配方法求二次函数的对称轴和顶点坐标
配方法求二次函数的对称轴和顶点坐标
配方法求二次函数的对称轴和顶点坐标一次函数的对称轴和顶点坐标的求解
一次函数的对称轴和顶点坐标的求解,可以使用不等式法求解,求解方法如下:
一、求解一次函数的对称轴
设y=ax+b,求解对称轴的方法是将不等式转化成等式形式,即将式子变成 y=b-a(x-x1),对称轴的方程为x=x1,求得x1为
x1=b/a
二、求解一次函数的顶点坐标
设y=ax+b,求解顶点的公式为:
x=-b/2ay=f(-b/2a)
即求得顶点的横坐标为x=-b/2a,纵坐标为y=f(-b/2a)
二次函数的对称轴和顶点坐标的求解,可以使用完全平方法、抛物线方程法、判别法这三种方法求解。
1、完全平方法
若二次函数的标准型式为:y=ax2+bx+c,那么其对称轴的方程为:x=-b/2a
顶点的坐标为(x1,y1),求得
x1=-b/2ay1=f(-b/2a)=(-b2/4a)+c
2、通过抛物线方程式求解
若二次函数的抛物线方程式为:y2=4ay+4bx+4c,则其对称轴的方程为:
x=-b/a
顶点的坐标为(x1,y1),求得
x1=-b/ay1=f(-b/a)=c-b2/a
3、判别法求解
若给出二次函数的二次项系数a和一次项系数b,且已知函数的极值,则可使用判别法求解:
其中D=b2-4ac,设a≠0。
如果D>0:则函数有极值点。
用配方法求二次函数图象对称轴和顶点坐标
使用时间2010年 月 日班级: 小组: 姓名: 小组评价: 教师评价:课题 用配方法求二次函数图象对称轴和顶点坐标编写人:夏奉先 审核人:九年级数学组 领导签字:夏奉先学习目标:能熟练地利用配方法求二次函数图象的对称轴和顶点坐标。
学习重点:利用配方法求二次函数图象的对称轴和顶点坐标。
学习难点:利用配方法求二次函数图象的对称轴和顶点坐标。
学习过程: 一、课前热身1 、 写出下列二次函数图象的开口方向、对称轴和顶点坐标:⑴、y=2x 2(2)、 y =-12 x 2-1(3)、y =-12 (x +1)2⑷、 y =-12 (x -1)2-1(5)、y=12(x -6)2 +32、二次函数y =a(x -h)2+k(a ﹤0)图象开口向 ,对称轴是 ,顶点坐标是 。
3、将二次函数y=12(x -6)2+3 化成一般形式y =ax 2+bx +c ,结果是二、自主学习自学课本第10页至第11页第八行。
思考:1、 如何求二次函数y =12x 2-6x +21的图象的开口方向、对称轴和顶点坐标?2、 配方的基本步骤是 。
3、 求出下列抛物线的开口方向、对称轴和顶点坐标: (1)y=3x 2+2x (2)y=-x 2-2x(3)y=-2x 2+8x-8 (4)y=12x 2-4x +3三、合作探究1、 用配方法求抛物线y =ax 2+bx +c (a ≠0)的顶点与对称轴23、拓展:已知二次函数y=12x2-6x+21,当x= 时,y有最值是。
四、当堂训练1.用配方法求二次函数y=-2x2-4x+1的顶点坐标和对称轴.2、用顶点坐标公式和配方法求二次函数y=12x2-2-1的顶点坐标.3.二次函数y=2x2+bx+c的顶点坐标是(1,-2),则b=________,c=_________.4.已知二次函数y=-2x2-8x-6,当x=________时,y有_________值是___________.5、二次函数y=-x2+mx中,当x=3时,函数值最大,求其最大值.。
二次函数对称轴公式推导二次函数顶点坐标公式推导过程配方法的4个步骤
二次函数的定义
•定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;
②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全
体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c 若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如
果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。
•二次函数的解析式有三种形式:
(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式:(a,h,k是常数,a≠0)
(3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数
可转化为两根式。
如果没有交点,则不能这样表示。
二次函数的一般形式的结构特征:
①函数的关系式是整式;
②自变量的最高次数是2;
③二次项系数不等于零。
•二次函数的判定:
二次函数的一般形式中等号右边是关于自变量x的二次三项式;
当b=0,c=0时,y=ax2是特殊的二次函数;
判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成(a≠0)的形式,那么这个函数就是二次函数,否则就不是。
二次函数配方法
——配方法
河南省济源市实验中学 田爱平
学习目标
1 使学生掌握通过配方确定抛物线的开口方 向,对称轴,顶点坐标及最值
2 理解二次函数 y ax2 bx c 的性质
3 在实际应用中体会二次函数作为一种数学 模型的作用,会利用二次函数的性质求实 际问题中的最大值或最小值
1 说出二次函数 y 4(x 2)2 1 图象的 开口方向,对称轴,顶点坐标,增减 性
2 它是由y=-4x2怎样平移得到的
1的开不口画方图向象,,对直称接轴说,出顶点y 坐 12标x2,增2x减 3性
2 不画图象,直接说出 y 2x2 4x 1
的开口方向,对称轴,顶点坐标,增减性
函数y=ax²+bx+c的顶点式
一般地,对于二次函数y=ax²+bx+c,我们可以利用配方法 推导出它的对称轴和顶点坐标.
2a
4a
当x b 时,最大值为 4ac b2
2a
4a
1 求下列抛物线的开口方向,顶点坐标,对称轴, 增减性,最值
(1) y x2 2x 2 (2) y 2x2 8x (3) y 2x2 4x 8
2 抛物线如何 y 2x2 4x 5 平移得到 y 2x2
某商店将每件进价为80元的某种商品按每件100元出 售,一天可售出约100件,该店想通过降低售价、增 加销售量的办法来提高利润,经过市场调查,发现 这种商品单价每降低1元,其销售量可增加约10件。
1 请表示出商品降价x元与利润y元之间的关系?
2 将这种商品的售价降低多少时,能使销售利润最 大?最大利润是多少?
