趋势外推法

合集下载

趋势外推法ppt课件

趋势外推法ppt课件
两边取对数:ln yˆt ln a bt
产生序列 ln yt ,之后进行普通最小二乘估计该 模型,最终得到估计模型为:
yˆt 303.69 e0.0627t
20
其中调整的 R2 0.9547 ,F 632.6 F0.05(1,30) ,则 方程通过显著性检验,拟合效果很好。标 准误差为:175.37。
所求修正指数曲线预测模型:
yt 73.1738 22.2719 0.5556t
预测2000年的社会总需求量:
yt 73.1738 22.2719 0.55569 73.1
29
此例反映了这样的时间序列变化规律: 初期迅速增加,一段时期后增长量逐渐降低,而逐增
长量的环比速度又大体上一致,最后发展水平趋向于 某一正的常数极限,那么,这种时间序列的发展趋势就 适宜用修正指数曲线来描述和预测。
SE ( y yˆ)2 n
例3:下表是我国1952年到1983年社会商品零售 总额(按当年价格计算),分析预测我国社会商 品零售总额 。
16
年份
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
时序 (t)
1 2 3 4 5 6 7 8 9 10 11
yt ,
t 0,1,2,3n 1
n1
2n1
3n1
S1 yt , S2 yt , S3 yt
t0
tn
t2n
于是得A、B、K的估计式为
1
B
S3 S2
S2 S1
n
A
B
1S
2
S1
n
2
B 1
K
1 n
S1
A
B

第六讲 趋势外推法

第六讲 趋势外推法
Λ
yt , t = 0,1,2,L3n −1
S1 = ∑yt , S2 = ∑yt , S3 = ∑yt
t =0 t =n t =2n n−1 2n−1 3n−1
于是得A、B、K的估计式为
1 Λ S3 − S2 n B = S −S 2 1 Λ B−1(S2 − S1 ) Λ A= 2 Λn B −1 Λn Λ Λ B −1 1 1 S − S2 − S1 K = S − A 1 = 1 Λn Λ n n B−1 B −1
修正指数曲线预测模型 1)模型的形式
ˆ yt = K + ab t
2)模型的识别
例4 我国卫生机构人员总数如表4.13所示,试预 测2003年我国卫生机构总人数。 解: 绘制散点图,如图4.13所示。
得:
所以我国卫生机构总人数修正指数曲线模型为:
yt = 615.641 − 205.667 × (0.9172)t
差分法: 利用差分法把数据修匀,使非平稳序列达到平 稳序列。 差分法可分为普通差分法和广义差分法两类。 一阶、二阶、k阶差分 广义差分法就是先计算时间序列的广义差分 (时间序列的倒数或对数的差分,以及相邻项的比率 或差分的比率等),然后,根据算得的时间序列差分 的特点,选择适宜的数学模型。
差分法识别标准:
Λ
Λ
yt = 14.8768e0.1098t
预测1999年的产量 y = 14.8768e0.1098×7 = 32.1 1999
曲线的拟合优度分析
实际的预测对象往往无法通过图形直观确认某种 模型,而是与几种模型接近。这时,一般先初选 几个模型,待对模型的拟合优度分析后再确定究 竟用哪一种模型。 评判拟合优度的好坏一般使用标准误差来作 为 优度好坏的指标:

