初二八年级数学章节练习a03一次函数综合题例选讲

合集下载

初二数学上册,一次函数专题知识点总结、题型归纳,同步练习题带答案

初二数学上册,一次函数专题知识点总结、题型归纳,同步练习题带答案

一次函数专题1.正比例函数(1)正比例函数的定义一般地,形如__________(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数,一般情况下,正比例函数自变量的取值范围是全体实数.(2)正比例函数的图象和性质正比例函数y=kx(k≠0)的图象是一条经过原点(0,0)的直线,我们称它为直线y=kx(k≠0).正比例函数图象的位置和函数值y的增减性完全由比例系数k的符号决定.①当k>0时,图象经过第一、三象限,y随x的增大而__________;②当k<0时,图象经过第__________象限,y随x的增大而减小.2.一次函数(1)一次函数的定义一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数.(2)一次函数的图象和性质对于y=kx+b(k≠0,b≠0).当k>0,b>0,y=kx+b的图象在第__________象限,y随x的增大而增大;当k>0,b<0,y=kx+b的图象在第一、三、四象限,y随x的增大而增大;当k<0,b>0,y=kx+b的图象在第一、二、四象限,y随x的增大而__________;当k<0,b<0,y=kx+b的图象在第二、三、四象限,y随x的增大而减小.3.一次函数的平移(1)一次函数y=kx+b(k≠0)的图象是过点(0,b)且和直线y=kx重合或平行的一条直线.(2)直线y=kx+b可以看作由直线y=kx向上或向下平移__________个单位长度得到.(3)一次函数图象的平移遵照“左加右减,上加下减”的原则进行,要注意平移后k值不变,只有b发生变化.(4)由两个函数解析式中的k的值相等,可判断两个函数的图象平行,即其中一条直线是由另一条直线平移得到的.4.用待定系数法确定一次函数的解析式求一次函数y =kx +b (k ≠0)的解析式,关键是求出k ,b 的值,一般可根据条件列出关于k ,b 的二元一次方程组,求出k ,b 的值,从而求出函数的解析式.这种求函数解析式的方法叫做__________.5.一次函数与方程、不等式的关系(1)一次函数与一元一次方程的关系:任何一元一次方程都可以转化为ax +b =0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y =ax +b 确定它与__________轴的交点的横坐标的值.(2) ①任何一个以x 为未知数的一元一次不等式都可以变形为ax +b >0或ax +b <0(a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数y =ax +b 的值大于0或小于0时,求自变量x 的取值范围.②一次函数y =ax +b (a ≠0)与一元一次不等式ax +b >0(或ax +b <0)的关系:ax +b >0的解集⇔y =ax +b 中,y >0时x 的取值范围,即直线y =ax +b 在x 轴上方部分图象对应的x 的取值范围.ax +b <0的解集⇔y =ax +b 中,y <0时x 的取值范围,即直线y =ax +b 在x 轴下方部分图象对应的x 的取值范围.(3)用图象法求二元一次方程组的近似解的一般方法:①先把方程组中的两个二元一次方程化成一次函数的形式:y =k 1x +b 1和y =k 2x +b 2;②建立平面直角坐标系,画出这两个一次函数的图象;③写出这两条直线的交点的横、纵坐标,这两个数值就是二元一次方程组的解中的两个数值,横坐标为x ,纵坐标为y .6.一次函数的图像,两点确定一条直线一次函数的图像是一条直线,根据两点确定一条直线,可以根据图像与x 轴的交点坐标⎪⎭⎫⎝⎛-0,k b 和图像与y 轴的交点坐标()b ,0,画出一次函数的图像。

冀教版八年级下册数学 第21章 提分专项(七) 一次函数的综合题 习题课件

冀教版八年级下册数学 第21章 提分专项(七)  一次函数的综合题 习题课件

由题意知OA=5,OD=5,BD=3,
∴S四边形ABDO=
1 2
(BD+OA)·OD=20,
∴S=S△CDE+S四边形ABDO=12+20=32.
提分专项
(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到 △CDB的位置,而△CDB与四边形ABDO拼接后可看 成△AOC,这样求S便转化为直接求△AOC的面积,如 此不更快捷吗?”但大家经反复验算,发现S△AOC≠S, 请通过计算解释他的想法错在哪里.
冀教版 八年级下
第21章 一次函数
提分专项(七) 一次函数的综合题
提示:点击 进入习题
1 见习题 2 见习题 36 4 见习题 5 见习题
习题链接 6 见习题
答案显示
提分专项 1.如图,在平面直角坐标系中,一次函数的图像经过点
A(6,-3)和点B(-2,5). (1)求这个一次函数的表达式;
解:设这个一次函数的表达式为y=kx+b, ∵一次函数的图像经过点A(6,-3)和点B(-2,5), ∴6-k+2kb+=b-=35,,解得kb==-3,1, ∴这个一次函数的表达式是y=-x+3.
∴S△AOC≠S.
提分专项
6.如图①,在正方形ABCD中,点P以1 cm/s的速度从 点A出发按箭头方向运动,到达点D停止.△PAD的 面积y(cm2)与运动时间x(s)之间的函数关系如图②所 示(规定:点P在点A,D时,y=0).

提分专项
发现: (1)AB=____6____cm,当x=17时,y=____3____; (2)当点P在线段___B_C____上运动时,y的值保持不变.
提分专项 (3)平移一次函数y=2x-4的图像后经过点(-2,1),求
平移后的函数表达式.

人教版八年级数学下册一次函数的图象和性质(基础)典型例题讲解+练习及答案.doc

人教版八年级数学下册一次函数的图象和性质(基础)典型例题讲解+练习及答案.doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】一次函数的图象与性质(基础)责编:杜少波【学习目标】1. 理解一次函数的概念,理解一次函数y kx b =+的图象与正比例函数y kx =的图象之间的关系;2. 能正确画出一次函数y kx b =+的图象.掌握一次函数的性质.利用函数的图象解决与一次函数有关的问题,还能运用所学的函数知识解决简单的实际问题.3. 对分段函数有初步认识,能运用所学的函数知识解决实际问题.【要点梳理】要点一、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,k ≠0)的函数,叫做一次函数.要点诠释:当b =0时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k ,b 的要求,一次函数也被称为线性函数.要点二、一次函数的图象与性质1.函数y kx b =+(k 、b 为常数,且k ≠0)的图象是一条直线 ;当b >0时,直线y kx b =+是由直线y kx =向上平移b 个单位长度得到的;当b <0时,直线y kx b =+是由直线y kx =向下平移|b |个单位长度得到的.2.一次函数y kx b =+(k 、b 为常数,且k ≠0)的图象与性质:3. k 、b 对一次函数y kx b =+的图象和性质的影响:k 决定直线y kx b =+从左向右的趋势,b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.4. 两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定:(1)12k k ≠⇔1l 与2l 相交; (2)12k k =,且12b b ≠⇔1l 与2l 平行;【:391659 一次函数的图象和性质,待定系数法求函数的解析式】要点三、待定系数法求一次函数解析式一次函数y kx b =+(k ,b 是常数,k ≠0)中有两个待定系数k ,b ,需要两个独立条件确定两个关于k ,b 的方程,这两个条件通常为两个点或两对x ,y 的值.要点诠释:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数y kx b =+中有k 和b 两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式.要点四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点诠释:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.【典型例题】类型一、待定系数法求函数的解析式1、根据函数的图象,求函数的解析式.【思路点拨】由于此函数的图象过(0,2),因此b =2,可以设函数的解析式为2y kx =+,再利用过点(1.5,0),求出相应k 的值.【答案与解析】利用待定系数法求函数的解析式.解:设函数的解析式为y kx b =+.Q 它的图象过点(1.5,0),(0,2)41.50322k b k b b ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩∴∴ ∴该函数的解析式为423y x =-+. 【总结升华】用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式.举一反三:【变式1】已知一次函数的图象与正比例函数2y x =的图象平行且经过(2,1)点,则一次函数的解析式为________.【答案】 23y x =-;提示:设一次函数的解析式为y kx b =+,它的图象与2y x =的图象平行,则2k =,又因为一次函数的图象经过(2,1)点,代入得1=2×2+b .解得3b =-. ∴ 一次函数解析式为23y x =-.【变式2】(2015春•广安校级月考)已知函数y1=2x﹣3,y2=﹣x+3.(1)在同一坐标系中画出这两个函数的图象.(2)求出函数图象与x轴围成三角形的面积.【答案】解:(1)函数y1=2x﹣3与x轴和y轴的交点是(1.5,0)和(0,﹣3),y2=﹣x+3与x轴和y轴的交点是(3,0)和(0,3),其图象如图:(2)设y1=2x﹣3,y2=﹣x+3的交点为点A,可得:,可得:,S△ABC=BC•1=×(3﹣1.5)×1=.类型二、一次函数图象的应用2、(2016春•南昌期末)电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解答下列问题.(1)分别写出当0≤x≤100和x>100时,y与x之间的函数关系式;(2)若该用户某月用电80度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?【思路点拨】(1)对0≤x≤100段,列出正比例函数y=kx,对x≥100段,列出一次函数y=kx+b;将坐标点代入即可求出.(2)根据(1)的函数解析式以及图标即可解答即可.【答案与解析】解:(1)当0≤x≤100时,设y=kx,则有65=100k,解得k=0.65.∴y=0.65x .当x >100时,设y=ax +b ,则有, 解得 ∴y=0.8x ﹣15.(2)当用户用电80度时,该月应缴电费0.65×80=52(元).当用户缴费105元时,由105=0.8x ﹣15,解得x=150.∴该用户该月用电150度.【总结升华】本题主要考查一次函数的应用,关键考查从一次函数的图象上获取信息的能力. 举一反三:【变式】小高从家骑自行车去学校上学,先走上坡路到达点A ,再走下坡路到达点B ,最后走平路到达学校C ,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( )A.14分钟B.17分钟C.18分钟D.20分钟【答案】D ;提示:由图象可知,上坡速度为80米/分;下坡速度为200米/分;走平路速度为100米/分.原路返回,走平路需要8分钟,上坡路需要10分钟,下坡路需要2分钟,一共20分钟.类型三、一次函数的性质3、已知一次函数()()243y m x n =++-.(1)当m 、n 是什么数时,y 随x 的增大而增大;(2)当m 、n 是什么数时,函数图象经过原点;(3)若图象经过一、二、三象限,求m 、n 的取值范围.【答案与解析】解:(1)240m +>,即m >-2,n 为任何实数时,y 随x 的增大而增大;(2)当m 、n 是满足24030m n +≠⎧⎨-=⎩即23m n ≠-⎧⎨=⎩时,函数图象经过原点;(3)若图象经过一、二、三象限,则24030mn+>⎧⎨->⎩,即23mn>-⎧⎨<⎩.【总结升华】一次函数y kx b=+的图象有四种情况:①当k>0,b>0时,函数y kx b=+的图象经过第一、二、三象限,y的值随x 的值增大而增大;②当k>0,b<0时,函数y kx b=+的图象经过第一、三、四象限,y的值随x 的值增大而增大;③当k<0,b>0时,函数y kx b=+的图象经过第一、二、四象限,y的值随x 的值增大而减小;④当k<0,b<0时,函数y kx b=+的图象经过第二、三、四象限,y的值随x 的值增大而减小.4、(2015春•咸丰县期末)已知点A(4,0)及在第一象限的动点P(x,y),且x+y=5,0为坐标原点,设△OPA的面积为S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)当S=4时,求P点的坐标.【思路点拨】(1)根据题意画出图形,由x+y=5可知y=5﹣x,再由三角形的面积公式即可得出结论;(2)由点P(x,y)在第一象限,且x+y=5得出x的取值范围即可;(3)把S=4代入(1)中的关系式求出x的值,进而可得出y的值.【答案与解析】解:(1)如图所示,∵x+y=5,∴y=5﹣x,∴S=×4×(5﹣x)=10﹣2x;(2)∵点P(x,y)在第一象限,且x+y=5,∴0<x<5;(3)∵由(1)知,S=10﹣2x,∴10﹣2x=4,解得x=3,∴y=2,∴P(3,2).【总结升华】本题考查的是一次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.举一反三: 【变式】函数(0)y kx k k =+≠在直角坐标系中的图象可能是( ).【答案】B ;提示:不论k 为正还是为负,k 都大于0,图象应该交于x 轴上方,故选B.。

一次函数(全章直通中考)(基础练)-八年级数学上册基础知识专项突破讲与练(北师大版)

