高中数学线性规划知识总结+练习

合集下载

高中数学简单线性规划复习题及答案(最全面)

高中数学简单线性规划复习题及答案(最全面)

简单线性规划复习题及答案(1)1、设,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥-020202y x y x y x ,则22y x ++的最大值为 452、设变量,x y 满足⎪⎩⎪⎨⎧≥-+≥-≤-+030201825y x y x y x ,若直线20kx y -+=经过该可行域,则k 的最大值为答案:13、若实数x 、y ,满足⎪⎩⎪⎨⎧≤+≥≥123400y x y x ,则13++=x y z 的取值范围是]7,43[.4、设y x z +=,其中y x ,满足⎪⎩⎪⎨⎧≤≤≤-≥+k y y x y x 0002,若z 的最大值为6,则z 的最小值为5、已知x 、y 满足以下条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则22z x y =+的取值范围是 4[,13]56、已知实数,x y 满足约束条件1010310x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,则22(1)(1)x y -+-的最小值为 127、已知,x y 满足约束条件1000x x y x y m -≥⎧⎪-≤⎨⎪+-≤⎩,若1y x +的最大值为2,则m 的值为 58、表示如图中阴影部分所示平面区域的不等式组是⎪⎩⎪⎨⎧≥-+≤--≤-+0623063201232y x y x y x9、若曲线y = x 2上存在点(x ,y )满足约束条件20,220,x y x y x m +-≤⎧⎪--≤⎨⎪>⎩,则实数m 的取值范围是 (,1)-∞10、已知实数y ,x 满足10103x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则3z x y =+的最小值为 -311、若,x y 满足约束条件10,0,40,x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则x y的最小值为 13. 12、已知110220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩,则22(2)(1)x y ++-的最小值为___10_13、已知,x y 满足不等式0303x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则函数3z x y =+取得最大值是 1214、已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则z =2x +4y 的最小值是-615、以原点为圆心的圆全部在区域⎪⎩⎪⎨⎧≥++≤-+≥+-0943042063y x y x y x 内,则圆面积的最大值为 π51616、已知y x z k y x x y x z y x 42,0305,,+=⎪⎩⎪⎨⎧≥++≤≥+-且满足的最小值为-6,则常数k = 0 . 17、已知,x y 满足约束条件,03440x x y y ≥⎧⎪+≥⎨⎪≥⎩则222x y x ++的最小值是 118、在平面直角坐标系中,不等式组0,0,,x y x y x a +≥⎧⎪-≥⎨⎪≤⎩(a 为常数),表示的平面区域的面积是8,则2x y +的最小值 14-19、已知集合22{(,)1}A x y x y =+=,{(,)2}B x y kx y =-≤,其中,x y R ∈.若A B ⊆,则实数k 的取值范围是⎡⎣20、若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为 12-21、若实数x ,y 满足不等式组201020x y x y a -≤⎧⎪-≤⎨⎪+-≥⎩,目标函数2t x y =-的最大值为2,则实数a 的值是 222、已知点(,)P x y 满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩,若3z x y =+的最大值为8,则实数k = 6- .23、设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- 23.24、已知实数y x , 22222)(y x y y x +++的取值范围为 ⎥⎦⎤⎢⎣⎡+221,35.简单线性规划复习题及答案(2)1、设实数x,y 满足⎪⎩⎪⎨⎧≤-≥-+≤--0205202y y x y x 则y x x y z +=的取值范围是 10[2,]3由于yx表示可行域内的点()x y ,与原点(00),的连线的斜 率,如图2,求出可行域的顶点坐标(31)(12)A B ,,,, (42)C ,,则11232OA OB OC k k k ===,,,可见123y x ⎡⎤∈⎢⎥⎣⎦,,结合双勾函数的图象,得1023z ⎡⎤∈⎢⎥⎣⎦,,2、若实数,x y 满足不等式组22000x y x y m y ++≥⎧⎪++≤⎨⎪≥⎩,且2z y x =-的最小值等于2-,则实数m 的值等于 1-3、设实数x 、y 满足26260,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,则{}max 231,22z x y x y =+-++的取值范围是 [2,9]【解析】作出可行域如图,当平行直线系231x y z +-=在直线BC 与点A 间运动时,23122x y x y +-≥++,此时[]2315,9z x y =+-∈,平行直线线22x y Z ++=在点 O 与BC 之间运动时,23122x y x y +-≤++,此时,[]222,8z x y =++∈. ∴[]2,9z ∈图23 A yxOcB 634、佛山某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配。

高中数学线性规划题库

高中数学线性规划题库

高中数学线性规划题库满分:班级:_________ 姓名:_________ 考号:_________一、单选题(共26小题)1.已知变量x,y满足约束条件则z=3x+y的最大值为()A.12B.11C.3D.-12.若满足则的最大值为()A.2B.-2C.1D.-13.设变量x, y满足约束条件则目标函数z=3x-y的取值范围是()A.B.C.[-1,6]D.4.设变量x, y满足则2x+3y的最大值为()A.20B.35C.45D.555.已知变量满足约束条件,则的最大值为()A.B.C.D.6.设变量x,y满足的最大值为()A.3B.8C.D.7.已知满足约束条件,则目标函数的最大值是()A.9B.10C.15D.208.若变量x, y满足约束条件则z=2x+y的最大值和最小值分别为()A.4和3B.4和2C.3和2D.2和09.已知函数为常数), 当时取得极大值, 当时取极小值, 则的取值范围是()A.B.C.D.10.设变量x,y满足约束条件,则目标函数的最小值为()A.-5B.-4C.-2D.311.设x, y满足约束条件则z=2x-3y的最小值是()A.-7B.-6C.-5D.-312.设,满足约束条件,若目标函数的最小值为2,则的最大值为()A.1B.C.D.13.设x,y满足的约束条件,则的最大值为()A.8B.7C.2D.114.设变量,满足约束条件则目标函数的最小值为()A.2B.3C.4D.515.若满足且的最小值为-4,则的值为()A.B.C.D.16.设,满足约束条件且的最小值为7,则()A.-5B.3C.-5或3D.5或-317.满足约束条件,若取得最大值的最优解不唯一,则实数的值为()A .B.C.2或1D.18.若变量满足约束条件的最大值和学科网最小值分别为M和m,则M-m=()A.8B.7C.6D.519.设变量满足约束条件则目标函数的最小值为()A.2B.3C.4D.520.设x,y满足()A.有最小值2,最大值3B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值21.若x、y满足约束条件,目标函数z=ax+2y仅在点(1,0)处取得最小值,则a 的取值范围是()A.(-1,2)B.(-4,2)C.(-4,0]D.(-2,4)22.在平面直角坐标系中,若不等式组为常数)所表示的平面区域的面积等于2,则的值为()A.B.1C.2D.323.不等式组所表示的平面区域的面积等于()A.B.C.D.24.若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是()A.B.C.D.25.已知是坐标原点,点若点为平面区域上的一个动点,则的取值范围是()A.B.C.D.26.设,在约束条件下,目标函数z=x+my的最大值小2,则m的取值范围为()A.B.C.D.二、填空题(共26小题)27.设满足约束条件,则目标函数最大值为_________.28.若实数满足则目标函数的最小值为_______________.29.设x,y满足约束条件,向量,且//,则m的最小值为.30.不等式组对应的平面区域为D,直线y=k(x+1)与区域D有公共点,则k的取值范围是______.31.设变量x,y满足约束条件则目标函数z=的最大值为_______。

