A1
A2
)
概率论第一章ppt课件
i1
i1
13
3. 积(交)事件 : 事件A与事件B同时发生,记
作 AB 或AB。
推广:n个事件A1, A2,…, An同时发生,记作
n
n
A1A2…An或 A i 或 A i
i1
i1
14
4. 差事件: A-B称为A与B的差事件, 表示事件 A发生而事件B不发生
15
5. 互不相容事件(也称互斥的事件): 即事件 A与事件B不能同时发生。AB= 。
A 1 “: 至少有一人命中目标 A 2 “: 恰有一人命中目标” A 3 “: 恰有两人命中目标” A 4 “: 最多有一人命中目标 A 5 “: 三人均命中目标” A 6 “: 三人均未命中目标”
”:
ABC
: ABCABCABC
: AC BABC ABC
”: BCACAB
:
ABC
:
ABC
21
小结
P Ak
k 1
k
k 1 k!
e
1 e
.
本题可采用另外一种解法. A A0 { 该地一年内
未发生交通事故} ,于是
P(A) 1 P(A) 1 P( A0) 1 e .
33
小结
• 本节课主要讲授: 1.概率的统计定义; 2.概率的公理化定义; 3.概率的性质(重点)。
34
§1.3 古典概型与几何概型
验,简称试验。随机试验常用E表示。
7
1.1.3 随机事件与样本空间
❖样本空间: 试验的所有可能结果所组成的集合称为 试验E的样本空间, 记为Ω. ❖样本点: 试验的每一个可能出现的结果(样本空 间中的元素)称为试验E的一个样本点, 记为ω.
8
例1-2:
概率论第一章PPT课件
2021/3/24
-
10
费尔马的解法
费尔马注意到,如果继续赌下去,最多只要再赌4轮便可 决出胜负,如果用“甲”表示甲方胜,用“乙”表示乙方胜, 那么最后4轮的结果,不外乎以下16种排列。
甲甲甲甲 甲甲甲乙 甲甲乙甲 甲乙甲甲 乙甲甲甲 乙甲甲乙
甲甲乙乙 甲乙甲乙 甲乙乙甲 乙乙甲甲 乙甲乙甲
甲乙乙乙 乙甲乙乙 乙乙甲乙 乙乙乙甲 乙乙乙乙
2021/3/24
-
8
直到1654年,一位经验丰富的法国赌徒默勒以自己的 亲身经历向帕斯卡请教“赌金分配问题“,求助其对这种现 象作出解释,引起了这位法国天才数学家的兴趣,帕斯卡接 受了这些问题,但他没有立即去解决它,而是把它交给另一 位法国数学家费尔马。之后,他们频频通信,互相交流,围 绕着赌博中的数学问题开始了深入细致的研究。这些问题后 来被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他也开 始就这方面展开研究。
若每次试验中,事件A与事件B不能同时发生, 即A∩B= 。则称事件A与事件B互斥或互不相 容。
有时,我们也称满足以上三个特点的试验为随机 试验。
2021/3/24
-
20
§1.1.2 样本空间 随机事件
一、样本空间
随机试验E的所有可能的结果组成的集合称为E的 样本空间,记为Ω。Ω的每个元素,即Ω的每一个可能 的结果,称为E的一个样本点或基本事件。
指的是基本 结果
2021/3/24
样本点
-
21
特征:条件不能完全决定结果。
确定性现象与随机现象的共同特点是事物本身的含 义确定。随机现象与模糊现象的共同特点是不确定性, 随机现象的不确定性是指试验的结果不确定,而模糊现 象的不确定性有两层含义,一是指事物本身的定义不确 定,二是结果不确定。
西工大概率论第1.3节古典概率
方法二 ( 无差异,无编号)将a个黑球放入a+b 杯 子,其余的杯子放入b个白球(一个杯子一个球), 样本点总数为 a b a 第k次摸出的球是黑球相当于第k个杯子里边是黑球, 其包含的样本点数为 a b 1
a 1
所以所求事件的概率为
2 3 1 3 2 1 3 2 2 2 , 5 4 3 5 4 3 5 4 3 5 2 依此类推 P ( A4 ) P ( A5 ) . 5
故抓阄与次序无关.