第7章趋势外推预测方法

第7章趋势外推预测方法

趋势外推法的假设条件: (1)假设事物发展过程没有跳跃式变化,即事物的发展变化是渐进型的。 (2)假设所研究系统的结构、功能 等基本保持不变,即假定根据过去资料 建立的趋势外推模型能适合未来,能代 表未来趋势变化的情况。
第1节 指数曲线法
指数曲线模型 (7.1.1) 对式(7.1.1)两端取对数,得 令 则 这样就把指数曲线 模型转化为直线模型
在利用包络曲线预测时首先要建立包络曲线,具体步骤为: 第一步:分析各类预测对象的预测参数的发展趋势; 第二步:求出各技术单元功能相对增长速度最快的点(xi,yi),i=1,2,…,m; 第三步:绘制包络曲线,即在点( xi,yi )处与i(i=1,2,…,m)技术单元曲线相切的曲线。
二、应用范围 某项技术发展的前期阶段,采用包络曲线对技术发展进行深入研究,可以外推出新的远景技术,从而可以未雨绸缪,提前完成技术贮备,以便及时进行技术更新。 当某一技术的发展趋于极限时,采用包络曲线外推可能出现的新技术。 用包络曲线外推未来某一时刻的特性参数水平,借以推测将会出现那种新技术。 验证决策中制定的技术参数是否合理。如果拟定的参数在包络曲线之上,则可能有些冒进,如在其下则可能偏于保守。合理的技术参数应与包络曲线相吻合,偏高偏低皆需调整。
0
y
a
t
表7.1.1 指数曲线模型差分计算表
第2节 修正指数曲线法
修正指数曲线预测模型 (7.2.1) 式中:a、b、c为待定参数。 为求出a、b和c三个参数,可应用分组法。通常的做法是先把整个时间序列数据分成三组,使每组数据个数相等,然后通过各组数据之和求出参数的具体数值。
表7.2.1 修正指数曲线模型差分计算表
第3节 生长曲线法
生物的生长过程一般经历发生、发展、成熟到衰老几个阶段。发生初期成长速度较慢;发展时期生长速度则较快;成熟时期,生长速度由达到最快而后逐渐变慢,到衰老期则几乎停止生长。 指数曲线模型不能预测接近极限值时生物生长的特性值,因为趋近极限值时,生物生长特性值已不按指数规律增长。描述生物生长过程可以考虑运用形状近似于S型的曲线(称为S曲线)。 本节主要介绍两种最为常用的生长曲线 龚珀兹曲线 皮尔曲线。

趋势外推法法

趋势外推法法

第四节 趋势外推法趋势外推法,也称趋势延伸法,是根据预测目标的历史时间序列所揭示的变动趋势外推到未来以确定预测值的时序预测法。

可分为随手作图法,拟合直线方程法、拟合曲线方程法。

一、随手作图法这种方法是选定时间作为横轴,预测目标量作为纵轴,先按时间序列数据作出散点图。

然后根据备散在点所显示的趋势走向图形(直线或某种曲线),运用直尺或曲线板随手画出一条沿各个点拟合度最佳的直线或曲线,并加以延伸,得出待预测时间对应的预测值。

该方法简便易行,不用建立数学模型,预测效果良好。

但这种方法全凭预测者的观察力和作图技巧,它直接影响到预测的精度。

二、拟合直线方程法这种方法是根据呈线性变动趋势的时间序列,拟合出直线方程bx a Y +=∧,再利用方程进行预测外推,得出预测结果。

直线方程bx a Y +=中,x 为按整数序编号的时间序列,Y 为预测目标量,a 、b 为参数。

设时刻为i x 时,对应的观察值为i Y ,n i ,,2,1 =。

根据这些数据我们要利用最小二乘法拟合出一条直线方程bx a Y +=∧即确定参数a 、b ,使拟合偏差i i Y Y ∧-的平方和∑∧-=22)(i i Y Y S 最小。

由微分法,令02=∂∂a S ,02=∂∂bS ,解之可得到∑∑---=-=x b Y x nb Y n a i i 11 (4-13) ∑∑∑∑∑--=22)())((i i i i i i x x n Y x Y x n b (4-14)当时间序列是整数项时,我们取i x 的中间项为0,其余按下列取值 …,-5,-4,-3,-2,-1,0,1,2,3,4,5,… (中间项)例如 n=7时,i x 分别取为-3,-2,-l ,0,1,2,3七个数值。

这样规定i x 取值后,n 为奇数时有∑=0i x ,则计算参数a 、b 的公式可以简化为∑==-i Y nY a 1(4-15)∑∑=2ii i xY x b (4-16) 例8 某市五金公司1978年到l984年销售额资料为 年份 l978 1979 1980 1981 1982 1983 1984 销售额 4923 5811 7171 8248 8902 9860 l0800(万元)试预测l985、1986两年的销售额。

