柔性机械臂动力学建模和控制研究

柔性多体系统的运动变形描述

柔性多体系统的运动变形描述 柔性多体系统运动的描述方式,按其所选取的参照系不同,可分为绝对描述和相对描述两种类型[]。绝对描述以某一个指定的惯性系为参考系,系统中每一个物体在每一个时刻的位形都在此惯性系中确定。而在相对描述中对每一个物体都按某种方式选定一个随动参考系,物体的位形是相对于自己的动参照系确定的。这些参照系通常是惯性的。这两种描述方式导致两种不同的动力学模型。相对描述的显著优点在于处理物体变形很方便。它的一个缺点是在各加速度项中出现整体刚性运动和变形之间的耦合,这种耦合导致质量阵中出现与变形坐标有关的项。这些项的存在大大增加了动力学方程数值求解的难度,并且是引起数值病态的主要原因之一。 【补充】相对描述方法特别适合于由小变形物体所组成的系统。此时可以适当地选取动参考系,使得物体相对于动参考系的运动(变形)总是小的。这样,对小变形可按通常的线性,例如进行模态展开和截断等。将描述变形的弹性坐标和描述刚性运动的参数合起来,作为系统的广义坐标,就可以按通常的离散系统分析动力学方法建立动力学方程。相对描述方法的核心问题为物体变形与整体刚性运动的相互作用。这种相互作用可以通过规范场论的方法完全确定。于是动力学方程分为互相耦合的两类,一类控制物体的整体刚性运动,另一类控制物体的相对变形。 [] 陆佑方.柔性多体系统动力学.高等教育出版社.1996 对于如何描述系统变形模式方面,大致有下列三种方法。 1 经典的瑞利-里兹(Reyliegh-Ritz)法 这个方法是对所研究的弹性体,构造一个假设位移场,该位移场必须满足相容性和完备性要求。若假设位移场用(,,)x y z Φ表示,并取12[...]n Φ=ΦΦΦ,称为里兹函数矩阵, 用以描述物体变形模式,则物体上各点的变形向量f μ可表示为 f f q μ=Φ 式中,()f f q q t =为对应的弹性变形广义坐标向量。 这是弹性连续力学近似解的最基本方法,但对于复杂形状、复杂边界和复杂载荷的情况,要构造出一个适合的位移场式非常困难的,甚至可能做不到。

机械臂建模与控制

一、柔性机械臂协调操作柔性负载 1. 建模方法 1) 假设模态法 假设模态法是利用有限个已知模态函数来确定系数的运动规律。连续系统的解可写作全部模态函数的线性组合,若取前n 个有限项作为近似解,则有 ()()1(,)n i i i y x t x q t φ==∑ 其中(),1,2,,i q t i n =L 为广义坐标,(),1,2,i x i n φ=L 应该为系统的实际模态函数,但计算时常近似地代以假设模态,也就是满足部分或者全部边界条件,但不一定满足动力学方程的试函数族。 采用以广义坐标表示的功和能来描述系统的动态性能,所有不做功的力和约束力在这种方法中均不出现,因此最后得到的方程是封闭形式的表达式,提供了关节力矩和关节运动之间的明显解析关系。同时,柔性机械臂由于连杆柔性会在工作过程中产生扭曲变形、轴向变形、和剪切变形,但考虑到机器人连杆的长度总比其截面线径大的多,运行过程中所产生的轴向变形和剪切变形相对于扭曲变形而言非常小。因而在系统的动力学建模过程中通常可以忽略轴向变形和剪切变形的影响,将每个柔性连杆简化为Euler 一Bemuolii 梁来处理。此时,在拉格朗日方程的基础上,采用假设模态法来描述弹性连杆的变形,该方法具有计算量相对少,方法简单,具有系统性和效率高的特点。即将弹性连杆的高阶模态忽略不计,可以得到离散化的维数较低的动力学方程,进而有利于系统的动力学分析和控制器设计。 2) 有限元法 有限元法是一种以计算机辅助分析为手段的,全新的结构分析方法。在利用有限元法进行建模的过程中,柔性物体被离散化为若干个弹性体单元,而这些弹性体单元在边界点(结点)处相互连接,从而组成整个柔性物体,各个弹性体单元的分布质量可以按照一定的格式集中到各自的结点上。对于每一个弹性体单元,其在物体坐标系内的挠度和转角,可以用结点位移的插值函数来表示,而插值函数实质上就是一种假定振型,这样,整个柔性物体的振动状态就可以用这些节点位移来表示,这里的节点位移并不是对整个结构或某个子结构所取的假定振型,而是具备简单物理意义的参数。 利用有限元法进行数学建模,所得到的数学模型的广义坐标不但维数有限,而且物理意义明确,这就使得获取某些参数不必经过复杂的数值运算而可以直接通过测量得到。从弹性体单元的选择到整个柔性物体运动方程的建立都有统一的方法,这就使得有限元法的相关数值运算可以利用计算机来完成。利用有限元法建立起来的柔性物体模型设计控制器时,不必考虑很多近似因素,可以更加准确的设计控制器。 3) 分布参数法 柔性机械臂分布参数模型的建立,主要利用哈密顿原理,由此得到的是一组复杂的高度非线性的常微分-偏微分耦合方程组,而考虑到在小的挠曲变形的假设下,可以得到一个相对简单的分布参数模型。 哈密顿原理是柔性臂系统分布参数模型动力学建模的理论基础,由哈密顿原理建模的步骤大致是:建立系统的动能、势能和虚功表达式;对系统的变分积分方程进行必要的推导和整理。该方法以能量方式建模,可以避免方程中出现内力项,适用于比较简单的柔性体动力学方程。而对于复杂的结构,函数的变分运算将变得非常繁琐。但是变分原理又有其特点,由于它是将系统真实运动应满足的条件表示为某个函数或泛函的极值条件,并利用此条件确