例(p24 例5)口袋中有a只黑球,b只白球,它 们除颜色不同外,其他方面没有差异,现在把球 随机的一只一只摸出来,求第k次摸出的是黑球的 概率. 解 方法一 (给球编号) 将a+b只求进行全排列, 总数为(a+b)! ,而第k次摸出的是黑球等价与排列 中第k个位置是黑球,第k个位置是黑球有a中选 择,其他位置自由排列,其总数为a(a+b-1)!,因 此 a(a b 1)! a P ( A) (a b)! ab
当k取不同值时,其对应的概率将会随之变化。称 这样的概率分布为二项分布,因为它恰好是二项式
b a ab ab
n
k
nk
的一般项。
(2)不放回的情形 a b 从a b件产品不放回的抽取n件的样本点总数为 . n a b 而n件产品包含k 件次品所包含的样本点数为 , k n k
n 2n n n
三、概率直接计算的例子
1 古典概型的基本模型:摸球模型
(1) 无放回地摸球 问题1 设袋中有M只白球和 N只黑球, 现从袋中无
放回地依次摸出m+n只球,求所取球恰好含m个白 球,n个黑球的概率?
概率论与数理统计第一章
第五节
独立重复试验
n重独立重复试验 重伯努利试验 : 重独立重复试验(n重伯努利试验 重独立重复试验 重伯努利试验) 试验模型的特点: 试验模型的特点: (1)每次试验都在相同条件下进行; 每次试验都在相同条件下进行; 每次试验都在相同条件下进行 (2)各次试验是相互独立的,即各次试验的结果之间相互独立; 各次试验是相互独立的,即各次试验的结果之间相互独立 各次试验是相互独立的 (3)每次试验有且仅有两种结果:A发生或 A 发生; 每次试验有且仅有两种结果: 发生或 发生; 每次试验有且仅有两种结果 (4)每次试验的结果发生的概率相同,即P(A)=p, 每次试验的结果发生的概率相同, 每次试验的结果发生的概率相同 , P( A )=1p=q 凡是具有上述特征的重复进行的试验称为独立重复试验, 凡是具有上述特征的重复进行的试验称为独立重复试验,若 试验共进行n次,即称为n重独立重复试验。 试验共进行 次 即称为 重独立重复试验。 重独立重复试验 n重伯努利试验中事件 恰好出现 次的概率简记为 重伯努利试验中事件A恰好出现 次的概率简记为b(k;n,p), 重伯努利试验中事件 恰好出现k次的概率简记为 则P(Bk)= P(A1A2 Ak Ak+1 An ++ A1A2 Ank Ank+1 An )
3.独立性在可靠性理论中的计算
设有n个元件,每个元件的可靠性均为 设有 个元件,每个元件的可靠性均为r(0<r<1),且每个元 个元件 且每个元 件能否正常工作是相互独立的, 为第i个元件正常工作 个元件正常工作, 件能否正常工作是相互独立的,记Ai为第 个元件正常工作, A为系统正常工作。 为系统正常工作。 为系统正常工作 1 n 2 ①串联系统 系统能正常工作的充分必要条件是每个元件都正常工作 P(A)=P(A1A2…An)=P(A1)P(A2)…P(An)=rn … ②并联系统 1 系统正常工作等价于n个元件中 系统正常工作等价于 个元件中 2 至少有一个正常工作, 至少有一个正常工作,即 P(A)=P(A1+A2+…+An) … n
概率论
第一章随机事件与概率§1.1 随机事件一、基本概念1.随机现象:预先不能断定结果的现象(有多种结果)投掷硬币、抽取牌张、观察天气、测量潮位、射击目标、顾客到来、考试排座、交通事故2.随机试验:对随机事件进行实验或观察,简称试验。
有的是人为设置,有的是必须经历。
