第三章 一维搜索(线性搜索)

合集下载

第三章 一维搜索法

第三章 一维搜索法
x
0
x1 x2
x3
3-1 确定初始区间的进退法
探测初始空间的进退法步骤: 探测初始空间的进退法步骤 (1)给定初始点 x0 ,初始步长 h ,令 x1 = x0 ,记: f1 = f ( x1 ) 给定初始点 初始步长 令 记 (2)产生新的探测点 x2 = x1 + h ,记 f 2 = f ( x2 ) 产生新的探测点 (3)比较函数值 f1 和 f 2 的大小 确定向前或向后探测的策略 比较函数值 的大小,确定向前或向后探测的策略 则加大步长,令 若: f1 > f 2 则加大步长 令 h = 2h ,转(4)向前探测 转 向前探测 (4)产生新的探测点 x3 = x0 + h ,令 f 3 = f ( x3 ) 产生新的探测点 令 (5)比较函数值 f 2 和 f 3 的大小 比较函数值 则调转方向,令 若: f1 < f 2 则调转方向 令 h = − h ,转(4)向后探测 转 向后探测
3-1 确定初始区间的进退法
f (x ) f ( x1 )
f ( x2 )
f ( x1 ) > f ( x2 ) > f ( x3 )
极小点在右端点的
f (x3 ) (x
x
x3 右侧
0
x1
x2 x3
3-1 确定初始区间的进退法
f (x ) f ( x1 ) f ( x2 )
f ( x3 )
f ( x1 ) < f ( x2 ) < f ( x3 )
h=-h;x2=x0+h;f2=f(x2); ; ; ; End
3-2 黄金分割法
一维搜索试探方法的基本思想: 一维搜索试探方法的基本思想:在确定了搜索区间的 前提下,不断缩小搜索区间, 前提下,不断缩小搜索区间,同时保持搜索区间内函数值 “大-小-大”的走势,直到区间的宽度小于预定的精度。 小 大 的走势,直到区间的宽度小于预定的精度。 黄金分割法基本思想: 黄金分割法基本思想 : 在搜索区间内插入两个黄金分 割点,将区间分成三段。利用函数的单谷性质,通过函数值 割点,将区间分成三段。利用函数的单谷性质, 大小的比较,删去其中一段。 大小的比较,删去其中一段。在保留下来的区间上作同样的 处置,如此往复送代,使搜索区间缩小到精度范围内, 处置,如此往复送代,使搜索区间缩小到精度范围内,得到 极小点的近似解。 极小点的近似解。

机械优化设计第三章一维搜索方法

机械优化设计第三章一维搜索方法

(b a),故
Fn
b
a 。由Fn即可从斐波那契数列表或按F0
F1
1, Fn
Fn1
Fn2 (n
2, 3,
)
推算出相应的n。
3)确定试点并计算相应的函数值,在区间a, b内的两个试点:
x2
a
Fn1 Fn
(b
a),
x1
b
Fn1 Fn
(b
a),
f1 f (x1),
f2 f (x2 )
第三章 一维搜索方法
1.若f (a1) f (b1),则取[a,b1]为缩短后的搜索区间; 2.若f (a1) f (b1),则取[a1,b]为缩短后的搜索区间。
第三章 一维搜索方法
第二节 搜索区间的确定与区间消去法原理
间 接
假定在搜索区间[a, b]内取一点x, 并计算它的导数值 f '(x),可能出现三种情况:
x2 a b x1, f2 f (x2 )
5)检查迭代终止条件:bn1 an1
,若满足,则输出最优解x*
1 (a b), 2
ห้องสมุดไป่ตู้
f*
f (x*),
若不满足,则转入(4),继续进行迭代。
1. f (a1) f (b1),由于函数的单峰性, 极小点一定在[a, b1 ]内; 2. f (a1) f (b1),极小点一定在[a1,b]内; 3. f (a1) f (b1),极小点一定在[a1,b1]内。
第三章 一维搜索方法
第二节 搜索区间的确定与区间消去法原理
直 接 法
假定在搜索区间[a,b]内任取两点a1和b1,且a1 b1, 并计算f (a1)和f (b1),可能出现三种情况:
f (x1) f (x) f (x2)