高中数学线性规划各类习题精选5

高中数学线性规划各类习题精选5

2.已知点 P( x , y) 在不等式组 ⎨ y - 1 ≤ 0 表示的平面区域内运动,则 z = x - y 的最大 ⎪ x + 2 y - 2 ≥ 0 3.若实数 x, y 满足 ⎨ x + y ≥ 0,则 z = 3x +2 y 的最大值是()5.设变量 x, y 满足约束条件 ⎨ y ≥ 3x ,若目标函数 z = x + y 的最大值为 14,则 a 值⎪x + ay ≤ 7 A .1B . 1 6.已知实数 x, y 满足 ⎨ x - y ≤ 0 ,则 2 x - y 的最大值为()1高中数学线性规划各类习题精选 5学校:___________姓名:___________班级:___________考号:___________一、单选题1.设 , 满足约束条件,若目标函数 的最大值为 12,则A .B .的最小值为( )C .D .4⎧ x - 2 ≤ 0 ⎪ ⎩值是()A . -1B . -2C .2D .3⎧ x - y + 1 ≥ 0⎪ ⎪ ⎩x ≤ 0A .13B .9C .1D .34.已知实数 , 满足,如果目标函数 的最小值为 ,则实数 等于()A .6B .5C .4D .3⎧x ≥ 0 ⎪⎩为()1 1 1 或C .D .2 32 3⎧ x + y - 1 ≤ 0 ⎪⎪ ⎩ x ≥ 01⎪ y ≥ 09.若实数 x, y 满足条件 ⎨ y - x ≤ 2 ,则 z = x - 2 y 的最小值为( ) ⎪ y ≥ 0 A .-1 B .-2 C . - 5 12.已知 a > 0 , x, y 满足约束条件 { x + y ≤ 3 ,若 z = 2 x + y 的最大值为 ,y ≥ a (x - 2) A . 113.已知 x 、y 满足约束条件 ⎨ x - y ≤ 0 则 z = x + 2 y 的最大值为( )14.已知 x, y 满足 ⎨ x + y ≤ 4记目标函数 z = 2 x + y 最大值为 a ,最小值为 b ,则⎪x - y - 2 ≤ 0⎧ x - y ≥ 0 ⎪2 x + y ≤ 27.若不等式组 ⎨ ,表示的平面区域是一个三角形,则 a 的取值范围是( )⎪⎩ x + y ≤ a4 4 4A .a≥B .0<a≤1C .1 ≤a≤D .0<a≤1 或 a≥3338.设 x ,y 满足约束条件,则 z=2x-3y 的最小值是( )A .-7B .-6C .-5D .-3⎧ y + x ≤ 1 ⎪⎩7D . -2 2⎧ x ≤ 0 ⎪ y ≥ 010.已知由不等式 ⎨ 确定的平面区域 Ω 的面积为 7,则 k 的值()⎪ y - kx ≤ 2 ⎪⎩ y - x - 4 ≤ 0A . -2B . -1C . -3D . 211.如果实数 x 、y 满足关系,则 的取值范围是( )A .[3,4]B .[2,3]C .D .x ≥ 1112则 a = ( )1 B .C .1D .242⎧ x + y - 1 ≤ 0 ⎪⎪ ⎩x ≥ 0A 、﹣2B 、﹣1C 、1D 、2⎧ x ≥ 1⎪⎪⎩ y ≤ 2 217.若 x, y 满足约束条件 ⎨ y ≥ 0 ,则目标函数 z = 2 x + 3 y 的最大值为________ . ⎪2x + y ≤ 2 18.若实数 x , y 满足 ⎨ x + y ≥ 0 ,则目标函数 z = x + 2 y 的取值范围是_______. ⎪ x ≤ 0 19.实数 x, y 满足 ⎨ x - y ≥ 1 ,则目标函数 z = x + y - 3 的最小值是______.⎪ x - 2 y ≤ 2 21.已知变量 x, y 满足 ⎨ x + y - 4 ≤ 0 ,则点 (x, y )对应的区域面积是 __________, ⎪ x ≥ 1 ( ya +b =A .1B .2C .7D .8⎧ x + y - 2 2 ≥ 0 ⎪⎪15.已知不等式组 ⎨ x ≤ 2 2 表示平面区域 Ω ,过区域 Ω 中的任意一个点 P ,⎪作圆 x 2 + y 2 = 1的两条切线且切点分别为 A ,B ,当 ∆PAB 的面积最小时,cos ∠APB的值为( )A . 7 1 3B .C .D .8 2 43 2二、填空题16.2011•宝坻区一模)设 x , 满足约束条件 则 z=2x+y 的最大值为 .⎧ x ≥ 0 ⎪⎩⎧ x - y + 1 ≥ 0 ⎪⎩⎧2x + y ≤ 4 ⎪⎩20.在直角坐标系中,△的三个顶点坐标分别为 , , ,动点△是内的点(包括边界).若目标函数的最大值为 2,且此时的最优解所确定的点是线段上的所有点,则目标函数 的最小值为.⎧ x - 4 y + 3 ≤ 0⎪⎩x 2 + y 2 u = 的取值范围为__________.xy22.若实数 x ,y 满足 ⎨x > 0,则 的取值范围是_________ .⎪ y ≤ 224.已知实数 x, y 满足 ⎨ y ≥ x ,则 z =x - y2 的最大值为 .⎪2 x + y - 6 ≥ 0 y 1 ⎪ 26.设 x , y 满足约束条件: ⎨ y ≥x 的可行域为 M ,若存在正实数 a ,使函数 2y = 2a sin( + )cos( + ) 的图象经过区域 M 中的点,则这时 a 的取值范围M (a, b )在由不等式 ⎨ y ≥ 0 确定的平面区域内,则点 N (a - b , a + b )所 ⎪x + y ≤ 2 ⎨ x ≤ 2 ⎪ x + y - 1 ≥ 0 29.设 z = x + y ,其中实数 x, y 满足 ⎨ x - y ≤ 0 ,若 z 的最大值为12 ,则 z 的最小值⎪0 ≤ y ≤ k⎧x - y + 1 ≤ 0 ⎪y x ⎩x + y ≤ 723.已知点 P (x, y ) 满足{ y ≥ x,过点 P 的直线与圆 x 2 + y 2 = 50 相交于 A , B 两 x ≥ 2点,则 AB 的最小值为.⎧ x ≥ 0 ⎪⎩25.设 x , 满足约束条件,向量, ,且,则m 的最小值为_____.⎧ x ≥ 1⎪⎪⎪⎩2 x + y ≤ 10x π x π2 4 2 4是.27.已知点⎧ x ≥ 0 ⎪⎩在的平面区域面积是.⎧ x - 2 y + 1 ≥ 0 ⎪28.已知不等式组⎩ 表示的平面区域为 D ,若函数 y =| x - 1| +m 的图像上存在区域 D 上的点,则实数 m 的取值范围是________.⎧ x + 2 y ≥ 0⎪⎩为.30.已知实数 x , y 满足约束条件 ⎨ y ≤ x,时,所表示的平面区域为 D ,则 ⎪2x + y - 9 ≤ 0⎧x ≥ 0, ⎪⎩z = x + 3 y 的最大值等于,若直线 y = a( x + 1) 与区域 D 有公共点,则 a 的取值范围是.试题分析:画出不等式组 ⎨ y - 1 ≤ 0 表示的可行域如图, z = x - y 即 y= x-Z ⎪ x + 2 y - 2 ≥ 0 参考答案1.A【解析】试题分析:作出 , 满足约束条件下平面区域,如图所示,由图知当目标函数经过点取得最大值 12,即,亦即,所以=,当且仅当,即时等号成立,故选 A .考点:1、简单的线性规划问题;2、基本不等式.【方法点睛】运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值,在哪个端点,目标函数取得最小值;已知 ﹙ ﹚求的最小值,通常转化为= ( ),展开后利用基本不等式求解.2.C【解析】⎧ x - 2 ≤ 0 ⎪ ⎩即 t 增大,由图象得,当直线 y = - x + 过点 A(0,1) 时, t 取得最大值 2 ,即 z = 3x +2 y 的Z 的几何意义是直线 y= x-Z 在 y 轴上的截距的相反数,画直线 y= x ,平移直线 y= x ,当过点 B (2,0)时 z 有最大值 2.故选:C .考点:简单的线性规划及利用几何意义求最值.【名师点睛】本题考查线性规划解题的基本方法,本题属于基础题,要求依据二元一次不等式组准确画出可行域,利用线性目标函数中直线的纵截距的几何意义,令 z= 0 ,画出直线 y = x ,在可行域内平移该直线,确定何时z 取得最大值,找出此时相应的最优解,依据线性目标函数求出最值,这是最基础的线性规划问题.3.B【解析】试题分析:设 t = x + 2 y ,将 t = x + 2 y 化成 y = - 1 tx + ,作出可行域与目标函数基准线2 21 1 t y = - x (如图所示)当直线 y = - x +2 2 2 t向右上方平移时,直线在 y 轴上的截距 增大,21 t2 2最大值是 32 = 9 ;故选 B .考点:1.简单的线性规划;2.指数运算..( (【易错点睛】本题考查简单的线性规划问题以及指数运算,属于中档题;利用简单的线性规划知识求有关线性目标函数的最值时,一般是先画出可行域,再结合目标函数的几何意义进行求解,容易忽视的是不能准确目标函数直线与可行域边界的倾斜程度(通过比较目标函数直线的斜率和某条边界的斜率的大小),导致寻找最优解出错.4.B【解析】试题分析:由下图可得 在 处取得最大值,由,故选 B.考点:线性规划.【方法点晴】本题考查线性规划问题,灵活性较强,属于较难题型 考生应注总结解决线性规划问题的一般步骤: 1)在直角坐标系中画出对应的平面区域,即可行域; 2)将目标函数变形为;(3)作平行线:将直线 平移,使直线与可行域有交点,且观察在可行域中使 最大(或最小)时所经过的点,求出该点的坐标; 4)求出最优解:将(3)中求出的坐标代入目标函数,从而求出 的最大(小)值.5.C【解析】试题分析:首先根据已知约束条件画出其所表示的平面区域,如下图所示,然后由目标函数z = x + y 的最大值为 14,此时目标函数经过点 A(0, 7 ) ,所以14 = 0 + a 7 1,所以 a = ,故应选 C .a 2试题分析:作出不等式组 ⎨2x + y ≤ 2 表示的平面区域,如图 ∆OAB (内部含边界),再作 ⎪ y ≥ 0 B考点:1、简单的线性规划问题.6.A【解析】试题分析:在坐标系内作出可行域,由图可知当目标函数z = 2 x - y 经过可行域内的点1 1 1 1 1A( , ) 时有最大值 z = 2 ⨯ - = ,故选 A .2 2 2 2 2BAO考点:线性规划.7.D【解析】⎧ x - y ≥ 0 ⎪⎩直线 l : x + y = 0 ,过 A , 作与 l 平行的直线 l , l ,由图可知当直线 x + y = a 夹在直线 l 与 l1 21之间或在直线 l 上方时,题设不等式组表示的区域是三角形,计算得0 < a ≤ 1 或 a ≥ 2选 D .4 3.故考点:二元一次不等式组表示的平面区域.8.B【解析】试题分析:由么时候纵截距所求.