顶点坐标
b 2a
,
4ac 4a
b2
b 2a
中考数学常考易错点:3-3-1《二次函数的图象与性质》
二次函数的图象与性质易错清单1.二次函数的图象与系数a,b,c的符号的确定.【例1】(2014·山东烟台)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:① 4a+b=0;② 9a+c>3b;③ 8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有().A. 1个B. 2个C. 3个D. 4个【解析】根据抛物线的对称轴为直线x=2,则有4a+b=0;观察函数图象得到当x=-3时,函数值小于0,则9a-3b+c<0,即9a+c<3b;由于x=-1时,y=0,则a-b+c=0,易得c=-5a,所以8a+7b+2c=8a-28a-10a=-30a.再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.【答案】∵抛物线的对称轴为直线x=2,∴b=-4a,即4a+b=0,所以①正确.∵当x=-3时,y<0,∴9a-3b+c<0,即9a+c<3b.所以②错误.∵抛物线与x轴的一个交点为(-1,0),∴a-b+c=0.而b=-4a,∴a+4a+c=0,即c=-5a.∴8a+7b+2c=8a-28a-10a=-30a.∵抛物线开口向下,∴a<0.∴8a+7b+2c>0.所以③正确.∵对称轴为直线x=2,∴当-1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小.所以④错误.故选B.【误区纠错】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由Δ决定,Δ=b2-4ac>0时,抛物线与x轴有2个交点;Δ=b2-4ac=0时,抛物线与x轴有1个交点;Δ=b2-4ac<0时,抛物线与x轴没有交点.2.二次函数和最值问题【例2】(2014·浙江舟山)当-2≤x≤1时,二次函数y=-(x-m)2+m2+1有最大值4,则实数m的值为().【解析】二次函数的最值得分类讨论问题,根据对称轴的位置,分三种情况讨论求解即可.【答案】二次函数的对称轴为直线x=m,①m<-2时,x=-2时二次函数有最大值,此时-(-2-m)2+m2+1=4,解得m=-,与m<-2矛盾,故m值不存在.②当-2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,【误区纠错】本题易错点在于不知分类讨论导致漏解.名师点拨1.掌握二次函数的定义,能利用定义判断二次函数.2.能利用顶点式、交点式、三点式确定二次函数的解析式.3.会利用描点法画二次函数的图象并能说明其性质.4.能利用二次函数解析式中系数确定函数的对称轴、顶点坐标、开口方向与坐标轴的交点坐标等.提分策略1.二次函数的图象与性质的应用.(1)求二次函数的图象的顶点坐标有两种方法:①配方法;②顶点公式法,顶点坐标为.(2)画抛物线y=ax2+bx+c的草图,要确定五个方面,即①开口方向;②对称轴;③顶点;④与y轴交点;⑤与x轴交点.【例1】(1)用配方法把二次函数y=x2-4x+3变成y=(x-h)2+k的形式;(2)在直角坐标系中画出y=x2-4x+3的图象;(3)若A(x1,y1),B(x2,y2)是函数y=x2-4x+3图象上的两点,且x1<x2<1,请比较y1、y2的大小关系(直接写结果);(4)把方程x2-4x+3=2的根在函数y=x2-4x+3的图象上表示出来.【解析】(1)根据配方法的步骤进行计算.(2)由(1)得出抛物线的对称轴,顶点坐标列表,注意抛物线与x轴、y轴的交点及对称点等特殊点的坐标,不要弄错.(3)开口向上,在抛物线的左边,y随x的增大而减小.(4)抛物线y=x2-4x+3与直线y=2的交点的横坐标即为方程x2-4x+3=2的两根.【答案】(1)y=x2-4x+3=(x2-4x+4)+3-4=(x-2)2-1.(2)由(1)知图象的对称轴为直线x=2,顶点坐标为(2,-1),列表如下:描点作图如图.(3)y1>y2.(4)如图,点C,D的横坐标x3,x4即为方程x2-4x+3=2的根.2.二次函数的解析式的求法.二次函数的关系式有三种:(1)一般式y=ax2+bx+c;(2)顶点式y=a(x-m)2+n,其中(m,n)为顶点坐标;(3)交点式y=a(x-x1)(x-x2),其中(x1,0),(x2,0)为抛物线与x轴的交点.一般已知三点坐标用一般式求关系式;已知顶点及另一个点坐标用顶点式;已知抛物线与x轴的两个交点坐标及另一个点的坐标用交点式.【例2】已知抛物线经过点A(-5,0),B(1,0),且顶点的纵坐标为,求二次函数的解析式.【解析】根据题目要求,本题可选用多种方法求关系式.3.二次函数的图象特征与系数的关系的应用.二次函数y=ax2+bx+c=0(a≠0)系数的符号与抛物线二次函数y=ax2+bx+c=0(a≠0)的图象有着密切的关系,我们可以根据a,b,c的符号判断抛物线的位置,也可以根据抛物线的位置确定a,b,c的符号.抛物线的位置由顶点坐标、开口方向、对称轴的位置确定,顶点所在象限由的符号确定.【例3】(2014·天津)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c-m=0没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是().A. 0B. 1C. 2D. 3【解析】由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;一元二次方程ax2+bx+c-m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可.【答案】①∵二次函数y=ax2+bx+c与x轴有两个交点,∴b2-4ac>0,故①正确.②∵抛物线的开口向下,∴a<0.∵抛物线与y轴交于正半轴,∴c>0.∵对称轴,∴ab<0.∵a<0,∴b>0.∴abc<0,故②正确.③∵一元二次方程ax2+bx+c-m=0没有实数根,∴y=ax2+bx+c和y=m没有交点.由图可得,m>2,故③正确.故选D.4.二次函数的图象的平移规律的应用.(1)采用由“点”带“形”的方法.图形在平移时,图形上的每一个点都按照相同的方向移动相同的距离,抛物线的平移问题往往可转化为顶点的平移问题来解决.(2)平移的变化规律可为:①上、下平移:当抛物线y=a(x-h)2+k向上平移m(m>0)个单位后,所得的抛物线的关系式为y=a(x-h)2+k+m;当抛物线y=a(x-h)2+k向下平移m(m>0)个单位后,所得的抛物线的关系式为y=a(x-h)2+k-m.②左、右平移:当抛物线y=a(x-h)2+k向左平移n(n>0)个单位后,所得的抛物线的关系式为y=a(x-h+n)2+k;当抛物线y=a(x-h)2+k向右平移n(n>0)个单位后,所得的抛物线的关系式为y=a(x-h-n)2+k.【例4】(2014·甘肃兰州)把抛物线y=-2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为().A. y=-2(x+1)2+2B. y=-2(x+1)2-2C. y=-2(x-1)2+2D. y=-2(x-1)2-2【解析】根据点的坐标是平面直角坐标系中的平移规律:“左加右减,上加下减.”【答案】把抛物线y=-2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为y=-2(x-1)2+2,故选C.专项训练一、选择题1. (2014·江苏句容一模)若抛物线y=mx2+(m-3)x-m+2经过原点,则m的值为().A. 0B. 1C. 2D. 32.(2014·辽宁营口模拟)在同一直角坐标系中,函数y=mx+m和函数y=-mx2+2x+2(m是常数,且m≠0)的图象可能是().3. (2014·安徽安庆正月21校联考)抛物线y=ax2+bx-3经过点(2,4),则代数式8a+4b+1的值为().A. 3B. 9C. 15D. -154.(2013·山东德州一模)已知抛物线y=ax2+bx+c的图象如图所示,则下列结论:①abc>0;②a+b+c=2;③④b>1.其中正确的结论是().A. ①②B. ②③C. ③④D. ②④(第4题)(第5题)5.(2013·山西中考模拟六)若二次函数y=ax2+bx+a2-2(a,b为常数)的图象如图,则a的值为().6. (2013·浙江湖州中考模拟试卷)函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是().二、填空题7.(2014·安徽安庆正月21校联考)如图,大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.(第7题)8. (2014·甘肃天水模拟)如图是二次函数y=ax2+bx+c图象的一部分.其对称轴为x=-1,且过点(-3,0).下列说法:(1)abc<0;(2)2a-b=0;(3)4a+2b+c=0;(4)若(-5,y1), 是抛物线上两点,则y1>y2.其中说法正确的是.(填序号)(第8题)9.(2014·辽宁大连二模)如图是函数y=x2+bx-1的图象,根据图象提供的信息,确定使-1≤y≤2的自变量x的取值范围是.(第9题)10. (2014·山东德城模拟)如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是.(第10题)11.(2013·江苏东台实中)已知抛物线与x轴两交点分别是(-1,0),(3,0),另有一点(0,-3)也在图象上,则该抛物线的关系式是.12.(2013·北京龙文教育一模)点A(x1,y1)、B(x2,y2)在二次函数y=x2-2x-1的图象上,若x2>x1>1,则y1与y2的大小关系是y1y2.(用“>”“<”或“=”填空)13. (2013·河北一模)如图,抛物线y=ax2+bx与直线y=kx相交于点O(0,0)和A(3,2)两点,则不等式ax2+bx<kx的解集为.(第13题)三、解答题14. (2014·北京平谷区模拟)已知关于x的一元二次方程x2-mx+m-1=0.(1)求证:无论m取任何实数时,方程总有实数根;(2)关于x的二次函数y1=x2-mx+m-1的图象C1经过(k-1,k2-6k+8)和(-k+5,k2-6k+8)两点.①求这个二次函数的解析式;②把①中的抛物线E沿x轴翻折后,再向左平移2个单位,向上平移8个单位得到抛物线.