柔性机械臂动力学建模

柔性机械臂动力学建模 一,研究现状 柔体动力学建模方面国内外出现很多研究,主要针对关节柔性与柔性臂杆进行建模。 其中,Chang-Jin Li, T、S、 Sankar, 利用拉格朗日方程及假设模态法对柔性机械臂进行建模,提出的该方法可以降低运算量,并用单连杆柔性机器人进行证明验证; B、Subudhi ,A、S、Morris, 基于欧拉-拉格朗日法与假设模态法对多柔性杆与柔性关节进行动力学建模; Gnmarra-Rosado VO,Yuhara, EAO,利用牛顿-欧拉公式与有限元分析法对两柔性两转动关节推导动力学方程; 危清清,采用拉格朗日及假设模态法建立柔性机械臂辅助空间站舱段对接过程的动力学方程; 谢立敏,基于动量、动量矩守恒关系与拉格朗日假设模态法对双柔性关节单柔性臂建模;王海,在考虑外部干扰下对柔性关机机械臂进行动力学建模;刘志全,基于精细模型的空间机械臂对柔性关节进行建模。 1,建模过程原理 1)坐标系的选择(根据机械臂运动姿态选择不同的坐标系,一般包括绝对坐标系与相对坐标系,如表1所示) 设柔性体的变形始终处于弹性范围内,因为任何一个弹性体都具有无限多自由度,忽略轴向变形与剪切变形的影响,仅考虑弯曲变形,通常都将柔性体离散成有限自由度作为近似分析模型。(对变形场进行离散化后得到的常微分方程将有利于对柔性多体系统动力学建模研究的进一步深入)如下表2所列。

根据原理的不同一般常用的可分为牛顿-欧拉方法,拉格朗日方程(第二类),以及凯恩方程。如表3所示。 表3 动力学建模方法 二,单杆柔性机械的建模过程 1,模型简化假设 关节建模时需要注意关节齿轮传动间隙,间隙的存在使得传动机构存在误差,输出运动与输入运动不再就是线性关系;另外,关节臂驱动力就是通过电机来提供,电机中的电感电阻等元件,会影响电机力矩的产生,即关机建模的精细化问题,这里只进行简单的处理,不考虑精细化问题。柔性关节主要由分体式永磁同步电机,谐波减速器,永磁制动器,光电编码器与圆光栅等组成。谐波减速器为柔性关节的减速与驱动装置,一般把把关节视为转子-扭簧系统。

二自由度机械臂动力学分析培训资料

二自由度机械臂动力 学分析

平面二自由度机械臂动力学分析 姓名:黄辉龙 专业年级:13级机电 单位:汕头大学 摘要:机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过分析,得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 关键字:平面二自由度 动力学方程 拉格朗日方程 相关介绍 机器人动力学的研究有牛顿-欧拉(Newton-Euler )法、拉格朗日 (Langrange)法、高斯(Gauss )法等,但一般在构建机器人动力学方程中,多采用牛顿-欧拉法及拉格朗日法。 欧拉方程又称牛顿-欧拉方程,应用欧拉方程建立机器人机构的动力学方程是指研究构件质心的运动使用牛顿方程,研究相对于构件质心的转动使用欧拉方程,欧拉方程表征了力、力矩、惯性张量和加速度之间的关系。 在机器人的动力学研究中,主要应用拉格朗日方程建立机器人的动力学方程,这类方程可直接表示为系统控制输入的函数,若采用齐次坐标,递推的拉格朗日方程也可以建立比较方便且有效的动力学方程。 在求解机器人动力学方程过程中,其问题有两类: 1)给出已知轨迹点上? ??θθθ、及、 ,即机器人关节位置、速度和加速度,求相应的关节力矩矢量τ。这对实现机器人动态控制是相当有用的。 2)已知关节驱动力矩,求机器人系统相应各瞬时的运动。也就是说,给出关节力矩矢量τ,求机器人所产生的运动? ??θθθ、及、 。这对模拟机器人的运动是非常有用的。 平面二自由度机械臂动力学方程分析及推导过程 1、机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: 1) 选取坐标系,选定完全而且独立的广义关节变量n r ,,2,1,r ???=θ。 2) 选定相应关节上的广义力r F :当r θ是位移变量时,r F 为力;当r θ是角度变量时,r F 为力矩。 3)求出机器人各构件的动能和势能,构造拉格朗日函数。 4) 代入拉格朗日方程求得机器人系统的动力学方程。 2、下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