一次函数(全章直通中考)(基础练)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题4.28一次函数(全章直通中考)(基础练)【要点回顾】【要点1】一次函数的图象一次函数的图象:一次函数(0)y kx b k =+≠的图象是一条恒经过点(0,)b 和(,0)bk-的直线.正比例函数的图象:正比例函数(0)y kx k =≠的图象是一条恒经过原点(0,0)和(1,)k 直线.【要点2】一次函数的性质(1)正比例函数的图象与性质y =kx图像经过象限升降趋势增减性k >0一、三从左向右上升y 随着x 的增大而增大k <0二、四从左向右下降y 随着x 的增大而减小(2)一次函数的图象与性质y =kx +b图像经过象限升降趋势增减性k >0,b >0一、二、三从左向右上升y 随着x 的增大而增大k >0,b <0一、三、四k <0,b >0一、二、四从左向右下降y 随着x 的增大而减小k <0,b <0二、三、四【要点3】一次函数的图象与k、b 之间的联系①b 决定直线与y 轴的交点位置0b >时,直线交y 轴于正半轴;0b <时,直线交y 轴于负半轴;0b =时,直线经过原点.②0k >⇔直线上坡,y 随x 的增大而增大;0k <⇔直线下坡,y 随x 的增大而减小.③k 越大,直线越陡.【要点4】确定一次函数表达式(1)待定系数法步骤:设:设函数表达式为(0)y kx b k =+≠;代:将已知点的坐标代入函数表达式,解方程或方程组;解:求出k 与b 的值,得到函数表达式.【要点5】图象的平移一次函数y kx b =+向左平移m 个单位后的解析式为()y k x m b =++;一次函数y kx b =+向右平移m 个单位后的解析式为()y k x m b =-+;一次函数y kx b =+向上平移m 个单位后的解析式为y kx b m =++;一次函数y kx b =+向上平移m 个单位后的解析式为y kx b m =+-.平移规律:左加右减,上加下减.【要点6】两条直线间的位置关系设直线111:l y k x b =+,222:l y k x b =+.(1)12k k ≠⇔相交;(2)1212k k b b =⎧⇔⎨≠⎩平行;(3)121k k =-⇔ 垂直.补充:若直线y kx b =+经过11(,)A x y ,22(,)B x y 12()x x ≠两点,则1212y y k x x -=-.【要点7】一次函数与方程(组)(1)一次函数图象上点的坐标与二元一次方程的解一一对应.(2)二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩的解就是两个一次函数11y k x b =+和22y k x b =+图象的交点坐标.(3)一元一次方程0kx b +=的根就是一次函数y kx b =+(k 、b 是常数,0k ≠)的图象与x 轴交点的横坐标.【要点8】一次函数与不等式(1)一次函数y kx b =+的函数值y >0时,自变量x 的取值范围就是不等式0kx b +>的解集(2)一次函数y kx b =+的函数值y <0时,自变量x 的取值范围就是不等式0kx b +<的解集一、单选题本大题共10小题,每小题3分,共30分)1.(2023·四川乐山·统考中考真题)下列各点在函数21y x =-图象上的是()A .()13-,B .()01,C .()11-,D .()23,2.(2023·四川巴中·统考中考真题)一次函数(3)2=-+y k x 的函数值y 随x 增大而减小,则k 的取值范围是()A .0k >B .0k <C .3k >D .3k <3.(2023·辽宁沈阳·统考中考真题)已知,一次函数y kx b =+的图象如图,下列结论正确的是()A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <4.(2023·湖南·统考中考真题)下列一次函数中,y 随x 的增大而减小的函数是()A .21y x =+B .4y x =-C .2y x=D .1y x =-+5.(2023·陕西·统考中考真题)在同一平面直角坐标系中,函数y ax =和y x a =+(a 为常数,a<0)的图象可能是()A .B .C .D .6.(2023·内蒙古·统考中考真题)在平面直角坐标系中,将正比例函数2y x =-的图象向右平移3个单位长度得到一次函数(0)y kx b k =+≠的图象,则该一次函数的解析式为()A .23y x =-+B .26y x =-+C .23y x =--D .26y x =--7.(2023·山东临沂·统考中考真题)对于某个一次函数(0)y kx b k =+≠,根据两位同学的对话得出的结论,错误的是()A .0k >B .0kb <C .0k b +>D .12k b=-8.(2023·新疆·统考中考真题)一次函数1y x =+的图象不经过...()A .第一象限B .第二象限C .第三象限D .第四象限9.(2023·湖北鄂州·统考中考真题)象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点()2,1--的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为()A .1y x =+B .1y x =-C .21y x =+D .21y x =-10.(2023·湖北·统考中考真题)如图,长方体水池内有一无盖圆柱形铁桶,现用水管往铁桶中持续匀速注水,直到长方体水池有水溢出一会儿为止.设注水时间为1,t y (细实线)表示铁桶中水面高度,2y (粗实线)表示水池中水面高度(铁桶高度低于水池高度,铁桶底面积小于水池底面积的一半,注水前铁桶和水池内均无水),则12,y y 随时间t 变化的函数图象大致为()A .B .C .D .二、填空题(本大题共8小题,每小题4分,共32分)11.(2023·江苏泰州·统考中考真题)函数1y=x 2-中,自变量x 的取值范围是.12.(2023·江苏苏州·统考中考真题)已知一次函数y kx b =+的图象经过点()1,3和()1,2-,则22k b -=.13.(2023·天津·统考中考真题)若直线y x =向上平移3个单位长度后经过点()2,m ,则m 的值为.14.(2023·江苏无锡·统考中考真题)请写出一个函数的表达式,使得它的图象经过点(20),:.15.(2023·宁夏·统考中考真题)如图是某种杆秤.在秤杆的点A 处固定提纽,点B 处挂秤盘,点C 为0刻度点.当秤盘不放物品时,提起提纽,秤砣所挂位置移动到点C ,秤杆处于平衡.秤盘放入x 克物品后移动秤砣,当秤砣所挂位置与提扭的距离为y 毫米时秤杆处于平衡.测得x 与y 的几组对应数据如下表:x /克024610y /毫米1014182230由表中数据的规律可知,当20x =克时,y =毫米.16.(2023·湖南郴州·统考中考真题)在一次函数()23y k x =-+中,y 随x 的增大而增大,则k 的值可以是(任写一个符合条件的数........即可).17.(2022·浙江杭州·统考中考真题)已知一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),则方程组310x y kx y -=⎧⎨-=⎩的解是.18.(2022·江苏扬州·统考中考真题)如图,函数()0y kx b k =+<的图像经过点P ,则关于x 的不等式3kx b +>的解集为.三、解答题(本大题共6小题,共58分)19.(8分)(2023·浙江温州·统考中考真题)如图,在直角坐标系中,点()2,A m 在直线522y x =-上,过点A 的直线交y 轴于点()0,3B .(1)求m 的值和直线AB 的函数表达式.(2)若点()1,P t y 在线段AB 上,点()21,Q t y -在直线522y x =-上,求12y y -的最大值.20.(8分)(2023·吉林长春·统考中考真题)甲、乙两个相约登山,他们同时从入口处出发,甲步行登山到山顶,乙先步行15分钟到缆车站,再乘坐缆车到达山顶.甲、乙距山脚的垂直高度y (米)与甲登山的时间x (分钟)之间的函数图象如图所示.(1)当1540x ≤≤时,求乙距山脚的垂直高度y 与x 之间的函数关系式;(2)求乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度.21.(10分)(2022·福建福州·校考一模)如图,直线l1的函数表达式为y=1x+2,且l1与x轴交于点A,2直线l2经过定点B(4,0),C(﹣1,5),直线l1与l2交于点D.(1)求直线l2的函数表达式;(2)求△ADB的面积;(3)在x轴上是否存在一点E,使△CDE的周长最短?若存在,请直接写出点E的坐标;若不存在,请说明理由.22.(10分)(2022·江苏南京·模拟预测)如图,直线y=kx+4的图象与y轴交于点A,与x轴交于点B (2,0),直线AF交x轴负半轴于点F,且OF=2OA.(1)求k的值及直线AF的解析式;(2)若将直线AB沿y轴向下平移,平移后的直线恰好经过C(﹣3,0),与y轴相交于点D,且直线CD与直线AF交于点E,求四边形AECO的面积.23.(10分)(2023·湖南·统考中考真题)我国航天事业发展迅速,2023年5月30日9时31分,神舟十六号载人飞船成功发射,某玩具店抓住商机,先购进了1000件相关航天模型玩具进行试销,进价为50元/件.(1)设每件玩具售价为x元,全部售完的利润为y元.求利润y(元)关于售价x(元/件)的函数表达式;(2)当售价定为60元/件时,该玩具销售火爆,该店继续购进一批该种航天模型玩具,并从中拿出这两批玩具销售利润的20%用于支持某航模兴趣组开展活动,在成功销售完毕后,资助经费恰好10000元,请问该商店继续购进了多少件航天模型玩具?24.(12分)(2022·四川德阳·统考中考真题)习近平总书记对实施乡村振兴战略作出重要指示强调:实施乡村振兴战略,是党的十九大作出的重大决策部署,是新时代做好“三农”工作的总抓手.为了发展特色产业,红旗村花费4000元集中采购了A种树苗500株,B种树苗400株,已知B种树苗单价是A种树苗单价的1.25倍.(1)求A、B两种树苗的单价分别是多少元?(2)红旗村决定再购买同样的树苗100株用于补充栽种,其中A种树苗不多于25株,在单价不变,总费用不超过480元的情况下,共有几种购买方案?哪种方案费用最低?最低费用是多少元?参考答案1.D【分析】根据一次函数图象上点的坐标特征,将选项中的各点分别代入函数解析式21y x =-,进行计算即可得到答案.解: 一次函数图象上的点都在函数图象上,∴函数图象上的点都满足函数解析式21y x =-,A.当=1x -时,=3y -,故本选项错误,不符合题意;B.当0x =时,1y =-,故本选项错误,不符合题意;C.当1x =时,1y =,故本选项错误,不符合题意;D.当2x =时,3y =,故本选项正确,符合题意;故选:D .【点拨】本题主要考查了一次函数图象上点的坐标特征,熟练掌握一次函数图象上的点都在函数图象上,是解题的关键.2.D【分析】根据已知条件函数值y 随x 的增大而减小推出自变量x 的系数小于0,然后解得即可.解:∵(3)2=-+y k x 是一次函数且函数值y 随x 的增大而减小,∴30k -<,∴3k <,故选:D .【点拨】本题考查一次函数图像与系数的关系,当0k >时,y 随x 的增大而增大,当0k <时,y 随x 的增大而减小,熟记此关系是解题的关键.3.B【分析】根据图象在坐标平面内的位置确定k ,b 的取值范围,从而求解.解:如图所示,一次函数y kx b =+的图象,y 随x 的增大而增大,所以0k >,直线与y 轴负半轴相交,所以0b <.故选:B .【点拨】本题主要考查一次函数图象与系数的关系,解答本题注意理解:直线y kx b =+所在的位置与k ,b 的符号有直接的关系,0k >时,直线必经过一、三象限;0k <时,直线必经过二、四象限;0b >时,直线与y 轴正半轴相交;0b =时,直线过原点;0b <时,直线与y 轴负半轴相交.4.D【分析】根据一次函数、正比例函数的增减性与系数的关系判断即可.解:由一次函数、正比例函数增减性知,x 系数小于0时,y 随x 的增大而减小,1y x =-+,10-<故只有D 符合题意,故选:D .【点评】本题考查了正比例函数的性质,一次函数的性质,熟练掌握这些性质是解题的关键.5.D【分析】根据正比例函数和一次函数的性质,可以得到函数y ax =和y x a =+的图象经过哪几个象限,本题得以解决.解:∵a<0,∴函数y ax =是经过原点的直线,经过第二、四象限,函数y x a =+是经过第一、三、四象限的直线,故选:D .【点拨】本题考查正比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用正比例函数和一次函数的性质解答.6.B【分析】根据一次函数的平移规律求解即可.解:正比例函数2y x =-的图象向右平移3个单位长度得:2(3)26y x x =--=-+,故选:B .【点拨】题目主要考查一次函数的平移,熟练掌握平移规律是解题关键.7.C【分析】首先根据一次函数的性质确定k ,b 的符号,再确定一次函数(0)y kx b k =+≠系数的符号,判断出函数图象所经过的象限.解:∵一次函数y kx b =+的图象不经过第二象限,∴00k b ><,,故选项A 正确,不符合题意;∴0kb <,故选项B 正确,不符合题意;∵一次函数y kx b =+的图象经过点()20,,∴20k b +=,则2b k =-,∴20k b k k k +=-=-<,故选项C 错误,符合题意;∵2b k =-,∴12k b =-,故选项D 正确,不符合题意;故选:C .【点拨】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k 、b 的正负.8.D【分析】根据10,10k b =>=>即可求解.解:∵一次函数1y x =+中10,10k b =>=>,∴一次函数1y x =+的图象不经过第四象限,故选:D .【点拨】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.9.A【分析】利用待定系数法求解一次函数即可得解.解:如图,建立平面直角坐标系,可得“马”所在的点()1,2,设经过棋子“帅”和“马”所在的点的一次函数解析式为()0y kx b k =+≠,∵y kx b =+过点()2,1--和()1,2,∴212k b k b =+⎧⎨-=-+⎩,解得11k b =⎧⎨=⎩,∴经过棋子“帅”和“马”所在的点的一次函数解析式为1y x =+,故选A .【点拨】本题主要考查了待定系数法求一次函数解析式,熟练掌握待定系数法式解题的关键.10.C【分析】根据特殊点的实际意义即可求出答案.解:根据图象知,1=t t 时,铁桶注满了水,10t t ≤≤,1y 是一条斜线段,1t t >,1y 是一条水平线段,当1=t t 时,长方体水池开始注入水;当2=t t 时,长方体水池中的水没过铁桶,水池中水面高度比之开始变得平缓;当3t t =时,长方体水池满了水,∴2y 开始是一段陡线段,后变缓,最后是一条水平线段,观察函数图象,选项C 符合题意,故选:C .【点拨】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.11.x 2≠解:由题意知:x -2≠0,解得x ≠2;故答案为x ≠2.12.6-【分析】把点()1,3和()1,2-代入y kx b =+,可得32k b k b +=⎧⎨-=-⎩,再整体代入求值即可.解:∵一次函数y kx b =+的图象经过点()1,3和()1,2-,∴32k b k b +=⎧⎨-+=⎩,即32k b k b +=⎧⎨-=-⎩,∴()()()22326k b k b k b -=+-=⨯-=-;故答案为:6-【点拨】本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,利用平方差公式分解因式,熟练的利用平方差公式求解代数式的值是解本题的关键.13.5【分析】根据平移的规律求出平移后的解析式,再将点()2,m 代入即可求得m 的值.解: 直线y x =向上平移3个单位长度,∴平移后的直线解析式为:3y x =+.平移后经过()2,m ,235m ∴=+=.故答案为:5.【点拨】本题考查的是一次函数的平移,解题的关键在于掌握平移的规律:左加右减,上加下减.14.2y x =-(答案不唯一)【分析】根据一次函数的定义,可以先给出k 值等于1,再找出符合点的b 的值即可,答案不唯一.解:设1k =,则y x b =+,∵它的图象经过点(20),,∴代入得:20b +=,解得:2b =-,∴一次函数解析式为2y x =-,故答案为:2y x =-(答案不唯一).【点拨】本题主要考查对一次函数的常数k 、b 的理解和待定系数法的运用,是开放型题目.15.50【分析】根据表格可得y 与x 的函数关系式,再将20x =代入求解即可.解:由表格可得,物品每增加2克,秤砣所挂位置与提扭的距离增加4毫米,则物品每增加1克,秤砣所挂位置与提扭的距离增加2毫米,当不挂重物时,秤砣所挂位置与提扭的距离为10毫米,∴y 与x 的函数关系式为210y x =+,当20x =时,2201050y =⨯+=,故答案为:50.【点拨】本题考查由表格得函数关系式以及求函数值,通过表格得出函数关系式是解题的关键.16.3(答案不唯一)【分析】根据一次函数的性质可知“当20k ->时,变量y 的值随x 的值增大而增大”,由此可得出结论.解:∵一次函数23y k x =-+()中,y 随x 的值增大而增大,∴20k ->.解得:2k >,故答案为:3(答案不唯一).【点拨】本题考查了一次函数的性质,解题的关键是根据函数的单调性确定k 的取值范围.本题属于基础题,难度不大,解决该题型题目时,结合一次函数的增减性,得出k 的取值范围是关键.17.12x y =⎧⎨=⎩【分析】根据一次函数的交点坐标即可确定以两个一次函数解析式组成的二元一次方程组的解.解:∵一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),∴联立y =3x -1与y =kx 的方程组31y x y kx =-⎧⎨=⎩的解为:12x y =⎧⎨=⎩,即310x y kx y -=⎧⎨-=⎩的解为:12x y =⎧⎨=⎩,故答案为:12x y =⎧⎨=⎩.【点拨】本题考查了一次函数与二元一次方程组,熟练掌握一次函数的交点坐标与二元一次方程组的解的关系是解题的关键.18.1x <-【分析】观察一次函数图像,可知当y >3时,x 的取值范围是1x <-,则3kx b +>的解集亦同.解:由一次函数图像得,当y >3时,1x <-,则y =kx+b >3的解集是1x <-.【点拨】本题考查了一次函数与不等式结合,深入理解函数与不等式的关系是解题的关键.19.(1)32m =,334y x =-+;(2)152【分析】(1)把点A 的坐标代入直线解析式可求解m ,然后设直线AB 的函数解析式为y kx b =+,进而根据待定系数法可进行求解函数解析式;(2)由(1)及题意易得()133024y t t =-+≤≤,()25921222y t t =--=-,则有12391115324242y y t t t ⎛⎫-=-+--=-+ ⎪⎝⎭,然后根据一次函数的性质可进行求解.(1)解:把点()2,A m 代入522y x =-,得32m =.设直线AB 的函数表达式为y kx b =+,把点32,2A ⎛⎫ ⎪⎝⎭,()0,3B 代入得3223.k b b ⎧+=⎪⎨⎪=⎩,解得343.k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的函数表达式为334y x =-+.(2)解:∵点()1,P t y 在线段AB 上,点()21,Q t y -在直线522y x =-上,∴()133024y t t =-+≤≤,()25921222y t t =--=-,∴12391115324242y y t t t ⎛⎫-=-+--=-+ ⎪⎝⎭.∵1104k =-<,∴12y y -的值随x 的增大而减小,∴当0=t 时,12y y -的最大值为152.【点拨】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.20.(1)12180y x =-;(2)180【分析】(1)待定系数法求解析式即可求解;(2)求得甲距山脚的垂直高度y 与x 之间的函数关系式为460y x =+()2560x ≤≤,联立12180y x =-()1540x ≤≤,即可求解.(1)解:设乙距山脚的垂直高度y 与x 之间的函数关系式为y kx b =+,将()15,0,()40,300代入得,15040300k b k b +=⎧⎨+=⎩,解得:12180k b =⎧⎨=-⎩,∴12180y x =-()1540x ≤≤;(2)设甲距山脚的垂直高度y 与x 之间的函数关系式为11y k x b =+()2560x ≤≤将点()()25,16060,300,代入得,11112516060300k b k b +=⎧⎨+=⎩解得:11460k b =⎧⎨=⎩,∴460y x =+()2560x ≤≤;联立12180460y x y x =-⎧⎨=+⎩解得:30180x y =⎧⎨=⎩∴乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度为180米【点拨】本题考查了一次函数的应用,熟练掌握待定系数法求解析式是解题的关键.21.(1)y=-x+4;(2)S△ADB=323;(3)存在,E的坐标是(87,0)【分析】(1)利用待定系数法即可直接求得l2的函数解析式;(2)首先解两条之间的解析式组成的方程组求得D的坐标,然后利用三角形的面积公式即可求解;(3)求得D关于x轴的对称点,然后求得经过这个点和C点的直线解析式,直线与x轴的交点就是E.(1)解:设l2的解析式是y=kx+b,根据题意得:405k bk b+=⎧⎨-+=⎩,解得:14kb=-⎧⎨=⎩,则函数的解析式是:y=-x+4;(2)解:在y=12x+2,中令y=0,解得:x=-4,则A的坐标是(-4,0).解方程组4122y xy x=-+⎧⎪⎨=+⎪⎩,得:22xy=⎧⎨=⎩,则D的坐标是(48 33⎛⎫ ⎪⎝⎭,.则S△ADB=12×883⨯=323;(3)解:D(2,2)关于x轴的对称点是D′(2,-2),则设经过(2,-2)和点C的函数解析式是y=mx+n,则225 m nm n+=-⎧⎨-+=⎩,解得:7383mn⎧=-⎪⎪⎨⎪=⎪⎩,则直线的解析式是y=-73x+83.令y=0,-73x+83=0,解得:x=87.则E的坐标是(87,0).【点拨】本题考查了待定系数法求一次函数的解析式,三角形的面积以及对称的性质,正确确定E的位置是本题的关键.22.(1)k=﹣2,y=12x+4;(2)11.【分析】(1)由直线y=kx+4即可求得A的坐标,根据题意求得F的坐标,然后根据待定系数法求得直线AF 的解析式;(2)根据直线AB 向下平移一定的距离,使得平移后的直线经过C 点,求得直线CD 的解析式,可得点E 坐标,再根据割补法求得四边形AECO 的面积.解:(1)∵直线y =kx +4的图象与y 轴交于点A ,与x 轴交于点B (2,0),∴A (0,4),2k +4=0,解得k =﹣2,∵OA =4,OF =2OA ,∴OF =8,∴F (﹣8,0),设直线AF 的解析式为y =mx +n ,把A (0,4),F (﹣8,0)代入得480n m n =⎧⎨-+=⎩,解得124m n ⎧=⎪⎨⎪=⎩,∴直线AF 的解析式为y =12x +4;(2)∵直线AB 沿y 轴向下平移,平移后的直线恰好经过C (﹣3,0),∴设直线DC 的解析式为y =﹣2x +d ,把C (﹣3,0)代入得d =﹣6,∴直线DC 的解析式为y =﹣2x ﹣6.解26142y x y x =--⎧⎪⎨=+⎪⎩得42x y =-⎧⎨=⎩,∴E (﹣4,2),∴S 四边形AECO =S △AOF ﹣S △CEF =1842⨯⨯﹣12×(8﹣3)×2=11.【点拨】本题考查了一次函数图像与几何变换、一次函数的性质、两条直线相交或平行问题,解题的关键是熟练运用以上知识.23.(1)100050000y x =-;(2)该商店继续购进了4000件航天模型玩具.【分析】(1)根据总利润=单件利润×销售量,可求得利润y (元)关于售价x (元/件)的函数表达式;(2)设商店继续购进了m 件航天模型玩具,根据“销售利润的20%恰好10000元”列一元一次方程,解之即可.(1)解:因每件玩具售价为x 元,依题意得()100050100050000y x x =-=-;(2)解:设商店继续购进了m 件航天模型玩具,则总共有()1000m +件航天模型玩具,依题意得:()()1000605020%10000m +-⨯=,解得4000m =,答:该商店继续购进了4000件航天模型玩具.【点拨】本题考查了一次函数的应用,一元一次方程的应用,理解题意找到题目蕴含的相等关系,并据此列出方程或函数解析式是解题的关键.24.(1)A 种树苗的单价是4元,则B 种树苗的单价是5元;(2)有6种购买方案,购买A 种树苗,25棵,购买B 种树苗75棵费用最低,最低费用是475元.【分析】(1)设A 种树苗的单价是x 元,则B 种树苗的单价是1.25x 元,根据“花费4000元集中采购了A 种树苗500株,B 种树苗400株,”列出方程,即可求解;(2)设购买A 种树苗a 棵,则购买B 种树苗(100-a )棵,其中a 为正整数,根据题意,列出不等式组,可得2025a ≤≤,从而得到有6种购买方案,然后设总费用为w 元,根据题意列出函数关系式,即可求解.(1)解:设A 种树苗的单价是x 元,则B 种树苗的单价是1.25x 元,根据题意得:5004001.254000x x +⨯=,解得:4x =,∴1.25x =5,答:A 种树苗的单价是4元,则B 种树苗的单价是5元;(2)解:设购买A 种树苗a 棵,则购买B 种树苗(100-a )棵,其中a 为正整数,根据题意得:()025********a a a <≤⎧⎨+-≤⎩,解得:2025a ≤≤,∵a 为正整数,∴a 取20,21,22,23,24,25,∴有6种购买方案,设总费用为w 元,∴()45100500w a a a =+-=-+,∵-1<0,∴w随a的增大而减小,∴当a=25时,w最小,最小值为475,此时100-a=75,答:有6种购买方案,购买A种树苗,25棵,购买B种树苗75棵费用最低,最低费用是475元.【点拨】本题主要考查了一元一次方程的应用,一元一次不等式组的应用,一次函数的应用,明确题意,准确得到数量关系是解题的关键.。