通常所指的试验具有以下2个特征:(1)可以重复进行;(2)事先明确所有基本结果3.随机事件:试验的某种结果,事前不能确定,事后可观察到是否发生,简称事件(是个判断句)以、、,…等表示。
例1教师任取一个学号(随机),请对应的学生回答问题,站起来的可能“是男生”,“是女生”,“是戴眼镜的学生”,“是穿红衣服的学生”,“是高个子”,“是体重在60公斤以上的”“是叫张华的学生”——这些都是随机事件。
4.基本事件:不能再分解的“最简单”的事件,试验中各种最基本的可能结果。
例2在52张扑克牌中,任取一张,=“抽到◇”,=“抽到K”都是事件,其中可分解为13个最基本的结果,可分解为4个。
5.样本点:即基本事件,记为。
随机事件是某些基本事件(样本点)构成的集合。
6.样本空间:样本点的全体,即全集,记为Ω。
如投币:Ω={正,反} 抽牌:Ω=随机事件都是样本空间的子集。
例1中抽到任何一张◇,都认为已发生,类似地,抽到任何一张牌,都认为Ω已发生。
7.必然事件:试验中必然发生的事件,即Ω。
如投币:Ω=“正面朝上或反面朝上”。
抽牌:Ω=“抽到一张牌”。
8.不可能事件:试验中不可能发生的事件,是一个空集,记为。
如投币:=“正面朝上且反面朝上”。
抽牌:=“抽到一张电影票”。
例3在一批灯泡里,任取一只测试它的寿命(1000~3000小时):(1)试述一个事件;(2)指出一个样本点;(3)指出样本空间。
二、事件的关系与运算事件是集合,可以进行集合的运算,要求除了会用集合的语言表述外,还要会用事件的语言表述,并且着重于后者。
1.包含关系(或)集合语言:A中的样本点,全在内。
概率论第一章基本概念
绪言 §1.1 随机试验( Random experiment)
§1.2 随机事件( Random Events ) §1.3 事件的概率( Probability )
小结 课程要求 习题选讲 本章测验
上页
广 东 工 业 大 学
下页
返回
第一章 基本概念
本章主要讲述随机试验,样本空 间,随机事件,事件间的关系与运算, 频率,概率的统计定义,概率的性质, 古典概型。
E7:对目标进行射击,记录着弹点的位臵。
7 {( x, y ) | x, y D}
E8:掷两次骰子作为一次试验,观察两次试验结果。
第一次有6个可能的结果 第二次也有6个可能的结果
将两次试验结果排序, 则共有36种可能的结果:
8 {( x , y ) | x , y 1,2,3,4,5,6}
广 东 工 业 大 学
上页
下页
返回
具 体 例 子
1、进货问题 某商店某种商品销售的产品数量是不定的,该店需要在 月初进货,货多了有积压损失,货少了又有缺货损失,那么 每月进多少货合适? 2、服务台设臵问题
一个随机服务系统,每天到来的顾客及服务时间是不确 定的,那么需要设臵多少服务台的规模才能使顾客等候不太 久?服务台的工作人员有合适的忙闲程度? 3、保险问题
上页
广 东 工 业 大 学
下页
返回
何为随机现象?
人们通常将自然界或社会中出现的现象分成二类: 1、确定性的现象(必然现象)necessity, inevitability。 在一定条件下必然发生的现象称为确定性现象.
2、非确性的现象(偶然现象) randomly, chance。
在一定条件下可能出现也可能不出现的现象。 上抛一枚硬币,出现正面向上; 某商店某天某商品的销售量为50件; 测试某厂某元件的寿命为1000小时(或尺寸大小)。
概率论 第一章123节(频率与概率)
称事件A包含于B或B包含A.