得,作出可行域如图,平移直线,看什最大,即最小,所以由图可知,过点C时,所得值即为考点:线性规划问题.9.D【解析】试题分析:作出可行域,如图所示.⎪⎪ ⎧ y = x + 2 z = x - 2 y 取得最小值,由 ⎨ 得: ⎨ ,所以点 A 的坐标为 - , ⎪ ,所 ⎪ y = 3 - 3 = - 试题分析:作出不等式组 ⎨ y ≥ 0所表示的平面区域,如图所示,可知其围成的区域 ⎪ y - x - 4 ≤ 0 ⎧ y - kx = 2 2 4k - 2 1 2作直线 l : x - 2 y = 0 ,再作一组平行于 l 的直线 l : z = x - 2 y ,当直线 l 经过点 A 时,0 0⎧1 x =-2 ⎛ 13 ⎫ ⎩ y = - x + 1⎝ 2 2 ⎭ ⎪⎩ 2以 z 1 7min = - 2 2 ,故选 D .考点:线性规划.10.B【解析】⎧ x ≤ 0 ⎪⎩是等腰直角三角形且面积为 8 .由于直线 y = kx + 2 恒过点 B(0, 2) ,且原点的坐标恒满足y - kx ≤ 2 ,当 k = 0 时,y ≤ 2 ,此时平面区域 Ω 的面积为 6 ,由于 6 < 7 ,由此可得 k < 0 .由⎨可得 D( , ) ,依题意应有 ⨯ 2⨯ | |= 1 ,解得 k = -1 或 k = 3 ⎩ y - x - 4 = 0k - 1 k - 1 2 k - 1 (舍去),故选 B .考点:简单的线性规划问题.11.D【解析】试题分析:由题意得,画出不等式组表示的可行域(如图所示),又范围,其中,当取点大值.,此时可看出可行域内点与点时,目标函数取得最小值;当取点之间的连线的斜率的取值时,目标函数取得最考点:二元一次不等式组表示的平面区域及其应用.【思路点晴】本题主要考查了二元一次不等式组表示的平面区域及其应用求最值,属于基础题,解答的关键是把目标函数化简为,转化为可行域内点和点12.C之间的连线的斜率的取值,其中认真计算是题目的一个易错点.目标函数z=2x+y经过点A ⎛2a+3a⎫,⎝a+1a+1⎭2⨯2a+3+=,解得a=1,故选C.【解析】试题分析:根据题意作出x,y满足约束条件下的平面区域,如图所示,由图知,当a11 a+1a+12⎪11时取得最大值,所以2考点:简单的线性规划问题.13.D【解析】试题分析:根据约束条件可作出可行域如图,作出直线y=-1x,经过平移得当直线过点2A(0,1)时,z取到最大值2.考点:线性规划.14.D【解析】(⎪⎩y≤2212+12=2,OA=1,OA⊥AP,所以∠APO=30︒,∠APB=2∠APO=60︒,试题分析:不等式组表示的平面区域如图所示,由图易得目标函数z=2x+y在A(3,1)处取得最大值7,在B1,-1)处取得最小值1,则a+b=8,故答案为D.考点:线性规划的应用.15.B【解析】⎧x+y-22≥0⎪⎪试题分析:不等式⎨x≤22表示平面区域Ω为下图所示的∆DEF边界及内部的点,⎪由图可知,当点P在线段DE上,且OP⊥DE时,∆P AB的面积最小,这时OP=-22所以cos∠APB=12,故选B.y DB OPAFE x考点:1.线性规划;2.直线与圆的位置关系.【方法点睛】本题主要考查的是线性规划以及直线与圆的位置关系,属中档题.线性规划类问题的解题关键是先正确画出不等式组所表示的平面区域,然后确定目标函数的几何意义,通过数形结合确定目标函数何时取得最值.解题时要看清楚是求“最大值”还是求“最小值”,否则很容易出现错误;画不等式组所表示的平面区域时要通过特殊点验证,防止出现错误.16.2【解析】试题分析:先画出对应的可行域,结合图象求出目标函数取最大值时对应的点,代入即可求出其最值.解:约束条件对应的可行域如图:由图得,当z=2x+y位于点B(1,0)时,z=2x+y取最大值,此时:Z=2×1+0=2.故答案为:2.(考点:简单线性规划.17.6【解析】试题分析:如图画出可行域,目标函数 z = 2 x + 3 y 平移到 (0, 2)处有最大值 0 + 3⨯ 2 = 6 .考点:1、可行域的画法;2、最优解的求法.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”: 1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最有解);(3)将最优解坐标代入目标函数求出最值.18. [0,2]【解析】试题分析:线性约束条件对应的可行域为直线 x - y + 1 = 0, x + y = 0, x = 0 围成的三角形及其内部,顶点为 (0,0 ), (0,1), - 1 , 1 ⎫,当 z = x + 2 y 过点 (0,0 )时取得最小值 0,过点 (0,1)(0, -1), (2,0 ), ⎛ 5 , 2 ⎫⎪ ,当 z = x + y - 3 过点 (0, -1) 时取得最小值 -4⎢⎣2, 3 ⎥⎦⎝ 2 2 ⎭时取得最大值 2,所以其范围是[0,2]考点:19. -4【解析】试题分析:线性约束条件对应的可行域为直线2 x + y = 4, x - y = 1, x - 2 y = 2,顶点为⎝ 3 3 ⎭考点:线性规划问题20.【解析】试题分析:先根据约束条件画出可行域,设 z=ax+by ,将最大值转化为 y 轴上的截距,当直线 ax+by=z 与可行域内的边 BC 平行时,z=ax+by 取最大值时的最优解有无数个,将 等价为斜率, 数形结合,得,且 a×1+b×0=2,∴a=2,b=1,z=2x+y当直线 z=2x+y 过点 B 时,z 取最小值,最小值为-2考点:简单线性规划的应用21.8⎡ 10 ⎤ 5【解析】A B x y y x x 13 x t 13试题分析:不等式组表示的可行域是如图所示的三角形 ABC 边界及其内部,(1,3),(1,1),C (13 7 5, 5 1 13 8 y ) 故所求面积为 ⨯ (3 - 1)⨯ ( - 1) = , u = + ,其中 表示可行域上任2 5 5 x一点与原点连线的斜率, 函数性质得 u ∈ [2, 10]3y 7 y 1 7∈ [k , k ] = [ ,3] , t = , u = t + , t ∈ [ ,3] 故根据对勾 OC O A考点:线性规划,对勾函数.22. [2, +∞)【解析】试题分析:作出实数 x ,y 满足的平面区域,如图所示,由图知,斜率 y的取值范围是[2, +∞) .x考点:简单的线性规划问题.【方法点睛】运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以便确定在哪个端点处,目标函数取得最大值;在哪个端点处,目标函数取得最小值.23. 2 21【解析】试题分析:作出约束条件 ⎨ y ≥ x表示的可行域如图阴影部分(含边界), ⎪2 x + y - 6 ≥ 0 联立 ⎨,解得 A (2,2), 2 x + y - 6 = 0-x + y ≤ 7试题分析:不等式组{ y ≥ x 所表示的平面区域为如下图所示的 ∆DEF ,且 ∆DEF 在圆x ≥ 2x 2 + y 2 = 50 的内部,在 ∆DEF 区域内,其中点 D 到圆心 O 的距离最远,所以过点 D 且垂直于 OD 的弦 AB 最短,考点:1.线性规划;2.直线和圆的位置关系.【名师点睛】本题主要考查的是线性规划,属于容易题.线性规划类问题的解题关键是先正确画出不等式组所表示的平面区域,然后确定目标函数的几何意义,通过数形结合确定目标函数何时取得最值.解题时要看清楚是求“最大值”还是求“最小值”,否则很容易出现错误.24.-2【解析】⎧ x ≥ 0 ⎪⎩⎧ y = x⎩ 化目标函数 z = x - 2 y 为 y = x z,2 2由图可知,当直线y=x z-过A时,直线在y轴上的截距最小,z有最大值为2﹣2×2=﹣222.考点:简单的线性规划问题.25.-6【解析】试题分析:先根据平面向量共线(平行)的坐标表示,得m=2x-y,根据约束条件画出可行域,再利用m的几何意义求最值,只需求出直线m=2x-y过可行域内的点A时,从而得到m值即可.由向量向量,,且,得,根据约束条件画出可行域,设,将m最小值转化为y轴上的截距,当直线经过点(,)时,m最小,最小值是:2×1-8=-6.故答案为:-6.考点:平面向量共线的坐标表示;简单的线性规划26.[1,+∞).2cos1【解析】试题分析:如下图所示,画出不等式组所表示的区域,即可行域,而xπxπy=2a sin(+)cos(+)=2424π1a sin(x+)=a cos x,故可知问题等价于点(1,)不在函数y=a cos x的上方,即22111a cos1≥⇒a≥,+∞).22cos12cos1,∴正实数a的取值范围是[试题分析: M (a, b )在由不等式 ⎨ y ≥ 0 确定的平面区域内, ⎪x + y ≤ 2 ⎧a ≥ 0 ⎪⎪ 2 ∴ ⎨b ≥ 0 ,设 x = a - b , y = a + b ,则 ⎨ ⎪a + b ≤ 2 ⎪b = y - x ⎪⎩ 2 ⎩ ≥ 0 ,即 ⎨ y - x ≥ 0 ⎪ y ≤ 2 作出不等式组对应的平面区域如图:则对应区域为等腰直角三角形 AOB ,则 ⎨,y = 2 同理 B (- 2,2),则 ∆AOB 的面积为 S = ⨯ 4 ⨯ 2 = 4 .⎧考点:1.三角函数的图象和性质;2.线性规划的运用.27.4【解析】⎧ x ≥ 0 ⎪ ⎩⎪ ⎩⎧ y - x = 0⎩ 得 ⎨ x = 2 ⎩ y = 21 2考点:简单的线性规划.28.[-2,1].【解析】试题分析:如下图所示,画出不等式组所表示的平面区域,考虑极端情况,函数图象经过点(2,-1),此时m=-2,函数图象经过点(1,1),此时m=1,∴实数m的取值范围是[-2,1].考点:线性规划的运用.29.-6【解析】试题分析:可行域如图:⎧ ∴由 ⎨ x - y ≤ 0 得 A (k, k ) ,目标函数 z = x + y 在 x = k. y = k 时取最大值,即直线 z = x + y ⎩ y = k在 y 轴上的截距 z 最大,此时,12 = k + k , k= 6 ∴得 B (-12,6 ),目标函数 z = x + y 在x = -12, k = 6 时取最小值,此时, z 的最小值为 z = -12 + 6 = -6考点:简单的线性规划3 30.12 , (-∞, ] . 4【解析】试题分析:如下图所示,画出不等式组所表示的可行域,作直线 l : x + 3 y = 0 ,平移 l ,即可知,当 x = y = 3 时,z 3 的取值范围是 (-∞, ] . 4 max = 3 + 9 = 12 ,直线 y = a( x + 1) 恒过点 (-1,0) ,∴可知实数 a考点:线性规划的运用.。