初中八年级数学重点学习课件:压轴:一次函数综合(知识点串讲)(解析版)

初中八年级数学重点学习课件:压轴:一次函数综合(知识点串讲)(解析版)

专题16 压轴:一次函数综合典例1.(2018秋•太仓市期末)如图所示,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4,.(1)求AC所在直线的解析式;(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积.(3)求EF所在的直线的函数解析式.【答案】见解析【解析】解:(1)∵,∴可设OC=x,则OA=2x,在Rt△AOC中,由勾股定理可得OC2+OA2=AC2,∴x2+(2x)2=(4)2,解得x=4(x=﹣4舍去),∴OC=4,OA=8,∴A(8,0),C(0,4),设直线AC解析式为y=kx+b,∴,解得,∴直线AC解析式为y x+4;(2)由折叠的性质可知AE=CE,设AE=CE=y,则OE=8﹣y,在Rt△OCE中,由勾股定理可得OE2+OC2=CE2,∴(8﹣y)2+42=y2,解得y=5,∴AE=CE=5,∵∠AEF=∠CEF,∠CFE=∠AEF,∴∠CFE=∠CEF,∴CE=CF=5,∴S△CEF CF•OC5×4=10,即重叠部分的面积为10;(3)由(2)可知OE=3,CF=5,∴E(3,0),F(5,4),设直线EF的解析式为y=k′x+b′,∴,解得,∴直线EF的解析式为y=2x﹣6.【点睛】(1)设OC=x,由条件可得OA=2x,在Rt△OAC中,由勾股定理可列方程,则可求得OC的长,可得出A、C的坐标,利用待定系数法可求得直线AC的解析式;(2)可设AE=CE=y,则有OE=8﹣x,在Rt△OEC中,可求得x的值,再由矩形的性质可证得CE=CF,则可求得△CEF的面积;(3)由(2)可求得E、F的坐标,利用待定系数法即可求得直线EF的函数解析式.本题为一次函数的综合应用,涉及矩形的性质、待定系数法、勾股定理及方程思想等知识.在(1)中求得A、C的坐标是解题的关键,在(2)中求得CF的长是解题的关键,在(3)中确定出E、F的坐标是解题的关键.典例2 .(2018春•黄陂区期末)如图,直线y=2x+6交x轴于A,交y轴于B.(1)直接写出A(____,___),B(___,___);(2)如图1,点E为直线y=x+2上一点,点F为直线y x上一点,若以A,B,E,F为顶点的四边形是平行四边形,求点E,F的坐标(3)如图2,点C(m,n)为线段AB上一动点,D(﹣7m,0)在x轴上,连接CD,点M为CD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.【答案】见解析【解析】解:(1)对于直线y=2x+6,令x=0,得到y=6,令y=0,得到x=﹣3,∴A(﹣3,0),B(0,6),故答案为﹣3,0,0,6;(2)∵A,B,E,F为顶点的四边形是平行四边形,∴AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),把F(m+3,m+8)代入y x,得到m+8(m+3),解得m=﹣13,∴E(﹣13,﹣11),F(﹣10,﹣5),把F(m﹣3,m﹣4)代入y x中,m﹣4(m﹣3),解得m=5,∴E(5,7),F(2,1),当AB为对角线时,设E(m,m+2),则F(m﹣3,6﹣m),把F(﹣m﹣3,4﹣m)代入y x中,4﹣m(﹣m﹣3),解得m=11,∴E(11,13),F(﹣14,﹣7).(3)∵C(m,n)在直线y=2x+6上,∴n=2m+6,∴C(m,2m+6),∵D(﹣7m,0),CM=MD,∴M(﹣3m,m+3),令x=﹣3m,y=m+3,∴y x+3,当点C与A重合时,m=﹣3,可得M(9,0),当点C与B重合时,m=0,可得M(0,3),∴点C移动过程中点M的运动路径长为:3.【点睛】(1)利用待定系数法即可解决问题;(2)因为A,B,E,F为顶点的四边形是平行四边形,推出AB=EF,AB∥EF,设E(m,m+2),则F (m+3,m+8)或(m﹣3,m﹣4),再利用待定系数法求出m即可;(3)求出点M的坐标(用m表示),即可解决问题,利用特殊位置求出点M的坐标,可以解决点C移动过程中点M的运动路径长;本题考查一次函数综合题、平行四边形的判定和性质、中点坐标公式、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.典例3.(2018春•高新区期末)在直角坐标系中,点P(a,b)的“变换点”的坐标定义如下:当a≥b时,点P1的坐标为(a,﹣b);当a<b时,点P1的坐标为(b,﹣a).(1)直接写出点A(5,6)、B(3,2)、C(4,4)的变换点A1、B1、C1的坐标;(2)P(a,b)为直线y=﹣2x+6上的任一点,当a<b时,点P(a,b)的变换点在一条直线M上,求点M的函数解析式并写出自变量的取值范围;(3)直线y=﹣2x+6上所有点的变换点组成一个新的图形L,直线y=kx+1与图形L有两个公共点,求k的取值范围.【答案】见解析【解析】解:(1)A(5,6)的变换点坐标是(6,﹣5),B(3,2)的变换点坐标是(3,﹣2),C(4,4)的变换点坐标是(4,﹣4);(2)当a=b时,a=b=2,∵(2,2)的变换点为(2,﹣2),∵当a<b时,点P(a,b)的变换点坐标为(b,﹣a),∴x<2,∵(0,6)的变换点为(6,0),∴点P(a,b)的变换点经过(2,﹣2)和(6,0),设点M的函数解析式为y=kx+m,则有解得,∴y x﹣3(x<2).(3)由题意,新的图形L的函数解析式为y新图形L的拐点坐标为(2,﹣2),画出图形如图所示.当y=kx+1过点(2,﹣2)时,有﹣2=2k+1,解得:k;当y=kx+1与y=2x﹣6平行时,k=2;当y=kx+1与y x﹣3平行时,k.结合图形可知:直线y=kx+1与图形L有且只有两个公共点时,k.【点睛】(1)根据“变换点”的定义解答即可;(2)根据“变换点”的定义得出(2,2),(0,6)的变换点的坐标,进而得出解析式即可;(3)首先确定求出新的图形L的函数解析式,依照题意画出图形,并找出直线y=kx+1与图形L有且只有两个公共点的临界点,结合图形即可得出结论.本题考查了一次函数图象上点的坐标特征、平行线的性质以及一次函数图象,依照题意画出图形,利用数形结合解决问题是解题的关键.典例4.(2018春•郾城区期末)已知:直线y=2x+4与x轴交于点A,与y轴交于点B.(1)求△AOB的面积;(2)若点B关于x轴的对称点为C,点D为线段OA上一动点,连接BD,将BD绕点D逆时针旋转90°得到线段DE,求直线CE的解析式;(3)在(2)的条件下,直线CE与x轴交于点F,与直线AB交于点P,当点D在OA上移动时,直线AB上是否存在点Q,使以F,P,D,Q为顶点的四边形为平行四边形?若存在请直接写出Q,D的坐标;若不存在,说明理由.【答案】见解析【解析】解:(1)∵直线y=2x+4与x轴交于点A,与y轴交于点B,∴A(﹣2,0),B(0,4),∴OA=2,OB=4,∴S△AOB•OA•OB2×4=4;(2)过E作EG⊥x轴于点G,如图,∵点B关于x轴的对称点为C,∴C(0,﹣4),∴可设直线CE解析式为y=kx﹣4,由题意可知BD=ED,∠EDB=90°,且∠DOB=∠EGA=90°,∴∠BDO+∠OBD=∠BDO+∠EDG=90°,∴∠OBD=∠EDG,在△BDO和△DEG中∴△BDO≌△DEG(AAS),∴GD=OB=4,EG=OD,设OD=a,则EG=a,OG=4+a,∴E(﹣a﹣4,a),∵点E在直线CE上,∴a=k(﹣a﹣4)﹣4,解得k=﹣1,∴直线CE解析式为y=﹣x﹣4;(3)要使以F、P、D、Q为顶点的四边形为平行四边形,则有DA=F A,P A=QA,即A为FD和PQ的中点,在y=﹣x﹣4中,令y=0可得x=﹣4,∴F(﹣4,0),且A(﹣2,0),∴D(0,0),联立直线AB和CE解析式可得,解得,∴P(,),∴Q(,).【点睛】(1)由直线解析式可求得A、B坐标,则可求得△AOB的面积;(2)过E作EG⊥x轴于点G,由C点坐标可设出CE的解析式,再由条件可证得△DEG≌△BDO,设OD=a,则可表示出EG和OG的长,则可表示出E点坐标,把E点坐标代入直线CE解析式可求得k 的值,则可求得直线CE的解析式;(3)由条件可知当四边形为平行四边形时,可得到DA=F A,P A=QA,则可求得D、Q的坐标.本题为一次函数的综合应用,涉及函数图象与坐标轴的交点、全等三角形的判定和性质、待定系数法、平行四边形的性质等知识.在(1)中求得A、B坐标即可,在(2)中用OD的长表示出E点坐标是解题的关键,在(3)中确定出A为平行四边形的中心是解题的关键.本题考查知识点较多,综合性较强,难度适中.典例5.(2018春•随县期末)如图,在平面直角坐标系中,矩形OBEC的顶点E坐标为(12,6),直线l:y=x与对角线BC交于点A.(1)求出点A的坐标;(2)如果点D是线段OA上一动点,当△COD的面积为12时,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O,C,P,Q为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.【答案】见解析【解析】解:(1)∵直线l:y x,E(12,6)∴直线l经过点E∴点A是BC与OE的交点即点A是矩形OBEC对角线的交点∴A点的坐标是(6,3).(2)C(0,6),设D(a,a)∵S△COD6•a=12∴a=4∴D(4,2),设直线CD的函数表达式为y=kx+b∵C(0,6),D(4,2)∴,解得,∴直线CD的函数表达式为y=﹣x+6.(3)存在点Q,使以O,C,P,Q为顶点的四边形是菱形.如图所示,分三种情况考虑:①四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形,此时OP1=OC=6,即P1(6,0).②当四边形OP2CQ2为菱形时,由C坐标为(0,6),得到P2纵坐标为3,把y=3代入直线直线CD的解析式y=﹣x+6中,可得3=﹣x+6,解得x=3,此时P2(3,3).③当四边形OQ3P3C为菱形时,则有OQ3=OC=CP3=P3Q3=6,设P3(x,﹣x+6),∴x2+(﹣x+6﹣6)2=62解得x=3或x=﹣3(舍去),此时P3(3,﹣36),综上可知存在满足条件的点P坐标为(6,0)或(3,3)或(3,﹣36).【点睛】(1)只要证明点A是矩形的对角线的交点即可解决问题;(2)设D(a,a),利用三角形的面积公式构建方程求出a,可得点D坐标,再利用待定系数法即可解决问题;(3)分三种情形分别讨论求解即可;本题考查一次函数综合题、矩形的性质、菱形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.典例6.(2018春•武昌区期末)在平面直角坐标系xoy中,直线y=﹣x+m(m>0)与x轴,y轴分别交于A,B两点,点P在直线AB上.(1)如图1,若m1,点P在线段AB上,∠POA=60°,求点P的坐标;(2)如图2,以OP为对角线作正方形OCPD(O,C,P,D按顺时针方向排列),当点P在直线AB上运动时,的值是否会发生变化?若不变,请求出其值;若变化,请说明理由;(3)如图3,在(1)的条件下,Q为y轴上一动点,连AQ,以AQ为边作正方形AQEF(A,Q,E,F 按顺时针方向排列),连接OE,AE,则OE+AE的最小值为_________.【答案】见解析【解析】解:(1)如图1所示:过点P作PG⊥OA,垂足为G.∵y=﹣x+m,∴A(m,0),B(0,m).∴OB=OA=m1.∴∠P AG=45°.又∵∠PGA=90°,∴PG=GA.∵∠POG=60°,∠PGO=90°∴PG OG.∴(1)OG1.∴OG=1,∴PG.∴点P的坐标为(1,).(2)的值不变.如图2所示,过点O作OM⊥OP交PC的延长线与M,连接BM.∵四边形OCPD是正方形,∴OC=PC,∠OCP=90°,∴∠OPC=45°.∵∠MOP=90°,∴∠OMP=∠OPM=45°,∴OP=OM.∵A(m,0)、B(0,m),∴OA=OB=m.∵∠BOA=∠MOP=90°,∴∠POA=∠MOB.∵OA=OB,∠POA=∠MOB,OP=OM,∴△POA≌△MOB,∴∠OAP=∠OBM=135°,∴∠MBP=90°,∵C为PM的中点,∴BC=CP OP,∴.(3)如图3所示:过E作EK垂直y轴与K,设A(0,a).可证明△OAQ≌△KQE.∴OQ=KE=a,AO=KQ1.∴E(a,a1).∴点E在直线y=x1上运动,∴点B在直线y=x1上.设直线y=x1交x轴与N.∴N(1,0).∴∠BNO=45°.作点O关于直线y=x1的对称点O1,连接AO1,交直线y=x1与E1,连接OE1、O1N、O1E.∴OE1=O1E1.∴OE1+AE1=O1A≤O1E+AE,∴OE+AE的最小值为线段O1A的长.∵∠BNO=∠BNO1=45°,ON=O1N,∴∠ANO1=90°在Rt△O1NA中,O1A.故答案为:.【点睛】(1)过点P作PG⊥OA,垂足为G.则OB=OA=m1,然后可证明PG=AG,然后再由特殊锐角三角函数值可知PG OG,最后由OG+AG=OA可求得OG的值,从而可求得点P的坐标;(2)过点O作OM⊥OP交PC的延长线与M,连接BM.接下来,再证明△POA≌△MOB,依据全等三角形的性质可得到∠OAP=∠OBM=135°,接下来,再证明∠MBP=90°,依据直角三角斜边上中线的性质可证明BC=CP,然后依据OP与CP的比值为定值可得到问题的答案;(3)过E作EK垂直y轴与K,设A(0,a).可证明△OAQ≌△KQE,则E(a,a1),设直线y=x1交x轴与N,则∠BNO=45°,作点O关于直线y=x1的对称点O1,连接AO1,交直线y=x1与E1,连接OE1、O1N、O1E,则OE+AE的最小值为线段O1A的长,最后,在Rt △O1NA中依据勾股定理求得O1A的长即可.本题主要考查的是一次函数的综合应用,解答本题主要应用了正方形的性质、全等三角形的性质和判定、轴对称的性质,确定出OE+AE取得最小值的条件是解题的关键.巩固练习1.(2018春•岚山区期末)在如图平面直角坐标系中,直线l分别交x轴、y轴于点A(3,0)、B(0,4)两点,动点P从点O开始沿OA向点A以每秒个单位长度运动,动点Q从点B开始沿BO向点O以每秒个单位长度运动,过点P作y轴的平行线交直线AB于点M,连接PQ.且点P、Q分别从点O、B 同时出发,运动时间为t秒.(1)请直接写出直线AB的函数解析式:______;(2)当t=4时,四边形BQPM是否为菱形?若是,请说明理由;若不是,请求出当t为何值时,四边形BQPM是菱形.【答案】见解析【解析】解:(1)设直线AB的解析式为:y=kx+b(k≠0).把点A(3,0)、B(0,4)分别代入,得解得.故直线AB的函数解析式是:y x+3.故答案是:y x+3.(2)当t=4时,四边形BQPM是菱形.理由如下:当t=4时,BQ4,则OQ=4.当t=4时,OP,则AP.由勾股定理求得PQ BQ.∵PM∥OB,∴△APM∽△AOB,∴,即,解得PM.∴四边形BQPM是平行四边形,∴当t=4时,四边形BQPM是菱形.2.(2018春•中山区期末)如图,在平面直角坐标系xOy中,直线y x+8分别交x轴,y轴于点A,B,直线AB上有一点C(m,4).点D(0,n)是y轴上任意一点,连结CD,以CD为边在直线CD下方,作正方形CDEF.(1)填空:m=___;(2)若正方形CDEF的面积为S,求S关于n的函数关系式;(3)点A关于y轴的对称点为A′,连接A′B,是否存在n的值,使正方形的顶点E或F落在△ABA′的边上?若存在,求出所有满足条件的n的值;若不存在,说明理由.【答案】见解析【解析】解:(1)∵C(m,4)在直线y x+8上,∴4m+8,∴m=3,故答案为3.(2)∵D(0,n),C(3,4),∴S=CD2=32+(n﹣4)2=n2﹣8n+25.(3)①如图1中,当点F在直线BA′上时,作CN⊥y轴于N,FM⊥CN于M.则△CND≌△FMC,∴CN=FM=3,DN=CM=n﹣4,∴F(7﹣n,1),∵直线A′B的解析式为y x+8,∴1(7﹣n)+8,∴n.②如图2中,当点E落在直线A′B上时,连接EC交OB于R,此时点F在y轴上,DR=CR=3,OR =4,OD=7,∴n=7.③如图3中,当点E落在AA′上时,作CR⊥OB于R.则△CRD≌△DOE,∴DO=CR=3,∴n=3.④如图4中,当点F落在直线AB上时,作CR⊥OB于R,FN⊥CR于N.则△CRD≌△FNC,∴FN=CR=3,CN=DR=4﹣n,∴F(7﹣n,1),把F(7﹣n,1)代入y x+8得到,1(7﹣n)+8,∴n,综上所述,满足条件的n的值为或7或3或.3.(2018春•南安市期末)如图,在平面直角坐标系中,O为坐标原点,矩形OABC的顶点A(12,0)、C(0,9),将矩形OABC的一个角沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与x轴交于点D.(1)线段OB的长度为____;(2)求直线BD所对应的函数表达式;(3)若点Q在线段BD上,在线段BC上是否存在点P,使以D,E,P,Q为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.【答案】见解析【解析】解:(1)在Rt△ABC中,∵OA=12,AB=9,∴OB15.故答案为15.(2)如图,设AD=x,则OD=OA=AD=12﹣x,根据轴对称的性质,DE=x,BE=AB=9,又OB=15,∴OE=OB﹣BE=15﹣9=6,在Rt△OED中,OE2+DE2=OD2,即62+x2=(12﹣x)2,解得x,∴OD=OA﹣AD=12,∴点D(,0),设直线BD所对应的函数表达式为:y=kx+b(k≠0)则,解得,∴直线BD所对应的函数表达式为:y=2x﹣15.(3)过点E作EP∥BD交BC于点P,过点P作PQ∥DE交BD于点Q,则四边形DEPQ是平行四边形,再过点E作EF⊥OD于点F,由•OE•DE•DO•EF,得EF,即点E的纵坐标为,又点E在直线OB:y x上,∴x,解得x,∴E(,),由于PE∥BD,所以可设直线PE:y=2x+n,∵E(,),在直线EP上∴2n,解得n=﹣6,∴直线EP:y=2x﹣6,令y=9,则9=2x﹣6,解得x,∴P(,9).4.(2018春•汶上县期末)已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y 轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,问:①若△P AO的面积为S,求S关于m的函数关系式,并写出m的取值范围;②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.【答案】见解析【解析】解:(1)令x=0,则y=8,∴B(0,8),令y=0,则﹣2x+8=0,∴x=4,∴A(4,0),(2)连接OP.∵点P(m,n)为线段AB上的一个动点,∴﹣2m+8=n,∵A(4,0),∴OA=4,∴0<m<4∴S△P AO OA×PE4×n=2(﹣2m+8)=﹣4m+16,(0<m<4);(3)存在,理由:∵PE⊥x轴于点E,PF⊥y轴于点F,OA⊥OB,∴四边形OEPF是矩形,∴EF=OP,当OP⊥AB时,此时EF最小,∵A(4,0),B(0,8),∴AB=4∵S△AOB OA×OB AB×OP,∴OP,∴EF的最小值=OP.5.(2018春•涵江区期末)已知:如图,直线y=﹣x+6与坐标轴分别交于A、B两点,点C是线段AB上的一个动点,连接OC,以OC为边在它的左侧作正方形OCDE连接BE、CE.(1)当点C横坐标为4时,求点E的坐标;(2)若点C横坐标为t,△BCE的面积为S,请求出S关于t的函数解析式;(3)当点C在线段AB上运动时,点E相应随之运动,请求出点E所在的函数解析式.【答案】见解析【解析】解:(1)作CF⊥OA于F,EG⊥x轴于G.∴∠CFO=∠EGO=90°,令x=4,y=﹣4+6=2,∴C(4,2),∴CF=2,OF=4,∵四边形OCDE是正方形,∴OC=OE,OC⊥OE,∵OC⊥OE,∴∠COF+∠EOG=90°,∠COF+∠OCF=90°,∴∠EOG=∠OCF,∴△CFO≌△OGE,∴OG=OF=4,OG=CF=2,∴G(﹣2,4).(2)∵直线y=﹣x+6交y轴于B,∴令x=0得到y=6,∴B(0,6),令y=0,得到x=6,∴A(6,0),∴OA=OB=6,∠OAB=∠OBA=45°,∵∠AOB=∠EOC=90°,∴∠EOB=∠COA,∵OE=OC,∴△EOB≌△COA,∴BE=AC,∠OBE=∠OAC=45°,∴∠EBC=90°,即EB⊥AB,∵C(t,﹣t+6),∴BC t,AC=BE(6﹣t),∴S•BC•EB t•(6﹣t)=﹣t2+6t.(3)当点C在线段AB上运动时,由(1)可知E(t﹣6,t),设x=6﹣t,y=t,∴t=x+6,∴y=x+6.6.(2018春•广元期末)如图1,四边形ABCD是正方形,点A、B分别在两条直线y=﹣2x和y=kx上,点C、D是x轴上两点.(1)若正方形ABCD的边长为2,试求k的值;(2)若正方形ABCD的边长为m,则k的值是否会发生变化?若不会发生变化,请说明理由;若发生变化,试求出k的值;(3)如图2,在(1)的条件下直线y=kx沿y轴向下平移得到直线l:y=ax+b,使直线1经过点C,点P是直线l上的一个动点,当|P A﹣PB|的值最大时,求点P的坐标.【答案】见解析【解析】解:(1)∵正方形ABCD的边长为2,∴AD=CD=BC=AB,∴点A的横坐标为2,针对于直线y=﹣2x,令y=2,∴x=﹣1,∴点D(﹣1,0),∴C(﹣3,0),∴B(﹣3,2),将点B(﹣3,2)代入y=kx中,﹣3k=2,∴k;(2))k的值不会发生变化,理由:∵正方形ABCD的边长为m,∴AD=CD=BC=AB,∴点A的横坐标为m,针对于直线y═2x,令y=m,∴x m,∴点D(m,0),∴C(m,0),∴B(m,2m),将点B(m,2m)代入y=kx中,mk=m,∴k,∴k的值不会会发生变化;(3)由(1)知,k,∵直线1经过点C(﹣3,0),由平移知,直线l的解析式为y x﹣2,当|P A﹣PB|的值最大时,点,A,B,P在同一条直线上,∵AB∥x轴,B(﹣3,2),∴点P的纵坐标为2,∵点P是直线l上的一个动点,直线l的解析式为y x﹣2,∴x﹣2=2,∴x=﹣6,∴P(﹣6,2).。