工程机械臂系统结构动力学分析

工程机械臂系统结构动力学分析 发表时间:2019-06-18T10:03:50.107Z 来源:《科技新时代》2019年4期作者:张雷[导读] 工程机械臂架系统是工程机械设计的核心,优秀的设计对整个工作、生产都有极大的帮助。 安徽省矿业机电装备有限责任公司 235000 摘要 “十三五”以来,我国的机械制造业迅猛发展,自主创新能力不断提升,对国民经济的发展有这深远的意义。工程机械的作业环境恶劣,结构复杂,吨位大,技术是发展的关键。工程机械臂架是大型机械设计的关键,其合理性直接影响到机械的作业精准性。目前的技术下,各种工程机械臂灵活、高效,但复杂的工作环境很大程度上制约了其工作性能。因此,本研究对提升工程机械臂系统有着重大的意义。 关键词:工程机械臂,多体动力学,等效单元,动态优化一、理论概述 (一)多体动力学 多体动力学包括刚体系统动力学和柔体系统动力学。 图1 多刚体系统与多柔体系统关系(二)工程机械臂 工程机械臂架系统是工程机械设计的核心,优秀的设计对整个工作、生产都有极大的帮助。根据本人查阅的相关资料,目前的研究主要有以下几个方面: (1)工作机械臂系统的动力学微分方程建模该系统采用多体动力学的方法加墨,常用的方法有牛顿-欧拉方法、拉格朗日法等。(2)动力学仿真 采用动力学分析软件进行仿真,求解数值。常用软件有:MATLAB、Adams、ANSYS。(3)模态分析 机械结构的动态特征是通过振动模态参数判断的,包含了各阶频率、阻尼等。通过模态分析,得出各阶固有频率,对系统振型分析,得出优化结构设计。 (三)本研究对经济建设的意义“十三五”以来,我国的机械制造业迅猛发展,自主创新能力不断提升,对国民经济的发展有这深远的意义。工程机械的作业环境恶劣,结构复杂,吨位大,技术是发展的关键。工程机械臂架是大型机械设计的关键,其合理性直接影响到机械的作业精准性。目前的技术下,各种工程机械臂灵活、高效,但复杂的工作环境很大程度上制约了其工作性能。因此,本研究对提升工程机械臂系统有着重大的意义。其次,我国经济飞速反正,大型机械设备的租赁业务迅速萌芽,市场对工程机械的的需求急剧上升。市场大环境也为工程机械产品的革新提供了肥沃的土壤。 二、工程机械臂系统结构动力学分析多体动力系统对大型机械设备的意义重大,多体系统中包含了多刚体系统和柔性多体系统。机械臂的建模方法主要有牛顿-欧拉方法、凯恩方法等。工程机械臂动力学建模的等效有限元方法,是指用等效单元替代系统部件,从而代替真实运动系统。它可以大大减少人力分析工作。 (一)等效单元 将机构划分为多个单元,用集中质量和惯量表示。在任意外力作用下,有相同的运动状态。如果满足以上条件,广义惯量阵与原义无差别,则可以保证等效集中质量。构造单元的质量阵,其实并未真实分布,称为伪质量阵。(二)伪质量矩阵 对系统分析时,采用齐次坐标描述。

柔性机械臂动力学建模

柔性机械臂动力学建模 一,研究现状 柔体动力学建模方面国内外出现很多研究,主要针对关节柔性和柔性臂杆进行建模。 其中,Chang-Jin Li, T.S. Sankar,利用拉格朗日方程及假设模态法对柔性机械臂进行建模,提出的该方法可以降低运算量,并用单连杆柔性机器人进行证明验证; B.Subudhi ,A.S.Morris, 基于欧拉-拉格朗日法和假设模态法对多柔性杆和 柔性关节进行动力学建模; Gnmarra-Rosado VO,Yuhara, EAO利用牛顿-欧拉公式和有限元分析法对两柔性两转动关节推导动力学方程; 危清清,采用拉格朗日及假设模态法建立柔性机械臂辅助空间站舱段对接过程的动力学方程; 谢立敏,基于动量、动量矩守恒关系和拉格朗日假设模态法对双柔性关节单柔性臂建模;王海,在考虑外部干扰下对柔性关机机械臂进行动力学建模;刘志全,基于精细模型的空间机械臂对柔性关节进行建模。 1,建模过程原理 1)坐标系的选择(根据机械臂运动姿态选择不同的坐标系,一般包括绝对坐标系和相对坐标系,如表1所示) 2),柔体离散化方法 设柔性体的变形始终处于弹性范围内,因为任何一个弹性体都具有无限多自由度,忽略轴向变形和剪切变形的影响,仅考虑弯曲变形,通常都将柔性体离散成有限自由度作为近似分析模型。(对变形场进行离散化后得到的常微分方程将有利于对柔性多体系统动力学建模研究的进一步深入)如下表2所列。 表2变形体离散化方法

3)动力学的建模方法 根据原理的不同一般常用的可分为牛顿-欧拉方法,拉格朗日方程(第二类),以及凯恩方程。如表3所示。 二,单杆柔性机械的建模过程 1,模型简化假设 关节建模时需要注意关节齿轮传动间隙,间隙的存在使得传动机构存在误差, 输出运

多体动力学软件和有限元软件的区别(优.选)