文氏图(Venn图)
A与B相等 ,记为A=B 例1: 产品有长度、直径、外观三个质量指标,
记 A=―长度不合格”, B=―产品不合格”,则
例2: 掷骰子,A=―出现偶数点”, B=―点数能被2整除” 则 A=B。
②事件的和、并(加法)
A和B两事件中至少有一事件发生的事件
二、随机事件与样本空间
Ⅰ. 样本空间
定义1
随机试验E的所有可能结果组成的集合称为E
的样本空间,记为S 或Ω ,样本空间的元素,即E的每个 结果,称为样本点, 例如上节引例中:
有限个 样本点
={ H,T }
={HHT,HHH,HTH,HTT,THH,THT,TTH,TTT}
={1,2,3,4,5,6}
={出现偶数点} ={出现奇数点} ={出现的点数 >4} ={出现的点数 5}
解
思考题:
1873年,英国学者沈克士公布了一个π的数值 它的数目在小数点后一共有707 位之多! 但是,经 过了几十年后, 曼彻斯特的费树生对它产生了怀疑 原因是他统计了π的608 位小数,得到下面的表:
数字
0 1 2 3 4 5 6 7 8 9
概率论与数理统计
聪明在于勤奋,
天才在于积累.
任课教师: 索 新 丽 电子邮件: jenny_suo@
绪言
自然界和社会上发生的现象是多种多样的: 1. 确定性现象:在一定条件下必然发生。 2.随机(不确定)现象:在个别试验中其结果呈现出
不确定性,且在大量重复试验中其结果又具有统计规
律性。
的频繁程度 频 率 稳 定值
事化定义
二、概率(概率的公理化定义)
1.定义2 设 E, S,对于E的每一事件A,赋予一实数 ,如果满足以下三个公理: ① 非负性:对于每一个事件 A,有 概率 三公 理 ② 归一性: ③ 可列可加性:设 则 为事件 A 的概率。 两两互不相容 ≥0
概率论与数理统计第1.3节条件概率及独立性
练习 一个家庭中有若干个小孩,假定生
男生女是等可能的,令
A =“一个家庭中有男孩又有女孩”
B =“一个家庭最多有一个女孩”
(1)家庭中有两个小孩, (2)家庭中有三个小孩。
对上述2种情况,讨论事件
A, B 的独立性。
(1) {( B, B),( B, G),(G, B),(G, G)}
(2) {( B, B, B),( B, B, G),( B, G, B),(G, B, B), (G, G, B),(G, B, G),( B, G, G),(G, G, G)}
今任选一个袋子然后再从选到的袋子中任取一个球问取到红球的概率为多上述分析的实质是把一个复杂事件分解为若干个互不相容的简单事件再将概率的加法公式和乘法定理结合起来这就产生了全概率公式
课堂练习: 化简事件
( AB
AC
C ) AC
解 原式 AB C
AC ABC AC
( A B)C
AC BC AC
P ( AB ) 1 6 P( A | B) 3 P( B) 3 6 2)从加入条件后改变了的情况去算
1
掷骰子
1 P(A|B)= 3
B发生后的 缩减样本空间 所含样本点总数 在缩减样本空间 中A所含样本点 个数
问题 : 分别考虑
P ( A)与P A B 哪个大?
A B, B A, AB
条件概率是概率(P30)
首先,不难验证条三条公理:
(1) 非负性 P( A | B) 0 (2) 正规性 P( | B) 1
(3) 完全可加性 若A1, A2 ,, An ,两两互斥, P( B) 0, 则
由此得
P( An | B) P( An | B)
概率论与数理统计第1.3节
美国数学家伯格米尼曾经做过 一个别开生面的实验,在一个盛况 空前、人山人海的世界杯足球赛赛场上, 他随机地在某号看台上召唤了22个球迷, 请他们分别写下自己的生日,结果竟发现 其中有两人同生日.
用上面的公式可以计算此事出现的概率为
P(A)=1-0.524=0.476
即22个球迷中至少有两人同生日的概率为 0.476.