人教版八年级下册数学 第19章 一次函数 综合(压轴题)示范

人教版八年级下册数学    第19章   一次函数   综合(压轴题)示范

人教版八年级下册数学第19章 一次函数 综合(压轴题)示范1.如图,直线l 1的解析式为y =12x+1,且l 1与x 轴交于点D ,直线l 2经过定点A 、B ,直线l 1与l 2交于点C .(1)求直线的解析式; (2)求△ADC 的面积;(3)在x 轴上是否存在一点E ,使△BCE 的周长最短?若存在,请求出点E 的坐标;若不存在,说明理由.【分析】(1)利用待定系数法即可直接求得l 2的函数解析式;(2)首先解两条之间的解析式组成的方程组求得C 的坐标,然后利用三角形的面积公式即可求解; (3)求得C 关于y 轴的对称点,然后求得经过这个点和B 点的直线解析式,直线与x 轴的交点就是E . 【解析】(1)设l 2的解析式是y =kx+b ,根据题意得:{4k +b =0−k +b =5,解得{k =−1b =4,则函数的解析式是:y =﹣x+4;(2)在y =12x+1中令y =0,即y =12x+1=0,解得:x =﹣2,则D 的坐标是(﹣2,0). 解方程组{y =−x +4y =12x +1,解得{x =2y =2,则C 的坐标是(2,2).则S △ADC =12×AD ×y C =12×6×2=6;(3)存在,理由:设C (2,2)关于y 轴的对称点C ′(2,﹣2),连接BC ′交x 轴于点E ,则点E 为所求点, △BCE 的周长=BC+BE+CE =BC+BE+C ′E =BC+BC ′为最小,设经过(2,﹣2)和B 的函数解析式是y =mx+n ,则{2m +n =−2−m +m =5,解得:{m =−73n =83, 则直线的解析式是y =−73x +83,令y =0,则y =−73x +83=0,解得:x =87.则E 的坐标是(87,0).【小结】本题考查了待定系数法求一次函数的解析式,以及对称的性质,正确确定E 的位置是本题的关键. 2、矩形ABCD 在如图所示的平面直角坐标系中,点A 的坐标为(0,3),BC =2AB ,直线经过点B ,交AD 边于点P 1,此时直线l 的函数表达式是y =2x +1. (1)求BC ,AP 1的长;(2)沿y 轴负方向平移直线l ,分别交AD ,BC 边于点P ,E . ①当四边形BEPP 1是菱形时,求平移的距离;②设AP =m ,当直线l 把矩形ABCD 分成两部分的面积之比为3:5时,求m 的值.解:(1)∵直线y =2x +1经过y 轴上的B 点,∴B (0,1),又∵A 的坐 标为(0,3);∴AB=2;BC=2AB=4;P 1(1,3);AP 1=1;(2)①当四边形BEPP 1是菱形时,BP 1=BE=5;∴E (5,1);设平移之后的直线解析式为:y =2x +b ,将点E 代入;b=1-25; 与y 轴的交点B ’(0,1-25),∴沿y 轴负方向平移距离为25;②∵AP=m ;AP 1=1;PP 1=BE=m-1;而S 梯形ABEP =83S 矩形ABCD 或S 梯形ABEP =85S 矩形ABCD ; ∴53m 1-m 221或)(=+⨯;m=2或3. 3、如图,一次函数y 1=54x+n 与x 轴交于点B ,一次函数y 2=−34x+m 与y 轴交于点C ,且它们的图象都经过点D (1,−74).(1)则点B 的坐标为 ,点C 的坐标为 ;(2)在x 轴上有一点P (t ,0),且t >125,如果△BDP 和△CDP 的面积相等,求t 的值;(3)在(2)的条件下,在y 轴的右侧,以CP 为腰作等腰直角△CPM ,直接写出满足条件的点M 的坐标.【分析】(1)根据待定系数法,可得函数解析式,分别令y =0和x =0,可得B 、C 点坐标; (2)根据面积的和差,可得关于t 的方程,根据解方程,可得答案;(3)分情况讨论,注意是在y 轴的右侧,有三个符合条件的点M ,作辅助线,构建三角形全等,根据全等三角形的判定与性质,可得M 的坐标.【解析】(1)将D (1,−74)代入y =54x+n ,解得n =﹣3,即y =54x ﹣3,当y =0时,54x ﹣3=0.解得x =125,即B 点坐标为(125,0); 将(1,−74)代入y =−34x+m ,解得m =﹣1,即y =−34x ﹣1,当x =0时,y =﹣1.即C 坐标为(0,﹣1); (2)如图1,S △BDP =12(t −125)×|−74|=78t −2110,当y =0时,−34x ﹣1=0,解得x =−43,即E 点坐标为(−43,0), S △CDP =S △DPE ﹣S △CPE =12(t +43)×74−12×(t +43)×|﹣1|=38t +12,由△BDP 和△CDP 的面积相等,得:78t −2110=38t +12,解得t =5.2;(3)以CP 为腰作等腰直角△CPM ,有以下两种情况: ①如图2,当以点C 为直角顶点,CP 为腰时,点M 1在y 轴的左侧,不符合题意,过M 2作M 2A ⊥y 轴于A , ∵∠PCM 2=∠PCO+∠ACM 2=∠PCO+∠OPC =90°,∴∠ACM 2=∠OPC ,∵∠POC =∠CAM 2,PC =CM 2,∴△POC ≌△CAM 2(AAS ),∴PO =AC =5.2,OC =AM 2=1, ∴M 2(1,﹣6.2);②如图3,当以点P 为直角顶点,CP 为腰时,过M 4作M 4E ⊥x 轴于E ,同理得△COP ≌△PEM 4,∴OC =EP =1,OP =M 4E =5.2,∴M 4(6.2,﹣5.2), 同理得M 3(4.2,5.2);综上所述,满足条件的点M 的坐标为(1,﹣6.2)或(6.2,﹣5.2)或(4.2,5.2).【小结】本题考查了一次函数综合题,利用待定系数法求函数解析式;利用面积的和差得出关于t 的方程是解题关键;利用全等三角形的判定与性质得出对应边相等是解题关键.4、如图,已知直线y =2x+2与y 轴、x 轴分别交于A 、B 两点,点C 的坐标为(﹣3,1). (1)直接写出点A 的坐标 ,点B 的坐标 . (2)求证△ABC 是等腰直角三角形.(3)若直线AC 交x 轴于点M ,点P (−52,k )是线段BC 上一点,在线段BM 上是否存在一点N ,使直线PN 平分△BCM 的面积?若存在,请求出点N 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法解决问题即可.(2)作CD ⊥x 轴于点D ,证明△CDB ≌△BOA (SAS )即可解决问题. (3)求出点P 的坐标,利用面积法求出BN 的长即可解决问题.【解答】(1)对于直线y =2x+2,令x =0,得到y =2,令y =0,得到x =﹣1,∴A (0,2),B (﹣1,0). (2)证明:作CD ⊥x 轴于点D ,由题意可得CD =1,OD =3,OB =1,OA =2,∴CD =OB =1,BD =OA =2, ∵∠CDB =∠AOB =90˚,∴△CDB ≌△BOA (SAS ),∴BC =BA ,∠CBD =∠BAO ,∵∠ABO+∠BAO =90˚,∴∠ABO+∠CBD =90˚,即∠ABC =90˚,∴△ABC 是等腰直角三角形. (3)∵P (−52,k )在直线BC :y =−12x −12上,∴P (−52,34),∵直线AC :y =13x +2交x 轴于M ,∴M (﹣6,0),∵S △BCM =12×5×1=52,假设存在点N ,使直线PN 平分△BCM 的面积,则S △BPN =12⋅BN ⋅34=12×52,∴BN =103,∴ON =BN+OB =103+1=133,∴N(−133,0).【小结】本题考查属于一次函数综合题,考查了一次函数的性质,等腰直角三角形的判定,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5、如图1,在平面直角坐标系xOy 中,直线y =kx+8分别交x 轴,y 轴于A 、B 两点,已知A 点坐标(6,0),点C 在直线AB 上,横坐标为3,点D 是x 轴正半轴上的一个动点,连结CD ,以CD 为直角边在右侧构造一个等腰Rt △CDE ,且∠CDE =90°.(1)求直线AB 的解析式以及C 点坐标;(2)设点D 的横坐标为m ,试用含m 的代数式表示点E 的坐标;(3)如图2,连结OC ,OE ,请直接写出使得△OCE 周长最小时,点E 的坐标. 【分析】(1)把A (6,0)代入y =kx+8中,得6k+8=0,解得:k =−43,即可求解; (2)证明△CDF ≌△DEG (AAS ),则CF =DG =4,DF =EG =3﹣m ,OG =4+m ,则E (4+m ,m ﹣3); (3)过点O 作直线l 的对称点O ′,连接CO ′交直线l 于点E ′,则点E ′为所求点,即可求解. 【解析】(1)把A (6,0)代入y =kx+8中,得6k+8=0,解得:k =−43,∴y =−43x +8,把x =3代入,得y =4,∴C (3,4); (2)作CF ⊥x 轴于点F ,EG ⊥x 轴于点G ,∵△CDE 是等腰直角三角形,∴CD =DE ,∠CDE =90°, ∴∠CDF =90°﹣∠EDG =∠DEG ,且∠CFD =∠DGE =90°,∴△CDF ≌△DEG (AAS )∴CF =DG =4,DF =EG =3﹣m ,∴OG =4+m ,∴E (4+m ,m ﹣3); (3)点E (4+m ,m ﹣3),则点E 在直线l :y =x ﹣7上,设:直线l 交y 轴于点H (0,﹣7),过点O 作直线l 的对称点O ′, ∵直线l 的倾斜角为45°,则HO ′∥x 轴,则点O ′(7,﹣7), 连接CO ′交直线l 于点E ′,则点E ′为所求点,OC 是常数,△OCE 周长=OC+CE+OE =OC+OE ′+CE ′=OC+CE ′+O ′E ′=OC+CO ′为最小,由点C 、O ′的坐标得,直线CO ′的表达式为:y =−114x +494联立{y =x −7y =−114x +494,解得:{x =7715y =−2815,故:E(7715,−2815). 【小结】本题考查的是一次函数综合运用,涉及到一次函数的性质、等腰直角三角形的性质、点的对称性等,综合性很强,难度较大.6.如图①,直线y =x +1交x 轴于点A ,交y 轴于点C ,OB =30A ,M 在直线AC 上,AC =CM . (1)求直线BM 的解析式;(2)如图①,点N 在MB 的延长线上,BN =AC ,连CN 交x 轴于点P ,求点P 的坐标;(3)如图②,连接OM ,在直线BM 上是否存在点K ,使得∠MOK =45°,若存在,求点K 的坐标,若不存在,说明理由.解:(1)利用A(-1,0);C (0,1);AC=AM;∴M (1,2);B (3,0);∴BM :y =-x +3.(2)过C 作CS ∥MN 交x 轴与S 点,可证△PCS ≌△PNB ,可证P 为BS 的中点,可证OA=OS=1; 则BS=2;则P (2,0)。

北师版八上数学专题5 一次函数中的综合问题(课件)

北师版八上数学专题5 一次函数中的综合问题(课件)
关于 BD 的中垂线对称,故点 Q3(4,1);点 Q2和点 Q3关于 x
轴对称,故点 Q2 (4,-1).故点 Q 的坐标为(3,-1),
(4,-1)或(4,1).
图2
返回目录
数学 八年级上册 BS版
【点拨】在解答一次函数与三角形的综合性问题时,常会用到
三角形全等中的常见模型,例如本题中用到的“三垂直”模
=,
所以△ AOB ≌△ BMC (AAS).
所以 BM = OA =2, CM = OB =1.
所以 OM =3.所以点 C 的坐标为(3,1).
设直线 AC 的函数表达式为 y = kx + b ( k ≠0).
1
由题意,得 b =2,3 k + b =1.所以 k =- .
3
1
所以直线 AC 的函数表达式为 y =- x +2.
所以点 P 的坐标为(4,3).
图2
返回目录
数学 八年级上册 BS版
(3) m 的值为2,6或8.理由如下:
因为直线 AB 的函数表达式为 y =- x +6,
所以 A (6,0).
分三种情况讨论:
①如图3,当△ OAC ≌△ QCA ,点 Q 在第四象限时,
则∠ ECA =∠ EAC .
图3
所以 AE = CE =4, OE =6-4=2.
返回目录
数学 八年级上册 BS版
2. 一次函数中的三角形存在性问题的解题步骤.
(1)找点:利用尺规作图确定点的位置;
(2)求点:利用等量关系或联立函数表达式,直角三角形需要
根据直角顶点分类讨论,再由等腰直角三角形的特殊性,利用
勾股定理或构造全等三角形求解;
(3)定点:依据题意确定符合要求的点的坐标.