有限元软件与多体动力学软件 数值分析技术与传统力学的结合在结构力学领域取得了辉煌的成就,出现了以ANSYS 、NASTRAN 等为代表的应用极为广泛的结构有限元分析软件。计算机技术在机构的静力学分析、运动学分析、动力学分析以及控制系统分析上的应用,则在二十世纪八十年代形成了计算多体系统动力学,并产生了以ADAMS 和DADS 为代表的动力学分析软件。两者共同构成计算机辅助工程(CAE )技术的重要内容。 商业通用软件的广泛应用给我们工程师带来了极大的便利,很多时候我们不需要精通工程问题中的力学原理,依然可以通过商业软件来解决问题,不过理论基础的缺失还是会给我们带来不少的困扰。随着动力有限元与柔性多体系统分析方法的成熟,有时候正确区分两者并不是很容易。 机械领域应用比较广泛的有两类软件,一类是有限元软件,代表的有:ANSYS, NASTRAN, ABAQUS, LS-DYNA, Dytran 等;另一类是多体动力学软件,代表的有ADAMS, Recurdyn , Simpack 等。在使用时,如何选用这两类软件并不难,但是如果深究这两类软件根本区别并不容易。例如,有限元软件可以分析静力学问题,也可以分析“动力学”问题,这里的“动力学”与多体动力学软件里面的动力学一样吗?有限元软件在分析动力学问题时,可以模拟物体的运动,它与多体动力学软件中模拟物体运动相同吗?多体动力学软件也可以分析柔性体的应力、应变等,这与有限元软件分析等价吗? 1 有限元软件 有限单元法是一种数学方法,不仅可以计算力学问题,还可以计算声学,热,磁等多种问题,我们这里只探讨有限元法在机械领域的应用。 计算结构应力、应变等的力学基础是弹性力学,弹性力学亦称为弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而为工程结构或构件的强度、刚度设计提供理论依据和计算方法。也就是说用有限元软件分析力学问题时,是用有限元法计算依据弹性力学列出的方程。 考虑下面这个问题,在()0t , 时间内给一个结构施加一个随时间变化的载荷()P t ,我们希望得到结构的应力分布,在刚刚施加载荷的时候,结构中的应力会有波动,应力场是变化的,但很久以后,应力场趋于稳定。 如果我们想得到载荷施加很久以后,稳定的应力场分布,那么应该用静力学分析方法分析

机器人机械臂运动学分析

平面二自由度机械臂动力学分析 [摘要] 机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 [关键字] 平面二自由度 一、介绍 机器人是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 机器人动力学问题有两类: (1) 给出已知的轨迹点上的,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q r。这对实现机器人动态控制是相当有用的。 (2) 已知关节驱动力矩,求机器人系统相应的各瞬时的运动。也就是说,给出关节力矩向量τ,求机器人所产生的运动。这对模拟机器人的运动是非常有用的。 二、二自由度机器臂动力学方程的推导过程 机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: (1) 选取坐标系,选定完全而且独立的广义关节变量θr ,r=1, 2,…, n。 (2) 选定相应关节上的广义力F r:当θr是位移变量时,F r为力;当θr是角度变量时, F r为力矩。 (3) 求出机器人各构件的动能和势能,构造拉格朗日函数。 (4) 代入拉格朗日方程求得机器人系统的动力学方程。 下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。 1、分别求出两杆的动能和势能

二自由度机械臂动力学分析

平面二自由度机械臂动力学分析 姓名:黄辉龙 专业年级:13级机电 单位:汕头大学 摘要:机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过分析,得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 关键字:平面二自由度 动力学方程 拉格朗日方程 相关介绍 机器人动力学的研究有牛顿-欧拉(Newton-Euler )法、拉格朗日(Langrange)法、高斯(Gauss )法等,但一般在构建机器人动力学方程中,多采用牛顿-欧拉法及拉格朗日法。 欧拉方程又称牛顿-欧拉方程,应用欧拉方程建立机器人机构的动力学方程是指研究构件质心的运动使用牛顿方程,研究相对于构件质心的转动使用欧拉方程,欧拉方程表征了力、力矩、惯性张量和加速度之间的关系。 在机器人的动力学研究中,主要应用拉格朗日方程建立机器人的动力学方程,这类方程可直接表示为系统控制输入的函数,若采用齐次坐标,递推的拉格朗日方程也可以建立比较方便且有效的动力学方程。 在求解机器人动力学方程过程中,其问题有两类: 1)给出已知轨迹点上? ??θθθ、及、 ,即机器人关节位置、速度和加速度,求相应的关节力矩矢量τ。这对实现机器人动态控制是相当有用的。 2)已知关节驱动力矩,求机器人系统相应各瞬时的运动。也就是说,给出关节力矩矢量τ,求机器人所产生的运动? ??θθθ、及、 。这对模拟机器人的运动是非常有用的。 平面二自由度机械臂动力学方程分析及推导过程 1、机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: 1) 选取坐标系,选定完全而且独立的广义关节变量n r ,,2,1,r ???=θ。 2) 选定相应关节上的广义力r F :当r θ是位移变量时,r F 为力;当r θ是角度变量时,r F 为力矩。 3)求出机器人各构件的动能和势能,构造拉格朗日函数。 4) 代入拉格朗日方程求得机器人系统的动力学方程。 2、下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

机械系统动力学

《机械系统动力学》 机械系统动力学中分析中的 仿真前沿 学院:机械工程学院 专业:机制一班 姓名:董正凯 学号:S12080201006

摘要 计算机及其相应技术的发展为建立机械系统仿真提供了一个有效的手段,机械系统动力学中的许多难题均可以采用仿真技术来解决,本文主要讲述了目前在机械系统动力学的分析中仿真技术主要的研究重点及其研究中主要存在的问题。 关键词:机械系统动力学仿真系统建模