第三章趋势外推预测法

第三章趋势外推预测法

❖ 初始平滑值的确定:
(1)当原数列的数值个数较多时 (n>15),由于经过多次平滑运算,初 始值对指数平滑值影响逐步减弱到极小 的程度,可以忽略不计,所以可以选用 第一期观察值作为初始平滑值S0=Y1
❖ (2)当原序列的数值个数较少时, n<15,可以选用最初几期的平均数作为 初始平滑值,一般是前3-5个数据的算术 平均数。
Ft+T=at+btT
T为预测的长度。 N为移动项数。
注意:输出区域此时的选择
❖ 建立预测方程: F11+T=202.75+8.5T
3、指数平滑预测法
指数平滑法是用过去的时间序列的加权平均数 作为预测值,是加权移动平均法的一种特殊 形式,由美国经济学家布朗(Robert G.Brown)于1959年在其著作《库存管理的 统计预测》中提出来的。
❖ 例:假定1993-2008年产品C销售情况如表所 示,试用指数平滑法预测2009年的产品销售 量。
❖ 方法1: ❖ 直接计算:先计算指数平滑再进行预测。
❖ 假定初始平滑值S0=97,以平滑系数=0.3为例。
❖ 方法2: ❖ Excel实现: ❖ 工具—数据分析——指数平滑
注意: (1)默认的初始平滑值是原始数据的第一项。 (2)阻尼系数=1-a (3)最后一期平滑值需要再重新计算一下。 (4)注意输出区域的选择。
指数平滑公式:St(1) =aYt+(1-a)St-1
St(1) :t时期的一次指数平滑值。a平滑系数
(0< a<1);Yt为t时期的观察值。 ❖ 预测公式: St=Ft+1:第t 期的指数平滑值作
为第t+1期的预测值。
因此,上式可写成:Ft+1= aYt+(1-a)Ft T=1,2,3,4….n。

趋势外推法

趋势外推法
趋势外推法
趋势外推法
趋势外推法(Trendextrapolation)是根据过去和现在的发展趋势推断未来的一类方法的总称,用于 科技、经济和社会发展的预测,是情报研究法体系的重要部分。 趋势外推的基本假设是未来系过去和现在连续发展的结果。当预测对象依时间变化呈现某种上升或下 降趋势,没有明显的季节波动,且能找到一个合适的函数曲线反映这种变化趋势时,就可以用趋势外推法 进行预测。 趋势外推法的基本理论是:决定事物过去发展的因素,在很大程度上也决定该事物未来的发展,其变 化,不会太大;事物发展过程一般都是渐进式的变化,而不是跳跃式的变化掌握事物的发展规律,依据这 种规律推导,就可以预测出它的未来趋势和状态。
运用一:预测未来的销售量或需求量等 【例 4-2】品种销售量如表 1 所示 表1 产品销售量资料(单位:万件) 2003 10 2004 18 2005 25 2006 30.5 2007 15 2008 38 2009 40 2010 39.5 2011 38
试预测 2012 年的销售量,并要求在 90%的概率保证程度下给出预测的置信区间。 【实验步骤】 : 1.确定预测模型; 2.模型参数估计; 3.预测结果的置信区间估计。 注:Matlab 软件在数据计算方面比较容易,而 SAS 软件更体现在数据的整理和统计方面 第一步,确定预测模型,利用 Matlab 软件画出产品销售量与年份之间的关系图,结果 见图 1。 >> t=[2003 2004 2005 2006 2007 2008 2009 2010 2011]' >> y=[10 18 25 30.5 35 38 40 39.5 38]' >> plot(t,y)
SE
( y yi^)

趋势外推法

趋势外推法

时序 (t)
23 24 25 26 27 28 29 30 31 32
总额 ( yt ) 1163.6 1271.1 1339.4 1432.8 1558.6 1800.0 2140.0 2350.0 2570.0 2849.4
Exceltek Electronics (HK) Ltd Confidential
SE ( y yˆ)2 n
例3:下表是我国1952年到1983年社会商品零 售总额(按当年价格计算),分析预测我国社 会商品零售总额 。
Exceltek Electronics (HK) Ltd Confidential
年份
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
Exceltek Electronics (HK) Ltd Confidential
差分法: 利用差分法把数据修匀,使非平稳序列达到平 稳序列。 差分法可分为普通差分法和广义差分法两类。 一阶、二阶、k阶差分 广义差分法就是先计算时间序列的广义差分( 时间序列的倒数或对数的差分,以及相邻项的比率 或差分的比率等),然后,根据算得的时间序列差分 的特点,选择适宜的数学模型。
t0
tn
t2n
于是得A、B、K的估计式为
1
B
S3 S2
S2 S1
n
A
B
1S
2
S1
n
2
B 1

K
1 n
S1
A
B
n
1
B1
1 n
S1
S2 S1
n
B 1
Exceltek Electronics (HK) Ltd Confidential