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。

初二数学《一次函数》压轴题选(含答案)

初二数学《一次函数》压轴题选(含答案)

一次函数综合题选讲及练习例1.(2014秋•海曙区期末)如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标及直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.变式练习:1.(2014秋•常熟市校级期末)已知:如图1,一次函数y=mx+5m的图象与x轴、y轴分别交于点A、B,与函数y=﹣x的图象交于点C,点C的横坐标为﹣3.(1)求点B的坐标;(2)若点Q为直线OC上一点,且S△QAC=3S△AOC,求点Q的坐标;(3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P 到直线CD和直线CO的距离相等.①在图2中,只利用圆规作图找到点P的位置;(保留作图痕迹,不得在图2中作无关元素.)②求点P的坐标.例2.(2014秋•宝安区期末)如图1,已知一次函数y=﹣x+6分别与x、y轴交于A、B两点,过点B的直线BC交x轴负半轴与点C,且OC=OB.(1)求直线BC的函数表达式;(2)如图2,若△ABC中,∠ACB的平分线CF与∠BAE的平分线AF相交于点F,求证:∠AFC=∠ABC;(3)在x轴上是否存在点P,使△ABP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.变式练习:2.(2013秋•靖江市校级期末)如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.(1)点A坐标是,BC=.(2)当点P在什么位置时,△APQ≌△CBP,说明理由.(3)当△PQB为等腰三角形时,求点P的坐标.课后作业:1.(2015春•宁城县期末)已知,如图直线y=2x+3与直线y=﹣2x﹣1相交于C点,并且与两坐标轴分别交于A、B两点.(1)求两直线与y轴交点A,B的坐标及交点C的坐标;(2)求△ABC的面积.2.如图①,直线y=﹣x+1分别与坐标轴交于A,B两点,在y轴的负半轴上截取OC=OB(1)求直线AC的解析式;(2)如图②,在x轴上取一点D(1,0),过D作DE⊥AB交y轴于E,求E点坐标.3.(2014秋•雨城区校级期中)如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)当M在x轴正半轴移动并靠近0点时,求△COM的面积S与M的移动时间t之间的函数关系式;当M在O点时,△COM的面积如何?当M在x轴负半轴上移动时,求△COM 的面积S与M的移动时间t之间的函数关系式;请写出每个关系式中t的取值范围;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.参考答案:例1.【考点】一次函数综合题.【分析】(1)当y=0时,x=﹣5;当x=0时,y=5m,得出A(﹣5,0),B(0,5m),由OA=OB,解得:m=1,即可得出直线L的解析式;(2)由勾股定理得出OM的长,由AAS证明△AMO≌△ONB,得出BN=OM,即可求出BN的长;(3)作EK⊥y轴于K点,由AAS证得△ABO≌△BEK,得出对应边相等OA=BK,EK=OB,得出EK=BF,再由AAS证明△PBF≌△PKE,得出PK=PB,即可得出结果.【解答】解:(1)∵对于直线L:y=mx+5m,当y=0时,x=﹣5,当x=0时,y=5m,∴A(﹣5,0),B(0,5m),∵OA=OB,∴5m=5,解得:m=1,∴直线L的解析式为:y=x+5;(2)∵OA=5,AM=,∴由勾股定理得:OM==,∵∠AOM+∠AOB+∠BON=180°,∠AOB=90°,∴∠AOM+∠BON=90°,∵∠AOM+∠OAM=90°,∴∠BON=∠OAM,在△AMO和△OBN中,,∴△AMO≌△ONB(AAS)∴BN=OM=;(3)PB的长是定值,定值为;理由如下:作EK⊥y轴于K点,如图所示:∵点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,∴AB=BE,∠ABE=90°,BO=BF,∠OBF=90°,∴∠ABO+∠EBK=90°,∵∠ABO+∠OAB=90°,∴∠EBK=∠OAB,在△ABO和△BEK中,,∴△ABO≌△BEK(AAS),∴OA=BK,EK=OB,∴EK=BF,在△PBF和△PKE中,,∴△PBF≌△PKE(AAS),∴PK=PB,∴PB=BK=OA=×5=.【点评】本题是一次函数综合题目,考查了一次函数解析式的求法、等腰直角三角形的性质、勾股定理、全等三角形的判定与性质等知识;本题综合性强,难度较大,特别是(3)中,需要通过作辅助线两次证明三角形全等才能得出结果.变式练习:1.【考点】一次函数综合题.【分析】(1)把点C的横坐标代入正比例函数解析式,求得点C的纵坐标,然后把点C的坐标代入一次函数解析式即可求得m的值,则易求点B的坐标;(2)由S△QAC=3S△AOC得到点Q到x轴的距离是点C到x轴距离的3倍或点Q到x轴的距离是点C到x轴距离的2倍;(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.利用△CAO ∽△DAC,求出AD的长,进而求出D点坐标,再用待定系数法求出CD解析式,利用点到直线的距离公式求出公式,=,解出a的值即可.【解答】解:(1)把x=﹣3代入y=﹣x得到:y=2.则C(﹣3,2).将其代入y=mx+5m,得:2=﹣3m+5m,解得m=1.则该直线方程为:y=x+5.令x=0,则y=5,即B(0,5);(2)由(1)知,C(﹣3,2).如图1,设Q(a,﹣a).∵S△QAC=3S△AOC,∴S△QAO=4S△AOC,或S△QAO=2S△AOC,①当S△QAO=4S△AOC时,OA•y Q=4×OA•y C,∴y Q=4y C,即|﹣a|=4×2=8,解得a=﹣12(正值舍去),∴Q(﹣12,8);②当S△QAO=2S△AOC时,OA•y Q=2×OA•y C,∴y Q=2y C,即|﹣a|=2×2=4,解得a=6(舍去负值),∴Q′(6,﹣4);综上所述,Q(﹣12,8)或(6,﹣4).(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.∵C(﹣3,2),A(﹣5,0),∴AC==2,∵∠ACD=∠AOC,∠CAO=∠DAC,∴△CAO∽△DAC,∴=,∴AD=,∴OD=5﹣=,则D(﹣,0).设CD解析式为y=kx+b,把C(﹣3,2),D(﹣,0)分别代入解析式得,解得,函数解析式为y=5x+17,设P点坐标为(a,0),根据点到直线的距离公式,=,两边平方得,(5a+17)2=2×4a2,解得a=﹣5±2,∴P1(﹣5﹣2,0),P2(﹣5+2,0).【点评】本题考查了一次函数综合题,涉及坐标与图象的关系、待定系数法求函数解析式、角平分线的性质、点到直线的距离、三角形的面积公式等知识,综合性较强,值得关注.法二:例2.【考点】一次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、B、C点的坐标,根据待定系数法,可得函数解析式;(2)根据角平分线的性质,可得∠FCA=∠BCA,∠FAE=∠BAE,根据三角形外角的关系,可得∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA,根据等式的性质,可得答案;(3)根据等腰三角形的定义,分类讨论:AB=AP=10,AB=BP=10,BP=AP,根据线段的和差,可得AB=AP=10时P点坐标,根据线段垂直平分线的性质,可得AB=BP=10时P点坐标;根据两点间的距离公式,可得BP=AP时P点坐标.【解答】解:(1)当x=0时,y=6,即B(0,6),当y=0时,﹣x+6=0,解得x﹣8,即A (8,0);由OC=OB,得OC=3,即C(﹣3,0);设BC的函数解析式为,y=kx+b,图象过点B、C,得,解得,直线BC的函数表达式y=2x+6;(2)证明:∵∠ACB的平分线CF与∠BAE的平分线AF相交于点F,∴∠FCA=∠BCA,∠FAE=∠BAE.∵∠BAE是△ABC的外角,∠FAE是△FAC的外角,∴∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA.∴∠ABC+∠BCA=∠F+∠BCA,∠ABC=∠F;(3)当AB=AP=10时,8﹣10=﹣2,P1(﹣2,0),8+10=18,P2(18,0);当AB=BP=10时,AO=PO=8,即P3(﹣8,0);设P(a,0),当BP=AP时,平方,得BP2=AP2,即(8﹣a)2=a2+62化简,得16a=28,解得a=,P4(,0),综上所述:P1(﹣2,0),P2(18,0),P3(﹣8,0);P4(,0).【点评】本题考查了一次函数综合题,(1)利用了函数值与自变量的关系求出A、B、C的值又利用了待定系数法求函数解析式;(2)利用了角平分线的性质,三角形外角的性质,(3)利用了等腰三角形的定义,分类讨论是解题关键.变式练习:2.【考点】一次函数综合题。