机械系统动力学中分析中的仿真前沿 机械专业既是一个传统的专业,又是一个不断融合新技术、不断创新的专业。随着科技的发展,计算机仿真技术越来越广泛地应用在各个领域。基于多体系统动力学的机械系统动力学分析与仿真技术,从二十世纪七十年代开始吸引了众多研究者,已解决了自动化建模和求解问题的基础理论问题,并于八十年代形成了一系列商业化软件,到了九十年代,机械系统动力学分析与仿真技术更已能成熟应用于工业界。 目前的研究重点表现在以下几个方面: (1)柔性多体系统动力学的建模理论 多刚体系统的建模理论已经成熟,目前柔性多体系统的建模成了一个研究热点,柔性多体系统动力学由于本身既存在大范围的刚体运动又存在弹性变形运动,因而其与有限元分析方法及多刚体力学分析方法有密切关系。事实上,绝对的刚体运动不存在,绝对的弹性动力学问题在工程实际中也少见,实际工程问题严格说都是柔性多体动力学问题,只不过为了问题的简化容易求解,不得不化简为多刚体动力学问题、结构动力学问题来处理。然而这给使用者带来了不便,同一个问题必须利用两种分析方法处理。大多商用软件系统采用的浮动标架法对处理小变形部件的柔性系统较为有效,对包含大变形部件的柔体多体系统会产生较大仿真分析误差甚至完全错误的仿真结论。最近提出的绝对节点坐标方法,是对有限元技术的拓展和较大创新,在常规有限元中梁单元、板壳单元采用节点微小转动作为节点坐标,因而不能精确描述刚体运动。绝对节点坐标法则采用节点位移和节点斜率作为节点坐标,其形函数可以描述任意刚体位移。利用这种方法梁和板壳可以看作是等参单元,系统的质量阵为一常数阵,然而其刚度阵为强非线性阵,这与浮动标架法有截然不同的区别。这种方法已成功应用于手术线的大变形仿真中。寻求有限元分析与多刚体力学的统一近年来成为多体动力学分析的一个研究热点,绝对节点坐标法在这方面有极大的潜力,可以说绝对节点坐标法是柔性多体力学发展的一个重要进展。另外,各种柔性多体的分析方法之间是否存在某种互推关系也引起了人们的注意,如两个主要分析方法:浮动标架法、绝对节点坐标法之间是否可以互推?这些都具有重大理论意义。 另外柔性多体系统动力学中由于大范围的刚体运动与弹性变形运动相互耦合,采用浮动标架法时,即便是小变形问题,由于处于高速旋转仍会产生动力刚化现象。如果仅仅采用小变形理论,将产生错误的结论,必须计及动力刚化效应。动力刚化现象已成为柔性多体动力学的一个重要研究方面。如何利用简单的补偿方法来考虑动力刚化是问题的关键。 柔性多体系统动力学中关于柔性体的离散化表达存在三种形式:基于有限元分析的模态表达,基于试验模态分析的模态表达和基于有限元节点坐标的有限元列式。有限元列式由于大大地增加了系统的求解规模使其应用受到限制,因而一般采用模态分析方法,对模态进行模态截断、模态综合,从而缩减系统的求解规模。为了保证求解精度,同时又能提高求解速度如何进行模态截断、模态综合就成了一个关键问题。再者如何充分利用试验模态分析的结果也是一个关键性研究课题,这一方面的研究还不够深入。 柔性多体系统动力学可以计算出每一时刻的弹性位移,通过计算应变可计算计算出应力。由于一般的多柔体分析程序不具备有限元分析功能,因而柔性体的应力分析都是由有限元程序处理。由于可以计算出每个柔性体的应力的变化历

机械系统动力学作业---平面二自由度机械臂运动学分析

机械系统动力学作业---平面二自由度机械臂运动学分 析 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

平面二自由度机械臂动力学分析 [摘要] 机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 [关键字] 平面二自由度机械臂动力学拉格朗日方程 一、介绍 机器人是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 机器人动力学问题有两类: (1) 给出已知的轨迹点上的,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q r。这对实现机器人动态控制是相当有用的。 (2) 已知关节驱动力矩,求机器人系统相应的各瞬时的运动。也就是说,给出关节力矩向量τ,求机器人所产生的运动。这对模拟机器人的运动是非常有用的。 二、二自由度机器臂动力学方程的推导过程 机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: (1) 选取坐标系,选定完全而且独立的广义关节变量θr ,r=1, 2,…, n。 (2) 选定相应关节上的广义力F r:当θr是位移变量时,F r为力;当θr是角度变量时, F r为力矩。 (3) 求出机器人各构件的动能和势能,构造拉格朗日函数。 (4) 代入拉格朗日方程求得机器人系统的动力学方程。 下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

机械系统动力学仿真软件ADAMS培训教程

机械系统动力学仿真软件ADAMS培训教程(1周时间) 一机械系统动力学方程基础 以闭环矢量法为例,介绍平面机构的运动学方程推导,瞬态动力学方程求解,方程组装及在Matlab/simulink模块中的实现,让学生对动力学求解有一个感性的认识。 教学内容: 1.1 机构动力学分析。四杆机构,杆长分别为L1,L2,L3和L4, 其中,L3为机架,L1为匀速转动的原动件,杆L4受到一恒定的扭矩T的作用。求各杆的运动和受力。(图中的杆均为均质杆,质量为mi,转动惯量为Ii,i=1,2,3….) 1.2 画出上式的Matlab/Simulink仿真框图(10分) 1.3 编写S函数,并在Simulink中调试实现 使用知识:超越方程的求解,牛顿—莱布尼兹迭代法,相容性检测(位移,速度),任意点的运动信息输出 练习:曲柄滑块机构,从方程推导、矩阵方程组装,流程图,编程实现