设抛物线C2交x轴于M,N两点(点M在点N的左侧),点P(a,b)为抛物线C2在x轴上方部分图象上的一个动点.当∠MPN≤45°时,直接写出a的取值范围.(第14题)15. (2014·安徽安庆二模)如图,在等腰直角△ABC中,∠ABC=90°,AB=BC=4,P为AC中点,E为边AB 上一动点,F为边BC上一点,且满足条件∠EPF=45°,记四边形PEBF的面积为S1.(1)求证:∠APE=∠CFP;(2)记△CPF的面积为S2,CF=x.①求y关于x的函数解析式和自变量的取值范围,并求出y的最大值;②在图中作四边形PEBF关于AC的对称图形,若它们关于点P中心对称,求y的值.(第15题)16.(2013·山东德州一模)如图,Rt△ABO的两直角边OA,OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A,B两点的坐标分别为(-3,0),(0,4),抛物线y=+bx+c经过点B,且顶点在直线上.(1)求抛物线对应的函数关系式;(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)若点M是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M 的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.(第16题)参考答案与解析1. C[解析]将(0,0)代入函数关系式即可.2. D[解析]假设函数在D选项中正确,则m<0,∴-m>0,抛物线的开口向上,顶点的横坐标.所以D正确,别的选项这种假设均不成立.3. C[解析]将点(2,4)代入抛物线方程,得4a+2b-3=4,∴4a+2b=7.∴8a+4b+1=2×7+1=15.4. D[解析]①∵抛物线的开口向上,∴a>0.∵与y轴的交点为在y轴的负半轴上,∴c<0.∵对称轴为,∴a,b同号,即b>0.∴abc<0.故本结论错误.②当x=1时,函数值为2,∴a+b+c=2.故本结论正确.③∵对称轴,解得.又b>1,∴.故本结论错误.④当x=-1时,函数值<0,即a-b+c<0(1),又a+b+c=2,将a+c=2-b代入(1)式,得2-2b<0,∴b>1.故本结论正确.综上所述,其中正确的结论是②④.5. D[解析]由题意,知a2-2=0,且a>0.6. C[解析]当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A,D不正确;由B,C中二次函数的图象可知,对称轴,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.7. 36[解析]10秒时和26秒时拱梁的高度相同,则到达顶点时是18秒,所以通过拱梁部分的桥面OC共需18×2=36秒.8. (1)(2)(4)[解析]其对称轴为x=-1,且过点(-3,0),则另一个交点是(1,0).当x=2时,函数值大于零,即4a+2b+c>0,∴(3)错误,其余的均正确.9.2≤x≤3或-1≤x≤0[解析]把(3,2)代入y=x2+bx-1,得b=-2,当y=-1时,x=-1或x=2,观察可知:使-1 ≤y≤2的自变量x的取值范围是2≤x≤3或-1≤x≤0.10.x<-1或x>3[解析]观察可知抛物线与x轴另一交点为(-1,0),所以不等式ax2+bx+c>0的解集是x<-1或x>3.11.y=x2-2x-3[解析]用待定系数法求二次函数解析式.12.< [解析]先根据函数解析式确定出对称轴为直线x=1,再根据二次函数图象上的点,x>1时,y随x的增大而增大.13. 0<x<3[解析]利用了图象上的点的坐标特征来解一次函数与二次函数的解析式.14. (1)在x2-mx+m-1=0中,Δ=m2-4(m-1)=m2-4m+4=(m-2)2.∵当m取任何值时,(m-2)2≥0,∴无论m取任何实数时,方程总有实数根.(2)①∵抛物线y1=x2-mx+m-1过点(k-1,k2-6k+8)和点(-k+5,k2-6k+8),15. (1)∵∠EPF=45°,∴∠APE+∠FPC=180°-45°=135°.在等腰直角△ABC中,∠PCF=45°,则∠CFP+∠FPC=180°-45°=135°,∴∠APE=∠CFP.(2)①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,在等腰直角△ABC中,AC=AB=4,又P为AC的中点,则AP=CP=2,如图(1),过点P作PH⊥AB于点H,PG⊥BC于点G,(第15题(1))∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.②如图(2)所示:(第15题(2))图中两块阴影部分图形关于点P成中心对称,则阴影部分图形自身关于直线BD对称, 此时EB=BF,即AE=FC,(2)在Rt△ABO中,OA=3,OB=4,∵四边形ABCD是菱形,∴BC=CD=DA=AB=5.∴C,D两点的坐标分别是(5,4),(2,0).∴点C和点D在所求抛物线上.。
二次函数作业设计4-5
22.1.1 二次函数【学习目标】1.知道二次函数的一般表达式;2.会利用二次函数的概念分析解题;3.列二次函数表达式解实际问题.【学习重难点】1、二次函数的概念和解析式;2、理解二次例函数的概念.【预习新知】1、一般地,形如____________________________的函数,叫做二次函数。
其中x 是________, a 是__________,b 是___________,c 是_____________.2、观察:①y =6x 2;②y =-32 x 2+30x ;③y =200x 2+400x +200.这三个式子中,虽然函数有一项的,两项的或三项的,但自变量的最高次项的次数都是______次. 一般地,如果y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),那么y 叫做x 的_____________. 3、下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数. (1)y =1-3x 2 (2)y =3x 2+2x (3)y =x (x -5)+2 (4)y =3x 3+2x 2 (5)y =x +1x【当堂训练】1.下列函数中,是二次函数的是( )A .y =x 2-1B .y =x -1C .y =8xD .y =8x22.y =(m +1)xmm -2-3x +1是二次函数,则m 的值为_________________.3. 如图,用50m 长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y (㎡)与它与墙平行的边的长x (m)之间的函数关系式: y = 。
4.一矩形的长是宽的1.6倍,则该矩形的面积S 与宽x 之间函数关系式:S = 。
5.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.求y 与x 之间的函数关系式,并写出自变量x 的取值范围.22.1.2二次函数y=ax 2的图象【学习目标】1.知道二次函数的图象是一条抛物线; 2.会画二次函数y =ax 2的图象;3.掌握二次函数y =ax 2的性质,并会灵活应用. 【预习新知】画二次函数y =x 2的图象.【提示:画图象的一般步骤:①列表(取几组x 、y 的对应值;②描点(表中x 、y 的数值在坐标平面中描点(x ,y );③连线(用平滑曲线).】 列表:x … -3 -2 -1 0 1 2 3 … y =x 2……描点,并连线由图象可得二次函数y =x 2的性质:1.二次函数y =x 2的图像是一条曲线,把这条曲线叫做______________.2.二次函数y =x 2中,二次项系数a =_______,抛物线y =x 2的图象开口__________. 3.自变量x 的取值范围是____________. 4.观察图象,当两点的横坐标互为相反数时,函数y 值相等,所描出的各对应点关于________对称,从而图象关于___________对称.5.抛物线y =x 2与它的对称轴的交点( , )叫做抛物线y =x 2的_________. 因此,抛物线与对称轴的交点叫做抛物线的_____________. 6.抛物线y =x 2有____________点(填“最高”或“最低”) 【例题分析】例1 在同一直角坐标系中,画出函数y =12 x 2,y =x 2,y =2x 2的图象.(解题过程略)归纳:抛物线y =12 x 2,y =x 2,y =2x 2的二次项系数a_______0;顶点都是__________;对称轴是_________;顶点是抛物线的最_________点(填“高”或“低”) .例2 请在例1的直角坐标系中画出函数y =-x 2,y =-12x 2, y =-2x 2的图象.(解题过程略)归纳:抛物线y =-x 2,y =-12 x 2, y =-2x 2的二次项系数a______0,顶点都是________,对称轴是___________,顶点是抛物线的最________点(填“高”或“低”) . 【理一理】1.二次函数y =ax 2的性质图象(草图) 开口 方向 顶点 对称轴 有最高或最低点 最值a >0当x =____时,y 有最_______值,是______. a <0当x =____时,y 有最_______值,是______.2.抛物线y =x 2与y =-x 2关于________对称,因此,抛物线y =ax 2与y =-ax 2关于_______ 对称,开口大小_______________.3.当a >0时,a 越大,抛物线的开口越___________; 当a <0时,|a | 越大,抛物线的开口越_________; 因此,|a | 越大,抛物线的开口越________,反之,|a | 越小,抛物线的开口越________. 【课堂训练】 1.填表:开口方向 顶点 对称轴 有最高或最低点 最值y =23 x 2当x =____时,y 有最_______值,是______. y =-8x 22.若二次函数y =ax 2的图象过点(1,-2),则a 的值是___________.3.二次函数y =(m -1)x 2的图象开口向下,则m____________. 4.