线性规划例题和知识点总结

线性规划例题和知识点总结

线性规划例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛且方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

下面通过一些例题来帮助大家更好地理解线性规划,并对相关知识点进行总结。

一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值问题。

线性约束条件通常是由一组线性等式或不等式组成。

例如:$2x +3y ≤ 12$,$x y ≥ 1$等。

目标函数一般表示为$Z = ax + by$的形式,其中$a$、$b$为常数,$x$、$y$为决策变量。

可行解是满足所有约束条件的解,可行域是所有可行解构成的集合。

最优解则是使目标函数达到最大值或最小值的可行解。

二、线性规划的例题例 1:某工厂生产甲、乙两种产品,已知生产甲产品 1 件需消耗 A原料 3 千克、B 原料 2 千克;生产乙产品 1 件需消耗 A 原料 2 千克、B 原料 4 千克。

A 原料有 12 千克,B 原料有 16 千克。

甲产品每件利润为 5 元,乙产品每件利润为 8 元,问该工厂应如何安排生产,才能使利润最大?设生产甲产品$x$件,生产乙产品$y$件。

则约束条件为:$\begin{cases}3x +2y ≤ 12 \\ 2x +4y ≤ 16 \\x ≥ 0, y ≥0\end{cases}$目标函数为$Z = 5x + 8y$画出可行域,通过解方程组找到可行域的顶点坐标,分别代入目标函数计算,可得当$x = 2$,$y = 3$时,利润最大为$34$元。

例 2:某运输公司有两种货车,每辆大型货车可载货 8 吨,每辆小型货车可载货 5 吨。

现要运输 60 吨货物,且大型货车的使用成本为每次 100 元,小型货车的使用成本为每次 60 元,问如何安排车辆才能使运输成本最低?设使用大型货车$x$辆,小型货车$y$辆。

约束条件为:$\begin{cases}8x +5y ≥ 60 \\x ≥ 0, y ≥ 0\end{cases}$目标函数为$Z = 100x + 60y$画出可行域,计算顶点坐标代入目标函数,可知当$x = 5$,$y =4$时,成本最低为$740$元。

八种经典线性规划例题最全总结(经典)

八种经典线性规划例题最全总结(经典)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、若x、y满足约束条件,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选A二、求可行域的面积例2、不等式组表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,D、,解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为,选C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于由右图可知,故0<m<3,选C七、比值问题当目标函数形如时,可把z看作是动点与定点连线的斜率,这样目标函数的最值就转化为PQ连线斜率的最值。

线性规划例题和知识点总结

线性规划例题和知识点总结

线性规划例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

在实际生活中,有很多问题都可以通过线性规划来解决,比如资源分配、生产计划、运输调度等。

下面我们通过一些具体的例题来深入理解线性规划,并对相关知识点进行总结。

一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值。

线性规划的数学模型通常可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_i$是约束条件的右端项。

二、线性规划的解题步骤1、建立数学模型:根据实际问题,确定决策变量、目标函数和约束条件。

2、画出可行域:将约束条件在直角坐标系中表示出来,得到可行域。

3、求出最优解:在可行域内,通过寻找目标函数的等值线与可行域边界的交点,求出最优解。

三、例题分析例 1:某工厂生产甲、乙两种产品,已知生产 1 单位甲产品需要消耗 A 资源 2 单位,B 资源 3 单位,可获利 5 万元;生产 1 单位乙产品需要消耗 A 资源 3 单位,B 资源 2 单位,可获利 4 万元。

现有 A 资源12 单位,B 资源 10 单位,问如何安排生产,才能使工厂获得最大利润?解:设生产甲产品$x_1$单位,生产乙产品$x_2$单位。

高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)

高中数学必修5:简单的线性规划问题  知识点及经典例题(含答案)

简单的线性规划问题【知识概述】线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题.解决线性规划的数学问题我们要注意一下几点1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题;2.解决线性规划问题需要经历两个基本的解题环节(1)作出平面区域;(直线定”界”,特“点”定侧);(2)求目标函数的最值.(3)求目标函数z=ax+by最值的两种类型:①0b>时,截距最大(小),z的值最大(小);②0b>时,截距最大(小),z的值最小(大);【学前诊断】1.[难度] 易满足线性约束条件23,23,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y=+的最大值是()A.1B.32C.2D.32.[难度] 易设变量,x y满足约束条件0,0,220,xx yx y≥⎧⎪-≥⎨⎪--≤⎩则32z x y=-的最大值为( )A.0B.2C.4D.63. [难度] 中设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞【经典例题】例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =+的最大值为( )A.5B.4C.1D.8例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )A.4B.3C.2D.1例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最小值为8,则a b +的最小值为____________.例4. 在约束条件下0,0,,24,x y x y s x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )A.[]6,15B.[]7,15 C.[]6,8 D.[]7,8例5. 设不等式组1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,所表示平面区域是1,Ω平面区域2Ω与1Ω关于直线3490x y --=对称,对于1Ω中任意一点A 与2Ω中的任意一点B ,AB 的最小值等于( )A.285B.4C.125D.2例6.对于实数,x y ,若11,21,x y -≤-≤则21x y -+的最大值为_________.例7.在约束条件22240x y x y +++≤下,函数32z x y =+的最大值是___________.例8. 已知函数2()2(,)f x x ax b a b =++∈R ,且函数()y f x =在区间()0,1与()1,2内各有一个零点,则22(3)z a b =++的取值范围是( ).A.2⎫⎪⎪⎝⎭B.1,42⎛⎫ ⎪⎝⎭C.()1,2D.()1,4 例9. 奇函数()f x 在R 上是减函数,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,t s的取值范围是( ). A.1,14⎡⎫-⎪⎢⎣⎭ B.1,14⎡⎤-⎢⎥⎣⎦ C.1,12⎡⎫-⎪⎢⎣⎭ D.1,12⎡⎤-⎢⎥⎣⎦例10. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克 A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱(C )甲车间加工原料18箱,乙车间加工原料50箱(D )甲车间加工原料40箱,乙车间加工原料30箱【本课总结】线性规划是不等式和直线与方程的综合应用,是数形结合的和谐载体,也是高考中的重要考点,近几年的高考题中考查的频率较高,一般以考查基本知识和方法为主,属于基础类题,难度一般不高.1. 解决线性规划问题有一定的程序性:第一步:确定由二元一次不等式表示的平面区域;第二步:令z=0画直线0:0l ax by +=;第三步:平移直线0l 寻找使直线a z y x b b=-+截距取最值(最大或最小)的位置(最优解).第四步:将最优解坐标代入线性目标函数z ax by =+求出最值2. 解决线性规划问题要特别关注线性目标函数z ax by =+中b 的符号,若b >0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最大(小)值,若b <0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最小(大)值, b <0的情况是很多同学容易出现的盲点.3. 线性规划问题要重视数形结合思想的运用,善于将代数问题和几何问题相互转化,由线性规划问题引申的其它数形结合题目也要灵活掌握,如:将平面区域条件引申为:22240x y x y +++≤表示圆面等,将目标函数引申为:2224z x y x y =+++表示动点到定点的距离的最值问题;21y z x +=-表示动点与定点连线的斜率的最值问题等. 4. 线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则一般在区域顶点处取得最大或最小值5. 线性规划中易错点提示(1)忽视平面区域是否包括边界.一般最优解都处于平面区域的边界顶点处,若平面区域不包含边界,则可能不存在最值.(2)忽视对线性目标函数z ax by =+中b 的符号的区分.(3)代数问题向其几何意义的转化困难.【活学活用】1. [难度] 中若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.4,3⎡⎫+∞⎪⎢⎣⎭ B.(]0,1 C.41,3⎡⎤⎢⎥⎣⎦ D.(]40,1,3⎡⎫+∞⎪⎢⎣⎭2. [难度] 中 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A .4B .11C .12D .143. [难度] 中 已知变量x 、y 满足约束条件 20,1,70,x y y x x x y -+≤⎧⎪≥⎨⎪+-≤⎩则的取值范围是( ) A .9,65⎡⎤⎢⎥⎣⎦ B .9,5⎛⎤-∞ ⎥⎝⎦∪[)6,+∞ C .(],3-∞∪[)6,+∞ D .[3,6]。