二ADAMS软件工程介绍及机构动力学仿真 介绍ADAMS软件的功能,几何模型建立方法和第三方CAD模型导入技巧,材料属性配置,运动副、驱动和载荷的创建,仿真计算参数设置及计算结果后处理。介绍弹簧模型、接触模型和轮胎路谱模型(如果有车辆专业学员的话),凸轮副,齿轮模型等常用模型的仿真。 准备内容:机构三维几何模型,最好还有凸轮,齿轮等常用运动副。 介绍模型的构成,建模方法(含几何模型导入技巧),各种运动副、载荷的施加,接触模型参数设置,学会常见机构动力学分析,结果后处理,包括常用的各种测量的使用。 练习:常规运动,接触,轮胎路谱模型的应用,结果后处理。 三模型参数化,灵敏度分析及优化设计研究 介绍ADAMS的设计变量定义,常用函数的使用,模型形状、尺寸、材料参数化和位置方向参数化,建立各种状态变量、约束和目标函数的测量,进行灵敏度分析和优化设计研究,改进模型的设计。 参数优化几何建模,参数化材料特性、单元属性,本构关系参数。目标函数,约束的建立,灵敏度分析、优化求解参数设定。 练习:机构优化;减振系统优化;

多体系统动力学简介20081202

多体系统动力学简介

多体系统动力学研究对象——机构 工程中的对象是由大量零部件构成的系统。在对它们进行设计优化与性态分析时可以分成两大类 一类为结构 ——正常工况下构件间没有相对运动(房屋建筑,桥梁等) ——关心的是这些结构在受到载荷时的强度、刚度与稳定 一类为机构 ——系统在运动过程中这些部件间存在相对运动(汽车,飞机起落架。机器人等)——力学模型为多个物体通过运动副连接的系统,称为多体系统 多体系统动力学俄研究的对象——机构(复杂机械系统)

不考虑系统运动起因的情况下研究各部件的位置与姿态及其变化速度和加速度的关系 典型案例:平面和空间机构的运动分析 系统各部件间通过运动副与驱动装置连接在一起 数学模型:各部件的位置与姿态坐标的非线性代数方程,以及速度与加速度的线性代数方程

当系统受到静载荷时,确定在运动副制约下的系统平衡位置以及运动副静反力 典型案例:机车或汽车中安装有大量的弹簧阻尼器,整车设计中必须考虑系统在静止状态下车身的位置与姿态,为平稳性与操纵稳定性的研究打下基础 数学模型:非线性微分代数方程组

讨论载荷和系统运动的关系 研究复杂机械系统在载荷作用下各部件的动力学响应是工程设计中的重要问题 动力学正问题——已知外力求系统运动的问题 动力学逆问题——已知系统运动确定运动副的动反力,是系统各部件强度分析的基础 动力学正逆混合问题——系统的某部分构件受控,当它们按照某已知规律运动时,讨论在外载荷作用下系统其他构件如何运动 数学模型:非线性微分代数方程组

机械系统的多体系统力学模型 在对复杂机械系统进行运动学与动力学分析前需要建立它的多体系统力学模型。对系统如下四要素进行定义: ?物体 ?铰链 ?外力(偶) ?力元 实际工程中的机械系统多体系统力学模型的定义取决于研究的目的 模型定义的要点是以能揭示系统运动学与动力学性态的最简模型为优 性态分析的求解规模与力学模型的物体与铰的个数有关

机械臂动力学与控制的研究

摘要 操作器和移动平台的组合提供了一种可用于广泛应用程序高效灵活的操作系统,特别是在服务性机器人领域。在机械臂众多挑战中其中之一是确保机器人在潜在的动态环境中安全工作控制系统的设计。在本文中,我们将介绍移动机械臂用动力学系统方法被控制的使用方法。该方法是一种二级方法, 是使用竞争动力学对于统筹协调优化移动平台以及较低层次的融合避障和目标捕获行为的方法。 I介绍 在过去的几十年里大多数机器人的研究主要关注在移动平台或操作系统,并且在这两个领域取得了许多可喜的成绩。今天的新挑战之一是将这两个领域组合在一起形成具有高效移动和有能力操作环境的系统。特别是服务性机器人将会在这一方面系统需求的增加。大多数西方国家的人口统计数量显示需要照顾的老人在不断增加,尽管将有很少的工作实际的支持他们。这就需要增强服务业的自动化程度,因此机器人能够在室内动态环境中安全的工作是最基本的。 图、1 一台由赛格威RMP200和轻重量型库卡机器人组成的平台