八年级上一次函数专题讲解三

八年级上一次函数专题讲解三

八年级上一次函数专题讲解三一.选择题(共8小题)1.如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,点B在第一象限,直线y=与边AB、BC分别交于点D、E,若点B的坐标为(m,1),则m的值可能是()A.﹣1 B.1 C.2 D.42.直线l1和l2在同一直角坐标系中的位置如图所示,点P1(x1,y1)在直线l1上,点P2(x2,y2)在直线l2上,点P3(x3,y3)为直线l1、l2的交点,其中x3<x1,x3<x2,则()A.y1<y3<y2B.y2<y1<y3C.y2<y3<y1D.y3<y1<y23.如图,一次函数y=﹣x+3的图象上有两点A、B,A点的横坐标为3,B点的横坐标为a(0<a<6且a≠3),过点A、B分别作x轴的垂线,垂足为C、D,△AOC、△BOD的面积分别为S1,S2,则S1,S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.无法确定4.已知直线l:y=x,过A(0,1)作y轴的垂线交l于B,过B作l的垂线交y轴于A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2…;按此作法继续下去,则点A2016的纵坐标为()A.42016 B.42015 C.42014 D.420135.如图,在平面直角坐标系中,点A(1,m)在直线y=﹣2x+3上,点A关于y轴的对称点恰好落在直线y=kx+2上,则k的值为()A.﹣2 B.1 C.D.26.如图,直线y=x+1分别与x轴、y轴交于点M,N,一组线段A1C1,A2C2,A3C3,…A n C n的端点A1,A2,A3,…A n依次是直线MN上的点,这组线段分别垂直平分线段OB1,B1B2,B2,B3,…,B n﹣1B n,若OB1=B1B2=B2B3=…=B n﹣1B n=4,则点A n到x轴的距离为()A.4n﹣4 B.4n﹣2 C.2n D.2n﹣27.如图,在△ABO中,BA=BO,OA=3,OA在y轴的正半轴上,若点B在直线y=﹣x+1上,△ABO的面积是()A.B.C.2 D.38.一次函数y=x﹣b与y=x﹣1的图象之间的距离等于3,则b的值为()A.﹣2或4 B.2或﹣4 C.4或﹣6 D.﹣4或6二.解答题(共22小题)9.已知点P(a,a﹣b)与点Q(2,﹣4)关于原点对称,试问:(1)点M(a﹣1,3﹣b)在第象限?(2)判断函数y=(a+2)x2+bx+2类型.(3)说明y随x的变化情况.10.已知一次函数y=(2m+4)x+(3﹣m).(1)当y随x的增大而增大,求m的取值范围;(2)若图象经过一、二、三象限,求m的取值范围;(3)若m=1,当﹣1≤x≤2时,求y的取值范围.11.已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.12.(1)如图所示,∠AOB=α,∠AOB内有一点P,在∠AOB的两边上有两个动点Q、R (均不同于点O),现在把△PQR周长最小时∠QPR的度数记为β,则α与β应该满足关系是.(2)设一次函数y=mx﹣3m+4(m≠0)对于任意两个m的值m1、m2分别对应两个一次函数y1、y2,若m1m2<0,当x=a时,取相应y1、y2中的较小值P,则P的最大值是.13.已知点A(4,0)及在第一象限的动点P(x,y),且x+y=5,0为坐标原点,设△OPA 的面积为S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)当S=4时,求P点的坐标.14.已知一次函数y=mx﹣3m2+12,请按要求解答问题:(1)m为何值时,函数图象过原点,且y随x的增大而减小?(2)若函数图象平行于直线y=﹣x,求一次函数解析式;(3)若点(0,﹣15)在函数图象上,求m的值.15.如图,平面直角坐标系中,点P的坐标是(3,4),直线l经过点P且平行于y轴,点Q从点A(3,10)出发,以每秒1个单位长的速度沿AP方向匀速运动.回答下列问题:(1)当t为何值时,△POQ的面积为6?(2)当t为何值时,△POQ为等腰三角形?16.如图,直线y=﹣x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连结CQ.(1)求出点C的坐标;(2)若△OQC是等腰直角三角形,则t的值为;(3)若CQ平分△OAC的面积,求直线CQ对应的函数关系式.17.已知直线y=kx+3经过点A(﹣4,0),且与y轴交于点B,点O为坐标原点.(1)求k的值;(2)求点O直线AB的距离;(3)过点C(0,1)的直线把△AOB的面积分成相等的两部分,求这条直线的函数关系式.18.已知函数y=(2m+1)x+m﹣3(1)填空:若函数图象经过原点,则m的值为.(2)是一次函数,且图象经过二、三、四象限,求m的取值范围.(3)是一次函数,且y随x的增大而增大,求m的取值范围.19.如图,在平面直角坐标系x0y中,已知一次函数y=﹣x+4的图象与过点A(0,2)、B (﹣3,0)的直线交于点P,与x轴、y轴分别相交于点C和点D.(1)求直线AB的函数表达式及点P的坐标;(2)连接AC,求△PAC的面积.20.若直线y=x+2分别交x轴、y轴于A、C两点,点P是该直线上在第一象限内的一点,PB⊥x轴,B为垂足,且S△ABC=6.(1)求点B和P的坐标.(2)过点B画出直线BQ∥AP,交y轴于点Q,并直接写出点Q的坐标.21.在直角坐标系中,已知点A(4,0),B(0,2),点P(x,y)在第一象限内,且x+2y=4,设△AOP的面积是S.(1)写出S与x之间的函数关系式,并求出x的取值范围;(2)当S=3时,求点P的坐标;(3)若直线OP平分△AOB的面积时,求点P的坐标.22.如图,在平面直角坐标系中,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a、b满足+(b﹣2)2=0,已知M(m,m).(1)求S△AOB;(2)过点M作MC⊥AB交y轴于点C,求点C的坐标.23.如图.在平面直角坐标系中.点A的坐标是(4,0),点P在第一象限,且在直线y=﹣x+6上,设点P的横坐标为a.△PAO的面积为S.(1)求S关于a的函数表达式;(2)若PO=PA,求S的值.24.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,点P为正比例函数y=kx(k>0)的图象上一点,且S△AOP:S△BOP=1:2,求k的值.25.如图,直线l:y=﹣x+与x轴,y轴分别相交于点A,B,△AOB与△ACB关于直线L对称.(1)求点C的坐标;(2)求直线BC与x轴的交点坐标.26.如图,点B、C分别在直线y=2x和直线y=kx上,点A、D分别是x轴上的两点,四边形ABCD是正方形,求k值.27.已知直线(n是正整数).当n=1时,直线l1:y=﹣2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1(O是平面直角坐标系的原点)的面积为s1;当n=2时,直线与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为s2,…,依此类推,直线l n与x轴和y轴分别交于点A n和B n,设△A n OB n的面积为S n.(1)求△A1OB1的面积s1;(2)求s1+s2+s3+…+s2011的值.28.已知,直线与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°.且点P(1,a)为坐标系中的一个动点.(1)求三角形ABC的面积S△ABC;(2)请说明不论a取任何实数,三角形BOP的面积是一个常数;(3)要使得△ABC和△ABP的面积相等,求实数a的值.29.如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.30.如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,且OB=OC.(1)求B点的坐标和k的值.(2)若点A(x,y)是第一象限内直线y=kx﹣1的一个动点,试写出△AOB的面积与x的函数关系式.(3)当点A运动到什么位置时,△AOB的面积是.八年级上一次函数专题讲解三参考答案与试题解析一.选择题(共8小题)1.(2016•长春一模)如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,点B在第一象限,直线y=与边AB、BC分别交于点D、E,若点B的坐标为(m,1),则m的值可能是()A.﹣1 B.1 C.2 D.4【解答】解:∵B、E两点的纵坐标相同,B点的纵坐标为1,∴点E的纵坐标为1,∵点E在y=﹣x+2上,∴点E的坐标(,1),∵直线y=﹣x+2与x轴的交点为(3,0),∴由图象可知点B的横坐标<m<3,∴m=2.故选C.2.(2016•和平区模拟)直线l1和l2在同一直角坐标系中的位置如图所示,点P1(x1,y1)在直线l1上,点P2(x2,y2)在直线l2上,点P3(x3,y3)为直线l1、l2的交点,其中x3<x1,x3<x2,则()A.y1<y3<y2B.y2<y1<y3C.y2<y3<y1D.y3<y1<y2【解答】解:根据题意把P1(x1,y1)、点P2(x2,y2)、点P3(x3,y3)表示到图象上,如图所示:故y1<y3<y2,故选:A.3.(2016•蜀山区一模)如图,一次函数y=﹣x+3的图象上有两点A、B,A点的横坐标为3,B点的横坐标为a(0<a<6且a≠3),过点A、B分别作x轴的垂线,垂足为C、D,△AOC、△BOD的面积分别为S1,S2,则S1,S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.无法确定【解答】解:把x=3代入y=﹣x+3,得y=﹣×3+3=,即A(3,),则S1=××3=,S2=a×(﹣a+3)=﹣(a﹣3)2+,又0<a<6且a≠3,所以S2<=S1,即S1>S2,故选A.4.(2016•江岸区模拟)已知直线l:y=x,过A(0,1)作y轴的垂线交l于B,过B作l的垂线交y轴于A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2…;按此作法继续下去,则点A2016的纵坐标为()A.42016 B.42015 C.42014 D.42013【解答】解:∵A(0,1),AB⊥y轴,∴B点纵坐标为1,又B在直线l上,代入可得1=x,解得x=∴B点坐标为(,1),∴AB=,∵OA=1,∴∠AOB=60°,∵A1B⊥l,∴∠A1BO=90°,∴∠AA1B=30°,∴AA1===3,∴OA1=4,则可求得B1坐标为(4,4),∴A1B1=4,同理A1A2==12,∴OA2=16=42,∴OA2016=42016,∴A2016的纵坐标为42016,故选A.5.(2016•吉林校级一模)如图,在平面直角坐标系中,点A(1,m)在直线y=﹣2x+3上,点A关于y轴的对称点恰好落在直线y=kx+2上,则k的值为()A.﹣2 B.1 C.D.2【解答】解:∵点A在直线y=﹣2x+3上,∴m=﹣2×1+3=1,∴点A的坐标为(1,1).又∵点A、B关于y轴对称,∴点B的坐标为(﹣1,1),∵点B(﹣1,1)在直线y=kx+2上,∴1=﹣k+2,解得:k=1.故选B.6.(2016•河北模拟)如图,直线y=x+1分别与x轴、y轴交于点M,N,一组线段A1C1,A2C2,A3C3,…A n C n的端点A1,A2,A3,…A n依次是直线MN上的点,这组线段分别垂直平分线段OB1,B1B2,B2,B3,…,B n﹣1B n,若OB1=B1B2=B2B3=…=B n﹣1B n=4,则点A n到x轴的距离为()A.4n﹣4 B.4n﹣2 C.2n D.2n﹣2【解答】解:令x=0,则有y=1;令y=0,则有x+1=0,解得:x=﹣2.故点M(﹣2,0),点N(0,1).∵一组线段A1C1,A2C2,A3C3,…A n C n分别垂直平分线段OB1,B1B2,B2,B3,…,B n﹣1B n,且OB1=B1B2=B2B3=…=B n﹣1B n=4,∴OC1=2,OC2=4+2,OC3=4×2+2,…,OC n=4×(n﹣1)+2,∴MC1=4,MC2=4+4,MC3=4×2+4,…,MC n=4×(n﹣1)+4=4n.∵A n C n∥y轴,∴△MNO∽△MA n C n,∴=.∵NO=1,MO=2,∴A n C n=MC n•=2n.故选C.7.(2016•长春模拟)如图,在△ABO中,BA=BO,OA=3,OA在y轴的正半轴上,若点B在直线y=﹣x+1上,△ABO的面积是()A.B.C.2 D.3【解答】解:因为在△ABO中,BA=BO,OA=3,OA在y轴的正半轴上,若点B在直线y=﹣x+1上,可得y=,把y=代入y=﹣x+1,可得:x=﹣2,所以△ABO的面积=,故选B8.(2016•无锡)一次函数y=x﹣b与y=x﹣1的图象之间的距离等于3,则b的值为()A.﹣2或4 B.2或﹣4 C.4或﹣6 D.﹣4或6【解答】解:设直线y=x﹣1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=x﹣b于点D,如图所示.∵直线y=x﹣1与x轴交点为C,与y轴交点为A,∴点A(0,﹣1),点C(,0),∴OA=1,OC=,AC==,∴cos∠ACO==.∵∠BAD与∠CAO互余,∠ACO与∠CAO互余,∴∠BAD=∠ACO.∵AD=3,cos∠BAC==,∴AB=5.∵直线y=x﹣b与y轴的交点为B(0,﹣b),∴AB=|﹣b﹣(﹣1)|=5,解得:b=﹣4或b=6.故选D.二.解答题(共22小题)9.(2012秋•张掖月考)已知点P(a,a﹣b)与点Q(2,﹣4)关于原点对称,试问:(1)点M(a﹣1,3﹣b)在第二象限?(2)判断函数y=(a+2)x2+bx+2类型.(3)说明y随x的变化情况.【解答】解:(1)点P(a,a﹣b)与点Q(2,﹣4)关于原点对称,∴a=﹣2,a﹣b=4解得:a=﹣2,b=﹣6∴点M(a﹣1,3﹣b)的坐标为:(﹣3,9)∴其在第二象限;(2)∵a=﹣2,b=﹣6∴函数y=(a+2)x2+bx+2=﹣6x+2,是一次函数.(3)∵k=﹣6<0∴y随着x的增大而减小.10.(2012春•沭阳县校级月考)已知一次函数y=(2m+4)x+(3﹣m).(1)当y随x的增大而增大,求m的取值范围;(2)若图象经过一、二、三象限,求m的取值范围;(3)若m=1,当﹣1≤x≤2时,求y的取值范围.【解答】解:(1)根据题意得2m+4>0,解得x>﹣2;(2)根据题意得,解得﹣2<m<3;(3)将m=1代入y=(2m+4)+(3﹣m)得,y=6x+2,当x=﹣1时,y=﹣4;当x=2时,y=14;因为k=6>0,所以y随x的增大而增大,所以﹣4≤y≤14.11.(2015春•大石桥市校级期末)已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【解答】解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;(3)∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;(4)∵y随着x的增大而减小,∴2m+1<0,解得:m<﹣.12.(2015秋•西安校级期末)(1)如图所示,∠AOB=α,∠AOB内有一点P,在∠AOB的两边上有两个动点Q、R(均不同于点O),现在把△PQR周长最小时∠QPR的度数记为β,则α与β应该满足关系是互补.(2)设一次函数y=mx﹣3m+4(m≠0)对于任意两个m的值m1、m2分别对应两个一次函数y1、y2,若m1m2<0,当x=a时,取相应y1、y2中的较小值P,则P的最大值是4.【解答】解:(1)当PQ⊥OA,PR⊥OB时,△PQR周长最小,∴α+90°+β+90°=360°,∴α+β=180°.故答案为:互补.(2)由题意可知:y1=m1x﹣3m1+4,y2=m2x﹣3m2+4.∵m1m2<0,不失一般性,设m1<0<m2,依照题意画出P关于x的函数图象,如图所示.结合函数图象可知P=4.故答案为:4.13.(2015春•咸丰县期末)已知点A(4,0)及在第一象限的动点P(x,y),且x+y=5,0为坐标原点,设△OPA的面积为S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)当S=4时,求P点的坐标.【解答】解:(1)如图所示,∵x+y=5,∴y=5﹣x,∴S=×4×(5﹣x)=10﹣2x;(2)∵点P(x,y)在第一象限,且x+y=5,∴0<x<5;(3)∵由(1)知,S=10﹣2x,∴10﹣2x=4,解得x=3,∴y=2,∴P(3,2).14.(2015秋•龙口市期末)已知一次函数y=mx﹣3m2+12,请按要求解答问题:(1)m为何值时,函数图象过原点,且y随x的增大而减小?(2)若函数图象平行于直线y=﹣x,求一次函数解析式;(3)若点(0,﹣15)在函数图象上,求m的值.【解答】解:(1)∵一次函数y=mx﹣3m2+12,函数图象过原点,且y随x的增大而减小,∴解得,m=﹣2,即当m=﹣2时,函数图象过原点,且y随x的增大而减小;(2)∵一次函数y=mx﹣3m2+12,函数图象平行于直线y=﹣x,∴m=﹣1,∴﹣3m2+12=﹣3×(﹣1)2+12=9,∴一次函数解析式是y=﹣x+9;(3)∵一次函数y=mx﹣3m2+12,点(0,﹣15)在函数图象上,∴m×0﹣3m2+12=﹣15,解得,m=±3,即m的值是±3.15.(2015秋•江阴市校级期中)如图,平面直角坐标系中,点P的坐标是(3,4),直线l 经过点P且平行于y轴,点Q从点A(3,10)出发,以每秒1个单位长的速度沿AP方向匀速运动.回答下列问题:(1)当t为何值时,△POQ的面积为6?(2)当t为何值时,△POQ为等腰三角形?【解答】解:(1)①当点P在点Q的下方时,×(10﹣4﹣t)×3=6,则t=2;②当点P在点Q的上方时,×(t﹣6)×3=6,则t=10;综上所述,t=2或10;(2)∵点P的坐标是(3,4),∴由勾股定理得到:OP==5,当PO=PQ时,6﹣t=5或t﹣6=5,解得t=1或11;当PO=OQ时,t=14;当OQ=PQ时,设PQ=x,可得32+(4﹣x)2=x2,解得x=,则AQ=,t=.16.(2014•镇江一模)如图,直线y=﹣x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连结CQ.(1)求出点C的坐标;(2)若△OQC是等腰直角三角形,则t的值为2或4;(3)若CQ平分△OAC的面积,求直线CQ对应的函数关系式.【解答】解:(1)∵由,得,∴C(2,2);(2)如图1,当∠CQO=90°,CQ=OQ,∵C(2,2),∴OQ=CQ=2,∴t=2,②如图2,当∠OCQ=90°,OC=CQ,过C作CM⊥OA于M,∵C(2,2),∴CM=OM=2,∴QM=OM=2,∴t=2+2=4,即t的值为2或4,故答案为:2或4;(3)令,得x=6,由题意:Q(3,0),设直线CQ的解析式是y=kx+b,把C(2,2),Q(3,0)代入得:,解得:k=﹣2,b=6,∴直线CQ对应的函数关系式为:y=﹣2x+6.17.(2014秋•平顶山期中)已知直线y=kx+3经过点A(﹣4,0),且与y轴交于点B,点O 为坐标原点.(1)求k的值;(2)求点O直线AB的距离;(3)过点C(0,1)的直线把△AOB的面积分成相等的两部分,求这条直线的函数关系式.【解答】解:(1)依题意得:﹣4k+3=0,解得k=;(2)由(1)得y=x+3,当x=0时,y=3,即点B的坐标为(0,3).如图,过点O作OP⊥AB于P,则线段OP的长即为点O直线AB的距离.∵S△AOB=AB•OP=OA•OB,∴OP===;(3)设所求过点C(0,1)的直线解析式为y=mx+1.S△AOB=OA•OB=×4×3=6.分两种情况讨论:①当直线y=mx+1与OA相交时,设交点为D,则S△COD=OC•OD=×1×OD=3,解得OD=6.∵OD>OA,∴OD=6不合题意舍去;②当直线y=mx+1与AB相交时,设交点为E,则S△BCE=BC•|x E|=×2×|x E|=3,解得|x E|=3,则x E=﹣3,当x=﹣3时,y=x+3=,即E点坐标为(﹣3,).将E(﹣3,)代入y=mx+1,得﹣3m+1=,解得m=.故这条直线的函数关系式为y=x+1.18.(2012秋•石门县校级月考)已知函数y=(2m+1)x+m﹣3 (1)填空:若函数图象经过原点,则m的值为3.(2)是一次函数,且图象经过二、三、四象限,求m的取值范围.(3)是一次函数,且y随x的增大而增大,求m的取值范围.【解答】解:(1)∵函数图象经过原点,∴m﹣3=0,解得m=3,故答案为:3;(2)∵此函数是一次函数,且图象经过二、三、四象限,∴,解得m<﹣;(3)∵此函数是一次函数,且y随x的增大而增大,∴2m+1>0,解得m>﹣.19.(2012春•青羊区校级月考)如图,在平面直角坐标系x0y中,已知一次函数y=﹣x+4的图象与过点A(0,2)、B(﹣3,0)的直线交于点P,与x轴、y轴分别相交于点C和点D.(1)求直线AB的函数表达式及点P的坐标;(2)连接AC,求△PAC的面积.【解答】解:(1)设直线AB的函数表达式为y=kx+b,∵A(0,2)、B(﹣3,0),∴,解得故直线AB的函数表达式为y=x+2,解方程组,解得故点P的坐标为(,),(2)如图,过点P作PM⊥BC于点M.∵点P的坐标为(,),∴PM=,∵一次函数y=﹣x+4的图象与x轴交于点C,∴点C(4,0),∴OC=4,∵点A(0,2)、B(﹣3,0),∴OA=2,OB=3,∴BC=7,∴S△PBC=×7×=,S△ABC=×7×2=7,∴S△PAC=﹣7=.20.(2011春•普陀区期中)若直线y=x+2分别交x轴、y轴于A、C两点,点P是该直线上在第一象限内的一点,PB⊥x轴,B为垂足,且S△ABC=6.(1)求点B和P的坐标.(2)过点B画出直线BQ∥AP,交y轴于点Q,并直接写出点Q的坐标.【解答】解:(1)y=0时,x+2=0,解得x=﹣4,x=0时,y=2,所以,A(﹣4,0),C(0,2),由题意,设点P的坐标为(a,a+2),且a>0,∵PB⊥x轴,∴B(a,0),∴AB=a+4,∵S△ABC=6,∴(a+4)×2=6,解得a=2,∴B(2,0),P(2,3);(2)直线PQ如图所示,∵BQ∥AP,点B(2,0),∴直线BQ的解析式为y=x﹣1,令x=0,则y=﹣1,所以,点Q的坐标为(0,﹣1).21.在直角坐标系中,已知点A(4,0),B(0,2),点P(x,y)在第一象限内,且x+2y=4,设△AOP的面积是S.(1)写出S与x之间的函数关系式,并求出x的取值范围;(2)当S=3时,求点P的坐标;(3)若直线OP平分△AOB的面积时,求点P的坐标.【解答】解:∵x+2y=4,∴y=(4﹣x),∴S=×4×(4﹣x)=4﹣x,即S=4﹣x.∵点P(x,y)在第一象限内,且x+2y=4,∴,解得0<x<4;(2)当S=3时,4﹣x=3,解得x=1,此时y=(4﹣1)=,故点P的坐标为(1,);(3)若直线OP平分△AOB的面积,则点P为AB的中点.∵A(4,0),B(0,2),∴点P的坐标为(2,1).22.如图,在平面直角坐标系中,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a、b满足+(b﹣2)2=0,已知M(m,m).(1)求S△AOB;(2)过点M作MC⊥AB交y轴于点C,求点C的坐标.【解答】解:(1)∵+(b﹣2)2=0,∴a﹣4=0,b﹣2=0,∴a=4,b=2,∴S△AOB=×4×2=4;(2)∵直线AB交x轴于点A(4,0),交y轴于点B(0,2),∴直线AB的解析式为y=﹣x+2,当x=y时,x=y=,∴M(,).设直线CM的解析式为y=2x+b,则=2×+b,b=﹣,即y=2x﹣,当x=0时,y=﹣,∴点C的坐标为(0,﹣).23.如图.在平面直角坐标系中.点A的坐标是(4,0),点P在第一象限,且在直线y=﹣x+6上,设点P的横坐标为a.△PAO的面积为S.(1)求S关于a的函数表达式;(2)若PO=PA,求S的值.【解答】解:(1)过P作PD⊥OA于D.∵S△OAP=OA•PD,∴S=×4×y=2(﹣x+6).即S=﹣2x+12(0<x<6);(2)当PO=PA时,OD=AD=OA,则x=2,此时y=﹣x+6=﹣2+6=4,则点P坐标为(2,4).S=﹣2x+12=﹣2×2+12=8.24.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,点P为正比例函数y=kx(k>0)的图象上一点,且S△AOP:S△BOP=1:2,求k的值.【解答】解:当x=0时,y=2x+2=2,则B(0,2),当y=0时,2x+2=0,解得x=﹣1,则A(﹣1,0),设P(t,kt),∵S△AOP:S△BOP=1:2,即S△BOP=2S△AOP,∴•|t|•2=2••1•|kt|,∴|k|=1,而k>0,∴k=1.25.如图,直线l:y=﹣x+与x轴,y轴分别相交于点A,B,△AOB与△ACB关于直线L对称.(1)求点C的坐标;(2)求直线BC与x轴的交点坐标.【解答】解:(1)过点C作CE⊥x轴于点E由直线AB的解析式可知当x=0时,y=,即OB=当y=0时,x=1,即OA=1∵∠AOB=∠C=90°,tan∠3=OB:OA=∴∠3=60°∵△AOB与△ACB关于直线l对称∴∠2=∠3=60°,AC=OA=1∴∠1=180°﹣∠2﹣∠3=60°在RT△ACE中AE=cos60°×AC=×1=CE=sin60°×AC=∴OE=1+=∴点C的坐标是(,);(2)∵B(0,),设直线BC的解析式为:y=kx+b,∴,∴,∴直线BC的解析式为:y=﹣x+,当y=0时,x=3,∴直线BC与x轴的交点坐标(3,0).26.如图,点B、C分别在直线y=2x和直线y=kx上,点A、D分别是x轴上的两点,四边形ABCD是正方形,求k值.【解答】解:设正方形的边长为a,则B的纵坐标是a,把点B代入直线y=2x的解析式,设点B的坐标为(,a),则点C的坐标为(+a,a),把点C的坐标代入y=kx中得,a=k(+a),解得k=.27.已知直线(n是正整数).当n=1时,直线l1:y=﹣2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1(O是平面直角坐标系的原点)的面积为s1;当n=2时,直线与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为s2,…,依此类推,直线l n与x轴和y轴分别交于点A n和B n,设△A n OB n的面积为S n.(1)求△A1OB1的面积s1;(2)求s1+s2+s3+…+s2011的值.【解答】解:(1)当n=1时,直线l1:y=﹣2x+1与x轴和y轴的交点是A1(,0)和B1(0,1)所以OA1=,OB1=1,∴s1=;(2)当n=2时,直线与x轴和y轴的交点是A2(,0)和B2(0,)所以OA2=,OB2=,∴s2==当n=3时,直线与x轴和y轴的交点是A3(,0)和B3(0,)所以OA3=,OB3=,∴s3==依此类推,s n=∴s1+s2+s3+…+s2011=∴s1+s2+s3+…+s2011===.28.已知,直线与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°.且点P(1,a)为坐标系中的一个动点.(1)求三角形ABC的面积S△ABC;(2)请说明不论a取任何实数,三角形BOP的面积是一个常数;(3)要使得△ABC和△ABP的面积相等,求实数a的值.【解答】解:(1)令中x=0,得点B坐标为(0,2);令y=0,得点A坐标为(3,0).由勾股定理可得,所以S△ABC=6.5;(2)不论a取任何实数,三角形BOP都可以以BO=2为底,点P到y轴的距离1为高,所以S△BOP=1为常数;(3)当点P在第四象限时,因为,S△BOP=1,所以,即3﹣a﹣1=,解得a=﹣3,当点P在第一象限时,∵S△ABO=3,S△APO=a,S△BOP=1,∴S△ABP=S△BOP+S△AOP﹣S△ABO=,即1+a﹣3=,用类似的方法可解得.29.(2016春•潮南区期末)如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.【解答】解(1)∵A(8,0),∴OA=8,S=OA•|y P|=×8×(﹣x+10)=﹣4x+40,(0<x<10).(2)当S=10时,则﹣4x+40=10,解得x=,当x=时,y=﹣+10=,∴当△OPA的面积为10时,点P的坐标为(,).30.(2016春•西华县期末)如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,且OB=OC.(1)求B点的坐标和k的值.(2)若点A(x,y)是第一象限内直线y=kx﹣1的一个动点,试写出△AOB的面积与x的函数关系式.(3)当点A运动到什么位置时,△AOB的面积是.【解答】解:(1)令y=kx﹣1中x=0,则y=﹣1,∴C(0,﹣1),OC=1.∵OB=OC,∴OB=,∴点B的坐标为(,0),把B(,0)代入y=kx﹣1中,得0=k﹣1,解得:k=2.(2)∵点A(x,y)是第一象限内直线y=2x﹣1的一个动点,∴A(x,2x﹣1)(x>),∴S=•OB•y=×(2x﹣1)=x﹣(x>).(3)当S=时,有x﹣=,解得:x=1,∴y=2x﹣1=1,故当点A的坐标为(1,1)时,△AOB的面积为.。