常用一维搜索算法

常用一维搜索算法

无约束优化:不对定义域或值域做任何限制的情况下,求解目标函数的最小值。

这是因为实际应用中,许多情形被抽象为函数形式后均为凸函数,对于凸函数来说局部最小值点即为全局最小值点,因此只要能求得这类函数的一个最小值点,该点一定为全局最小值。

(直接法:又称数值方法,它只需计算目标函数驻点的函数数值,而不是求其倒数,如坐标轮换法,单纯型法等。

间接法:又称解析法,是应用数学极值理论的解析方法。

首先计算出目标函数的一阶或一阶、二阶导数,然后根据梯度及海赛矩阵提供的信息,构造何种算法,从而间接地求出目标函数的最优解,如牛顿法、最速下降法共轭梯度法及变尺度法。

)在优化算法中保证整体收敛的重要方法就是线搜索法与信赖域法,这两种算法既相似又有所不同。

根据不同的线搜索准则就延伸出不同的线搜索算法,譬如比较常见和经典的最速下降法,牛顿法,拟牛顿法以及共辄梯度法等。

一维搜索又称线性搜索(Line Search),就是指单变量函数的最优化,它是多变量函数最优化的基础,是求解无约束非线性规划问题的基本方法之一。

一维搜索技术既可独立的用于求解单变量最优化问题,同时又是求解多变量最优化问题常用的手段,虽然求解单变量最优化问题相对比较简单,但其中也贯穿了求解最优化问题的基本思想。

由于一维搜索的使用频率较高,因此努力提高求解单变量问题算法的计算效率具有重要的实际意义。

在多变量函数的最优化中,迭代格式X k+1=X k+a k d k其关键就是构造搜索方向d k和步长因子a k设Φ(a)=f(x k+ad k)这样从凡出发,沿搜索方向d k,确定步长因子a k,使Φ(a)<Φ(0)的问题就是关于步长因子a的一维搜索问题。

其主要结构可作如下概括:首先确定包含问题最优解的搜索区间,然后采用某种分割技术或插值方法缩小这个区间,进行搜索求解。

一维搜索通常分为精确的和不精确的两类。

如果求得a k使目标函数沿方向d k达到极小,即使得f (x k+a k d k)=min f (x k+ ad k) ( a>0)则称这样的一维搜索为最优一维搜索,或精确一维搜索,a k叫最优步长因子;如果选取a k使目标函数f得到可接受的下降量,即使得下降量f (x k)一f (x k+a k d k)>0是用户可接受的,则称这样的一维搜索为近似一维搜索,或不精确一维搜索,或可接受一维搜索。

《一维搜索方法》课件

《一维搜索方法》课件

1
原理
根据斐波那契数列生成黄金分割比例,用于确定搜索范围的分割点。
2
思路
根据斐波那契数列的值,确定左右指针在搜索范围内的位置,直到找到最接近目 标值的点。
3
优缺点
迭代次数逐渐趋近于黄金分割点,但对搜索范围要求较高。
黄金分割法搜索方法的原理和思路
1
原理
将搜索范围按黄金分割点分割,选择较小的一部分作为新的搜索范围。
2
思路
通过反复按黄金分割点计算和调整搜索范围,逐步逼近最接近目标值的点。
3
优缺点
迭代次数相对较少,但需要较复杂的计算公式。
三分搜索方法的原理和思路
1
原理
将搜索范围分割为三等份,并判断目标值位于左、中、右三个部分,逐步缩小搜索范 围。
2
思路
根据目标值与分割点的大小关系,决定下一步搜索的范围,直到找到最接近目标值的 点。
3
优缺点
对于非单调函数,能更快地找到目标值,但需要较多的判断。
多点搜索方法的原理和思路
1
原理
同时使用多个起始点进行搜索,通过不断比较找到最接近目标值的点。
2
思路
根据多个起始点的初始值和搜索步长,逐步调整并比较得到最优解。
3
优缺点
相比于单点搜索,能更准确地找到目标值,但需要同时处理多个起始点的迭代。
2
思路
从起始点开始,依次向右增加或向左减小搜索范围,直到找到最接近目标值的点。
3
优缺点
简单易懂,但需要较多的迭代次数。
二分搜索方法的原理和思路
1
原理
将搜索范围一分为二,并判断目标值位于左半部分还是右半部分,逐步缩小搜索 范围。
2
思路