高中数学线性规划各类习题精选100题

高中数学线性规划各类习题精选100题

高中数学线性规划各类习题精选7学校:___________姓名:___________班级:___________考号:___________一、单选题1.设x y ,满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则2x y -的最小值是( )A .-4B .127C .0D .6 2.定义,m a x {,},a a ba b b a b≥⎧=⎨<⎩,设实数x ,y 满足约束条件22x y ⎧≤⎪⎨≤⎪⎩,则m a x {4,3z x y x y=+-的取值范围是( ) A .[7,10]- B .[8,10]- C .[6,8]- D .[7,8]-3.若x y ,满足约束条件221{21x y x y x y +≥≥-≤且向量()3,2a =, ()b x y =,,则•a b 的取值范围是( )A .5,44⎡⎤⎢⎥⎣⎦B .7,52⎡⎤⎢⎥⎣⎦C .7,42⎡⎤⎢⎥⎣⎦D .5,54⎡⎤⎢⎥⎣⎦4.实数x ,y 满足2x a y x x y ≥⎧⎪≥⎨⎪+≤⎩(1a <),且2z x y =+的最大值是最小值的4倍,则a的值是( ) A .211 B .14 C .12 D .1125.已知变量x ,y 满足约束条件,则 的最大值为( )A .B .C .1D .26.设,x y 满足约束条件220840x y x y x y -+≥⎧⎪--≤⎪⎨≥⎪⎪≥⎩,若目标函数11(0,0)z x y a b a b =+>>的最大值为2,则a b +的最小值为( )A .92B .14C .29D .47.设y x ,满足不等式组⎪⎩⎪⎨⎧≥--≤--≤-+02301206y x y x y x ,若y ax z +=的最大值为42+a ,最小值为1+a ,则实数a 的取值范围为( )A .]2,1[-B .]1,2[-C .]2,3[--D .]1,3[-8.已知x ,y 满足,则使目标函数z=y ﹣x 取得最小值﹣4的最优解为( )A .(2,﹣2)B .(﹣4,0)C .(4,0)D .(7,3)9.已知变量y x ,满足以下条件:,,11y xx y R x y y ≤⎧⎪∈+≤⎨⎪≥-⎩,z ax y =+,若z 的最大值为3,则实数a 的值为( )A .2或5B .-4或2C .2D .5 10.不等式表示的平面区域(用阴影表示)是( )A .B .C .D .11.已知 是不等式组的表示的平面区域内的一点, ,为坐标原点,则的最大值( )A .2B .3C .5D .612.已知实数x ,y 满足条件若目标函数的最小值为5,其最大值为( )A .10B .12C .14D .1513.已知(),P x y 为区域22400y x x a -≤⎧≤≤⎨⎩内的任意一点,当该区域的面积为2时,2z x y=+的最大值是( )A .5B .0C .2D .14.若A 为不等式组表示的平面区域,则当从连续变化到时,动直线扫过A 中的那部分区域的面积为( )A .34 B .1 C .74D .2 15.过平面区域内一点 作圆 的两条切线,切点分别为,记 ,则当 最小时 的值为( ) A .B .C .D .16.若变量满足约束条件且的最大值为,最小值为,则的值是( ) (A )(B )(C )(D )17.设变量x ,y 满足约束条件则目标函数z =3x -y 的最大值为( )A .-4B .0C .D .418.已知实数m , n 满足不等式组,则关于x 的方程()23260x m n x mn -++=的两根之和的最大值和最小值分别是( )A .7, 4-B .8, 8-C .4, 7-D .6, 6-19.实数x ,y 满足不等式组则的取值范围是( )A .B .C .D .20.已知变量满足: 的最大值为( )A .B .C .2D .421.若y x ,满足⎪⎩⎪⎨⎧≥≤+≤-010x y x y x 则y x z 2+=的最大值为( )A .0B .1C .23D .2 22.若实数,x y 满足不等式组⎪⎩⎪⎨⎧≥+-≤--≥-+,01,032,033my x y x y x 且x y +的最大值为9,则实数m =( )A .1B .-1C .2D .-2 23.若两个正数b a ,满足24a b +<,则222-+=a b z 的取值范围是( )A .{}|11z z -≤≤B .{}|11z z -≥≥或z C .{}|11z z -<< D .{}|11z z ->>或z24.(题文)已知实数满足,若目标函数的最大值为,最小值为,则实数的取值范围是( )A .B .C .D .25.如果实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤++≥+≥+-010101y x y y x ,则y x -2的最大值为( )A .1B .2C .2-D .3-26.如果实数,满足约束条件,则的最大值为( )A .B .C .D .27.设 , 满足约束条件 ,若目标函数( )的最大值为 ,则的图象向右平移后的表达式为( )A .B .C .D .28.在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,表示的平面区域的面积是( )A..4 C..229.已知正数,x y 满足20350x y x y -≤⎧⎨-+≥⎩,则2z x y =--的最小值为( )A .2B .0C .-2D .-430.已知实数x 、y 满足,如果目标函数的最小值为-1,则实数m =( ). A .6B .5C .4D .331.设,x y 满足约束条件()0,230,,,230.x x y a y m x x y ≥⎧⎪+-≥=+⎨⎪+-≤⎩()1,2b =,且a ∥b ,则m 的最小值为( ) A 、1 B 、2 C 、12 D 、1332.已知实数,x y 满足约束条件00220y x y x y ≥⎧⎪-≥⎨⎪--≥⎩,则11y z x -=+的取值范围是( )A .11,3⎡⎤-⎢⎥⎣⎦B .11,23⎡⎤-⎢⎥⎣⎦C .1,2⎡⎫-+∞⎪⎢⎣⎭D .1,12⎡⎫-⎪⎢⎣⎭33.设变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2x y +的最大值为( )A .95 B .25- C .0 D .5334.若实数x ,y 满足不等式024010x y x y x y +≥⎧⎪+-≤⎨⎪--≤⎩,且x y +的最大值为( )A .1B .2C .3D .435.已知实数满足:,,则的取值范围是A .B .C .D .36.若实数x ,y 满足不等式024010x y x y x my +≥⎧⎪+-≤⎨⎪--≤⎩,且x y +的最大值为3,则实数m =( )A .-1B .12C .1D .2 37.若点),(y x P 满足线性约束条件⎪⎩⎪⎨⎧≥≥+-≤-002303y y x y x ,点)3,3(A ,O 为坐标原点,则⋅的最大值为( )A .0B .3C .-6D .638.设变量,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-≥+3213y x y x y x ,则目标函数23z x y =+的最小值为( )A .6B .7C .8D .9 39.如果直线12:220,:840l x y l x y -+=--=与x 轴正半轴,y 轴正半轴围成的四边形封闭区域(含边界)中的点,使函数()0,0z abx y a b =+>>的最大值为8, 求a b +的最小值( )A 、4B 、3C 、2D 、040.设变量,x y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数1ax y z x ++=的取值范围是[3,5],则a =( )A .4B .3C .2D .141.已知不等式组210210x y x x y -+≥⎧⎪≤⎨⎪+-≥⎩表示的平面区域为D ,若函数|1|y x m =-+的图象上存在区域D 上的点,则实数m 的取值范围是( ) A .1[0,]2 B .1[2,]2- C .3[1,]2- D .[2,1]- 42.已知点集}0222|),{(22≤---+=y x y x y x M ,}022|),{(22≥+--=y x y x y x N ,则N M 所构成平面区域的面积为( )A .πB .π2C .π3D .π443.若实数x ,y 满足不等式组024010x y x y x my +≥⎧⎪+-≤⎨⎪--≤⎩,且x+y 的最大值为3,则实数m=( )A .-1B .12C .1D .2 44.若实数x ,y 满足不等式组,且x+y 的最大值为( )A .1B .2C .3D .445.设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数)0,0(>>+=b a by ax z 的值是最大值为12,则ba 32+的最小值为( ) A .38 B .625 C .311 D .446.设O 是坐标原点,点A (-1,1),若点M (,x y )为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则OA OM ⋅的取值范围为 ( )A .[]0,1-B .[]1,0C .[]2,0D .[]2,1-47.已知变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-≥+≤112y x y x y ,则y x z +=3的最大值为( )A .12B .11C .3D .-1 48.在直角坐标系内,满足不等式的点的集合(用阴影表示)正确的是( )A .B .C .D .49.设x ,y 满足10x y y x y +≤⎧⎪≤⎨⎪≥⎩,则4z x y =+的最大值是( )A .3B .4C .5D .650. 若,x y 满足约束条件5315153x y y x x y +⎧⎪+⎨⎪-⎩≤≤≤,则35x y +的取值范围是( )A .[13,15]-B .[13,17]-C .[11,15]-D .[11,17]-51.设的最大值为( )A .80B .C .25D .52.已知0a >,不等式组00(2)x y y a x ≥⎧⎪≤⎨⎪≥-⎩表示的平面区域的面积为1,则a 的值为( )A .14 B .12C .1D .2 53.不等式2350x y --≥表示的平面区域是( )A .B .C .D .54.设x ,y 满足约束条件 ,若目标函数(0,0)z ax by a b =+>>的最大值为12,则的最小值为 ( ). A .4 B . C . D .55.已知实数,x y 满足1000x y x y x +-≤⎧⎪-≤⎨⎪≥⎩,则2x y -的最大值为(A )12-(B )0 (C )1 (D )1256.若实数y x ,满足不等式组⎪⎩⎪⎨⎧≥-+≤-≤-020102y x y x ,则目标函数y x t 2-=的最大值为( )A . 1-B .0C .1D .257.若实数x ,y 满足4024020+-⎧⎪--⎨⎪-+⎩x y x y x y ………,则目标函数23=+z x y 的最大值为( )A .11B .24C .36D .49⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x 23a b +3831162558.已知 , 满足约束条件则目标函数 的最大值为( )A .1B .3C .D .59.已知实数,x y 满足不等式组2010220x y x y -≤⎧⎪-≤⎨⎪+-≥⎩,,,则z x y =+的取值范围为( )A .[]1,2-B .[]13,C .[]1,3-D .[]2,460.设变量x ,y 满足约束条件00220x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则z =3x -2y 的最大值为A .4B .2C .0D .661.已知实数x 、y 满足约束条件1,1,2 2.x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩则目标函数25y z x +-=的最大值为A .3B .4C .3-D .-1262.不在不等式623<+y x 所表示的平面区域内的点是( ) A .)0,0( B .)1,1( C .)2,0( D .)0,2(二、填空题63.设不等式组2000x y x y +-≤⎧⎪≥⎨⎪≥⎩表示的平面区域为D ,在区域D 内随机取一点P ,则点P 落在圆221x y +=内的概率为 .64.已知,x y 满足14210x x y x y ≥⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最大值为 .65.已知方程220x ax b ++=(,)a R b R ∈∈,其一根在区间(0,1)内,另一根在区间(1,2)内,则31b a --的取值范围为 . 66.设x ,y 满足, ,若 ,则m 的最大值为 .67.设x ,y 满足约束条件则z =x +4y 的最大值为________.68.直线01-22=-+a y ax 与不等式组2040220x y x y x y -+-≤⎧⎪+-≤⎨⎪-+≤⎩表示的区域没有..公共点,则a 的取值范围是 .69.已知变量x ,y 满足⎪⎩⎪⎨⎧≥≤-+≤+-104034x y x y x , xy y x 22+的取值范围为 .70.设变量x ,y 满足则x +2y的最大值为 71.已知变量x 、y 满足约束条件 则的取值范围是 .72.已知实数对(x ,y )满足210x y x y ≤⎧⎪≥⎨⎪-≥⎩,则2x y +的最小值是 .73.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≥+≤-,2,2,1y y x y x 则目标函数22y x z +=的取值范围是 .74.已知实数y x ,则 22222)(y x y y x +++的取值范围为 . 75.若实数满足则的取值范围是 .76.已知0m >,实数,x y 满足⎪⎩⎪⎨⎧≤+≥≥,,0,0m y x y x 若2z x y =+的最大值为2,则实数m =______.77.设2z x y =-+,实数,x y 满足2,{1, 2.x x y x y k ≤-≥-+≥若z 的最大值是0,则实数k =_______, z 的最小值是_______.78.给出平面区域如图所示,其中若使目标函数仅在点处取得最大值,则的取值范围是________.79.设实数x ,y 满足约束条件202x y y x -≥⎧⎪⎨≥-⎪⎩,则2z x y =+的最大值为 . 80.设,x y 满足约束条件1{10 1x y x x y +≤+≥-≤,则目标函数2y z x =-的取值范围为___________. 81.设实数,x y 满足,102,1,x y y x x ≤⎧⎪≤-⎨⎪≥⎩向量2,x y m =-()a ,1,1=-()b .若// a b ,则实数m 的最大值为 .82.已知实数x ,y 满足220,220,130,x y x y x y --≥⎧⎪-+≤⎨⎪+-≤⎩则z xy =的最大值为 .83.已知变量,x y 满足240{2 20x y x x y -+≥≤+-≥,则32x y x +++的取值范围是 . 84.设x ,y 满足约束条件1210,0≤+⎧⎪≥-⎨⎪≥≥⎩y x y x x y ,若目标函数()0,0z abx y a b =+>>的最大值为35, 则a b +的最小值为 .85.若x y ,满足约束条件1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则2z x y =+的最大值为____________.86.若,x y 满足约束条件:1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则3x y +的最大值为___ ____.87.已知x 、y 满足,则 的最大值是___________ .88.已知变量,x y 满足约束条件13,1,x y y x y +≥⎧⎪≤⎨⎪-≤⎩,若z kx y =+的最大值为5,且k 为负整数,则k =____________.89.已知不等式表示的平面区域为 ,若直线 与平面区域 有公共点,则 的范围是_________90.已知实数y x ,满足⎪⎩⎪⎨⎧≤≥+≥+-1002x y x y x 则y x z +=2的最小值为__________.91.若点(2,1)和(4,3)在直线230x y a -+= 的两侧,则a 的取值范围是____________.92.设变量x ,y 满足约束条件3{ 1 1x y x y y +≤-≥-≥,则2z x y =-的最小值为93.设变量y x ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则y x z 23+-=的最大值为 .94.已知实数 满足,则的取值范围是__________.95.已知变量x ,y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数33z x y =-+的最大值是 .96.已知实数x ,y 满足约束条件则 的最大值等于______.97.设1,m >在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,则m 的值为 ,目标函数y x z -=2的最小值为________.三、解答题98.画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域99.(本小题12分)已知⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x , 求(Ⅰ)12++=x y z 的取值范围; (Ⅱ)251022+-+=y y x z 的最小值.100.(本小题12分)已知y x ,满足不等式组⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求(1)y x z 2+=的最大值;(2)251022+-+=y y x z 的最小值.参考答案1.A【解析】试题分析:作出x y ,满足约束条件下的平面区域,如图所示,由图当目标函数2z x y =-经过点(0,4)A 时取得最小值,且min 044z =-=-,故选A .考点:简单的线性规划问题.2.A .【解析】试题分析:若4320x y x y x y +≥-⇒+≥:4z x y =+,如下图所示,画出不等式组所表示的可行域,∴当2x y ==时,m a x 10z =,当2x =-,1y =时,m i n 7z =-;若432x y x y x y+<-⇒+<: 3z x y =-,画出不等式所表示的可行域,∴当2x =,2y =-时,max 8z =,当2x =-,1y =时,min 7z =-,综上,z 的取值范围是[7,10]-,故选A .考点:线性规划的运用.3.D【解析】试题分析:∵向量()3,2a =, ()b x y =,,∴·32a b x y =+,设z=3x+2y , 作出不等式组对于的平面区域如图:由z=3x+2y ,则322z y x =-+,平移直线322z y x =-+,由图象可知当直线322z y x =-+, 经过点B 时,直线322z y x =-+的截距最大,此时z 最大,由{ 21x yx y =-=,解得1{ 1x y ==,即B (1,1),此时zmax=3×1+2×1=5, 经过点A 时,直线322z y x =-+的截距最小,此时z 最小, 由{ 221x y x y =+=,解得14{ 14x y ==,即A 11,44⎛⎫ ⎪⎝⎭,此时zmin=3×14+2×14=54,则54≤z≤5 考点:简单线性规划4.B【解析】试题分析:在直角坐标系中作出可行域如下图所示,当目标函数y x z +=2经过可行域中的点)1,1(B 时有最大值3,当目标函数y x z +=2经过可行域中的点),(a a A 时有最小值a 3,由a 343⨯=得41=a ,故选B .考点:线性规划.5.C【解析】试题分析:画出可行域如下图所示,由图可知,目标函数在点 取得最大值为 .考点:线性规划.6.A【解析】试题分析:作出可行域如图, ()2201,4840x y A x y -+=⎧⇒⎨--=⎩,当目标函数11(0,0)z x y a b a b=+>>过点()1,4A 时纵截距最大,此时z 最大.即()142,0,0a b a b+=>>.()1141419552222a b a b a b a b b a ⎛⎫⎛⎫⎛⎫∴+=++=++≥= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当4b a a b =,即322a b ==时取''''=.故选A . 考点:1线性规划;2基本不等式.7.B【解析】试题分析:由z ax y =+得,y ax z =-+,直线y ax z =-+是斜率为,a y -轴上的截距为z 的直线,作出不等式组对应的平面区域如图:则()()1,1,2,4,A B z ax y =+的最大值为24a +,最小值为1a +∴直线z ax y =+过点B 时,取得最大值为24a +,经过点A 时取得最小值为1a +,若0a =,则y z =此时满足条件,若0a >则目标函数斜率0k a =-<,要使目标函数在A 处取得最小值,在B 处取得最大值,则目标函数的斜率满足1BC a k -≥=-,即01a <≤,若0a <,则目标函数斜率0k a =->要使目标函数在A 处取得最小值,在B 处取得最大值,则目标函数的斜率满足2AC a k -≤=,即20a -≤<,综上21a -≤≤;故选B .考点:简单的线性规划8.C【解析】试题分析:由题意作出其平面区域将z=y-x 化为y=x+z ,z 相当于直线y=x+z 的纵截距,则由平面区域可知,使目标函数z=y-x 取得最小值-4的最优解为(4,0);考点:简单线性规划问题9.B【解析】试题解析:当直线y ax z +=平移到点()1,1--B 时有最大值,此时应满足431-=⇒=--a a ;当直线y ax z +=平移到点()1,2-B 时有最大值,此时应满足2312=⇒=-a a .考点:线性规划的应用.10.B【解析】试题分析:可用特殊值法.代入点可知满足不等式,故点所在区域即为所求.考点:二元一次不等式表示平面区域.11.D【解析】试题分析:由题意可知,,令目标函数 ,作出不等式组表示的平面区域,如图所示,由图知,当目标函数 经过点 时取得最大值,最大值为 ,故选D .考点:简单的线性规划问题.12.A【解析】试题分析:依题意知,不等式表示的平面区域如图所示的三角型ABC 及其内部且A (2,2)、C (2,4-c ).目标函数可看作是直线在y 轴上的截距,显然当直线过点C 时,截距最小及z 最小,所以解得,此时B (3,1),且直线过点B 时截距最大,即z 最大,最大值为.故选A .考点:线性规划求最值.【方法点睛】线性规划求最值和值域问题的步骤:(1)先作出不等式组表示的平面区域;(2)将线性目标函数看作是动直线在y 轴上的截距;(3)结合图形看出截距的可能范围即目标函数z 的值域;(4)总结结果.另外,常考非线性目标函数的最值和值域问题,仍然是考查几何意义,利用数形结合求解.例如目标函数为可看作是可行域内的点(x ,y )与点(0,0)两点间的距离的平方;可看作是可行域内的点(x ,y )与原点(0,0)连线的斜率等等. 13.A 【解析】试题分析:由约束条件作出可行域,求出使可行域面积为2的a 值,化目标函数为直线方程的斜截式,数形结合可得最优解,求出最优解的坐标,代入目标函数得答案.2240{0y x x a-≤≤≤作出可行域如图, 由图可得22A a a B a a -(,),(,),1421122OAB S a a a B ∆=⨯⨯=∴=∴,,(,),目标函数可化为122z y x =-+,∴当122zy x =-+,过A 点时,z 最大,z=1+2×2=5,故选A .考点:简单的线性规划14.C【解析】试题分析:如图,不等式组表示的平面区域是△AOB,动直线x+y=a(即y=-x+a)在y轴上的截距从-2变化到1.知△ADC是斜边为3的等腰直角三角形,△EOC是直角边为1等腰直角三角形,所以区域的面积13173112224 ADC EOCS S S∆∆=-=⨯⨯-⨯⨯=考点:二元一次不等式(组)与平面区域视频15.C【解析】试题分析:因为,所以在中,,因为,而函数在上是减函数,所以当最小时最大,因为为增函数则此时最大。