如图, ① y =ax 2 ② y =bx 2 ③ y =cx 2 ④ y =dx 2比较a 、b 、c 、d 的大小,用“>”连接. ___________________________________【目标检测】1.函数y =37 x 2的图象开口向_______,顶点是__________,对称轴是________,当x =___________时,有最_________值是_________. 2.二次函数y =mx22 m 有最低点,则m =___________.3.二次函数y =(k +1)x 2的图象如图所示,则k 的取值 范围为___________.4.写出一个过点(1,2)的二次函数表达式_________________.22.1.3.1 二次函数y =ax 2+k 的图象与性质【学习目标】1.会画二次函数y =ax 2+k 的图象;2.掌握二次函数y =ax 2+k 的性质,并会应用; 3.知道二次函数y =ax 2与y =的ax 2+k 的联系. 【探索新知】在同一直角坐标系中,画出二次函数y =x 2+1,y =x 2-1的图象. 解:先列表x…-3 -2 -1 0 1 2 3 … y =x 2+1 … … y =x 2-1 ……描点并画图观察图象得:1.开口方向顶点对称轴有最高(低)点最值y=x2y=x2-1y=x2+12.可以发现,把抛物线y=x2向______平移______个单位,就得到抛物线y=x2+1;把抛物线y=x2向_______平移______个单位,就得到抛物线y=x2-1.3.抛物线y=x2,y=x2-1与y=x2+1的形状_____________.【理一理知识点】1.y=ax2y=ax2+k开口方向顶点对称轴有最高(低)点最值a>0时,当x=______时,y有最____值为________;a<0时,当x=______时,y有最____值为________.增减性2.抛物线y=2x2向上平移3个单位,就得到抛物线__________________;抛物线y=2x2向下平移4个单位,就得到抛物线__________________.因此,把抛物线y=ax2向上平移k(k>0)个单位,就得到抛物线_______________;把抛物线y=ax2向下平移m(m>0)个单位,就得到抛物线_______________.3.抛物线y=-3x2与y=-3x2+1是通过平移得到的,从而它们的形状__________,由此可得二次函数y=ax2与y=ax2+k的形状__________________【课堂巩固训练】1.填表函数草图开口方向顶点对称轴最值对称轴右侧的增减性y=-3x2y=-3x2+1y=-3x2-52.将二次函数y=5x2-3向上平移7个单位后所得到的抛物线解析式为_________________.3.写出一个顶点坐标为(0,-3),开口方向与抛物线y=-x2的方向相反,形状相同的抛物线解析式____________________________.4.抛物线y=4x2+1关于x轴对称的抛物线解析式为______________________.【目标检测】1.填表函数开口方向顶点对称轴最值对称轴左侧的增减性y=-5x2+3y=7x2-12.抛物线y=-13x2-2可由抛物线y=-13x2+3向___________平移_________个单位得到的.3.抛物线y=-x2+h的顶点坐标为(0,2),则h=_______________.4.抛物线y=4x2-1与y轴的交点坐标为_____________,与x轴的交点坐标为_________.22.1.3.2二次函数y=a(x-h)2的图象与性质一、阅读课本:P33—35二、学习目标:1.会画二次函数y=a(x-h)2的图象;2.掌握二次函数y=a(x-h)2的性质,并要会灵活应用;三、探索新知:画出二次函数y=-12(x+1)2,y-12(x-1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.先列表:x …-4 -3 -2 -1 0 1 2 3 4 …y=-12(x+1)2……y=-12(x-1)2……描点并画图.1函数开口方向顶点对称轴最值增减性y=-12(x+1)2y=-12(x-1)22.请在图上把抛物线y=-12x2也画上去(草图).①抛物线y=-12(x+1)2,y=-12x2,y=-12(x-1)2的形状大小____________.②把抛物线y=-12x2向左平移_______个单位,就得到抛物线y=-12(x+1)2;把抛物线y=-12x2向右平移_______个单位,就得到抛物线y=-12(x+1)2.四、整理知识点y=ax2y=ax2+k y=a (x-h)2开口方向顶点对称轴最值增减性(对称轴左侧)2.对于二次函数的图象,只要|a|相等,则它们的形状_________,只是_________不同.五、课堂训练图象(草图)开口方向顶点对称轴最值对称轴右侧的增减性y=12x2y=-5 (x+3)2y=3 (x-3)22.抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.3.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为____________________.把抛物线y=3x2向左平移6个单位后,得到的抛物线的表达式为____________________.4.将抛物线y=-13(x-1)x2向右平移2个单位后,得到的抛物线解析式为____________.5.写出一个顶点是(5,0),形状、开口方向与抛物线y=-2x2都相同的二次函数解析式六、目标检测1.抛物线y=2 (x+3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x>-3时,y______________;当x=-3时,y有_______值是_________.2.抛物线y=m (x+n)2向左平移2个单位后,得到的函数关系式是y=-4 (x-4)2,则m=__________,n=___________.3.若将抛物线y=2x2+1向下平移2个单位后,得到的抛物线解析式为_______________.4.若抛物线y=m (x+1)2过点(1,-4),则m=_______________.22.1.3.3二次函数y=a(x-h)2+k的图象与性质一、阅读课本:第35页—37页二、学习目标:1.会画二次函数的顶点式y=a (x-h)2+k的图象;2.掌握二次函数y=a (x-h)2+k的性质;3.会应用二次函数y=a (x-h)2+k的性质解题.三、探索新知:画出函数y=-12(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.列表:x …-4 -3 -2 -1 0 1 2 …y=-12(x+1)2-1 ……由图象归纳:函数开口方向顶点对称轴最值增减性y=-12(x+1)2-12.把抛物线y=-12x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=-12(x+1)2-1.四、理一理知识点y=ax2y=ax2+k y=a (x-h)2y=a (x-h)2+k开口方向顶点对称轴最值增减性(对称轴右侧)2.抛物线y=a (x-h)2+k与y=ax2形状___________,位置________________.五、课堂练习1.2.y=6x2+3与y=6 (x-1)2+10_____________相同,而____________不同.3.顶点坐标为(-2,3),开口方向和大小与抛物线y=12x2相同的解析式为()A.y=12(x-2)2+3 B.y=12(x+2)2-3C.y=12(x+2)2+3 D.y=-12(x+2)2+34.二次函数y=(x-1)2+2的最小值为__________________.5.将抛物线y=5(x-1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.6.若抛物线y=ax2+k的顶点在直线y=-2上,且x=1时,y=-3,求a、k的值.7.若抛物线y=a (x-1)2+k上有一点A(3,5),则点A关于对称轴对称点A’的坐标为__________________.六、目标检测1.开口方向顶点对称轴y=x2+1y=2 (x-3)2y=-(x+5)2-42.抛物线y=-3 (x+4)2+1中,当x=_______时,y有最________值是________.3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示()A B C D4.将抛物线y=2 (x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为________________________.5.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为____________________________.(任写一个)22.1.4.1 二次函数y=ax2+bx+c的图象与性质一、阅读课本:第37页—39页二、学习目标:1.配方法求二次函数一般式y=ax2+bx+c的顶点坐标、对称轴;2.熟记二次函数y=ax2+bx+c的顶点坐标公式;3.会画二次函数一般式y=ax2+bx+c的图象.三、探索新知:1.求二次函数y=12x2-6x+21的顶点坐标与对称轴.解:将函数等号右边配方:y=12x2-6x+21y=3x2y=-x2+1 y=12(x+2)2y=-4 (x-5)2-3开口方向顶点对称轴最值增减性(对称轴左侧)2.画二次函数y=12x2-6x+21的图象.解:y=12x2-6x+21配成顶点式为_______________________.列表:x … 3 4 5 6 7 8 9 …y=12x2-6x+21 ……3.用配方法求抛物线y=ax2+bx+c(a≠0)的顶点与对称轴.四、理一理知识点:y=ax2y=ax2+k y=a(x-h)2y=a(x-h)2+k y=ax2+bx+c 开口方向顶点对称轴最值增减性(对称轴左侧)五、课堂练习1.用配方法求二次函数y=-2x2-4x+1的顶点坐标.2.用两种方法求二次函数y=3x2+2x的顶点坐标.3.二次函数y=2x2+bx+c的顶点坐标是(1,-2),则b=________,c=_________.4.已知二次函数y=-2x2-8x-6,当___________时,y随x的增大而增大;当x=________时,y有_________值是___________.六、目标检测1.用顶点坐标公式和配方法求二次函数y=12x2-2-1的顶点坐标.2.二次函数y=-x2+mx中,当x=3时,函数值最大,求其最大值.。