《一维搜索方法》课件

《一维搜索方法》课件

02
线性搜索
线性搜索的定义
线性搜索是一种基本的搜索算法,它 从列表的第一个元素开始,逐个检查 每个元素,直到找到目标元素或遍历 完整个列表。
在线性搜索过程中,我们假设列表中 的元素是按顺序排列的,并且我们不 知道目标元素的确切位置,只知道它 存在于列表中。
线性搜索的步骤
初始化
选择一个起始位置,通常为列表的第一个元素。
抛物线搜索的步骤
3. 比较中间元素与目标值
2. 计算当前区间的中间元 素。
1. 初始化当前搜索区间为 整个数组。
01
03 02
抛物线搜索的步骤
01 如果中间元素等于目标值,返回该位置。
02
如果目标值小于中间元素,将左半部分区 间作为新的当前区间。
03
如果目标值大于中间元素,将右半部分区 间作为新的当前区间。
04
4. 重复步骤2和3,直到找到目标值或当前 区间为空。
抛物线搜索的时间复杂度
最坏情况下,抛物线搜索的时间复杂度为O(n),其中n为数 组长度。
平均情况下,由于每次比较都可以将搜索区间缩小一半,因 此时间复杂度为O(log n)。
THANKS
THANK YOU FOR YOUR WATCHING
的单峰函数。
一维搜索方法的重要性
解决实际问题
一维搜索方法广泛应用于各种实 际问题中,如参数优化、函数逼 近、插值等。
算法基础
一维搜索方法是许多算法的基础 ,如梯度下降法、牛顿法等都需 要用到一维搜索方法来寻找迭代 步长。
理论分析
一维搜索方法在数学分析中也有 重要应用,如中值定理、单调函 数性质等都需要用到一维搜索方 法。
常用的一维搜索方法
线性搜索

常用的一维搜索方法

常用的一维搜索方法

称为搜索方向;
k 称为步长或步长因子。
图1
线搜索迭代法的步骤
0 x (1) 选定某一初始点 ,并令 k : 0;
(2) 确定搜索方向 d
k
k
;
k
(3) 从 x 出发,沿方向 d x k 1; (4) 检查得到的新点
求步长 λ
k
,以产生下一个迭代点
x
k 1
是否为极小点或近似极小点。
若是,则停止迭代。 否则,令 k :k1,转回(2)继续进行迭代。 在以上步骤中,选取搜索方向是最关键的一步。 各种算法的区分,主要在于搜索方向 d
最优解
从当前点出发,按照某 种规则找下一个迭代点 注:迭代格式 不同,对应着 不同的算法
找下一个迭代点
迭代法的分类
可 行 算 法 : 所 有 迭 代 点 都 是 可 行 点 据 迭 代 点 初始点不好找 的 可 行 性 不 可 行 算 法 : 至 少 有 一 个 迭 代 点 不 是 可 行 点 初始点任意选取
k k k Tk kk
T k T k g d g k 1 k d,
其中
(, 1 ) ,0 1 .
常用的一维搜索方法
我们主要介绍下面几种方法





“成功—失败”法 0.618法(黄金分割法) 二分法 牛顿法(Newton)和插值法 Armiji-Goldstein 准则 Wolfe-Powell 准则
注意: 1. h 选择要适当.(太大含多个单峰区间,太小迭代次数多); 2. f (x)单调时无结果, (加迭代次数限制);
“成功—失败”法----算例
3 例 :利用“成功-失败”法求函数 f( x )x 2 x 1 的搜索区间, 1 取初始点 x 1 ,步长 h . 2 21 1 h , 解:取初始点 x ,步长 2 2 1 1 5 11 f (x ) f ( ) , f ( x h ) f ( ) f ( 0 ) 1 , 2 8 22 搜 索 成 功 , 步 长 加 倍 ; 因 为 f () x f ( x h ) , 1 1 计 算 f ( x h + 2 h ) f ( x 3 h ) f ( 3 ) f ( 1 ) 0 , 2 2 搜 索 成 功 , 步 长 加 倍 ; 因 为 fxh ( ) fx ( 3 h ) , 1 1 计 算 f ( x 3 h + 4 h ) f ( x 7 h ) f ( 7 ) f ( 3 ) 2 2 , 2 2 搜 索 失 败 , 停 止 迭 代 ; 因 为 fx ( 3 h ) fx ( 7 h ) ,