定量预测方法

定量预测方法

定量预测方法定量预测方法种类很多,这里仅介绍常用的趋势外推法、时间序列法、回归预测法和灰色预测法。

1.趋势外推法趋势外推法就是运用直线或曲线拟合模型展开预测的方法。

在运用趋势外推法时,应当根据以获取的市场实际资料分析其发展趋势,挑选预测方案,按预测方案里的有关方法展开运算得出结论财政预算值。

(1)直线趋势法。

直线趋势法的方程为用最轻平方等方法估算a和b的值,创建直线预测模型。

然后再根据变量t的值展开预测。

(2)曲线趋势法。

以二次抛物线为例,曲线趋势法的公式为用最轻平方等方法估算a、b、c的值,创建曲线预测模型。

然后再根据变量t的值展开预测。

2.时间序列法(略)3.重回预测法回归预测法是通过分析自变量与因变量之间的相互关系,根据自变量数值的变化,预测因变量数值变化的一种方法,也可称为相关分析预测法。

这种方法是预测学的基本方法,应用十分广泛。

(1)一元线性重回法。

一元线性重回预测的数学模型就是一元线性方程,其计算公式为(2)二元线性回归法。

二元线性回归预测的数学模型是二元线性方程,其计算公式为4.灰色预测法灰色预测法是指通过分析系统内部各因素之间的相关程度,根据原始数据的生成处理来寻求系统变化规律,以此建立微分方程模型,从而预测市场发展趋势的预测方法。

灰色预测法通过生成法处理系统内的变量。

生成法分为累加生成法和累减生成法。

累加生成法是将原始序列通过累加得到生成序列,即将原始序列的第一个数据作为新序列的第一个数据,将原序列的第二个数据加到第一个数据上,其和作为新序列的第二个数据,将原序列的第三个数据加到第二个数据上,其和作为新序列的第三个数据,依此类推,得到生成序列。

累减生成法是将原始序列的数据前后相减,得到累减生成序列。

定量预测趋势外推法

定量预测趋势外推法
精品文档
二 趋势(qūshì)模型及选择
• 正确识别并选择趋势模型是应用趋势外推法 的首要工作,基本方法有两种: 1 图形(túxíng)识别法
• 2 差分计算
精品文档
1 直线, 指数 ,二次抛物线, 三次曲线等模型(móxíng)的 图形
直线(zhíxiàn)
二次抛物线
三次曲线
精品文档
指数
2差分法
10.73是市场(shìchǎng) 的饱和点
精品文档
二、皮尔曲线
模型形式:yˆ
1
L aebt
数学特点:倒数的一阶
差分的环比为常数
皮尔:美国生物学家和人口统计学家(Raymond Pearl, 1870~1940年), 皮尔曲线有时也被称作逻辑斯蒂(logistic) 曲线或生长曲线。由于该曲线可以反映生物的生长过程,所 以皮尔曲线在生物繁殖、人口发展统计和产品生命周期分析 等方面(fāngmiàn)都有着广泛的应用。L为时间序列中Y值的 极限值。
• 所谓差分,是变量的微小变化。根据历史数据计 算差分把数据修匀,将非平稳时间序列转换为平 稳序列,通过该平稳序列的表现,来发现该套用 那个(nà ge)模型。
• 假设时间序列为yt (t=1 ,2,3 ……,n) • 一阶向后差分为: y’t = yt - yt -1 • 二阶向后差分为: y”t= y’t -y’t -1 • 三阶向后差分为: y”’t= y”t –y”t -1 • 多阶以此类推
精品文档
函数(hánshù)图形

t
a
ln
bbt

t
aln
b2
bt
精品文档
• 指数曲线模型不能预测接近极限值时的特性值,因为当 接近某一极限值时,特性值已不按指数规律增长。在产 品导入期阶段,产品需求增长很慢,而随着时间的推移, 社会需求不断增大,产品在早期的市场中也逐渐完善起 来,因而需求量会快速增加,当产品的市场容量接近市 场上限时,需求量的增长速度就会慢下来。产品市场发 展(fāzhǎn)的全过程就会经历发生、发展(fāzhǎn)、成熟 和衰退四个阶段,而这正是生长曲线所能描述的。生长 曲线又称S曲线。S曲线(又称逻辑增长曲线)包括龚珀 兹曲线和皮尔曲线。两种曲线模型特别适用于成熟期商 品的预测。