八年级数学《一次函数》经典题型讲解

八年级数学《一次函数》经典题型讲解

八年级数学《一次函数》经典题型讲解基本概念题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件.例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ; (4)y=-5x 2; (5)y=6x-21 (6)y=x(x-4)-x 2. [分析] 本题主要考查对一次函数及正比例函数的概念的理解. 解:(1)(3)(5)(6)是一次函数,(l )(6)是正比例函数. 例2 当m 为何值时,函数y=-(m-2)x 32-m +(m-4)是一次函数?[分析] 某函数是一次函数,除应符合y=kx+b 外,还要注意条件k ≠0. 解:∵函数y=(m-2)x 32-m +(m-4)是一次函数,∴⎩⎨⎧≠--=-,0)2(,132m m ∴m=-2.∴当m=-2时,函数y=(m-2)x 32-m +(m-4)是一次函数.小结 某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.基础知识应用题本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式. 例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x 的一次函数.[分析] (1)弹簧每挂1kg 的物体后,伸长0.5cm ,则挂xkg 的物体后,弹簧的长度y 为(l5+0.5x )cm ,即y=15+0.5x .(2)自变量x 的取值范围就是使函数关系式有意义的x 的值,即0≤x≤18.(3)由y=15+0.5x 可知,y 是x 的一次函数.解:(l )y=15+0.5x .(2)自变量x 的取值范围是0≤x ≤18.(3)y 是x 的一次函数.学生做一做 乌鲁木齐至库尔勒的铁路长约600千米,火车从乌鲁木齐出发,其平均速度为58千米/时,则火车离库尔勒的距离s (千米)与行驶时间t (时)之间的函数关系式是 .老师评一评 研究本题可采用线段图示法,如图11-19所示.火车从乌鲁木齐出发,t 小时所走路程为58t 千米,此时,距离库尔勒的距离为s 千米,故有58t+s=600,所以,s=600-58t .例4 某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.[分析] 本题给出了函数关系式,欲求函数值,但没有直接给出t 的具体值.从题中可以知道,t=0表示中午12时,t=1表示下午1时,则上午10时应表示成t=-2,当t=-2时,M=(-2)3-5×(-2)+100=102(℃).答案:102例5 已知y-3与x 成正比例,且x=2时,y=7.(1)写出y 与x 之间的函数关系式;(2)当x=4时,求y 的值;(3)当y=4时,求x 的值.[分析] 由y-3与x 成正比例,则可设y-3=kx ,由x=2,y=7,可求出k ,则可以写出关系式.解:(1)由于y-3与x 成正比例,所以设y-3=kx .把x=2,y=7代入y-3=kx 中,得7-3=2k ,∴k =2.∴y 与x 之间的函数关系式为y-3=2x ,即y=2x+3.(2)当x=4时,y=2×4+3=11.(3)当y =4时,4=2x+3,∴x=21. 学生做一做 已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数关系式是 .老师评一评 由y 与x+1成正比例,可设y 与x 的函数关系式为y=k (x+1).再把x=5,y=12代入,求出k 的值,即可得出y 关于x 的函数关系式. 设y 关于x 的函数关系式为y=k (x+1).∵当x=5时,y=12,∴12=(5+1)k ,∴k=2.∴y 关于x 的函数关系式为y=2x+2.【注意】 y 与x+1成正比例,表示y=k(x+1),不要误认为y=kx+1.例6 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21D .m >M[分析] 本题考查正比例函数的图象和性质,因为当x 1<x 2时,y 1>y 2,说明y 随x 的增大而减小,所以1-2m ﹤O,∴m >21,故正确答案为D 项. 学生做一做 某校办工厂现在的年产值是15万元,计划今后每年增加2万元.(1)写出年产值y (万元)与年数x (年)之间的函数关系式;(2)画出函数的图象;(3)求5年后的产值.老师评一评 (1)年产值y (万元)与年数x (年)之间的函数关系式为y=15+2x .(2)画函数图象时要特别注意到该函数的自变量取值范围为x ≥0,因此,函数y=15+2x 的图象应为一条射线.画函数y=12+5x 的图象如图11-21所示.(3)当x=5时,y =15+2×5=25(万元)∴5年后的产值是25万元.例7 已知一次函数y=kx+b 的图象如图11-22所示,求函数表达式. [分析] 从图象上可以看出,它与x 轴交于点(-1,0),与y 轴交于点(0,-3),代入关系式中,求出k 为即可.解:由图象可知,图象经过点(-1,0)和(0,-3)两点,代入到y=kx+b 中,得⎩⎨⎧+=-+-=,03,0b b k ∴⎩⎨⎧-=-=.3,3b k ∴此函数的表达式为y=-3x-3.例8 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.[分析] 图象与y=2x+1平行的函数的表达式的一次项系数为2,则可设此表达式为y=2x+b ,再将点(2,-1)代入,求出b 即可.解:由题意可设所求函数表达式为y=2x+b ,∴图象经过点(2,-1),∴-l=2×2+b .∴b=-5,∴所求一次函数的表达式为y=2x-5.综合应用题本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题.例8 已知y+a 与x+b (a ,b 为是常数)成正比例.(1)y 是x 的一次函数吗?请说明理由;(2)在什么条件下,y 是x 的正比例函数?[分析] 判断某函数是一次函数,只要符合y=kx+b (k ,b 中为常数,且k ≠0)即可;判断某函数是正比例函数,只要符合y=kx(k 为常数,且k ≠0)即可.解:(1)y 是x 的一次函数.∵y+a 与x+b 是正比例函数,∴设y+a=k(x+b)(k 为常数,且k ≠0)整理得y=kx+(kb-a ).∵k ≠0,k ,a ,b 为常数,∴y=kx+(kb-a)是一次函数.(2)当kb-a=0,即a=kb 时,y 是x 的正比例函数.例9 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x 分,两种通讯方式的费用分别为y 1元和y 2元.(1)写出y 1,y 2与x 之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算? [分析] 这是一道实际生活中的应用题,解题时必须对两种不同的收费方式仔细分析、比较、计算,方可得出正确结论.解:(1)y 1=50+0.4x (其中x ≥0,且x 是整数)y 2=0.6x (其中x ≥0,且x 是整数)(2)∵两种通讯费用相同,∴y 1=y 2,即50+0.4x=0.6x .∴x =250.∴一个月内通话250分时,两种通讯方式的费用相同.(3)当y 1=200时,有200=50+0.4x ,∴x=375(分).∴“全球通”可通话375分.当y 2=200时,有200=0.6x ,∴x=33331(分). ∴“神州行”可通话33331分. ∵375>33331, ∴选择“全球通”较合算.例10 已知y+2与x 成正比例,且x=-2时,y=0.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x 取何值时,y ≥0?(4)若点(m ,6)在该函数的图象上,求m 的值;(5)设点P 在y 轴负半轴上,(2)中的图象与x 轴、y 轴分别交于A ,B 两点,且S △ABP =4,求P 点的坐标.[分析] 由已知y+2与x 成正比例,可设y+2=kx ,把x=-2,y=0代入,可求出k ,这样即可得到y 与x 之间的函数关系式,再根据函数图象及其性质进行分析,点(m ,6)在该函数的图象上,把x=m ,y=6代入即可求出m 的值.解:(1)∵y+2与x 成正比例,∴设y+2=kx (k 是常数,且k ≠0)∵当x=-2时,y=0.∴0+2=k ·(-2),∴k =-1.∴函数关系式为x+2=-x ,即y=-x-2.(2)列表;(3)由函数图象可知,当x ≤-2时,y ≥0.∴当x ≤-2时,y ≥0.(4)∵点(m ,6)在该函数的图象上,∴6=-m-2,∴m =-8.(5)函数y=-x-2分别交x 轴、y 轴于A ,B 两点,∴A (-2,0),B (0,-2).∵S △ABP =21·|AP|·|OA|=4, ∴|BP|=428||8==OA . ∴点P 与点B 的距离为4.又∵B 点坐标为(0,-2),且P 在y 轴负半轴上,∴P 点坐标为(0,-6).例11 已知一次函数y=(3-k )x-2k 2+18.(1)k 为何值时,它的图象经过原点?(2)k 为何值时,它的图象经过点(0,-2)?(3)k 为何值时,它的图象平行于直线y=-x ?(4)k 为何值时,y 随x 的增大而减小?[分析] 函数图象经过某点,说明该点坐标适合方程;图象与y 轴的交点在y 轴上方,说明常数项b >O ;两函数图象平行,说明一次项系数相等;y 随x 的增大而减小,说明一次项系数小于0.解:(1)图象经过原点,则它是正比例函数.∴⎩⎨⎧≠-=+-,03,01822k k ∴k =-2.∴当k=-3时,它的图象经过原点.(2)该一次函数的图象经过点(0,-2).∴-2=-2k 2+18,且3-k ≠0,∴k=±10∴当k=±10时,它的图象经过点(0,-2)(3)函数图象平行于直线y=-x ,∴3-k=-1,∴k =4.∴当k =4时,它的图象平行于直线x=-x .(4)∵随x 的增大而减小,∴3-k ﹤O .∴k >3.∴当k >3时,y 随x 的增大而减小.例12 判断三点A (3,1),B (0,-2),C (4,2)是否在同一条直线上.[分析] 由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明在此直线上;若不成立,说明不在此直线上.解:设过A ,B 两点的直线的表达式为y=kx+b .由题意可知,⎩⎨⎧+=-+=,02,31b b k ∴⎩⎨⎧-==.2,1b k ∴过A ,B 两点的直线的表达式为y=x-2.∴当x=4时,y=4-2=2.∴点C (4,2)在直线y=x-2上.∴三点A (3,1), B (0,-2),C (4,2)在同一条直线上.学生做一做 判断三点A (3,5),B (0,-1),C (1,3)是否在同一条直线上.探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用.例13 老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x 从0开始逐渐增大时,y=2x+8和y=6x 哪一个的函数值先达到30?这说明了什么?(2)直线y=-x 与y=-x+6的位置关系如何?甲生说:“y=6x 的函数值先达到30,说明y=6x 比y=2x+8的值增长得快.” 乙生说:“直线y=-x 与y=-x+6是互相平行的.”你认为这两个同学的说法正确吗?[分析] (1)可先画出这两个函数的图象,从图象中发现,当x >2时,6x >2x+8,所以,y=6x 的函数值先达到30.(2)直线y=-x 与y=-x+6中的一次项系数相同,都是-1,故它们是平行的,所以这两位同学的说法都是正确的.解:这两位同学的说法都正确.例14 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.(1)设学生人数为x ,甲旅行社的收费为y 甲元,乙旅行社的收费为y 乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.[分析] 先求出甲、乙两旅行社的收费与学生人数之间的函数关系式,再通过比较,探究结论.解:(1)甲旅行社的收费y 甲(元)与学生人数x 之间的函数关系式为 y 甲=240+21×240x=240+120x. 乙旅行社的收费y 乙(元)与学生人数x 之间的函数关系式为y 乙=240×60%×(x+1)=144x+144.(2)①当y 甲=y 乙时,有240+120x=144x+144,∴24x =96,∴x=4.∴当x=4时,两家旅行社的收费相同,去哪家都可以.②当y 甲>y 乙时,240+120x >144x+144,∴24x <96,∴x <4.∴当x ﹤4时,去乙旅行社更优惠.③当y 甲﹤y 乙时,有240+120x ﹤140x+144,∴24x >96,∴x >4.∴当x >4时,去甲旅行社更优惠.小结 此题的创新之处在于先通过计算进行讨论,再作出决策,另外,这两个函数都是一次函数,利用图象来研究本题也不失为一种很好的方法.学生做一做 某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y (元)与所购买的水果量x (千克)之间的函数关系式,并写出自变量X 的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由. 老师评一评 先求出两种购买方案的付款y (元)与所购买的水果量x (千克)之间的函数关系式,再通过比较,探索出结论.(1)甲方案的付款y 甲(元)与所购买的水果量x (千克)之间的函数关系式为y 甲=9x (x ≥3000);乙方案的付款y 乙(元)与所购买的水果量x (千克)之间的函数关系式为y 乙=8x+500O (x ≥3000).(2)有两种解法:解法1:①当y 甲=y 乙时,有9x=8x+5000,∴x=5000.∴当x=5000时,两种方案付款一样,按哪种方案都可以.②当y 甲﹤y 乙时,有9x ﹤8x+5000,∴x <5000.又∵x ≥3000,∴当3000≤x ≤5000时,甲方案付款少,故采用甲方案.③当y 甲>y 乙时,有9x >8x+5000,∴x >5000.∴.当x >500O 时,乙方案付款少,故采用乙方案.解法2:图象法,作出y 甲=9x 和y 乙=8x+5000的函数图象,如图11-24所示,由图象可得:当购买量大于或等于3000千克且小于5000千克时,y 甲﹤y 乙,即选择甲方案付款少;当购买量为5000千克时,y 甲﹥y 乙即两种方案付款一样;当购买量大于5000千克时,y 甲>y 乙,即选择乙方案付款最少.【说明】 图象法是解决问题的重要方法,也是考查学生读图能力的有效途径.例15 一次函数y=kx+b 的自变量x 的取值范围是-3≤x ≤6,相应函数值的取值范围是-5≤y ≤-2,则这个函数的解析式为 .[分析] 本题分两种情况讨论:①当k >0时,y 随x 的增大而增大,则有:当x=-3,y=-5;当x=6时,y=-2,把它们代入y=kx+b 中可得⎩⎨⎧+=-+-=-,62,35b k b k∴⎪⎩⎪⎨⎧-==,4,31b k ∴函数解析式为y=-31x-4. ②当k ﹤O 时则随x 的增大而减小,则有:当x=-3时,y=-2;当x=6时,y=-5,把它们代入y=kx +b 中可得⎩⎨⎧+=-+-=-,65,32b k b b ∴⎪⎩⎪⎨⎧-=-=,3,31b k ∴函数解析式为y=-31x-3. ∴函数解析式为y=31x-4,或y=-31x-3. 答案:y=31x-4或y=-31x-3. 【注意】 本题充分体现了分类讨论思想,方程思想在一次函数中的应用,切忌考虑问题不全面.。

八年级数学《一次函数》全章复习与练习

八年级数学《一次函数》全章复习与练习

第十四章《一次函数》全章复习一、归纳知识点: (一)函数1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,y 是x 的函数。

注意:判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应3、确定函数自变量取值范围的方法:(1)关系式为整式时,自变量取值范围为:一切实数;(2)关系式含有分式时,自变量取值范围为:分式的分母不等于零;(3)关系式含有二次根式时,自变量取值范围为:被开放方数大于等于零; (4)实际问题中,自变量取值范围还要和实际情况相符合,使之有意义。

4、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 5、描点法画函数图形的一般步骤:列表-----描点-----连线。

6、函数的表示方法及其优点:列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系 (二)一次函数 1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。

当0b =时,一次函数y kx =,又叫做正比例函数。

⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2)必过点:(0,0)、(1,k ) (2) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限 (3) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (4) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y=kx+b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-kb,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限 (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.性质 y 随x 的增大而增大 y 随x 的增大而减小4、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b ),.即横坐标或纵坐标为0的点.b>0b<0 b=0k>0经过第一、二、三象限经过第一、三、四象限 经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限 经过第二、四象限图象从左到右下降,y 随x 的增大而减小5一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度 正比例函数一次函数概 念一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,是y=kx ,所以说正比例函数是一种特殊的一次函数. 自变量范 围 X 为全体实数 图 象 一条直线必过点 (0,0)、(1,k )(0,b )和(-kb,0) 走 向k>0时,直线经过一、三象限;k >0,b >0,直线经过第一、二、三象限k<0时,直线经过二、四象限k >0,b <0直线经过第一、三、四象限 k <0,b >0直线经过第一、二、四象限 k <0,b <0直线经过第二、三、四象限增减性 k>0,y 随x 的增大而增大;(从左向右上升) k<0,y 随x 的增大而减小。

初二数学一次函数试题答案及解析

初二数学一次函数试题答案及解析

初二数学一次函数试题答案及解析1.儿童受伤,小红爸爸的公司急需用车,但又不准备买车,公司准备和一个个体车主或一家出租车公司签订月租车合同,设汽车每月行驶x千米,个体车主收费为y1元,出租车公司收费y2元,观察图象可知,当x_________时,选用个体车主较合算.【答案】>1800.【解析】根据图象可以得到当x>1800千米时,y1<y2,则选用个体车较合算.故答案是>1800.【考点】一次函数的应用.2.从A地向B地打长途电话,通话3分钟以内(含3分钟)收费2.4元,3分钟后每增加通话时间1分钟加收1元(不足1分钟的通话时间按1分钟计费),某人如果有12元话费打一次电话最多可以通话分钟.【答案】12.【解析】设最多可以打x分钟的电话,则可得不等式:2.4+1×(x-3)≤12,解出即可.试题解析:设最多可以打x分钟的电话,由题意,得:2.4+1×(x-3)≤12,解得:x≤12.6.故如果有12元话费打一次电话最多可以通话12分钟.【考点】一元一次不等式的应用.3.如图,矩形ABCD中,AB=1,AD=2,M是AD的中点,点P在矩形的边上,从点A出发,沿A→B→C→D运动,到达点D运动终止.设△APM的面积为y,点P经过的路程为x,那么能正确表示y与x之间函数关系的图象是()【答案】A【解析】根据三角形的面积公式,分类讨论:P在AB上运动时,三角形的面积在增大,P在BC上运动时,三角形的面积不变;P在CD上运动时,三角形的面积在减小,可得答案.【考点】动点问题的函数图象.4.如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象在第一象限有公共点A(1,2).直线l⊥y轴.于点D(0,3),与反比例函数和一次函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积;(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?【答案】(1)一次函数解析式为y=x+1;反比例解析式为=(2)S△ABC(3)根据图象当x<-2或0<x<1时,一次函数的值小于反比例函数的值【解析】(1)将点A分别代入解析式即可求出只需求得BC的长即可求出面积,由已知可知B、C的纵坐标,代入两个解析式即可得到B、C 的坐标,从而可得BC的长只要求出两函数图象的交点坐标即可解决试题解析:(1)将A(1,2)代入一次函数解析式得:k+1=2,即k=1,∴一次函数解析式为y=x+1;将A(1,2)代入反比例解析式得:m=2,∴反比例解析式为∵D(0,3)∴点B、C的纵坐标为3,将y=3代入一次函数得:x=2,将y=3代入反比例解析式得:,即DC=2,DB=,BC=2-=,又A到BC的距离为1,则S==△ABC解方程组,得∴一次函数与反比例函数的图象的交战为A(1,2)和(-2,-1)根据图象当x<-2或0<x<1时,一次函数的值小于反比例函数的值【考点】1、待定系数法;2、函数图象上点的坐标;3、解二元二次方程组5.直线y=kx-2与x轴的交点是(1,0),则k的值是()A.3B.2C.-2D.-3【答案】B.【解析】∵直线y=kx-2与x轴的交点是(1,0),∴k-2=0,解得k=2.故选B.【考点】一次函数图象上点的坐标特征.6.如图,过点Q(0,3.5)的一次函数与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的解析式是()A.y=B.y=C.y=D.y=﹣【答案】D.【解析】设一次函数的解析式为y=kx+b,把Q(0,3.5)、P(1,2)代入得,解得,所以一次函数解析式为.故选D.【考点】两条直线相交或平行问题.7.将直线y=﹣2x向右平移2个单位所得直线的解析式为()A.y=﹣2x+2B.y=﹣2x﹣4C.y=﹣2x﹣2D.y=﹣2x+4【答案】D.【解析】根据“左加右减”的平移规律可由已知的解析式写出新的解析式:将直线y=﹣2x向右平移2个单位所得直线的解析式为y=﹣2(x﹣2),即y=﹣2x+4.故选D.【考点】一次函数图象与平移变换.8.一次函数的图象如图所示,当-3<<3时,的取值范围是()A.>4B.0<<2C.0<<4D.2<<4【答案】C.【解析】由函数的图象可知,当y=3时,x=0;当y=-3时,y=4,故当-3<y<3时,x的取值范围是0<x<4.故选C.【考点】一次函数的性质.9.甲、乙两人骑车前往A地,他们距A地的路程S(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)、甲、乙两人的速度各是多少?(2)、求甲距A地的路程S与行驶时间t的函数关系式。