中考难点二次函数知识点及例题最强解析
中考难点二次函数例题解析二次函数可谓是初中数学考试中的常客,月考,期中考试,期末考试,模拟考试都会有它的身影,中考每年都会有一道关于二次函数的压轴题。
中考二次函数主要以综合题的形式考察,通过对近几年中考二次函数考察情况的分析,二次函数综合题得分率不高,难度系数在0.45-0.55之间,属于中考压轴题之一。
所以掌握二次函数的考点至关重要。
下面我们通过习题,引出知识点总结归纳,二次函数将不再茫然!基础知识一、基本概念:1.二次函数的概念:一般地,形如2a≠)的函数,叫做二次函数。
y ax bx c=++(a b c,,是常数,0这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。
2. 2=+的性质:(上加下减)y ax c3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法1:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法2:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y有最【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数考查重点与常见题型第二部分 考察重点1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
二次函数配方法公式过程
二次函数配方法公式过程二次函数是高中数学中重要的内容之一,它具有许多重要的性质和应用。
在解题过程中,我们经常需要运用一些方法和公式来方便地处理二次函数。
一、二次函数的标准形式二次函数的标准形式为 y = ax^2 + bx + c,其中 a、b、c 是实数且a ≠ 0。
二次函数的图像是抛物线,其开口方向由 a 的正负号决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
二、二次函数的顶点坐标对于一般形式的二次函数 y = ax^2 + bx + c,它的顶点坐标可通过以下公式得到:x=-b/(2a)y=-Δ/(4a)其中,Δ = b^2 - 4ac 是二次函数的判别式。
顶点坐标是二次函数的重要特征,它能直接提供抛物线的最值和开口方向。
三、二次函数的对称轴对于一般形式的二次函数 y = ax^2 + bx + c,它的对称轴方程为 x = -b / (2a)。
对称轴是垂直于x轴的直线,与抛物线的开口方向垂直,并且将抛物线对称分为两部分。
四、二次函数的零点公式二次函数的零点即方程 y = ax^2 + bx + c 的解,可以通过以下公式得到:x=(-b±√Δ)/(2a)其中,±表示两个解,Δ = b^2 - 4ac 是二次函数的判别式。
零点是方程与x轴的交点,也是二次函数图像的横坐标。
五、二次函数的最值对于一般形式的二次函数 y = ax^2 + bx + c,它的最值可通过以下公式得到:最小值为y=c-Δ/(4a)最大值为y=c+Δ/(4a)最值对应的横坐标即为顶点的横坐标x=-b/(2a)六、二次函数的图像判断根据二次函数的标准形式 y = ax^2 + bx + c,可以通过以下步骤来判断其图像:1. 计算二次函数的判别式Δ = b^2 - 4ac2.如果Δ>0,则二次函数有两个不同的实根,图像与x轴有两个交点;3.如果Δ=0,则二次函数有一个重根,图像与x轴有一个交点;4.如果Δ<0,则二次函数没有实根,图像与x轴没有交点。
二次函数—配方法
二次函数图像和性质(5)学习目标:1.配方法求二次函数一般式y =ax 2+bx +c 的顶点坐标、对称轴; 2.熟记二次函数y =ax 2+bx +c 的顶点坐标公式; 3.会画二次函数一般式y =ax 2+bx +c 的图象.学习重点:配方法或公式法求二次函数一般式y =ax 2+bx +c 的顶点坐标、对称轴; 学习难点:配方法求二次函数一般式y =ax 2+bx +c 的顶点坐标、对称轴; 学习过程: 一、复习引入1、()k h x a y +-=2的图像和性质填表:2.抛物线()1222++=x y 的开口向 ,对称轴是 ;顶点坐标是 ,当x = 时,y 有最 值是 ;无论x 取任何实数,y 的取值范围是 . 是由抛物线22x y =先向 平移 个单位,再向 平移 个单位得到的。
二、自主探究探究一:配方法求顶点坐标、对称轴(1)问题:你能直接说出函数222++=x x y 的图像的对称轴和顶点坐标吗? (2)你有办法解决问题①吗?222++=x x y222++=x x y 的对称轴是 ,顶点坐标是 .(3)像这样我们可以把一个一般形式的二次函数用 的方法转化为 式,从而直接得到它的图像性质.(4)用配方法把下列二次函数化成顶点式:①222+-=x x y ②232++=x x y ③ y =12 x 2-6x +21对称轴 对称轴 对称轴 顶点 顶点 顶点④4322+-=x x y ⑤232++-=x x y ⑥x x y 22--=对称轴 对称轴 对称轴 顶点 顶点 顶点探究二:用公式法求顶点坐标、对称轴c bx ax y ++=2= 对称轴 顶点坐标 用公式法把下列二次函数的顶点坐标、对称轴:①4322+-=x x y ②232++-=x x y ③x x y 22--=三、合作交流根据c bx ax y ++=2的图象和性质填表:四、精讲点拨1、抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( )A .()m n ,B .()m n -,C .()m n -,D .()m n --,2、二次函数2365y x x =--+的图象的顶点坐标是( ) A .(18)-, B .(18),C .(12)-,D .(14)-,3、在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为A .222-=x y B .222+=x y C .2)2(2-=x y D .2)2(2+=x y 4、抛物线3)2(2+-=x y 的顶点坐标是( )A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3)5、二次函数2(1)2y x =++的最小值是( ). A .2 B .1 C .-3 D .236、将抛物线22y x =向下平移1个单位,得到的抛物线是( ) A .22(1)y x =+B .22(1)y x =-C .221y x =+D .221y x =-7、抛物线1822-+-=x x y 的顶点坐标为(A )(-2,7) (B )(-2,-25) (C )(2,7) (D )(2,-9) 8、把二次函数3412+--=x x y 用配方法化成()k h x a y +-=2的形式A.()22412+--=x yB. ()42412+-=x yC.()42412++-=x yD. 321212+⎪⎭⎫ ⎝⎛-=x y 9、把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为A .2(1)3y x =---B .2(1)3y x =-+- C .2(1)3y x =--+D .2(1)3y x =-++。
二次函数练习题及解析4
专题:配方法。
分析:(1)这个函数的二次项系数是﹣3,配方法变形成y=(x+h)2+k的形式,配方的方法是把二次项,一次项先分为一组,提出二次项系数﹣3,加上一次项系数的一半,就可以变形成顶点式的形式.
(2)二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).
(2)画出这个函数的大致图象,指出函数值不小于0时x的取值范围.
21、小明在学习二次函数时,总结了如下规律:
(1)请帮助小明补全此表①y轴②(h,k)③直线x= ;
(2)根据此表判断,如何将抛物线y=﹣2x2经过适当的平移得到抛物线y=﹣2x2+4x+1.
22、通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标.
∵﹣2(x﹣15)2≤0,
∴当x=15时,盈利最大,最大盈利为1250元.
点评:此题主要考查了一元二次方程的实际应用和二次函数实际中的应用,此题找到关键描述语,找到等量关系准确的列出方程或函数关系式是解决问题的关键.最后要注意判断所求的解是否符合题意,舍去不合题意的解.
3、用配方法把函数y=﹣3x2﹣6x+10化成y=a(x﹣h)2+k的形式,然后指出它的图象开口方向,对称轴,顶点坐标和最值.
(5)若自变量x满足:﹣3≤x≤1,则对应的函数值中,最大值为:0.
24、已知一次函数y1=2x,二次函数y2=x2+1.
(1)根据表中给出的x的值,计算对应的函数值y1、y2,并填写在表格中:
(2)观察第(1)问表中的有关的数据,猜一猜:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1与y2有何大小关系?并证明你的结论.
人教版初三数学上册用配方法求二次函数的顶点坐标
运用配方法把二次函数一般式化为顶点式。 • 【学习难点】
当二次项系数不是正负1时,配方法的运用技巧。
知识回顾
一、完全平方公式:
a2 ±2ab +b2= ( a±b) 2
x2 6x (__3_2 _) (_x__3_)2
2 x 3
(x+3)2=25
系数化为1:x2+3x-8=0
x+3= 25
x=±5-3 x1=+5-3=2 x2=-5-3=-8
知识回顾
《学考精练》P6:10、用配方法证明:2x2-4x+7的值恒大于0.
解: 2 x 2 4 x 7
2( x 2 2 x 7 ) 2
2( x 2 2 x 1 1 7 ) 2
2x2 12x (_____) 2(____)2
2( x2 6x __3_2 _) 2(__x___3_)2
知识回顾
二、用配方法解一元二次方程:
x2+6x-16=0
如果是2x2+6x-16=0呢?
解:x2+6x =16
x2+6x+
6 2
2
=16+
6
2
2
2( x 2 2 x 1 5 ) 2
2x
12
5 2
2x 12 5 0 所以2x2-4x+7的值恒大于0.
知识总结
给出二次函数的一般式如何求顶点坐标?