解 方法1 把a+b个球编上1至a+b号,将球一只一只 取出后排成一排,考虑取球的先后顺序,因此共有 (a+b)!种取法,由球的均匀性知每种取法机会都相 同,故属于古典概型,A发生可以先从a个红球中 任取一个放在第k个位置上,然后将剩下的a+b+1 个球随意排在另外a+b+1个位置上,
共有 Ca1(a b 1)! 种排法,故
(1)不放回地从中任取一件,共取3次,求取到3 件次品的概率;
(2)每次从中任取一件,有放回地取3次,求取到 3件次品的概率;
(3)从中任取3件,求至少取得1件次品的概率。
例2 已知10件产品中有7件正品,3件次品。 (1)不放回地从中任取一件,共取3次,求取到3 件次品的概率; 解 (1)设A={取到3件次品}
由于此试验是不放回抽取3次,所以由乘法原理 3次取产品共有10×9×8=720种不同取法,
而3次取3件次品共有3×2×1=6种不同取法,所以
P( A) 6 1 0.0083 720 120
例2 已知10件产品中有7件正品,3件次品。 (2)每次从中任取一件,有放回地取3次,求取到 3件次品的概率; 解 (2)设B={取到3件次品}
(1)事件A包含的基本事件个数是3!个,所以
P( A)
3! 33
2 9
2024年余丙森概率论辅导讲义
2024年余丙森概率论辅导讲义第一节:概率论基础1.1 概率论的起源和发展概率论是研究随机现象的数学分支,起源于古代赌博和游戏。
随着时间的推移,概率论逐渐发展成为一门独立的学科,并在各个领域中得到广泛应用。
1.2 概率的定义和性质概率是描述某个事件发生可能性的数值,通常用0到1之间的一个实数表示。
概率具有可加性、非负性、规范性等基本性质。
1.3 随机变量与概率分布随机变量是概率论中的重要概念,它是对随机现象的数学建模。
概率分布描述了随机变量的取值及其对应的概率。
1.4 条件概率与独立性条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
独立性是指两个事件的发生与否互不影响。
1.5 期望与方差期望是随机变量取值的加权平均值,反映了随机变量的平均水平。
方差是随机变量偏离其期望值的程度的度量。
第二节:概率分布2.1 离散型随机变量与概率分布离散型随机变量只能取有限或可数个数值,其概率分布由概率质量函数表示,例如伯努利分布、二项分布、泊松分布等。
2.2 连续型随机变量与概率密度函数连续型随机变量可以取任意实数值,其概率分布由概率密度函数表示,例如均匀分布、正态分布、指数分布等。
2.3 两个重要的分布:正态分布和泊松分布正态分布是概率论中最重要的分布之一,具有对称性和稳定性,广泛应用于自然科学和社会科学领域。
泊松分布用于描述单位时间或单位面积内随机事件发生的次数。
第三节:随机变量的特征函数和大数定律3.1 随机变量的特征函数特征函数是随机变量的一个重要特征,通过特征函数可以唯一确定随机变量的分布。
3.2 大数定律大数定律是概率论中的重要定理,描述了随机事件重复进行时,频率逐渐趋近于概率的现象。
第四节:中心极限定理与统计推断4.1 中心极限定理中心极限定理是概率论中的核心定理之一,描述了大量独立随机变量的和的分布近似于正态分布的现象。
4.2 统计推断统计推断是利用样本信息对总体进行推断和决策的方法,包括参数估计和假设检验两个方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i =1
m
m
1≤i < j ≤ m
∑
P( Ai Aj ) +
1≤i < j < k ≤ m
∑
P( Ai Aj Ak ) + ⋯ + (−1) m −1 ⋅ P( A1 A2 ⋯ Am )
P( Ai Aj Ak Am +1 ) + ⋯ + (−1) m P( A1 A2 ⋯ Am Am +1 )