这项工作平台用于如图1所示,是由一个Segway与一家机器人制造商制造的RMP200轻机器人。其有一个相对较小的轨迹和高机动性能的平台使它适应在室内环境移动。库卡工业机器人具有较长的长臂和高有效载荷比自身的重量,从而使其适合移动操作。 当控制移动机械臂系统时,有一个选择是是否考虑一个或两个系统的实体。在参考文献[1]和[2]中是根据雅可比理论将机械手末端和移动平台结合在一起形成一个单一的控制系统。另一方面,这项研究发表在[3]和[4],认为它们在设计时是独立的实体,但不包括两者之间的限制条件,如延伸能力和稳定性。 这种控制系统的提出是基于动态系统方法[5],[6]。它分为两个层次,其中我们在较低的水平,并考虑到移动平台作为两个独立的实体,然后再以安全的方式结合在上层操纵者。在本文中主要的研究目的是展现动力系统方法可以应用于移动机械臂和使用各级协调行为的控制。 本文剩下的安排如下。第二部分介绍系统的总体结构设计,其次是机械手末端移动平台的控制在第三第四部分讲述。在第五部分我们在结束本文之前将显示一些实验。然而, 首先与动力学系统有关工作总结与方法将在在部分I-A提供。 A.相关工作 动力学系统接近[5], [6]为控制机器人提供一套动作的框架,例如障碍退避和目标捕捉。每个动作通过一套一个非线性动力学系统的attractors和repellors来完成。这些通过向量场的简单的加法被结合在一起来完成系统的整体动作。动力系统的方法涉及到更广泛的应用势场法[7],但具有一定的优势。这里势场法的行为是由后场梯度形成的结果,行为变量,如航向和速度,可直接运用动力系统控制的方法。 成本相对较低的计算与方法有关,使得它在动态环境中在线控制适宜,允许它即使在相当低的水平有限的计算能力平台[8]实施。传感器的鲁棒性在人声嘈杂中显示[9]和[10]其中一个是由红外传感器和麦克风的结合,当避障和目标获取时使用。尽管能解决各种各样的任务,但它仅是一个局部的方法,为了其他的任务和使命级计划(即参见[11])其他的方法应该被采用。 当多行为被结合时,在[5]和 [6]的缺点是由潜在的假的因子引起的。为了克服这个问题[12]介绍了一种基于竞争动态的行为比重。每个行为的影响是控制使用一个相关的竞争优势,再加上定义的行为之间有竞争力的相互作用,控制重物。如果所有的行为之

柔性多体动力学建模

柔性多体动力学建模 、仿真与控制 近二十年来,柔性多体系统多力学(the dynamics of the flexible multibody systems)的研究受到了很大的关注。多体系统正越来越多地用来作为诸如机器人、机构、链系、缆系、空间结构和生物动力学系统等实际系统的模型。huston认为: “多体动力学是目前应用力学方面最活跃的领域之一,如同任何发展中的领域一样,多体动力学正在扩展到许多子领域。最活跃的一些子领域是: 模拟、控制方程的表述法、计算机计算方法、图解表示法以及实际应用。这些领域里的每一个都充满着研究机遇。”多柔体系统动力学近年来快速发展的主要推动力是传统的机械、车辆、军械、机器人、航空以及航天工业现代化和高速化。传统的机械装置通常比较粗重,且*作速度较慢,因此可以视为由刚体组成的系统。而新一代的高速、轻型机械装置,要在负载/自重比很大,*作速度较高的情况下实现准确的定位和运动,这是其部件的变形,特别是变形的动力学效应就不能不加以考虑了。在学术和理论上也很有意义。 关于多柔体动力学方面已有不少优秀的综述性文章。 在多体系统动力学系统中,刚体部分: 无论是建模、数值计算、模拟前人都已做得相当完善,并已形成了相应的软件。但对柔性多体系统的研究才开始不久,并且柔性体完全不同于刚性体,出现了很多多刚体动力学中不呈遇到的问题,如: 复杂多体系统动力学建模方法的研究,复杂多体系统动力学建模程式化与计算效率的研究,大变形及大晃动的复杂多体系统动力学研究,方程求解的stiff数值稳定性的研究,刚柔耦合高度非线性问题的研究,刚-弹-液-控制组合的复杂多体系统的运动稳定性理论研究,变拓扑结构的多体系统动力学与控,复杂多体系统动力学中的离散化与控制中的模态阶段的研究等等。柔性多体动力学而且柔性多体动力学的发展又是与当代计算机和计算技术的蓬勃发展密切相关的,高性能的计算机使复杂多体动力学的仿真成为可能,特别是计算机的功