(1)提公因式:提取二次项系数 (2)配方:加上再减去一次项系数绝对值一半的平方 (3)整理:前三项化为平方形式,后两项合并同类项 (4)化简:去掉中括号
中考复习函数专题21 二次函数中对称轴与对称问题(学生版)
专题21 二次函数中对称轴与对称问题知识对接考点一、求二次函数图象的顶点坐标、对称轴的3种方法1. 公式法:二次函数c bx ax y ++=2(a≠0)的图象的顶点坐标是)44,2(2ab ac a b -- 2.配方法:将抛物线的解析式配方,化为y=a(x -h)2+k 的形式,得到顶点坐标为(h,k),对称轴为直线x=h. 3.运用抛物线的对称性:抛物线是轴对称图形,对称轴与抛物线的交点是顶点.若已知抛物线上两点(x 1,m),(x 2,m),则对称轴为直线x=221x x +,再将其代入抛物线的解析式,即可得顶点坐标. 专项训练一、单选题1.抛物线y =2(x +1)2﹣3的对称轴是( ) A .直线x =1B .直线x =﹣1C .直线x =3D .直线x =﹣32.已知抛物线2y ax bx =+经过点(3,3)A --,且该抛物线的对称轴经过点A ,则该抛物线的解析式为( )A .2123y x x =--B .2123y x x =-+C .2123yx xD .2123y x x =+3.抛物线()20y ax bx c a =++≠的对称轴是直线1x =-,其图象如图所示.下列结论:①0abc <;①()()2242a c b +<;①若()11,x y 和()22,x y 是抛物线上的两点,则当1211x x +>+时,12y y <;①抛物线的顶点坐标为()1,m -,则关于x 的方程21ax bx c m ++=-无实数根.其中正确结论的个数是( )A .4B .3C .2D .14.如图,以直线1x =为对称轴的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是( ).A .23x <<B .34x <<C .45x <<D .56x <<5.已知关于x 的二次函数2y x bx c =++的图象关于直线2x =对称,则下列关系正确的是( ) A .4b = B .240b c -≤C .0x =的函数值一定大于3x =的函数值D .若0c <,则当2x =时,0y >6.点P (m ,n )在以y 轴为对称轴的二次函数y =x 2+ax +4的图象上.则m ﹣n 的最大值等于( ) A .154B .4C .﹣154D .﹣1747.二次函数y =ax 2﹣4ax +2(a ≠0)的图象与y 轴交于点A ,且过点B (3,6)若点B 关于二次函数对称轴的对称点为点C ,那么tan①CBA 的值是( ) A .23B .43C .2D .348.已知二次函数y =(2﹣a )23a x -,在其图象对称轴的左侧,y 随x 的增大而减小,则a 的值为( )A B .C D .09.抛物线y=x 2﹣2x ﹣15,y=4x ﹣23,交于A 、B 点(A 在B 的左侧),动点P 从A 点出发,先到达抛物线的对称轴上的某点E 再到达x 轴上的某点F ,最后运动到点B .若使点P 动的总路径最短,则点P 运动的总路径的长为( )A.B .C .D .10.已知抛物线c :y=x 2+2x ﹣3,将抛物线c 平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是( )A .将抛物线c 沿x 轴向右平移52个单位得到抛物线c′ B .将抛物线c 沿x 轴向右平移4个单位得到抛物线c′C .将抛物线c 沿x 轴向右平移72个单位得到抛物线c′ D .将抛物线c 沿x 轴向右平移6个单位得到抛物线c′二、填空题11.如图,在平面直角坐标系xOy 中,抛物线y =﹣x 2+6x +c 的对称轴与x 轴交于点A ,在直线AB :y =kx +3上取一点B ,使点B 在第四象限,且到两坐标轴的距离和为7,设P 是抛物线的对称轴上的一点,点Q 在抛物线上,若以点A ,B ,P ,Q 为顶点的四边形为正方形,则c 的值为________.12.已知在平面直角坐标系xOy 中,点A 的坐标为()3,4,M 是抛物线22(0)y ax bx a =++≠对称轴上的一个动点.小明经探究发现:当ba的值确定时,抛物线的对称轴上能使AOM 为直角三角形的点M 的个数也随之确定.若抛物线22(0)y ax bx a =++≠的对称轴上存在3个不同的点M ,使AOM 为直角三角形,则ba的值是____.13.如果一抛物线的对称轴为1x =,且经过点A (3,3),那么点A 关于对称轴的对称点B 的坐标为____________14.已知点A 、B 在二次函数y =ax 2+bx +c 的图像上(A 在B 右侧),且关于图像的对称轴直线x =2对称,若点A 的坐标为(m ,1),则点B 的坐标为_______.(用含有m 的代数式表示) 15.已知抛物线2441y ax ax a =-+-. (1)该抛物线的对称轴是x =________.(2)该抛物线与x 轴交于点A ,点B 与y 轴交于点C ,点A 的坐标为(1,0),若此抛物线的对称轴上的点P 满足APB ACB ∠<∠,则点P 的纵坐标n 的取值范围是________. 三、解答题16.已知抛物线()20y ax bx c a =++≠与x 轴只有一个公共点()30A -,且经过点12,4⎛⎫- ⎪⎝⎭. (1)求抛物线的函数解析式; (2)直线l :34y x m =+与抛物线2y ax bx c =++相交于B 、C 两点(B 点在C 点的左侧),与对称轴相交于点P ,且B ,C 分布在对称轴的两侧.若B 点到抛物线对称轴的距离为n ,且()23CP t BP t =⋅≤≤. ①试探求n 与t 的数量关系;①求线段BC 的最大值,以及当BC 取得最大值时对应m 的值. 17.如图,在平面直角坐标系中,已知抛物线213222y x x =+-交x 轴于点A 、B ,交y 轴于点C . (1)求线段BC 的长;(2)点P 为第三象限内抛物线上一点,连接BP ,过点C 作//CE BP 交x 轴于点E ,连接PE ,求BPE 面积的最大值及此时点P 的坐标;(3)在(2)的条件下,以y 轴为对称轴,将抛物线213222y x x =+-对称,对称后点P 的对应点为点P ',点M 为对称后的抛物线对称轴上一点,N 为平面内一点,是否存在以点A 、P '、M 、N 为顶点的四边形是菱形,若存在,直接写出点N 的坐标,若不存在,则请说明理由.18.已知一条抛物线顶点为(),2P m m -,且与x 轴交于点()2,0A m (0m >) (1)当2m =时; ①求二次函数解析式;①直线l :y kx b =+(0k >)过定点()3,4-与抛物线交于B 、C 两点(B 在C 右侧),连接BP 、CP ,若PBC S △,求直线l 的解析式;(2)若H 为对称轴右侧的二次函数图象上的一点,且OH 交对称轴于点M ,点N ,M 关于点P 对称,求证:N ,A ,H 三点共线.19.如图,在平面直角坐标系中,抛物线y =﹣x 2+bx +c 与x 轴分别交于点A (﹣1,0)和点B ,与y 轴交于点C (0,3).(1)求抛物线的解析式及对称轴;(2)如图1,点D 与点C 关于对称轴对称,点P 在对称轴上,若①BPD =90°,求点P 的坐标; (3)点M 是抛物线上位于对称轴右侧的点,点N 在抛物线的对称轴上,当BMN 为等边三角形时,请直接写出点M 的坐标.20.如图,已知抛物线y =ax 2+bx +c 经过A (4,0),B (﹣2,0),C (0,﹣4)三点. (1)求抛物线解析式,并求出该抛物线对称轴及顶点坐标;(2)如图1,点M 是抛物线对称轴上的一点,求①MBC 周长的最小值;(3)如图2,P 是线段AB 上一动点(端点除外),过P 作PD //AC ,交BC 于点D ,连接CP ,求①PCD 面积的最大值,并判断当①PCD 的面积取最大值的时,以P A 、PD 为邻边的平行四边形是否为菱形.21.如图,抛物线2y x bx c =++与x 轴交于()1,0,A B -两点,与y 轴交于点(0,3)C -.。
二次函数y=ax2+bx+c配方法
3.列表:根据对称性,选取适当值列表计算.
x …
2
-2
-1
0
1
2
3
4
…
y 3x 1 2
…
29
14
5
2
5
14
29
…
4.画对称轴,描点,连线:作出二次函数y=3(x-1)2+2 的图象.
学了就用,别客气
y 3x 6 x 5
2
y 2x2 12x 13
●
(1,2)
?
函数y=ax2+bx+c(a≠0)的应用
如图,两条钢缆具有相同的抛物线形状.按照图中的直角坐 标系 ,左面的一条抛物线可以用 y=0.0225x² +0.9x+10 表示 , 而且左右两条抛物线关于y轴对称. y 0.0225x 2 0.9 x 10
Y/m 10
桥面 -5 0 5
x/m
⑴钢缆的最低点到桥面的距离是多少? ⑵两条钢缆最低点之间的距离是多少? ⑶你是怎样计算的?与同伴交流.
⑴. 钢缆的最低点到桥面的距离是少?你是怎样计算 的?与同伴交流. 可以将函数y=0.0225x2+0.9x+10配方, 求得顶点坐标,从 而获得钢缆的最低点到桥面的距离; 2 2 y 0 . 0225 x 0.9 x 10 y 0.0225x 0.9 x 10
X=1
作出函数y=2x2-12x+13的图象.