半可加性
对任意两个事件A和B,有
P(A ∪ B) ≤ P(A)+P(B)
对任意n个事件 A1 , A2 ,⋯ An ,有
P(∪ Ai ) ≤ ∑ P( Ai )
i =1 i =1
n
n
证明-课下思考 证明 课下思考
P (∪ Ai ) ≤ ∑ P( Ai )
i =1 m i =1 m m m
P (∪ Ai ) ≥ ∑ P( Ai ) −
i =1 i =1 m m 1≤i < j ≤ m
∑
P( Ai Aj ) +
1≤i < j < k ≤ m
∑
P( Ai Aj Ak ) + ⋯ + (−1) m −1 ⋅ P( A1 A2 ⋯ Am )
那么,n = m + 1 时,有
归纳法
P (∪ Ai ) = P (∪ Ai ∪ Am +1 ) = P (∪ Ai ) + P ( Am +1 ) − P[(∪ Ai ) Am +1 ]
教学目标
掌握概率的可加性、单调性和加法公式, 并使用公式进行计算。 了解概率的连续性
教学内容
概率的可加性 概率的单调性 概率的加法原则 概率的连续性
概率的公理与计算回顾
三条公理化定义 事件的关系 事件的运算 事件的运算性质
不可能事件φ的概率
P (∅ ) = 0
证明:
因为 Ω = Ω ∪ ∅ ∪ ∅ ∪⋯ ∪ ∅ ∪⋯
所以 P(Ω) = P(Ω∪∅∪∅∪⋯∪∅∪⋯) = P(Ω) + P(∅) + P(∅) +⋯+ P(∅) +⋯
P (∅ ) + P (∅ ) + ⋯ + P (∅ ) + ⋯ = 0
P (∅ ) = 0
1.3.1 概率的可加性
有限可加性 若有限个事件 A1 , A2 , ⋯ An互不相容,则
i =1 i =1 证明: 因为事件 A1 , A2 ,⋯ An 互不相容,且
1.3 概率的性质
任课教师:侯雅文 2011年9月14日
《红楼梦》的作者到底是谁? 红楼梦》的作者到底是谁?
《红楼梦》成书迄今已逾200年,作为中 国历史上最有影响的小说之一,《红楼 梦》有各种不同的版本、数十种续书, 流传到世界各国,被翻译成多种文字, 感动 了不同民族的长期以来,人们普遍 认为曹雪芹只写了《红楼梦》的前80回, 后40回是高鹗续写的,你认为这是真的 吗?
P( A) = P( B ∪ AB ) = P ( B ∪ ( A − B) ) = P( B) + P( A − B)
故
P ( A − B ) = P ( A) − P ( B )
维恩图
A
B
1.3.2 概率的单调性
A⊃ B P ( A) ≥ P ( B )
P ( A − B ) = P ( A) − P ( B ) ≥ 0
+ P( Am+1 ) − ∑ P( Ai Am +1 ) +
Байду номын сангаасi =1
1≤i < j ≤ m
∑
P( Ai Aj Am +1 ) −
1≤i < j < k ≤m
∑
= P(∪ Ai ) −
i =1
m +1
1≤i < j ≤ m +1
∑
P( Ai Aj ) +
1≤i < j < k ≤ m +1
∑
P( Ai Aj Ak ) + ⋯ + (−1) m ⋅ P( A1 A2 ⋯ Am+1 )
称可列并 ∪ Fn 为 {Fn } 的极限事件,记为
n →+∞
lim Fn = ∪ Fn
n =1
+∞
对 F 中的任意单调不增的事件序列 E1 ⊃ E2 ⊃ ⋯ ⊃ En ⋯ +∞ ,称 ∩ En 为 { En } 的极限事件,记为
n =1
n →+∞
lim En = ∩ En
n =1
+∞
。
1.3.4 概率的连续性——连续
练习1
一赌徒认为掷一颗骰子4次,至少出现一 次6点的概率,与掷两颗骰子24次,至少 出现一次双6点的概率,两者是相等的, 请问是否正确?