04工程优化 第3章-2常用一维搜索牛顿法

04工程优化 第3章-2常用一维搜索牛顿法

解: f '( x) 4 x3 12 x 2 12 x 16, f ''( x) 12 x 2 24 x 12,
f '( x0 ) f '(6) 89 x1 x0 6 6 4.75 f ''( x0 ) f ''(6) 69
f '( x1 ) f '(4.75) 84.94 102 , 继续迭代; f '( x1 ) x2 x1 f ''( x1 ) f '(4.75) 84.94 4.75 =4.75 =4.163 f ''(4.75) 144.75 f '( x2 ) f '(4.163) 14.666 102 , 继续迭代;
3.若 x2 x ,则迭代结束,取 x* x ,否则在点
x1 , x2 , x3 , x 中,选取使f (x) 最小的点作为新的x2,并使新的
x 1 , x3各是新的x2近旁的左右两点,继续进行迭代,直到满 足终止准则。

用二次插值法求函数f(x)=3x3-4x+2的极小点, 给定 x0=0, h=1, ε=0.2。
应继续迭代。
(2) 在新区间,相邻三点及其函数值: x1=0, x2=0.555, x3=1;
根据公式计算差值多项式的极小点 f1=2, f2=0.292, f3=1.
1 c1 x a1 / 2a2 ( x1 x3 ), f1 f 2 2 c2 c1 f1 f 3 x1 x2 c1 , c2 x1 x3 x2 x3
Newton法----算例
f '( x2 ) x3 x2 f ''( x2 )

三章节一维搜索方法

三章节一维搜索方法

f x ad f x adTf x 1 ad T G ad
2
f x dTf x 1 2dTGd
2
上式求α旳极值,即求α导数为零。
dTf x *d TGd 0

*
dTf x
d T Gd
从上式看,需要求导进行计算,对于函数关系复杂旳, 解析法十分不便。
数值法旳基本思绪:拟定 *旳搜索区间,在不断缩小
a2 a3 y1 a3 a1 y2 a1 a2
a1 a2 a2 a3 a3 a1
y3
所以
p
a1
/
2a2
1 2
a22 a32 a2 a3
y1 a32 a12 y1 a3 a1
y2 a12 a22 y2 a1 a2
y3 y3

c1
y3 a3
y1 a1
一、牛顿法(切线法)
一维搜索函数 y f ,假定一给出极小点旳一种很好旳近
似点0 ,因为一种连续可微旳函数在极小点附近与一种二次 函数很接近,所以,在0 点附近用一种二次函数 逼近。
f
f
0
f
0
0
1 2
f
0
0 2
求二次函数 旳极小点作为f 极小点旳新近似点1
1 0 即 f 0 f 0 0 0
P a0 a1 a2 2
它应满足条件 P 1 a0 a11 a212 y1 f 1 (1)
P 2 a0
a12
a2
2 2
y2
f
2
P 3
a0
a13
a2
ห้องสมุดไป่ตู้
2 3
y3
f
3
从极值旳必要条件求得