(3,-5) X=3
●
一般地,对于二次函数y=ax² +bx+c,我们可以 利用配方法推导出它的对称轴和顶点坐标.
例.求次函数y=ax² +bx+c的对称轴和顶点坐标.
二次函数--配方法二次函数中的符号问题
根据图像可得: 1、a>0
o
x
b 2、>0 2a
3、△=b² -4ac=0 4、C>0
16
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
根据图像可得: 1、a>0
o
x
b 2、=0 2a
3、△=b² -4ac=0 4、C=0
17
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
2 x -1 O 1
23
课外作业:
1.如图是二次函数y1=ax2+bx+c和 一次函数y2=mx+n的图象,观察 图象写出y2 ≥y1时,x的取值范围 是________;
2.若关于x的函数y=(a-2)x2-(2a-1)x+a的图象与坐标轴有两个 交点,则a可取的值为 ;
24
数学因规律而不再枯燥,
根据图像可得: 1、a<0
o x
b 2、>0 2a
3、△=b² -4ac<0 4、C<0 18
练一练:
1.已知:二次函数y=ax2+bx+c的图象如图所示,则点 b M( ,a)在( D ) c A、第一象限 B、第二象限 C、第三象限 D、第四象限 y
根据图像可得: 1、a<0 2、-
b 2a
>0
与x轴无交点
归纳知识点:
抛物线y=ax2+bx+c的符号问题: (5)a+b+c的符号:
由x=1时抛物线上的点的位置确定 (6)a-b+c的符号: 由x=-1时抛物线上的点的位置确定
4a-2b+c的符号 9a+3b+c的符号
二次函数的图像及性质(5)
y=ax2+bx+c(a>0)
b 4ac b 2 2a , 4a b 直线x 2a
y=ax2+bx+c(a<0)
由a,b和c的符号确定
向下
b 4ac b 时, 最大值为 2a 4a
在对称轴的左侧,y随着x的增大而减小. 在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小. 2
函数y=ax2+bx+c(a≠0)的应用
例:某服装公司试销一种成本为每件50元的T恤衫, 规定试销时的销售单价不低于成本价,又不高于每件 70元,试销中销售量y(件)与销售单价x(元)的关 系可以近似的看作一次函数(如图). (1)求y与x之间的函数关系式; (2)设公司获得的总利润(总利润=总销售额-总成 本)为P元,求P与x之间的函数关系式,并写出自变 量x的取值范围;根据题意判断:当x取何值时,P的 值最大?最大值是多少?
写出下列抛物线的开口方向、对称轴及顶点坐标, 当x为何值时y的值最大(小)?
(1)y=3x2+2x
(2)y=-x2-2x (3)y=-2x2+8x-8
1 2 4y x 4 x 3 2
请研究二次函数y=x2 -6x+5的 图象和性质,并尽可能多地说 出结论。
我们的结论:
向上 ① 图象的开口方向:_____ ② 对称轴:直线x =______ 3 (3,-4) ③ 顶点坐标:__________ 左 ④增减性: 在对称轴的___侧, y随x_________, 的增大而减小 右 的增大而增大 在对称轴的____侧,y随x__________ ⑤最值: 当x = ____时, y最小值 =_______ 3 -4
初中数学(中考)关于使用配方法求二次函数的解析式和顶点坐标、对称轴的专题问题:
页眉内容关于使用配方法求二次函数的解析式和顶点坐标、对称轴的专题问题:1.(2013•安徽模拟)已知:二次函数y=2x2+bx+c过点(1,1)和点(2,10),求二次函数的解析式,并用配方法求二次函数图象的顶点坐标.2.(2011•普陀区一模)已知一个二次函数的图象经过A(0,1)、B(1,3)、C(﹣1,1)三点,求这个函数的解析式,并用配方法求出图象的顶点坐标.3.(2011•黄浦区一模)已知二次函数y=2x2+bx+c的图象经过点(1,1)与(﹣1,9).(1)求此函数的解析式;(2)用配方法求此函数图象的顶点坐标.4.(2010•嘉定区一模)已知二次函数y=ax2+bx+c的图象经过点A(1,0)、B(2,﹣3)、C(0,5).(1)求这个二次函数的解析式;(2)用配方法求出这个二次函数的顶点坐标.5.(1999•福州)已知:二次函数y=x2+bx+c的图象经过点A(﹣1,12)、B(2,﹣3).(1)求该二次函数的解析式;(2)用配方法把由(1)所得的解析式化为y=(x﹣h)2+k的形式,并求出该抛物线的顶点坐标和对称轴;(3)求抛物线与x轴的两个交点C、D的坐标及△ACD的面积.6.(2010•虹口区一模)已知二次函数y=x2+2x﹣3,解答下列问题:(1)用配方法将该函数解析式化为y=a(x+m)2+k的形式;(2)指出该函数图象的开口方向、顶点坐标、对称轴,以及它的变化情况.7.(2012•闸北区一模)已知:二次函数y=ax2+bx+c的图象经过点(1,0)、(2,10)、(﹣2,﹣6).(1)求这个抛物线的解析式;(2)运用配方法,把这个抛物线的解析式化为y=a(x+m)2+k的形式,并指出它的顶点坐标;(3)把这个抛物线先向右平移4个单位,再向上平移6个单位,求平移后得到的抛物线与y轴交点的坐标.8.(2009•通州区二模)已知二次函数y=x2﹣3x﹣4.(1)用配方法求这个二次函数图象的顶点坐标和对称轴;(2)画出这个函数的大致图象,指出函数值不小于0时x的取值范围.9.(2005•静安区二模)如图,二次函数y=x2﹣(m+1)x+m(其中m>1)与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C.(1)求点A、B的坐标(可用m的代数式表示);(2)当△ABC的面积为6时,求这个二次函数的解析式,并用配方法求它的图象的顶点坐标.2(1)求该函数的解析式;(2)用配方法将该函数解析式化为y=a(x+m)2+k.11.(2009•黄浦区一模)如图,二次函数y=ax2+bx+c的图象经过点A(3,0),B(﹣1,0),C(0,3).(1)求此函数的解析式;(2)用配方法(写出配方过程)将此函数化为y=a(x+m)2+k的形式,并写出其顶点坐标;(3)在线段AC上是否存在点P(不含A、C两点),使△ABP与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.12.(2005•广州)已知二次函数y=ax2+bx+c.(1)当a=1,b=﹣2,c=1时,请在图上的直角坐标系中画出此时二次函数的图象;(2)用配方法求该二次函数的图象的顶点坐标.13.(2006•遂宁)已知二次函数y=x2+4x.(1)用配方法把该函数化为y=a(x﹣h)2+k(其中a、h、k都是常数且a≠0)的形式,并指出函数图象的对称轴和顶(2)函数图象与x轴的交点坐标.14.(2005•乌兰察布)已知抛物线y=x2﹣2x﹣3,将y=x2﹣2x﹣3用配方法化为y=a(x﹣h)2+k的形式,并指出对称轴、顶点坐标及图象与x轴、y轴的交点坐标.15.(1997•上海)用配方法把函数y=1﹣4x﹣2x2化成y=a(x+m)2+k的形式,并指出它的图象的开口方向、顶点坐标和对称轴.16.(1997•安徽)通过配方,确定抛物线y=﹣2x2﹣5x+7的开口方向、对称轴和顶点坐标.17.(2014•虹口区一模)已知二次函数y=﹣﹣x+.(1)用配方法把该二次函数的解析式化为y=a(x+m)2+k的形式;(2)指出该二次函数图象的开口方向、顶点坐标和对称轴.18.(2009•门头沟区二模)已知二次函数y=2x2﹣4x+5,(1)将二次函数的解析式化为y=a(x﹣h)2+k的形式;(2)将二次函数的图象先向右平移2个单位长度,再向下平移1个单位长度后,所得二次函数图象的顶点为A,请你直接写出点A的坐标;(3)若反比例函数y=的图象过点A,求反比例函数的解析式.答案:1.