高中数学 线性规划经典例题集锦

高中数学 线性规划经典例题集锦
(x,y)到原点的距离的由平图方可,得点A使Z
最大,点B 使Z最小。
x 4y 3 0

求出A 为(5,2)。
3x 5y 25 0
x 1 由 x 4 y 3 0 求出B为(1,1)。
(3)若z=x2+y2,求z的最值.
y
5C
B
O1
x=1
x-4y+3=0
A
3x+5y-25=0
5
x
zmin 2, zmax 29.
求:(1). z y 3 的范围;
O
2
4x
(2).
z
y2 x 1
的范围.
2
Q
B
x3
解: (1) z y 3 表示可行域内任一点与定点Q(0,-3)连线的斜率,
x
因为kQA 2 , kQB 0,
z 所以 的范围为 ( , 2][0, ).
返回首页
关闭程序
(2).z y 2 表示可行域内任一点与定点
①m
0 时,
1 m
1
m1
② m 0 时,
易知, C (3,9) 到 O 距离最大,此时zmax 32 92 90 , zmin 02 02 0.
返回首页
关闭程序
3. (2).解: z x2 2x y2 (x 1)2 y2 1
y
6
表示可行域内任一点到定点 M ( 1,0) 距离
的平方再减去1.
过 M 作直线 AB 的垂线,垂足是 P
x 1 由 3x 5y 25 0 可得C为(1,4.4)
B
O1
x=1
A
3x+5y-25=0
5
x
zmax
kOC

高中数学线性规划各类习题精选

高中数学线性规划各类习题精选

线性规划基础知识:一、知识梳理1. 目标函数: P =2x+y是一个含有两个变 量 x 和y 的 函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 二:积储知识:一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=02. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<03. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同,(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>02.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0 二.二元一次不等式表示平面区域: ①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界;②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。

高中数学线性规划考点解析及针对练习

高中数学线性规划考点解析及针对练习

专题简单的线性规划考点精要(1)一元二次不等式①会从实际情境中抽象出一元二次不等式模型;②通过函数图像了解一元二次不等式与相应的二次函数,一元二次方程的联系;③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程度框图。

(2)一元一次不等式组与简单线性的规划问题①会从实际情境中抽象出二元一次不等式组;…②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。