第三章-一维搜索方法

第三章-一维搜索方法
解析解法对于函数关系复杂、求导困难等情况难以 实现。在实际优化设计中,数值解法的应用更为有效, 且适合计算机的运算特点。
数值解法基本思路:
先确定 k 所在的搜索区间,然后根据区间消去法原理 不断缩小此区间,从而获得 k 的数值近似解。
一维搜索一般分为两大步骤: (1)确定初始搜索区间[a,b],该区间应是包括一维函数 极小点在内的单谷区间。 (2)在单谷区间[a,b]内通过缩小区间寻找极小点。
x2 a 0.618(b a), y2 f (x2 )
否 ba

x 0.5(a b)

f f (x)
b x2, x2 x1, y2 y1 x1 a 0.382(b a), y1 f (x1)
f
也可采用迭代次数是否大于或等于 k 作终止准则。
y1 y2 x a x1 x2 b
当方向 d k 给定,求最佳步长 k 就是求一元函数
f x k1 f xk kd k k
的极值问题。这一过程被称为一维搜索。
第三章 一维搜索方法
f (x (k+1) ) = min. f (x (k) + α S (k) ) = f (x (k) + α(k) S ( k) )
一维搜索是优化搜索方法的基础。
第三章 一维搜索方法
求解一元函数 a 的极小点 a* ,可用解析法。 f x ad f x adTf x 1 ad T G ad
2
f x dTf x 1 2dTGd
2
上式求α的极值,即求α导数为零。
dTf x *dTGd 0

*
dTf x
d T Gd
第三章 一维搜索方法
5
-1.386 -1.111 -0.940 -0.665

第二部分:03第三章 一维搜索方法

第二部分:03第三章 一维搜索方法
昆明理工大学机电工程学院
一、一维搜索的基本思想
选定初始点1,初始步长h0。计算函数值y1=f(1)和 y2=f(1+ h0),比较y1和y2,可分三种情况:
y1>y2,则极小点*必在1右方,作正向搜索寻求第三点。 y1<y2,则极小点*必在1+h0左方,作反向搜索寻第三点。 y1=y2,则极小点*必在1和1+h0之间,则为“高-低-高” 形态,找到初始单峰区间为[1 , 1+h0]
y 2 y1
1
y3
3
h0
O
22 2 1 1 1
h0

2013年9月22日星期日8时42分35秒
2013年9月22日星期日8时42分36秒
8
第 2 部分:优化设计
第三章 一维搜索方法
y
y3
y1 y1 2 y2
y 2 y y3 3
第 2 部分:优化设计
第三章 一维搜索方法
昆明理工大学机电工程学院
一、一维搜索的基本思想
一维最优化搜索是要在单峰区间求单峰函数的极小 点,通常分两步进行: 确定一个最小值所在的区间; 求出该区间内的最优步长因子k值。 确定搜索区间的外推法 在一维搜索时,假设函数f()具有单谷性,即在所考 虑的区间内部,函数f()有唯一得极小点*。为了确定 极小点*所在得区间[a, b],应使函数f()在[a, b]区间形 f() 成“高-低-高”趋势。 对于一般情况,分正向 搜索和反向搜索的外推法。
*
b
5

2013年9月22日星期日8时42分35秒
1
2013/9/24
第 2 部分:优化设计
第三章 一维搜索方法
第 2 部分:优化设计

最优化第3章一维搜索方法

最优化第3章一维搜索方法
一维搜索方法一般分两步进行: ■ 首先确定一个包含函数极小点的初始区间,即确定 函数的搜索区间,该区间必须是单峰区间; ■ 然后采用缩小区间或插值逼近的方法得到最优步长, 最终求出该搜索区间内的一维极小点。
§3.1 搜索区间的确定
根据函数的变化情况,可将区间分为单峰区间和多峰区间。 所谓单峰区间,就是在该区间内的函数变化只有一个峰值, 即函数的极小值。
§3.4 插值方法
一、牛顿法
f(x)
利用一点的函数值、 一阶导数以及二阶 导数构造二次多项 式。用构造的二次 多项式的极小点作 为原函数极小点的 近似。
φ0(x)
φ1(x) f(x)
x*
x2
x1
x0 x
§3.4 插值方法
一、牛顿法
设f(x)为一个连续可微的函数,则在点x0附近 进行泰勒展开并保留到二次项:
§3.1 搜索区间的确定
f(x)
f(x)
f(a0) f(a0+h)
f(a0+3h)
f(a0-h) f(a0)
f(a0+h)
0 a0 a
a0+h
a0+3h x b
0 a0-h
a0
a
进退试算法的运算步骤如下:
a0+h x b
(1)给定初始点α0和初始步长h (2)将α0及α0+h 代入目标函数 f(x) 进行计算并比较大小
φ0(x)
φ1(x) f(x)
f ′ (x)
x*
x2 x1
x0
φ ′ 1(x) f ′ (x)
x* x2
x1
x0
牛顿法程序框图
开始
x 给定初始点 ,误差 0
,
令k=0