趋势外推法

趋势外推法
( 3)
三阶差分
一阶差分环比指数
y t y t 1
y t y t1
注意:
增长曲线模型在理论上的变化规律都遵循着一阶 差分 、二阶差分 、三阶差分 、一阶差分 环比指数 为一常数的特征。
曲线趋势外推预测法
y 一、直线趋势外推法(Liner tend ) 1、principle
2 3 t
2.指数曲线外推模型
一般形式 : 对数曲线 3.增长曲线外推法: 修正的指数曲线 罗吉斯曲线 龚珀兹曲线
ˆt ab y
t
ˆt a b ln t y
ˆt K ab y
1 ˆt y t K ab
t
ˆt Ka y
bt
差分概念
一阶差分
二阶差分
y t y t y t 1 y t y t y t1 yt
Q 2 ( yt a bt) a a 2 ( yt a bt) 0
y
t
na bt 0
(2)
Q 2 ( yt a bt) b b 2t ( yt a bt) 0
2 ty a t b t t 0
-4 -3 -2 -1
25
16 9 4 1
-1000
-2000 -1050 -800 -500
191.0
273.7 356.4 439.1 521.8
0
1 2 3 4
0
1 4 9 16
0
300 700 1200 2000
1999
2000 2001
630
700 750
0
1 2
0
1 4
0
700 1500

第4章趋势外推法

第4章趋势外推法
?即1??a20?aniiiqybx??????1??a20?niiiiqybxxb??????解得11??nniiiinabxy??2111??annniiiiiiixbxxy???即得估计式为1111??anniiiiybxnn??n??11122?nniiiiiiinniinxyxybnxx?????i??i??2?iiixxyybxx??????aybx?或得11二加权拟合直线方程法在市场预测中按照时间先后本着重近轻远的原则对离差平方和进行赋权然后再按最小二乘原理使离差平方和达到后再按最小二乘原理使离差平方和达到最小求出加权拟合直线方程
32 2849.4
(1)对数据画折线图分析,以社会商品零售总额为 y轴,年份为x轴。
第4章趋势外推法
(2)从图形可以看出大致的曲线增长模式,用 二次曲线模型来拟合该曲线
yˆt b0b1tb2t2
(3)进行二次曲线拟合。首先产生序列 t 2 , 然后运用普通最小二乘法对模型各参数进行 估计。得到估计模型为:
y ˆt 5 7 7 .2 4 4 4 .3 3 t 3 .2 9 t2
其中调整的 R2 0.9524,F290F 0.05(2,29),
则方程通过显著性检验,拟合效果很好。标准 误差为151.7。
第4章趋势外推法
最小二乘曲线拟合
polyfit(x, y, n) 对描述n阶多项式y=f(x)的数据进行最小二乘 曲线拟合 n=1作为阶次,得到最简单的线性近似。通常 称为线性回归。 n=2作为阶次,得到一个2阶多项式 polyfit 的输出是一个多项式系数的行向量。 计算在xi数据点的多项式值,调用MATLAB的 函数polyval。 第4章趋势外推法
假设由近及远的离差平方和的权重分别为:
0,1,2, , n1

趋势外推预测方法简介

趋势外推预测方法简介
1996 1997 1998 1999 2000 60.0 68.0 69.6 71.1 71.7
2001 2002 72.3 72.8
2003 73.2
第五章 趋势外推预测方法
5.3 生长曲线法
生物的生长过程一般经历发生、发展、成熟到 衰老几个阶段,在不同的生长阶段,生物生长的 速度也不一样。发生初期成长速度较慢,由慢到 快;发展时期生长速度则较快;成熟时期,生长 速度由达到最快而后逐渐变慢,到衰老期则几乎 停止生长。指数曲线模型不能预测接近极限值时 生物生长的特性值,因为趋近极限值时,生物生 长特性值已不按指数规律增长。描述生物生长过 程可以考虑运用形状近似于S型的曲线(称为S曲 线)。本节主要介绍两种最为常用的生长曲线龚 珀兹曲线和皮尔曲线。
lg yˆ lg k bt lg a (5.3.2)
式(5.3.2)在形式上已与式(5.3.1)表示的修正指数曲线相同。
第五章 趋势外推预测方法
6. 龚帕兹(Compertz)模型
yt kabt
取对数, ln yt ln k (ln a)bt 修正指数曲线。
特征: yt 线性变化。 yt
2 1.75
1.5 1.5
1.25
1 1
0.75
0.5
0.5
0.25
0
-6
-4
-2
0
2
4
6
8
ln a 0 0 b 1
0
-3
-2
-1
0
1
2
3
4
ln a 0 b 1
第五章 趋势外推预测方法
150 25
125 20
100
15 75
10 50
5
25

趋势外推法

趋势外推法

趋势外推法目录什么是趋势外推法?线性外推法指数曲线法生长曲线法包络曲线法[编辑本段]什么是趋势外推法?趋势外推法(Trend extrapolation)是根据过去和现在的发展趋势推断未来的一类方法的总称,用于科技、经济和社会发展的预测,是情报研究法体系的重要部分。