解一元一次不等式、一元二次不等式是解不等式最重要的基础知识和基本技能;简单的线性规划及其应用也是必考的知识点,这两部分几乎年年考,是必备的基础知识和基本技能。

例题精讲:例 1 已知x,y满足280440x yx yx+-≤⎧⎪-+≤⎨⎪≥⎩,求z=3x+y的最大值与最小值__________________. [例2 不等式组(5)()003x y x yx-++≥⎧⎨≤≤⎩,所表示的平面区域的面积是_________例3 设变量x ,y 满足约束条件23033010x y x y y +-≤⎧⎪+-≥⎨⎪-≤⎩,若目标函数z=ax+y (a >0)仅在点(3,0)处取得最大值,则a 的取值范围是_____________ 例4 线性规划中的几何问题1、如果点P 在平面区域2203x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩上,点Q 在曲线22(2)1x y ++=上,那么PQ 的最小值为 。

2、以原点为圆心的圆完全落在区域36020x y x y -+≥⎧⎨+-≤⎩内,则圆的面积的最大值为是 。

3、已知,x y 满足143034230x x y x y ≥⎧⎪-+≤⎨⎪+-≤⎩·(1)求yz x=的取值范围。

(2)求22z x y =+的最大、最小值。

针对训练1.设变量x ,y 满足约束条件0121x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩,则目标函数z =5x+y 的最大值是( )A .2B .3C .4D .52.设变量x , y 满足3010350x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,设y=kx ,则k 的取值范围是( )、A .14,33⎡⎤⎢⎥⎣⎦B .4,23⎡⎤⎢⎥⎣⎦C .1,22⎡⎤⎢⎥⎣⎦D .1,2⎡⎫+∞⎪⎢⎣⎭3.如果实数x ,y 满足条件101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,那么z=2x -y 的最大值为( )A .2B .1C .-2D .-34.在平面直角坐标系中,不等式组20202x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩表示的平面区域的面积是( )A.B .4 C.D .25.若不等式组5002x y y a x -+≥⎧⎪≥⎨⎪≤≤⎩,表示的平面区域是一个三角形,则a 的取值范围是( )A .a <5B .a ≥7C .5≤a <7D .a <5或a≥76.若x ,y 满足约束条件03003x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩,则z=2x -y 的最大值为__________;7.已知点P (x ,y )的坐标满足条件41x y y x x +≤⎧⎪≥⎨⎪≥⎩,点O 为坐标原点,那么|PO |的最小值等于___,最大值等于___8.已知1102(1)x x y y x ≥⎧⎪-+≤⎨⎪≥-⎩,则x 2+y 2的最小值是_______________答案:例1 14,1 例2.24 例3.{a |a >12} 针对训练1.D 2.C 3.D 4.B 5.C 6.9 78.5)高考链接1(09北京理)若实数,x y 满足2045x y x y +-≥⎧⎪≤⎨⎪≤⎩则s y x =-的最小值为__________。

高中数学线性规划练习题及讲解

高中数学线性规划练习题及讲解

高中数学线性规划练习题及讲解线性规划是高中数学中的一个重要概念,它涉及到资源的最优分配问题。

以下是一些线性规划的练习题,以及对这些题目的简要讲解。

### 练习题1:资源分配问题某工厂生产两种产品A和B,每生产一件产品A需要3小时的机器时间和2小时的人工时间,每生产一件产品B需要2小时的机器时间和4小时的人工时间。

工厂每天有机器时间100小时和人工时间80小时。

如果产品A的利润是每件50元,产品B的利润是每件80元,工厂应该如何安排生产以获得最大利润?### 解题思路:1. 首先,确定目标函数,即利润最大化。

设生产产品A的数量为x,产品B的数量为y。

2. 目标函数为:\( P = 50x + 80y \)。

3. 根据资源限制,列出约束条件:- 机器时间:\( 3x + 2y \leq 100 \)- 人工时间:\( 2x + 4y \leq 80 \)- 非负条件:\( x \geq 0, y \geq 0 \)4. 画出可行域,找到可行域的顶点。

5. 计算每个顶点的目标函数值,选择最大的一个。

### 练习题2:成本最小化问题一家公司需要生产两种产品,产品1和产品2。

产品1的原材料成本是每单位10元,产品2的原材料成本是每单位15元。

公司每月有原材料预算3000元。

如果公司希望生产的产品总价值达到最大,应该如何分配生产?### 解题思路:1. 设产品1生产x单位,产品2生产y单位。

2. 目标函数为产品总价值最大化,但题目要求成本最小化,所以实际上是求成本最小化条件下的产品组合。

3. 约束条件为原材料成本:\( 10x + 15y \leq 3000 \)4. 非负条件:\( x \geq 0, y \geq 0 \)5. 画出可行域,找到顶点。

6. 根据实际情况,可能需要考虑产品1和产品2的市场价格,以确定最大价值。

### 练习题3:运输问题一个农场有三种作物A、B和C,需要运输到三个市场X、Y和Z。

(word完整版)高中线性规划知识点及最新高考真题,推荐文档

(word完整版)高中线性规划知识点及最新高考真题,推荐文档

高中必修5线性规划简单的线性规划问题一、知识梳理1. 目标函数:P =2x + y是一个含有两个变量x和y的函数,称为目标函数.2. 可行域:约束条件所表示的平面区域称为可行域•3. 整点:坐标为整数的点叫做整点.4. 线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题•只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析1. 对于不含边界的区域,要将边界画成虚线.2. 确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验.3. 平移直线y=—k x +P时,直线必须经过可行域.4. 对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5. 简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:2* (2015•马軼山一模)设变壘X, y满足约束条件I < F则z=x-3y的罠小值(扎-2 S. ~4C+ -5 D. -8rj-v>03. (2015 -Lil东)已知筈,y满足约朿条件\ x-y<2,若沪立+y的最犬値为4,则沪][炖A B3 Ei 2 C* ~ 2 D«—314x-H5j>S4* 东)若变重壯y炳足釣束条件3 l<x<J ,则沪睑+刘的最"卜信为()乱年 C. 6 D.A. 42xp 三 IDx-2y<l4f 则克苧的最大值育()百x+j-4<01 H!lz-^2x+y 的最大值是( )绘1内・一1B ・一2C+ -5D ・1(C, 12D . ia。

高中数学线性规划复习题含答案

高中数学线性规划复习题含答案

线性规划复习题1.在平面直角坐标系中,不等式组(a为常数)表示的平面区域的面积是9,那么实数a的值为( )A. 3+2 B.-3+2 C.-5 D. 12.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z=x+ay取得最小值的最优解有无数个,则a的一个可能值为( )A.-3 B. 3 C.-1 D. 13.设变量x,y满足约束条件则目标函数z=2x+3y的最小值为( )A. 6 B. 7 C. 8 D. 234.在平面直角坐标系中,点在直线的右上方,则的取值范围是()A.(1,4) B.(-1,4) C.(-∞,4) D.(4,+∞)5.设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为 ( )A. B. C. D. 46.设不等式组表示的平面区域为D.若指数函数y=a x的图象上存在区域D上的点,则a的取值范围是( )A. (1,3] B. [2,3] C. (1,2] D. [3,+∞)7.已知平面区域D由以A(1,3)、B(5,2)、C(3,1)为顶点的三角形内部和边界组成.若在区域D上有无穷多个点(x,y)可使目标函数z=x+my取得最小值,则m=________.8.记不等式组所表示的平面区域为D,若直线y=a(x+1)与D有公共点,则a 的取值范围是________.9.营养学家指出,成人良好的日常饮食应该至少提供0.075 kg的碳水化合物,0.06kg的蛋白质,0.06 kg的脂肪,1 kg食物A含有0.105 kg碳水化合物,0.07kg蛋白质,0.14 kg脂肪,花费28元;而1 kg食物B含有0.105 kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?将已知数据列成下表:10.两类药片有效成分如下表所示,若要求至少提供12毫克阿司匹林,70毫克小苏打,28毫克可待因,问两类药片最小总数是多少?怎样搭配价格最低?11.变量x、y满足(1)设z=,求z的最小值;(2)设z=x2+y2,求z的取值范围;(3)设z=x2+y2+6x-4y+13,求z的取值范围.12.甲、乙、丙三种食物的维生素A、B含量及成本如下表:某食物营养研究所想用x千克甲种食物,y千克乙种食物,z千克丙种食物配成100千克的混合食物,并使混合食物至少含56 000单位维生素A和63000单位维生素B.(1)用x、y表示混合食物成本C;(2)确定x、y、z的值,使成本最低.13.某家具厂有方木料90 m3,五合板600m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m3,五合板2 m2,生产每个书橱需要方木料0.2 m3,五合板1m2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所得利润最大?参考答案1.【答案】D【解析】区域如下图,易求得A(-2,2),B(a,a+4),C(a,-a).S△ABC=|BC|·|a+2|=(a+2)2=9,由题意得a=1.2.【答案】A【解析】-==,∴a=-3.3.【答案】B【解析】作出可行域如下图所示.由图可知,z=2x+3y经过点A(2,1)时,z有最小值,z的最小值为7.4.【答案】D【解析】取原点(0,0),因为,且原点在直线的左下方,所以不等式表示的区域在直线的左下方.5.【答案】A【解析】不等式表示的平面区域如图所示阴影部分,当直线ax+by =z(a>0,b>0)过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大值12,即4a+6b=12,即2a+3b=6,而+=(+)·=+(+)≥+2=(当且仅当a=b=时取等号).6.【答案】A【解析】作出不等式组表示的平面区域D,如下图阴影部分所示.由得交点A(2,9).对于y=a x的图象,当0<a<1时,没有点在区域D上.当a>1,y=a x恰好经过A点时,由a2=9,得a=3.要满足题意,需满足a2≤9,解得1<a≤3. 7.【答案】1【解析】如下图所示,目标函数可化为若m>0,则z的最小值对应截距的最小值,可知m=1,满足题意;若m<0,则z的最小值对应截距的最大值,m=-1及-2均不合题意.8.【答案】【解析】直线y=a(x+1)恒过定点P(-1,0)且斜率为a,作出可行域后数形结合可解.不等式组所表示的平面区域D为如图所示阴影部分(含边界),且A(1,1),B(0,4),C.直线y=a(x+1)恒过定点P(-1,0)且斜率为a.由斜率公式可知k AP=,k BP=4.若直线y=a(x+1)与区域D有公共点,数形结合可得≤a≤4.9.【答案】每天食用食物A kg,食物Bkg,能够满足日常饮食要求,又使花费最低,最低成本为16元.【解析】设每天食用xkg食物A,y kg食物B,总成本为z,那么⇒目标函数为z=28x+21y. 作出二元一次不等式组所表示的平面区域,把目标函数z=28x+21y变形为y=-x+,它表示斜率为-且随z变化的一族平行直线.是直线在y轴上的截距,当截距最小时,z的值最小.如图可见,当直线z=28x+21y经过可行域上的点M时,截距最小,即z最小.解方程组得M点的坐标为. 所以z min=28x+21y=16.10.【答案】设A,B两种药品分别为x片和y片,则有两类药片的总数为z=x+y,两类药片的价格和为k=0.1x+0.2y.如下图所示,作直线l:x+y=0,将直线l向右上方平移至l1位置时,直线经过可行域上一点A,且与原点最近.解方程组得交点A坐标为.由于A不是整点,因此不是z的最优解,结合图形可知,经过可行域内整点且与原点距离最近的直线是x+y=11,经过的整点是(1,10),(2,9),(3,8),因此z的最小值为11.药片最小总数为11片.同理可得,当x=3,y=8时,k取最小值1.9,因此当A类药品3片、B类药品8片时,药品价格最低.11.【答案】由约束条件作出(x,y)的可行域如下图所示.由解得A.由解得C(1,1).由解得B(5,2).(1)∵z==.∴z的值即是可行域中的点与原点O连线的斜率.观察图形可知z min=k OB=.(2)z=x2+y2的几何意义是可行域上的点到原点O的距离的平方.结合图形可知,可行域上的点到原点的距离中,d min=|OC|=,d max=|OB|=.即2≤z≤29.(3)z=x2+y2+6x-4y+13=(x+3)2+(y-2)2的几何意义是可行域上的点到点(-3,2)的距离的平方.结合图形可知,可行域上的点到(-3,2)的距离中,d min=1-(-3)=4,d max==8.所以16≤z≤64.【解析】12.【答案】x=50千克,z=30千克时成本最低.【解析】(1)依题意x、y、z满足x+y+z=100z=100-x-y.∴成本C=11x+9y+4z=7x+5y+400(元).(2)依题意∵z=100-x-y,∴作出不等式组所对应的可行域,如下图所示.联立⟹交点A(50,20).作直线7x+5y+400=C,则易知该直线截距越小,C越小,所以该直线过A(50,20)时,直线在y轴截距最小,从而C最小,此时7×50+5×20+400=C=850元.∴x=50千克,z=30千克时成本最低.13.【答案】由题意可画表格如下:(1)设只生产书桌x张,可获得利润z元,则⇒⇒0≤x≤300,所以当x=300时,z max=80×300=24 000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元.(2)设只生产书橱y个,可获得利润z元,则⇒⇒0≤y≤450,所以当y=450时,z max=120×450=54 000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元.(3)设生产书桌x张,书橱y个,利润总额为z元,则⇒z=80x+120y.在直角坐标平面内作出上面不等式组所表示的平面区域,即可行域.作直线l:80x+120y=0,即直线l:2x+3y=0.把直线l向右上方平移至l1的位置时,直线经过可行域上的点M,此时z=80x+120y取得最大值.由解得点M的坐标为(100,400).所以当x=100,y=400时,z max=80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.。