第三节 一维搜索方法

第三节 一维搜索方法

若令 t1′ = t1 ,则有 w = 1 ;若令 t2′ = t1 ,则有 w = 0.618 以后类似迭代
0.618法步骤 0.618法步骤
称为在[a,b]上是单谷 [a,b]上是单谷的 函数 ϕ (t ) 称为在[a,b]上是单谷的,如果存在一个 t * ∈ [a , b] ,使得 ϕ (t ) 在 [a , t * ] 上严格递减,且在 [t * , b] 上严格递增。区间[a,b]称为 ϕ (t ) 的单谷区间。 上严格递减, 上严格递增。区间[a,b] [a,b]称为 单谷区间。
• 例4.3.3 用Goldstein法求解 Goldstein法求解 min ϕ (t ) = t 3 − 2t + 1
t ≥0
t0 取= 2, m1 = 0.2, m2 = 0.7, α = 2
解答
4.Armijo法 4.Armijo法
• Armijo法 法
ϕ (0)
y = ϕ (t )
tk
Mt
第三节 一维搜索方法
目标函数为单变量的非线性规划问题称为一维搜索问 目标函数为单变量的非线性规划问题称为一维搜索问 线性搜索问题) 题(或线性搜索问题),其数学模型为 min ϕ (t) ,
t ≥0 ( 0≤ t ≤ t max )
其中 t ∈ R 。
精确一维搜索方法: 0.618法 Newton法 精确一维搜索方法: 0.618法,Newton法 非精确一维搜索方法: Goldstein法 Armijo法 非精确一维搜索方法: Goldstein法,Armijo法
1. 0.618法 0.618法
• 0.618法——思想 0.618法——思想
第一步: 插入 t1 , t2使 [ a, t2 ][t1 , b ] 等长度,令 第一步: 等长度,

常用的一维搜索方法

常用的一维搜索方法
西安电子科技大学 穆学文 17
§4
牛顿法(Newton)和插值法
§4 .1、Newton法: 对 f (x) 在 x k 点展开: f (x )= f (xk )+ f ′(xk )( x-xk ) +(1/2) f ″(xk )(x-xk )2 + o ||(x- xk) 2 || 取二次式(略去高阶项) g(x) = f (xk) +f ′(xk)(x-xk) + (1/2)f ″(xk)(x-xk)2 用 g(x)作为f (x)的近似,当 f ″(xk) > 0时,其驻点为极小点: g′ (x)= f ′(xk) +f ″(xk)(x - xk )=0 得 xk +1= xk –f '(xk) /f ″(xk). 取 xk +1为新的迭代点。 以上过程即Newton法。 特点:收敛速度快,二阶收敛。缺点:须计算二次导数,对初 始点要求高、局部收敛。
西安电子科技大学 穆学文 18
Newton法算法框
初始 x1 ,ε1, ε2 >0 k=1
︱ f '(xk ) ︱<ε1?
y
停;解 xk
N
停k=k+1
Y
xk +1= xk - f′ (xk ) / f″(xk )
Y
| xk +1 - xk |< ε2
N
西安电子科技大学 穆学文 19
西安电子科技大学
穆学文
3
§1
“成功—失败” 法
以下方法称为“成功—失败”法(进退法): 步骤1:选取初始点 x∈R , 初始步长 h > 0 及精度ε> 0, ϕ11 = f ( x). 步骤2:计算 ϕ22 = f ( x + h). 步骤3:若 ϕ 22 < ϕ11, 搜索成功, 转步骤4;否则,搜索失败, 转步骤5。 步骤4:令 x:= x + h, ϕ11 := ϕ 22, h := 2h 步骤5:判断 h ≤ ε ? 若 h ≤ ε , 停止迭代, x** = x ;否则令 h 转步骤 2。 h=− ,