趋势外推的基本假设是未来系过去和现在连续发展的结果。

趋势外推法的基本理论是:决定事物过去发展的因素,在很大程度上也决定该事物未来的发展,其变化,不会太大;事物发展过程一般都是渐进式的变化,而不是跳跃式的变化掌握事物的发展规律,依据这种规律推导,就可以预测出它的未来趋势和状态。

趋势外推法首先由R.赖恩(Rhyne)用于科技预测。

他认为,应用趋势外推法进行预测,主要包括以下6个步骤:(1)选择预测参数;(2)收集必要的数据;(3)拟合曲线;(4)趋势外推;(5)预测说明;(6)研究预测结果在制订规划和决策中的应用。

趋势外推法是在对研究对象过去和现在的发展作了全面分析之后,利用某种模型描述某一参数的变化规律,然后以此规律进行外推。

为了拟合数据点,实际中最常用的是一些比较简单的函数模型,如线性模型、指数曲线、生长曲线、包络曲线等。

[编辑本段]线性外推法线性趋势外推法是最简单的外推法。

这种方法可用来研究随时间按恒定增长率变化的事物。

在以时间为横坐标的坐标图中,事物的变化接近一条直线。

根据这条直线,可以推断事物未来的变化。

应用线性外推法,首先是收集研究对象的动态数列,然后画数据点分布图,如果散点构成的曲线非常近似于直线,则可按直线规律外推。

[编辑本段]指数曲线法指数曲线法(Fxponential curve)是一种重要的趋势外推法。

当描述某一客观事物的指标或参数在散点图上的数据点构成指数曲线或近似指数曲线时,表明该事物的发展是按指数规律或近似指数规律变化。

如果在预测期限内,有理由说明该事物仍将按此规律发展,则可按指数曲线外推。

许多研究结果表明,技术发展,有时包括社会发展,其定量特性往往表现为按指数规律或近似指数规律增长,一种技术的发展通常要经过发生、发展和成熟3个阶段。

第四讲 趋势外推法

第四讲 趋势外推法

yt yt yt 1 B yt 1 yt 1 yt 2
当时间序列算得的一阶差分比率大致相等时,就可以 配修正指数曲线模型进行预测。
指数曲线模型的参数估计及应用
bt 对指数曲线模型 y t Ae 取对数,作变换,转化为直线模型。
ln y t ln A bt Yt ln y t , a ln A Yt a bt
年份
1963 1964 1965 1966 1967
时序 (t)
12 13 14 15 16
总额 ( yt )
604.5 638.2 670.3 732.8 770.5
年份
1974 1975 1976 1977 1978
时序 (t )
23 24 25 26 27
总额 ( yt )
1163.6 1271.1 1339.4 1432.8 1558.6
修正指数曲线预测模型 1)模型的形式
ˆt K abt y
2)模型的识别
例4 我国卫生机构人员总数如表4.13所示,试预 测2003年我国卫生机构总人数。 解: 绘制散点图,如图4.13所示。
得:
所以我国卫生机构总人数修正指数曲线 模型为:
yt 615.641 205.667 (0.9172)t
差分特性 使用模型
一阶差分相等或大致相等 二阶差分相等或大致相等
三阶差分相等或大致相等 环比相等或大致相等 一阶差分比率相等或大致相等
一次线性模型 二次线性模型
三次线性模型 指数曲线模型 修正指数曲线模型
多项式趋势预测模型及应用
特别:直线(一元时间回归)模型参数估计的简捷算法

y t a bt

将 t 19 代入模型,得到2003年我国卫生 机构总人数的预测值:

趋势外推法

趋势外推法

预测精度判断
用相对误差指标
σ= θ= σ
Y (Y Y ) 2 ∑ nk
某电视机厂连续24个月销售量
月份 销售量 (万台) 月份 销售量 (万台) 1 161 .2 13 214 .5 2 135 .4 14 161 .7 3 120 .7 15 237 .1 4 136 .7 16 269 .1 5 143 .3 17 291 .3 6 145 .9 18 310 .4 7 152 .8 19 380 .4 8 209 .6 20 340 .1 9 165 .5 21 350 .5 10 209 .3 22 381 .5 11 205 .9 23 385 .4 12 144 .7 24 261 .2
= n∑ Yt ∑ Y ∑ t b n∑ t 2 (∑ t ) 2
∑ Y b∑ t a=
n
例:有下数据,请用线性回归预测第8年 和第10年的值,并画出趋势图.
年份 1 2 3 4 5 6 7 营业收入 290,463 317,661 346,853 338,812 413,310 459,453 389,866 回归预测值 295,747.2 318,899 342,050.8 365,202.6 388,354.4 411,506.1 434,657.9
=
0.6153 = 0.32 (万件) 6
用双侧t检验,取α=0.1,
y ± t0.10 / 2 SE = 32.35 ± 1.943 × 0.32
上述预测2004年销售量为32.35万件,在给定90 %的概率保证下,其近似的预测置信区间为 31.72 万件到32.97万件之间.
进一步阅读
data
b0 = 35 .05
39.5 9 81 38 16 256 274 .0 60 708