概率论的起源
帕斯卡、费尔马和惠更斯: 1657年; 《论掷骰子游戏中的计算》 当时法国贵族盛行掷骰子游戏,游戏规则 是玩家连续掷 4 次骰子,如果其中没有 玩家连续掷 次骰子, 6 点出现,玩家赢,如果出现一次 6 点, 点出现,玩家赢, 则庄家赢。 则庄家赢。按照这一游戏规则,从长期来 看,庄家输少赢多,而玩家总是输多赢少。
所以 P ( A − B ) = P ( A) − P ( AB )
例1.3.3
口袋中有编号为1,2,…,n的n个球, 从中有放回的任取m次,求取出m个球的 最大编号为k的概率。
3 2 1 … … … … 4 … … n
1.3.3 概率的加法公式
加法公式
对任意两个事件 A, B ,有
PA∪B)=PA +PB)−PA ) ( () ( (B
i =1 i =1 i =1 i =1 m +1 m m m
= ∑ P( Ai ) −
i =1
m
1≤i < j ≤ m
∑
P( Ai Aj ) +
1≤i < j < k ≤ m
∑
P( Ai Aj Ak ) + ⋯ + (−1)m −1 ⋅ P( A1 A2 ⋯ Am )
+ P ( Am +1 ) − P ( A1 Am +1 ∪ A2 Am +1 ∪⋯∪ Am Am +1 )
对任意n个事件 A1 , A2 ,⋯ An,有
P(∪ Ai ) = ∑ P( Ai ) −
i =1 i =1 n n 1≤i < j ≤ n
∑
P( Ai Aj ) +
1≤i < j < k ≤ n
∑
P( Ai Aj Ak ) + ⋯ + (−1) n −1 ⋅ P( A1 A2 ⋯ An )
维恩图
来自“概率”理论的质疑
统计学进入文学领域后,高鹗续写的定论遭到了计 算机的质疑。 1981年,首届国际《红楼梦》研讨会 在美国召开,美国威斯康星大学讲师陈炳藻独树一 帜,宣读了题为《从词汇上的统计论〈红楼梦〉作 者的问题》的论文,首 次借助计算机进行《红楼梦》 研究,轰动了国际红学界。陈炳藻从字、词出现频 率入手,通过计算机进行统计、处理、分析,对 《红楼梦》后40回系高鹗所作这一 流行看法提出异 议,认为120回均系曹雪芹所作。
i =1
例1.3.6
在一个有n个人参加的晚会上,每个人带 了一件礼物,且假定每个人带的礼物都不 相同。晚会期间各人从放在一起的个礼物 中随机地抽取一件,求至少有一个人自己 抽到自己的礼物的概率。
解答
设 Ai = “第i个人抽到自己的礼物”i = 1, 2,⋯ , n ,
B= “至少有一个人抽到自己的礼物”
对 F上的一个概率P,若它对F中任一单调不减的事件序列
{Fn }均成立
n →+∞
lim P ( Fn ) = P ( lim Fn )
n →+∞
则称概率P是下连续的。 若它对 F中的任一单调不增的事件序列{En }均成立
n →+∞
lim P ( En ) = P ( lim En )
n →+∞
则称概率P是上连续的。
i −1
= lim
n →+∞
∑ P(F − F
i =1 i n i =1 n
n
)
即P是下连续的。
= lim P (∪ ( Fi − Fi −1 ))
n →+∞
= lim P (∪ Fi )
n →+∞ i =1
= lim P ( Fn )
n →+∞
可列可加性的充要条件
性质1.3.8 若P(·)是事件域Φ上满足:非负、正则的集合 函数,则P(·) 有可列可加性的充要条件 充要条件是它 充要条件 具有有限可加性和下连续性 具有有限可加性 下连续性。 下连续性
P (∪ Ai ) = ∑ P ( Ai )
n
n
A1 ∪ A2 ∪⋯∪ An = A1 ∪ A2 ∪⋯∪ An ∪ ∅ ∪ ∅ ∪⋯
P( A1 ∪ A2 ∪⋯∪ An ) = P( A1 ∪ A2 ∪⋯∪ An ∪ ∅ ∪ ∅ ∪⋯) = P ( A1 ) + P( A2 ) + ⋯ + P( An ) + P(∅) + ⋯
若 则
因为 所以
P ( A) ≥ P ( B )
1.3.2 概率的单调性
对任意两个事件 A, B ,有
P ( AB ) = P ( A − B ) = P ( A) − P ( AB )
证明:因为 证明:
P( A) = P ( ( A − B) ∪ AB ) = P( A − B) + P( AB)