3.一维搜索方法

3.一维搜索方法

P(x)的系数确定与极小点的计算
a1
x22
x
2 3
f1
x
2 3
x12 f2
x12 x22 f3
x1 x2 x2 x3 x3 x1
a2
x2 x3 f1 x3 x1 f2 x1 x2 f3 x1 x2 x2 x3 x3 x1
x
a1
1 x22 x32 f1
x32 x12 f2
x12 x22 f3
2a2 2 x2 x3 f1 x3 x1 f2 x1 x2 f3
9
一维搜索方法的分类
• 为了每次缩短区间,只需要在区间内再插入一点并计 算其函数值。然而,对于插入点的位置,是可以用不 同的方法来确定的。
• 黄金分割法 • 一类称作解析法或函数逼近法:构造一个插值函数来
逼近原来函数,用插值函数的极小点作为区间的插入 点
– 牛顿法、二次插值法等
10
一维搜索的试探方法 黄金分割法
f (x)
(a) f a0
f a0 a a0
1 2
f
a0 a
a0 2
• 然后以二次函数的极小点作为极小点的一个新近似点,根据极值 必要条件
对a求偏导 (a1) 0
f a0 f a0 a1 a0 0
ak 1
ak
f ak f ak
k
0, 1, 2,
依此继续可得 牛顿法迭代公式
a1
a0
f a0 f a0
17
• 是最常用的一维搜索试探方法,又称作0.618法 • 适用于区间上的任何单谷函数求极小值问题
– 对函数除要求“单谷”外不作其他要求,甚至可以 不连续
• 基本思路:在搜索区间内适当插入两点,并计算其函 数值。将区间分成三段。应用函数的单谷性质,通过 函数值大小的比较,删去其中一段,使搜索区间得以 缩短。然后再在保留下来的区间上作同样的处置,如 此迭代下去,使搜索区间无限缩小,从而得到极小点 的数值近似解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品课件
3.2 确定初始区间
1、确定搜索区间的外推法
在给定区间内仅有一个谷值(或有唯一的极小点)的 函数称为单谷函数,其区间称为单谷区间。
函数值:“大—小—大” 图形:“高—低—高” 单谷区间中一定能求得一个极小点。
精品课件