趋势外推

趋势外推

11
12
13
代入相应的x,得出预测值y
解例3 某家用电器厂1993 2003年利润额数据资料如表 1993~ 年利润额数据资料如表3 解例 3.1 某家用电器厂1993~2003年利润额数据资料如表3.1 所示。试预测2004 2005年该企业的利润 2004、 年该企业的利润。 所示。试预测2004、2005年该企业的利润。
t =1 t =1 t =1
n
n
n
n∑ xt2 − (∑ xt ) 2
t =1 t =1
n
n
=
∑x y
t =1 n t
n
t
xt2 ∑
t =1
拟合直线方程法的特点
ˆ et 2 = ∑( yt − yt )2 ∑
t =1 t =1
n
n
拟合直线方程的一阶差分为常数(一阶导数为常数)
ˆ ˆ ˆ yt′ = yt − yt −1 = b
2.
三个例子: 三个例子:预测未来两期的指标水平
1400 1200
y2005预测
利润额 yt
1000 800
y2004预测
600 400 200 0
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
某家用电器厂1998~2008年利润额序列数据 某家用电器厂1998~2008年利润额序列数据 1998
1993 200
199 4 300
1995 1996 350
利润额 yt
1997 1998 1999 2000 2001 2002 2003 500 630 700 750 850 950 1020

5预测与决策-趋势外推法

5预测与决策-趋势外推法

利润额yt 200 300 350 400 500 630 700 750 850 950 1020
1200 1000
利润额 yt
1200 1000
利润额 yt
??
800
800
600
600
400
400
200
200
0
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
45
销售量(万件)
40
35
30
25
10000 9000 8000 7000 6000 5000
总需求量(件)
20
4000
15
3000
10
2000
5
1000
0 0 1 2 3 4 5 6 7 8 9 10
0
0
1
2
3
4
5
6
7
8
9 10
某商场某种商品过去9个月的销量
某商场过去9年投入市场,市场需求量统计资料
加权拟合直线方程法的数学模型
Q n t(y t a b t)2
(tt)(yy) (tt)2
利润额 1200
1000
800
yc abt
600
400
200
0 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
……………… T= 1 2 3 4 5 6 7 8 9 10 11 12 13
由近及远,按 比例 递减。
各期权重衰减的速度取决于 的取值。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

趋势外推法
一、实验课题
二、实验目的与意义
学会利用修正指数曲线模型,指数曲线模型,皮尔曲线模型对数据进行分析解答
三、实验过程记录与结果分析
表1-1
年份199920002001200220032004200520062007
第一步,选择模型。

首先绘制散点图,初步确定模型。

70000600005000040000300002000010000002468销售量(台)460004900051400533205485656085570885790058563系列21012
1999——2007年取暖器的销售量散点图
由散点图可以初步确定选用修正指数曲线预测模型ytabc(b0,0c1)来进行预测。

其次,进行一阶差的一阶比率计算表(如表1-2所示)
表1-2热水器销售量一阶差的一阶比率计算表
yi一阶差分一阶差的差分比率
460004900030005140024000.853********.85485615360.85608512290.80 085708810035790081258563663t0.81610.80960.8165
由表1-2可知yi的一阶差的一阶比率大致相等。

所以,结合散点图分析,最后确定选用修正指数曲线模型进行预测比较适宜。

第二步,求模型参数(如表1-3所示)
表1-3修正指数曲线模型参数计算表
年份199920002001∑Ⅰy200220032004∑Ⅱy200520062007∑Ⅲy
时序(t)012-345-678-1销售量
(yi)4600049000514001464005332054856560851642615708857900585631 73551Ⅲy-Ⅱync()=0.8042
Ⅱy-Ⅰyb(Ⅱy-Ⅰy)c-1-15186n2(c1)1cn1a(Ⅰy-b)61206.77
nc1ytabct
.93所以y2022590692022年取暖器的销售量为59069.93台。