八上 一次函数全章题型分类 知识点+例题+练习 (非常好 分类全面)

八上 一次函数全章题型分类 知识点+例题+练习 (非常好 分类全面)

例1.2.3函数y ax b =+①和y bx a =+②(0ab ≠)在同一坐标系中的图像可能是( )A .图AB .图BC .图CD .图D题型三:解析式求法例1.3.1某一次函数的图象与y 轴交点于点()0,4A ,且过点()2,2B -,求此一次函数的解析式例1.3.2如图,过点(0,3)的一次函数的图象与正比例函数y=2x 的图象相交于点B ,则这个一次函数的解析式是 .例1.3.3在平面直角坐标系中,点A 的坐标是()0,6,点B 在一次函数y x m =-+的图象上,且5AB OB ==.求一次函数的解析式.A .B .C .D .②②②②①①①①O x yOxyO xyyx O随练1.8已知:如图,在平面直角坐标系xOy中,一次函数48y x=-+的图象分别与x y、轴交于点A、B,点P在x轴的负半轴上,ABP∆的面积为12.若一次函数y kx b=+的图象经过点P 和点B,求这个一次函数y kx b=+表达式.知识点二:知识精讲一.平移变换1.左右平移:左加右减()()m mm my kx b y k x m by kx b y k x m b>>⎧=+−−−−−−−−−→=++⎪⎨=+−−−−−−−−−→=-+⎪⎩向左平移()个单位长度向右平移()个单位长度直线:直线:直线:直线:2.上下平移:上加下减m mm my kx b y kx b my kx b y kx b m>>⎧=+−−−−−−−−−→=++⎪⎨=+−−−−−−−−−→=+-⎪⎩向上平移()个单位长度向下平移()个单位长度直线:直线:直线:直线:二.对称变换1.关于x轴对称xy kx b y kx b=+−−−−−→=--关于轴对称直线:直线:2.关于y轴对称yy kx b y kx b=+−−−−−→=-+关于轴对称直线:直线:课堂教学:题型一:平移变换例2.1.1直线y=2x+2沿y轴向下平移6个单位后与x轴的交点坐标是()A.(﹣4,0)B.(﹣1,0)C.(0,2)D.(2,0)例2.1.2将直线y=2x向右平移1个单位后所得图象对应的函数解析式为____A.y=2x-1 B.y=2x-2 C.y=2x+1 D.y=2x+2例2.1.3将直线y=2x-1向左平移1个单位后所得图象对应的函数解析式为____A.y=2x-1 B.y=2x-2 C.y=2x+1 D.y=2x+2例2.1.4把函数2=的图像向右平行移动3个单位,求:y x(1)平移后得到的直线解析式;(2)平移后的直线到两坐标轴距离相等的点的坐标.题型二:对称变换例2.2.1如图,在平面直角坐标系中,已知点A(2,3),点B(-2,1),在x轴上存在点P 到A,B两点的距离之和最小,则P点的坐标是____.例2.2.2已知直线21=+与已知=+,则它与y轴的交点坐标是________,若另一直线y kx by x直线21=+关于y轴对称,则k=_____,b=_____.y x随练2.1已知正比例函数的图象过点()1,2-.(1)求此正比例函数的解析式;(2)若一次函数y kx b =+图象由(1)中的正比例函数的图象平移得到的,且经过点()1,2,求此一次函数的解析式随练2.2要得到24y x =--的图象,可将直线2y x =-( ) A .向左平移4个单位 B .向右平移4个单位 C .向上平移4个单位 D .向下平移4个单位随练2.2下列说法正确的是( )A .直线2y x =向右平移2个单位得到直线22y x =+B .直线2y x =向左平移2个单位得到直线22y x =+C .直线2y x =向下平移2个单位得到直线22y x =+D .直线2y x =向上平移2个单位得到直线22y x =+随练2.3在下图中,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是_______随练2.4将直线2y x =向右平移2个单位所得的直线的解析式是( ) A .22y x =+ B .22y x =- C .2(2)y x =- D .2(2)y x =+11 14、已知一次函数y kx b =+的图象经过点(0,1),且图象与x 轴、y 轴所围成的三角形的面积为2,求,k b 的值.[链接中考]1、一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧时剩下的长度为y(cm)与燃烧时间x (小时)的函数关系用图象表示为下图中的( )2、一次函数y=kx+b 满足kb>0且y随x的增大而减小,则此函数的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3、一次函数y=ax+b,若a+b=1,则它的图象必经过点( )A.(-1,-1)B. (-1, 1)C. (1, -1)D. (1, 1)4、已知一次函数y kx k =-,若y 随着x 的增大而减小,则该函数图象经过( )A.第一,二,三象限B.第一,二,四象限C.第二,三,四象限D.第一,三,四象限A 、 O x 4y20B 、 O x 4 y 20C 、 O x 4 y 20D 、 O x 4 y 20。

苏科版八年级上册第6章一次函数知识点与典型例题及练习

苏科版八年级上册第6章一次函数知识点与典型例题及练习

一次函数知识要点与典型例题一.函数函数定义的:一般地,在一个变化过程中,如果有两个变量X与y ,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时y=b ,那么b叫做当自变量的值为a时的函数值.变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

例:L在匀速运动公式s = W中,口表示速度」表示时间,s表示在时间/内所走的路程,则变量是,常量是2.在圆的周长公式C=2m中,变量是,常量是.函数概念*(一)、注意理解"在一个变化过程中,有两个变量"自变量因变量例、在函数关系式)'=4"中,自变量为,常量为,当*=3时,函数值y为(二)、注意理解"x的每一个确定的值"1自变量x的取值不能使对应关系无意义,如y =, X的取值不能为1 ;(三)、注意理解"X的每一个确定的值,y都有唯一确定的值与其对应" 例:y = ±X , y x的函数(填"是〃或"不是")(四)、注意正确判断"谁是谁的函数"通常,函数因变量写在等号左边。

例、下列等式中,y是x的函数的是()A、y 二|x|B、y2 = x &1川=因D v y = ±x(五)、注意正确确定"自变量的取值范围"L自变量的取值必须使含自变量的代数式有意义(1)整式型:其自变量的取值范围是全体实数.例、函数y=3x+l, y=x2+x - 4中自变量x的取值范围是.(2)分式型:其自变量的取值范围是使得分母不为零的实数. 2例、函数丫=工一1中变量x的取值范围是.(3)二次根式型:其自变量的取值范围是使得被开方式为非负数的实数.例、函数丫:瓦万中自变量x的取值范围是.(4)复合型:即自变量同时含有上述两种或三种情况时,自变量的取值范围是它们的公共解.y/x-2例、函数y= x - 3中自变量X的取值范围是.函数的三要素:自变量的取值范围、函数的取值范围和两个变量的对应关系【例题】:1 ,下列函数中,自变量x 的取值范围是XN2的是() ] A . y= J2T B . y= & -2 Q . y= \l^-x 2 .函数)'=中自变量格)取值范围是.1 cy = ——x + 23,已知函数. 2 ,当Tvx 〈l 时,通取值范围是()2、自变量的取值必须使实际问题有意义例、1、一个正方形的边长为3cm ,它的各边长减少xcm 后,所得新正方形的周长为ycm.则y 与x 的关系式为,自变量x 的取值范围是 0 < x < 3.2、 .如果一个等腰三角形的周长为30 ,则底边长y 与腰长x 之间成一函数关系,y 与x 的关系式为, 自变量x 的取值范围是函数的图像一般分为三步:①列表;②描点;③连线.函数的表示方法函数有三种表示方法:(1)列表法;(2 )图象法;⑶表达式法(峥关系式或解析式).二、一次函数的概念若两个变量x , y 间的关系式可以表示成y = kx + b ( k , b 为常数,k#0 )的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量).特别地,当b = 0时,关系式变为y = kx ,称y 是x 的正比例函数.R 注意H :(1) 一次函数y = kx + b ( k#0 )特征:①kxo ②x 指数为工③b 取任意实数(2 )正比例函数y = kx ( k#0 )特征:①kwo ②x 次数是1③常数项b = 0.(3 )正比例函数是一次函数的特殊形式.【例题】:21 .若函数,V =(〃L2)d ' + 2是一次函数,则m=。

八年级数学第3讲.一次函数与全等三角形综合.尖子班.学生版

八年级数学第3讲.一次函数与全等三角形综合.尖子班.学生版

3一次函数与全等三角形综合满分晋级阶梯函数 7 级函数 6 级一次函数与全等三角形综合一次函数的应用春天班春天班第二讲第三讲漫画释义梦游记函数 8 级反比率函数的基天性质春天班第十一讲知识互联网题型切片题型切片(两个)对应题目题一次函数与全等三角形的综合例 1,例 2,例 3,例 4,练习1,练习 2,练习 3;型目例 5,例 6,练习4,练习 5.标一次函数与面积综合题型一:一次函数与全等三角形综合思路导航几种全等模型的回首:A AB AAEAFE EEBCCF CDD C B D C BE BF图 1图 2图 3图 4图 5图 1、图 2 为“两垂直”全等模型,图 1 中将△ABC绕点C逆时针旋转90°获得△DEC,此时可得结论:△ ACD ,△ BCE 均为等腰直角三角形;DE AB .图2中△ABC≌△DBE图 3、图 4 为“三垂直”全等模型,此中△ABC为等腰直角三角形, AE EC ,BF CF ,E ,C ,F 三点共线,则有△ ACE ≌△ CBF ,图3中EF AE BF ,图4中 EF AE BF图 5 中,AB AC ,延伸AB到F使得 BF EC ,则有结论ED DF,若ED DF ,则有BF EC 例题精讲【引例】平面直角坐标系内有两点 A 4,0 和 B 0 ,4 ,点P在直线AB上运动.⑴若 P 点横坐标为x P 2 ,求以直线OP 为图象的函数分析式(直接写出结论);⑵若点 P 在第四象限,作 BM直线OP于M,AN直线OP于N,求证:MN BM AN ;⑶若点 P 在第一象限,仍作直线OP 的垂线段BM 、AN,尝试究线段MN 、BM、 AN 所知足的数目关系式,直接写出结论,并绘图说明.【分析】⑴设直线 AB 函数分析式为y kx b04k bk1 4b b yx 44当 x为 2 时,y 6 ,∴P的坐标为2,6∵ 直线OP 过原点,∴分析式为y3x⑵如图 1,由题意可证Rt △ BMO ≌ Rt △ ONA∴ BM ON , AN MO ,∴ MN BM AN⑶如图 2,证明Rt△BMO≌Rt△ONA可得结论 MN BM ANy y yB B B MP PN NM A MO x O A x O A xN P图 1图 2图 2典题精练【例 1】如图,已知在平面直角坐标系xOy 中,点 A 0,4 ,点 B ,C 在 x 轴y 上,作 BE AC ,垂足为E(点E在线段 AC 上,且点E与点A不A (0,4)重合),直线 BE 与 y 轴交于点 D ,若BD AC.ED⑴求点 B 的坐标;⑵设 OC 长为m,△ BOD 的面积为S ,求 S 与m的函数关系式,并写出自变量m 的取值范围.B OC x 【例 2】已知:如图,平面直角坐标系xOy 中,点A、 B 的坐标分别为yA 4 ,0B 0, 4,P 为 y 轴上 B 点下方一点,PB m m 0,,A以 AP 为边作等腰直角三角形APM ,此中 PM PA ,点 M 落在Q O x第四象限.B⑴求直线 AB 的分析式;P⑵用 m 的代数式表示点M 的坐标;⑶若直线 MB 与x轴交于点Q,判断点Q的坐标能否随m 的变化而变化,写出你的结论并说明原由.【例 3】如图 1,直线 l1 : y3x 3 与 x 轴交于B点,与直线 l2交于y轴上一点A,且 l2与 x 轴的交点为C 1,0 .⑴ 求证:ABC ACB3,0,作于 E , DE 交 y 轴于 F 点,交 AB 于点,⑵ 如图,过 x 轴上一点DDE AC G 2求G 点的坐标;⑶如图 3,将△ABC沿 x 轴向左平移,AC边与y轴交于点P(P不一样于A和C两点),过P点作向来线与AB 的延伸线交于Q点,与x轴交于点 M ,且CP=BQ.在△ABC平移的过程中,线段 OM 的长度能否发生变化?若不变,恳求出它的长度.若变化,确立其变化范围.y y yA AAl1l 2E PGB CFOCB x DB OC x M O xQ图 1图 2图 3【例 4】如图,在平面直角坐标系中,A(a, 0), B( 0, b),且 a、b 知足2a 2b 4 0 .yyMBMO A xNO AxP⑴求直线 AB 的分析式;⑵若点 M 为直线 y=mx 上一点,且△ ABM 是以 AB 为底的等腰直角三角形,求 m 值;⑶过 A 点的直线 y=kx-2k 交 y 轴于负半轴于P ,N 点的横坐标为1,过 N 点的直线k kyx22交 AP 于点 M ,试证明PMPN的值为定值.AM题型二:一次函数与面积综合思路导航解决平面直角坐标系中的图形面积问题往常可采纳的方法有:yA1. 公式法:三角形、特别四边形等面积公式;2. 割补法:经过 “割补 ”转变为易求图形面积的和或差;1 hC3. 容斥法;PBh 24. 等积变换法: ①平行线法: 结构同底等高; ② 直角三角形: ab=ch ; Ox5. 铅垂线法:如右图所示 S △ ABC 1h 2 称为水平宽.AP h 1 h 2 , AP 称为铅垂高, h 1 2必需时需分类议论.典题精练【例 5】已知:平面直角坐标系xOy 中,直线y kx b k 0 与直线 y mx m 0交于点 A 2,4 .⑴求直线 y mx m0 的分析式;⑵若直线 y kx b k0 与另一条直线y 2 x 交于点B,且点B的横坐标为 4 ,求△ABO的面积.真题赏析【例 6】已知:一次函数13 的图象与正比率函数y=kx 的图象订交于点A( a,1).yx2⑴求 a 的值及正比率函数y=kx 的分析式;⑵点 P 在座标轴上(不与点O 重合),若 PA=OA,直接写出P 点的坐标;⑶直线 x=m 与一次函数的图象交于点B,与正比率函数图象交于点C,若△ ABC 的面积记为S,求 S 对于 m 的函数关系式(写出自变量的取值范围).复习稳固题型一一次函数与全等三角形综合稳固练习【练习 1】如图,已知在平面直角坐标系xOy 中,点 A 0,4,点 B ,C yP(m,m+4)在 x 轴上,C点坐标为 m,0.作BE AC ,垂足为E(点(0,4)AE 在线段AC上,且点 E 与点 A 不重合),直线 BE 与 y 轴交于点 D ,BD AC .第一象限内有一点P,坐标为D Em,m 4 ,连结PA,DC,求证:PACBDC .B O Cx【练习 2】如图,在平面直角坐标系xOy 中,点A、B的坐标分别为1,0 、4,0 ,点 D 在 y轴上AD ∥ BC ,点E在 CD 上,且知足AE、BE分别均分DAB 、CBA .⑴ 请你判断此时线段CE 与DE能否相等,并证明你的结论;⑵已知 DAB60 °,直接写出线段BC 的长.y4C 4EE C22D DA O1B5xA 1 D'B 5- 1-1【练习 3】如图,已知直线OA 的分析式为y=x ,直线AC垂直 x 轴于点C,点C的坐标为2,0 ,直线 OA 对于直线 AC 的对称直线为 AB 交 x 轴于点 B .⑴ 写出点 A 及点 B 的坐标;y⑵ 如图, 直线 AD 交 x 轴于点 D ,且 △ ADB 的面积为 1,求点 D 的坐标; ⑶ 若点 D 为⑵中所求, 作 OE AD 于点 E ,交 AC 于点 H ,作 BF AD 于点 F ,求证: OEAF ,并直接写出点 H的坐标.AHEO题型二一次函数与面积的综合 稳固练习CD B xFy【练习 4】 ⑴如图,点 A 、 B 、 C 在一次函数 y2x m 的图象上,它们的横坐标挨次为1、 1、 2,分别过这些点作 x 轴与 y 轴的垂线,则图中暗影部分的面积和是().ABCA . 1B . 3C . 3(m1)D . 3(m 2)2⑵ 如图 1,在直角梯形 ABCD 中,动点 P 从点 B 出发,沿 BC ,CD 运动至点 D 停止.设点 P 运动的行程为x , △ ABP 的面积为 y ,假如 y 对于 x 的函数图象如图 2 所示,则 △ BCD 的面积是( ).A . 3B . 4C . 5D . 6-1 O 1 2xD C PABO25 x图 1图 2【练习 5】直线 y 2x3 与 x 轴交于点 A ,与 y 轴交于点 B .若在 x 轴上有一点 Q ,而且知足S △ BAQ : S △ AOB8:3 ,求 Q 点坐标.37第十六种品行:感恩包拯辞官侍母包公即包拯(公元999-1062 年),字希仁,庐州合肥(今安徽合肥市)人,父亲包仪,曾任朝散医生,死后追赠刑部侍郎。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数综合题例选讲
北京四中徐晓阳
变化的世界
普遍联系的世界变量之间相依
探究变量之间相依关系的一般方法
函数概念给出(解析式)---图象---图象的几何特征—函数性质---综合应用
现阶段我们的任务
掌握具体函数的概性;领会新的数学方法(代数方法研究几何问题,几何问题代数化)
1、将直线y=kx+b 先向右平移3个单位,再向下平移2个单位后与原直线重合,则k=_____;
2、求证:无论m为什么实数时,直线
总经过一定点。

3、一次函数在同一坐标系中的图像可能是()
31
y mx m
=+-
1
y ax b
=+
2
(0,0)
y abx a b
=≠≠
4、在平面直角坐标系xOy中,已知两点A(-1,0),B(-2,3)在y轴上求作一点P,使AP+BP 最短,并求出点P的坐标.
y
O x
A
B
-2
-1
4
3
2
1
-3-2-12
1
5、如图,一次函数y=-x+2的图象与x轴、y轴分别交于点A、点B,另一直线y=kx+b(k≠0)经过点C(1,0),且把△AOB分成两部分,
(1)若△AOB被分成的两部分面积相等,
求k和b的值;
(2)若△AOB被分成的两部分面积的比为1:5,求k和b的值.
6、已知直线 y=-3
3x+1 与x 轴、y 轴分别交于A 、B 两点,以线段AB 为直角边在第一象
限内作等腰直角△ABC ,∠BAC =90°,
点P (1,a )为坐标系内一动点。

(1)求△ABC 的面积;
(2)若△ABC 与△ABP 面积相等,求实数a 的值.
1x +。

相关文档
最新文档