开始,以初始步长
向前试探。
如果函数值上升,则步长变号,即改变试探方向。
y1
y2→y1 y3→y2
一步(进行换名)。经过三
步最后确定搜索间1,3
,并且得到区间始点、中间 点和终点12 3
精品课件
4)比较函数值y2和y3: a)如果y2>y3 ,加大步长h=2h,a1=a2,a2=a3,转(3)继 续探测; b)如果y2<y3,则初始区间得到: a=min[a1,a3],b=max[a1,a3],函数最小值所在区间为 [a,b]。
精品课件
右图表示沿
的正向试
探。每走一步都将区间的始 点、中间点沿试探方向移动
③ 对α求导,令其为零。 dd f(x(k)S(k))0
[ f( x ( k ) ) ] T S ( k ) [ S ( k ) ] T G ( x ( k ) ) S ( k ) 0
④ 求得最优步长
(k) [f(x(k))]TS(k)
[S(k)]TG(x(k))S(k)
精品课件
解析解法对于函数关系复杂、求导困难等情况难以 实现。在实际优化设计中,数值解法的应用更为有效, 且适合计算机的运算特点。 数值解法基本思路:
求解一元函数 ()的极小点 *,可采用解析解法 ,即利用一元函数的极值条件'(*)0 求 * 在用函数 () 的导数求 * 时,所用的函数()
是仅以步长因子 为变量的一元函数,而不是以
设计点 x 为变量的多元函数 f (x) 。
为了直接利用 。
的函数式求解最佳步长因子
把ቤተ መጻሕፍቲ ባይዱ
或它的简写形式
进行泰勒展开,
取到二阶项,即
将上式对
进行微分并令其等于零,给出
极值点 应满足的条件
从而求得 精品课件
这里是直接利用函数 而不需要把它化成步长因
子 。的函数
。不过,此时需要计算
点处
梯度
和海赛矩阵 H 。
解析解法的缺点——需要进行求导计算。
对于函数关系复杂、求导困难或无法求导的情况,使 用解析法将是非常不便的。
X0011
则 F x 1 2 x 2 2 8 x 1 1 x 2 2 5 2 2 2 2 0 52
精品课件
3
X k 1 X kS k(k 0 ,1 ,2 )
一维搜索示意图
精品课件
3.1.2 的确定方法
求多元函数极值点,需要进行一系列的一维搜索。可见一 维搜索是优化搜索方法的基础。
因此,在优化设计中,求解最佳步长因子 主要采用数 值解法,利用计算机通过反复迭代计算求得最佳步长因子 的近似值。
数值解法的基本思路是:首先确定 所在的搜索区间 ,然后根据区间消去法原理不断缩小此区间,从而获得 的数 值近似解。
精品课件
f( x k 1 ) f( x k k s k ) (k )
第三章 一维搜索方法
3.1 概述 3.2 确定初始区间 3.3 缩小区间 3.4 黄金分割法(0.618法) 3.5 一维搜索的插值方法
精品课件
第3章 一维搜索方法
3.1 概述
3.1.1 一维问题是多维问题的基础
求目标函数 f (X)的极小点,从理论上说需要求解方程:
f (X) 0 其中 X(x1,x2, ,xn)T
f (x)
f (x)
0 α1
α
α3
0
α1
α3
精品课件
外推方法
基本思想:对 f (x)任选一个初始点 a 1 及初始步长 h ,
通过比较这两点函数值的大小,确定第三点位置,比较这 三点的函数值大小,确定是否为“高—低—高”形态。
步骤:
1)选定初始点a1,初始步长h=h0,计算y1=f(a1)和y2=f(a1+h) 2)比较y1和y2; a)如果y1>y2,向右前进,加大步长h=2h0,转(3)向前; b)如果y1<y2,向左后退, h=-2h0,将a1和a2,y1和y2的值互 换。转(3)向后探测; c)如果y1=y2,极小点在a1和a1+h之间。 3)产生新的探测点a3=a2+h,y3=f(a3);
如果函数值下降,则维持原来的试探方向,并将步长加倍 。
区间的始点、中间点依次沿试探方向移动一步。
此过程一直进行到函数值再次上升时为止,即可找到搜索 区间的终点。
最后得到的三点即为搜索区间的始点、中间三点和终点, 形成函数值的“高-低-高”趋势。
单谷区间
精品课件
说明:单谷区间内,函数可以有不可微点,也可以是不 连续函数;
那么如何来求 f (X)的极小点呢?
基本思想:
X0,X1, ,Xk,Xk1
f( X 0 ) f( X 1 ) , , f( X k ) f( X k 1 )
这种方法是逐次迭代的方法,在电子计算机上很容易
实现,因此它在优化设精品计课件中被广泛地采用。
2
Sk方向上的任何一点可以表示为
Xk1XkakSk 其中α是步长因子,为实系数,此时 Sk 方向上任何一点的目标函数值
为f XkkSk
,它是参数α的一元函数。那么在沿f ( X )
的极小Sk 点方,向这求就是求一元函数 f XkkSk
的极小问题,它可表
: m fX ik n k S k
这个过程称为一维搜索过程。
如: F (X )x 1 2x 2 2 8 x 1 1x 2 2 52

X000T,d011T
解析法:
① f(X(k) + αS(k) ) 沿S(k) 方向在x(k) 点泰勒展开;
② 取二次近似:
fx ( k ) S ( k ) f( x ( k ) ) [ f( x ( k ) ) ] TS ( k ) 1 2 [ S ( k ) ] T G ( x ( k ) ) S ( k ) 2
先确定 k 在的搜索区间,然后根据区间消去法原理
不断缩小此区间所,从而获得 k 的数值近似解。
一维搜索一般分为两大步骤: (1)确定初始搜索区间[a,b],该区间应是包括一维函数 极小点在内的单谷区间。 (2)在单谷区间[a,b]内通过缩小区间寻找极小点。
一维搜索也称直线搜索。这种方法不仅对于解决 一维最优化问题具有实际意义,而且也是求解多维最优 化问题的重要支柱。
相关文档
最新文档