2,指数曲线预测模型为:
ytaebt(a0)
对函数模型ytaebt做线性变换得:
lnytlnabt
令Ytlnyt,Alna,则:
YtAbt
这样就把指数曲线模型转化为直线模型了。

年份20028.7200310.6200413.3200516.5200620.6200726销售量(万架)第一步,选择预测模型。

首先,绘制散点图,根据散点图分布来选择模型。

图2-1灯具2002--2007年销售量散点图
根据图2-1,可以初步确定选用指数曲线预测模型ytae(a0,b0)。

其次,计算一阶差比率(如表2-2),并结合散点图最后确定选用哪一种模型。

表2-2指数曲线模型差分预测表销售量(万架)一阶差比率
8.710.61.2213.31.2516.51.2420.61.21261.30bt由表2-3知,观察值yt 的一阶差比率大致相等,符合指数曲线模型的数字特征。

所以,选用模型ytae。

第二步,求模型参数
先将观察值yt的数据进行变换,使其满足lnytlnabtYtAbt。

其变换数据如表2-3所示
表2-3观察值数据转换表
年份时序(t)
200212.16200322.36200432.59200542.80200652.99200763.25btYtlnytn6 ,t21,t291,Y16.17,Y244.40经计算得
11tY60.39,tt3.5,YY2.69nntYntYb0.217tnt22
根据直线模型公式
AYbt1.935因为Alna,所以ae6.93所以指数预测模型为
yt6.93e0.217tA
第三步,预测2022年的销售量为31.64万架。

3,皮尔曲线预测模型的形式为:
ytLbt1ae式中,L为变量yt的极限值,a,b为常数,t为时间。

人口数(万时序t
人)(yt)123456789101112131415162626263927072801287529573033310331 7232533316339034573513356136151yt1yt111某
ytyt11()2yt0.0003800.0003780.0003690.0003570.0003470.0003380.000 3290.0003220.0003150.0003070.0003010.0002940.0002890.0002840.000 2800.0002760.0003780.0003690.0003570.0003470.0003380.0003290.000 3220.0003150.0003070.0003010.0002940.0002890.0002840.0002800.000 2760.0002731.443E-01.399E-071.318E-071.241E-071.176E-071.115E-071.062E-071.015E-079.691E-089.270E-088.895E-088.532E-088.234E-087.993E-087.768E-087.551E-081.45014E-071.43589E-071.36466E-
071.2746E-071.20983E-071.14366E-071.08706E-071.03857E-
079.93879E-089.45E-089.09434E-088.70163E-088.36761E-088.10296E-087.88599E-087.65215E-
081718192021366337073751379238270.0002730.0002690.0002660.000263 0.0002610.0065090.0002690.0002660.0002630.00026100.0061287.364E-087.191E-087.030E-086.890E-0801.941E-067.45291E-087.27704E-
087.10732E-086.95446E-086.82784E-082.04857E-06第一步,根据实际
人口数画出散点图,发现此散点图趋近于皮尔曲线,所以选皮尔曲线作为
预测模型。

1988--2022年某地区人口数量散点图
第二步,估计模型的参数b,L和a。

变换求得标准方程组为:
11eb1b()(n1)eyy
Lt1t111eb112b(某)()e()yyLytytt1t1eb相对于e和,解标准方程组,得:
Lbeb(n1)(1111某)某yt1ytyt1yt
1212(n1)()()ytyt1ebL11111某()2某(某)yt1ytytyt1yt
1212(n1)()()ytyt利用b,L的值估算a值:
lnab(n1)1Lln(1)2nyt根据表3-1的数据得
a=4.3396,b=0.2761,L=4056.2707所以,皮尔曲线的预测方程为
yt4056.2707
1(4.3396)e0.2761t所以2022--2022年的人口总量分别为(万
人):4016,4025,4033,4038,4043,4046
四、实验小结
学会利用修正指数曲线模型,指数曲线模型,皮尔曲线模型对数据进行分析预测,提高了对E某CEL的操作能力。

1ebL11111某()2某(某)yt1ytytyt1yt
1212(n1)()()ytyt利用b,L的值估算a值:
lnab(n1)1Lln(1)2nyt根据表3-1的数据得
a=4.3396,b=0.2761,L=4056.2707所以,皮尔曲线的预测方程为
yt4056.2707
1(4.3396)e0.2761t所以2022--2022年的人口总量分别为(万
人):4016,4025,4033,4038,4043,4046
四、实验小结
学会利用修正指数曲线模型,指数曲线模型,皮尔曲线模型对数据进行分析预测,提高了对E某CEL的操作能力。

相关文档
最新文档