中考数学压轴题专项练习含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学压轴题专项练习 —-函数图象中点的存在性问题

1.1因动点产生的相似三角形问题

例1 20XX 年苏州市中考第29题

如图1,已知抛物线211(1)444

b

y x b x =

-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .

(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;

(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.

图1

例2 20XX 年黄冈市中考模拟第25题

如图1,已知抛物线的方程C 1:1

(2)()y x x m m

=-

+- (m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.

(1)若抛物线C 1过点M (2, 2),求实数m 的值; (2)在(1)的条件下,求△BCE 的面积;

(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标;

(4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.

图1

1.2因动点产生的等腰三角形问题

例1 20XX年扬州市中考第27题

如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.

(1)求抛物线的函数关系式;

(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;

(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.

图1

例2 20XX年临沂市中考第26题

如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;

(2)求经过A、O、B的抛物线的解析式;

(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.

图1

1.3 因动点产生的直角三角形问题

例1 20XX 年广州市中考第24题

如图1,抛物线233

384

y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y

轴交于点C .

(1)求点A 、B 的坐标;

(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;

(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....

三个时,求直线l 的解析式.

图1

例2 20XX 年杭州市中考第22题

在平面直角坐标系中,反比例函数与二次函数y =k (x 2+x -1)的图象交于点A (1,k )和点B(-1,-k ).

(1)当k =-2时,求反比例函数的解析式;

(2)要使反比例函数与二次函数都是y 随x 增大而增大,求k 应满足的条件以及x 的取值范围;

(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.

中考数学压轴题专项练习

—-函数图象中点的存在性问题(答案)

20XX 年苏州市中考第29题

思路点拨 1.第(2)题中,等腰直角三角形PBC 暗示了点P 到两坐标轴的距离相等. 2.联结OP ,把四边形PCOB 重新分割为两个等高的三角形,底边可以用含b 的式子表示.

3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q 最大的可能在经过点A 与x 轴垂直的直线上. 满分解答: (1)B 的坐标为(b , 0),点C 的坐标为(0,

4

b ). (2

)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC . 因此PD =PE .设点P 的坐标为(x, x). 如图3,联结OP .

所以S 四边形PCOB =S △PCO +S △PBO =115

2428

b x b x bx ⨯⋅+⨯⋅==2b .

解得165x =.所以点P 的坐标为(1616

,55

).

图2 图3

(3)由2111

(1)(1)()4444

b y x b x x x b =

-++=--,得A (1, 0),OA =1. ①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA . 当BA QA QA OA

=,即2QA BA OA =⋅时,△BQA ∽△QOA . 所以2()14

b

b =-.解得843b =±Q 为(1,23.

②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。 因此△OCQ ∽△QOA . 当BA QA QA OA

=时,△BQA ∽△QOA .此时∠OQB =90°. 所以C 、Q 、B 三点共线.因此

BO QA

CO OA =

,即14

b QA b =.解得4QA =.此时Q (1,4).

相关文档
最新文档