高中线性规划练习(含详细解答),成才系列

高中线性规划练习(含详细解答),成才系列
(B)
7 3
3 7
( C)
4 3 x 0,
(D)
3

4
18.( 2008 年高考 ・ 浙江卷
理 17)若 a
0, b
0 ,且当 x
y y
0, 时,恒有 ax 1
by
1 ,则以 a ,b 为坐标
点 P ( a, b) 所形成的平面区域的面积等于
__________ .
5. “ 求约束条件中的参数 ” 型考题
X

2Y Y 0 0
12 12
,画可行域如图所示,
2X X Y
目标函数 Z=300X+400Y 可变形为 Y=
3 4
x 2x x
z 400 y 2y 12 12

这是随 Z 变化的一族平行直线,解方程组
x y
4 4
,即 A ( 4,4 )
y 11 y 3 9
0 0 0
表示的平面区域为 D,若指数函数 y= a 的
x
3x
5x 3 y
图像上存在区域 A (1 , 3] D 上的点,则 a 的取值范围是 B [2 , 3] C (1 , 2]
D
[ 3,
]
x 2y 5 0
23. ( 2007 年高考 ・ 浙江卷 理 17)设
m 为实数, 若 { ( x, y )
答案解析
通常转化为求直线在
ax
by ( a, b
R) 的线性目标函数的最值问题,
y轴
上的截距的取值 . 结合图形易知,目标函数的最值一般在可行域的顶点处取得
. 掌握此规律可以有效避免因
B 【解析】约束条件对应
5 3 ABC 内的区域 ( 含边界 ) ,其中 A (2, 2), B (3, 2), C ( , ) 画出可行域, 2 2 z 3x y [8,11]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一) 知识内容
1.二元一次不等式表示的区域
对于直线(A 〉0)
当B >0时, 表示直线上方区域; 表示直线的下方区域。

当B <0时, 表示直线下方区域; 表示直线的上方区域。

2.线性规划
(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件。

z =Ax +By 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =Ax +By 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数。

另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示。

(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.
(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域。

在上述问题中,可行域就是阴影部分表示的三角形区域。

其中可行解()和()分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解。

线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行
(二)主要方法:
用图解法解决简单的线性规划问题的基本步骤:
1。

首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域)。

2.设z =0,画出直线l 0.
3.观察、分析,平移直线l 0,从而找到最优解。

4。

最后求得目标函数的最大值及最小值.
(三)典例分析:
1。

二元一次不等式(组)表示的平面区域
【例1】 画出下列不等式(或组)表示的平面区域

⑵求不等式表示的平面区域的面积。

2.区域弧长、面积问题
【例2】 若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是( )
A .
B .
C .
D .
【例3】 若,,且当时,恒有,则以,为坐标点所形成的平面区域的面积等于 .
例题精讲
高考要求
板块一:线性规划
【例4】已知钝角的最长边为,其余两边的长为、,则集合所表示的平面图形面积等于()A.B.C.D.
【例5】如图,在平面直角坐标系中,是一个与轴的正半轴、轴的正半轴分别相切于点、的定圆所围成的区域(含边界),、、、是该圆的四等分点.若点、点满足且,则称优于.如果中的点满足:不存在中的其它点优于,那么所有这样的点组成的集合是劣弧()
A.B.C.D.
【例6】已知是由不等式组所确定的平面区域,则圆在区域内的弧长为( )
A. B.C.D.
3.线性规划
【例7】设变量,满足约束条件:.则目标函数的最小值为()
A.6 B.7 C.8 D.23
【变式】已知实数、满足,则的最大值是( )
A.B.C.D.
【例8】已知点的坐标满足条件,点为坐标原点,那么的最小值等于______,最大值等于______.【例9】设变量,满足约束条件,则函数的最大值为()
A.B.C.D.
【例10】若实数满足,则的最小值为.
4。

与不等式综合
【例11】设满足约束条件,若目标函数的最大值为,则的最小值为()
A. B. C. D.
【例12】已知实数满足,如果目标函数的最小值为,则实数等于()
A.B.C.D.
【例13】若,满足约束条件,目标函数仅在点处取得最小值,则的取值范围是()A.B.C.D.
5.与其他知识综合
【例14】设二元一次不等式组所表示的平面区域为,使函数的图象过区域的的取值范围是()A.B.C.D.
【例15】已知满足条件的点构成的平面区域的面积为,满足条件的点构成的平面区域的面积为,(其中、分别表示不大于、的最大整数),则点一定在( )
A.直线左上方的区域内 B.直线上
C.直线右下方的区域内 D.直线左下方的区域内
【例16】设是正及其内部的点构成的集合,点是的中心,若集合,则集合表示的平面区域是( )A.三角形区域B.四边形区域
C.五边形区域D.六边形区域
【例17】设不等式组所表示的平面区域为,记内的格点(格点即横坐标和纵坐标均为整数的点)个数为
⑴求的值及的表达式;
⑵记,试比较与的大小;若对于一切的正整数,总有成立,求实数的取值范围.
【例18】在如图所示的坐标平面的可行域内(阴影部分且包括边界),若目标函数取得最小值的最优解有无数个,则的最大值是()
A.B.
C.D.
⑴若关于的不等式的解集是,则对任意实数,总有( )
A.,B.,
C.,D.,
⑵在平面直角坐标系中,若不等式组(为常数)所表示的平面区域的面积等于,则的值为
()
A.B.C.D.
【例19】设集合,,,
⑴的取值范围是;
⑵若,且的最大值为,则的值是.
板块二:线性规划应用
(一)知识内容
(二)主要方法:
利用线性规划研究实际问题的解题思路:
首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数。

然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解.
最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解. (三)典例分析:
【例20】⑴某企业生产甲、乙两种产品,已知生产每吨甲产品要用原料3吨、原料2吨;生产每吨乙产品要用原料1吨、原料3吨.销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗原料不超过13吨,原料不超过18吨,那么该企业可获得最大利润是( )
A.12万元B.20万元C.25万元D.27万元
⑵蔬菜价格随着季节的变化而有所变化.根据对农贸市场蔬菜价格的调查得知,购买千克
甲种蔬菜与千克乙种蔬菜所需费用之和大于元,而购买千克甲种蔬菜与千克乙种蔬菜所需费用之和小于元.设购买千克甲种蔬菜所需费用为元,购买千克乙种蔬菜所需费用为元,则()
A.B.
C.D.大小不确定
【例21】在平面直角坐标系中,满足不等式组,点的集合用阴影表示为下列图中的( )
【例22】已知变量满足约束条件,则的最大值为( )
A.B.C.D.
【例23】已知平面上有三点,,,若在由围成的平面区域中,使目标函数()取得最大值的最优解有无穷多个,则的值是()
A. B. C. D.
【例24】设函数.
⑴求的单调区间和极值;
⑵若对一切,,求的最大值.
【例25】设函数有两个极值点、,且,.
⑴求、满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点的区域;
⑵证明:.。

相关文档
最新文档