三维空间机械臂的动力学建模与仿真分析

机械工程师 MECHANICAL ENGINEER 三维空间机械臂的动力学建模与仿真分析 吴良凯,王涛,王春丽,王洲,夏国辉(山东科技大学机械电子工程学院,山东青岛266590) 摘要:为了提高三维空间助力机械臂的设计效率,运用拉格朗曰方法建立机械臂的动力学模型,利用Sold /V o k 建立三 维空间助力机械臂的构件模型,将装配后三维实体模型导入ADAMS 中进行动力学仿真分析,得到相关性能曲线图,为空间 助力机械臂的结构设计和最优控制提供依据。 关键词:机械臂;动力学;ADAM S 拉格朗日法中图分类号:"P 241N /441 文献标志码:A 文章编号:1〇〇2-2333(2〇17)〇1-〇〇15-〇3 Dynamics Modeling and Simulation Analysis of Three-dimensional Space Manipulator WU Liangkai , WANG Tao , WANG Chunli , WANG Zhou , XIAGuohui (College of Mechanical and Electronic Engineering , Shandong University of Science and Technology , Qingdao 266590, China ) Abstract : In order to improve the design efficiency of three-dimensional space manipulator, the dynamic modeling of the manipulator is established by using Lagrange method, the three-dimensional solid component model of space manipulator is built by Solidworks, the three -dimensional solid model after assembled is imported into ADAMS to carry out the dynamic simulation analysis. Related performance curve is obtained to provide reference for the mechanical structure design and the optimal control of the space manipulator. Key words : manipulators; dynamics; ADAMS; Lagrange 0 引言 三维空间助力机械臂是一个复杂的动力学系统,它 由多个关节和多个运动构件组成,各关节与运动构件之 间存在复杂的耦合关系?。为了机械臂的结构设计以及控 制系统的开发与优化,对机械臂进行动力学分析与研究常取极大值[15。然而,发电机实际工作中,除少数情况外, 支架大部分区域的实际受力要低于峰值。故对比二者的 数据,大部分试验值小于仿真值,以负偏差居多。 3)试验所得的最大测点峰值为309 MPa ,比材料的许 用应力小。 综上所述,该发电机转子支架的强度特性比较好,符 合安全使用标准。3 结论 本文对某具体的发电机转子支架设计案例,分别在 额定工况和飞逸工况两种条件下,进行了强度性能数值 计算,并进行了应力试验,获得了强度性能较好的转子支 架。同时,也应该看到,仿真的工况点不多,故存在数据不 完善之处,下一步的工作,拟对更多工况点展开分析,以 更加精确地验证转子支架的强度性能。 [参考文献] [1] 衣然,兰波.大型水力发电机转子支架应力分析[C ]//第十九次 中国水电设备学术讨论会论文集,2013[2] 哈尔滨大电机研究所.水轮机设计手册[M ].北京:机械工业出 版社,1981. [3] 张慧珍.1.5MW 水平轴风力机叶片结构性能分析[D ].成都:西华 大学能源与环境学院,2011. [4] 陈荣盛.风力机结构动力学特性研究[D ].成都:西华大学能源与 是非常重要的。越来越多设计人员将虚拟样机仿真作为 机械系统研发的重要依据,相比传统机械设计而言,节省 了物理样机的实验时间以及材料,缩短了设计周期,提高 了机械臂工作性能[34]。 目前动力学分析领域中的方法主要包括拉格朗曰 环境学院,2009. [5] 王旭,李萍,陈荣盛,等.水轮机尾水管设计的CFD 分析与模型试 验研究[J ].水电能源科学,2015,33(9):163-165. [6] 秦艳,苟向辉.发电机转子支架应力试验分析[J ].工程与试验, 2015,55(2):52-54. [7] 王旭,胡洪,王莉君,等.基于有限元法的2MW 水平轴风力发电机 叶片模态分析[】].机械制造,2015,53(1):9-11. [8] 李发海,王岩.电机与拖动基础[M ].北京:清华大学出版社,2005.[9] 闻邦椿.机械设计手册[M ].北京:机械工业出版社,2010.[10] 温洁明,陈家权,沈炜良.水轮发电机转子支架有限元分析及应 力试验[J ].机械工程师,2007(3)61-63. [11 ]薛勇,程文兵,张明.糯扎渡水电站水轮机蜗壳水压试验情况及 分析[J ].人民长江,2012,43 (4):67-69. [12] 章宝华,良贵.材料力学[M ].北京:北京大学出版社,2011.[13] 冼进.现代机电驱动控制技术[M ].北京:中国水利水电出版 社,2009. [14] 王旭,李萍,陈荣盛,等.水轮机椭圆蜗壳设计的CFD 计算及试 验分析[J ]■人民黄河,2016,38(1):109-111.[15] 胡金秀,胡祥甫.85MW 高转速水轮发电机转子设计[J ].山东 工业技术,2014(7) :8-9. (编辑昊天) 作者简介:张彦南(1984—),男,博士,工程师,主要从事水利水电工 程方面的研究。 收稿日期:2016-07-07 网址 https://www.360docs.net/doc/5119283621.html, 电邮:hrbengineer@https://www.360docs.net/doc/5119283621.html, 2017 年第 1 期 | 15

柔性多体系统动力学讲稿(theory)

多体动力学 摘要 采用笛卡尔绝对坐标通过动静法建立多刚体系统的动力学方程。 目录 I 问题概述 (3) 1. 多体系统仿真模型 (3) 2. 静力学问题 (4) 3. 运动学问题 (4) 4. 动力学问题 (4) II 基本概念和公式 (4) 5. 参照物 (4) 6. 矢量 (5) 6.1 矢量的定义及符号 (5) 6.2 矢量的基本运算 (5) 6.3 单位矢量的定义及符号 (6) 6.4 零矢量的定义及符号 (6) 6.5 平移规则 (6) 7. 坐标系 (7) 8. 矢量在坐标系内的表示 (8) 9. 方向余弦矩阵 (10) 10. 欧拉角 (13) 11. 刚体的位置和姿态坐标 (15) 12. 矢量在某参照物内对时间的导数 (16) 13. 角速度 (17) 14. 简单角速度 (17) 15. 刚体上固定矢量在某参照物内对时间的导数 (18) 16. 矢量在两参照物内对时间导数的关系 (20) 17. 角速度叠加原理 (21) 18. 角加速度 (22) 19. 角速度与欧拉角对时间导数的关系 (23) 20. 动点的速度和加速度 (25) 21. 刚体上两固定点的速度与加速度 (26) 22. 相对刚体运动的点的速度和加速度 (27) 23. 并矢 (28) 24. 刚体惯性力向质心简化的主矢和主矩 (30) 25. 约束 (33) 25.1滑移铰 (34) 25.2 旋转铰 (34) 25.3 圆柱铰 (35) 25.4 球铰 (36) 25.5 平面铰 (36) 25.6 固定铰 (37) 25.7 点在线约束 (37) 25.8 点在面约束 (38) 25.9 姿态约束 (39) 25.10 平行约束 (39) 25.11垂直约束 (40) 25.12 等速万向节 (41) 25.13 虎克铰 (41) 25.14 万向节 (42) 25.15 关联约束 (43) 26. 弹簧力的计算 (45)

相关文档
最新文档