(2013•安徽模拟)已知:二次函数y=2x2+bx+c过点(1,1)和点(2,10),求二次函数的解析式,并用配方法求二次函数图象的顶点坐标.解:把(1,1)和(2,10)代入y=2x2+bx+c有:,解有:,∴二次函数的解析式为:y=2x2+3x﹣4,y=2x2+3x﹣4,=2(x2+x+)﹣﹣4,=2(x2+x+)﹣,=2(x+)2﹣,∴二次函数的顶点坐标为(﹣,﹣).2.(2011•普陀区一模)已知一个二次函数的图象经过A(0,1)、B(1,3)、C(﹣1,1)三点,求这个函数的解析式,并用配方法求出图象的顶点坐标.解:(1)设所求的二次函数解析式为y=ax2+bx+c(a≠0).由这个函数的图象过A(0,1),可知c=1.(1分)再由这个函数的图象过点B(1,3)、C(﹣1,1),有∴(2分)∴(2分)∴这个二次函数的解析式为:y=x2+x+1.(1分)(2)y=x2+x+1.(2分)∴这个二次函数的顶点坐标为.(2分)3.(2011•黄浦区一模)已知二次函数y=2x2+bx+c的图象经过点(1,1)与(﹣1,9).(1)求此函数的解析式;(2)用配方法求此函数图象的顶点坐标.解:(1)由条件有,解有,∴解析式为y=2x2﹣4x+3;(2)y=2x2﹣4x+3,=2(x2﹣2x+1)+3﹣2,=2(x﹣1)2+1,∴顶点坐标为(1,1).4.(2010•嘉定区一模)已知二次函数y=ax2+bx+c的图象经过点A(1,0)、B(2,﹣3)、C(0,5).(1)求这个二次函数的解析式;(2)用配方法求出这个二次函数的顶点坐标.解:(1)∵二次函数y=ax2+bx+c的图象经过点A(1,0)、B(2,﹣3)、C(0,5),∴(1分)∴(3分)∴这个二次函数的解析式为:y=x2﹣6x+5.(1分)(2)y=x2﹣6x+5y=(x2﹣6x+9﹣9)+5(2分)y=(x﹣3)2﹣4.(1分)∴这个二次函数的顶点坐标为(3,﹣4).(2分)5.(1999•福州)已知:二次函数y=x2+bx+c的图象经过点A(﹣1,12)、B(2,﹣3).(1)求该二次函数的解析式;(2)用配方法把由(1)所得的解析式化为y=(x﹣h)2+k的形式,并求出该抛物线的顶点坐标和对称轴;(3)求抛物线与x轴的两个交点C、D的坐标及△ACD的面积.解:根据题意,有(1分)解有;(3分)∴该二次函数的解析式y=x2﹣6x+5;(4分)(2)∵y=x2﹣6x+5=(x﹣3)2﹣4,(6分)∴抛物线的顶点坐标为(3,﹣4),(7分)对称轴为直线x=3;(8分)(3)由x2﹣6x+5=0,解有x1=1,x2=5;(9分)∴C、D两点坐标分别为(1,0),(5,0);(10分)S△ACD=×4×12=24.(12分)6.(2010•虹口区一模)已知二次函数y=x2+2x﹣3,解答下列问题:(1)用配方法将该函数解析式化为y=a(x+m)2+k的形式;(2)指出该函数图象的开口方向、顶点坐标、对称轴,以及它的变化情况.解:(1)y=x2+2x+1﹣4=(x+1)2﹣4;(2)∵a=1>0,m=1,k=﹣4,∴该函数图象的开口向上;顶点坐标是(﹣1,﹣4);对称轴是直线x=﹣1;图象在直线x=﹣1左侧部分是下降的,右侧的部分是上升的.7.(2012•闸北区一模)已知:二次函数y=ax2+bx+c的图象经过点(1,0)、(2,10)、(﹣2,﹣6).(1)求这个抛物线的解析式;(2)运用配方法,把这个抛物线的解析式化为y=a(x+m)2+k的形式,并指出它的顶点坐标;(3)把这个抛物线先向右平移4个单位,再向上平移6个单位,求平移后得到的抛物线与y轴交点的坐标.解:(1)根据题意有:,解有∴这个抛物线的解析式是y=2x2+4x﹣6;(2)y=2x2+4x﹣6=2(x2+2x)﹣6,y=2(x2+2x+1)﹣2﹣6,∴y=2(x+1)2﹣8∴顶点坐标是(﹣1,﹣8);(3)将顶点(﹣1,﹣8)先向右平移4个单位,再向上平移6个单位,有顶点坐标为(3,﹣2),2令x=0,则y=16,∴它与y轴的交点的坐标是(0,16).9.(2005•静安区二模)如图,二次函数y=x2﹣(m+1)x+m(其中m>1)与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C.(1)求点A、B的坐标(可用m的代数式表示);(2)当△ABC的面积为6时,求这个二次函数的解析式,并用配方法求它的图象的顶点坐标.解:(1)抛物线y=x2﹣(m+1)x+m(其中m>1)中,令y=0,有:x2﹣(m+1)x+m=0,即(x﹣m)(x﹣1)=0,解有:x1=m,x2=1;∴A(1,0),B(m,0);(2)易知C(0,m);∵S△ABC=AB•OC=(m﹣1)•m=6;∴m2﹣m﹣12=0,解有m=4,m=﹣3(不合题意,舍去);∴y=x2﹣5x+4=(x﹣)2﹣;∴抛物线的顶点坐标为(,﹣).8.(2009•通州区二模)已知二次函数y=x2﹣3x﹣4.(1)用配方法求这个二次函数图象的顶点坐标和对称轴;(2)画出这个函数的大致图象,指出函数值不小于0时x的取值范围.解:(1)∵y=x2﹣3x﹣4=x2﹣3x+()2﹣()2﹣4=(x﹣)2﹣;∴二次函数图象的顶点坐标是(,﹣),对称轴方程是x=.(2)∵y=x2﹣3x﹣4=(x+1)(x﹣4),图象与x轴两交点坐标为(﹣1,0),(4,0),∴函数值不小于0时,x的取值范围是x≤﹣1或x≥4.图象如图.10.(2011•虹口区一模)已知二次函数y=2x2+bx+c的图象经过A(0,1)、B(﹣2,1)两点.(1)求该函数的解析式;(2)用配方法将该函数解析式化为y=a(x+m)2+k.解:(1)根据题意,有,解得,,∴该二次函数的解析式是y=2x2+4x+1;(2)由(1)中的二次函数的解析式知,y=2(x2+2x)+1=2(x2+2x+1)+1﹣2=2(x+1)2﹣1.11.(2009•黄浦区一模)如图,二次函数y=ax2+bx+c的图象经过点A(3,0),B(﹣1,0),C(0,3).(1)求此函数的解析式;(2)用配方法(写出配方过程)将此函数化为y=a(x+m)2+k的形式,并写出其顶点坐标;(3)在线段AC上是否存在点P(不含A、C两点),使△ABP与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.解:(1)由题意有:,(2分)解有:;(1分)∴此函数解析式为y=﹣x2+2x+3;(1分)(2)y=﹣x2+2x+3=﹣(x2﹣2x+1)+3+1(2分)=﹣(x﹣1)2+4;(1分)∴顶点为(1,4);(1分)(3)假设存在点P,使△ABP与△ABC相似,则/;当时,AP=AC;(不合题意,舍去)(1分)当时,;(1分)由题意易有直线AC的解析式为:y=﹣x+3,设P(x,﹣x+3),其中0<x<3,则,解有:(舍去);(1分)∴.(1分)2(1)当a=1,b=﹣2,c=1时,请在图上的直角坐标系中画出此时二次函数的图象;(2)用配方法求该二次函数的图象的顶点坐标.解:(1)当a=1,b=﹣2,c=1时,y=x2﹣2x+1=(x﹣1)2,∴该二次函数的顶点坐标为(1,0),对称轴为直线x=1,(2)由y=ax2+bx+c是二次函数,知a≠0y=a(x2+x)+c=a[x2+x+()2]+c﹣a×()2=a(x+)2+∴该二次函数图象的顶点坐标为.13.(2006•遂宁)已知二次函数y=x2+4x.(1)用配方法把该函数化为y=a(x﹣h)2+k(其中a、h、k都是常数且a≠0)的形式,并指出函数图象的对称轴和顶点坐标;14.(2005•乌兰察布)已知抛物线y=x2﹣2x﹣3,将y=x2﹣2x﹣3用配方法化为y=a(x﹣h)2+k的形式,并指出对称轴、顶点坐标及图象与x轴、y轴的交点坐标.解:y=x2﹣2x﹣3=x2﹣2x+1﹣1﹣3=(x﹣1)2﹣4,对称轴是x=1,顶点坐标是(1,﹣4),当x=0时,y=﹣3,∴y轴的交点坐标为(0,﹣3),当y=0时,x=3或x=﹣1即与x轴的交点坐标为(3,0),(﹣1,0).15.(1997•上海)用配方法把函数y=1﹣4x﹣2x2化成y=a(x+m)2+k的形式,并指出它的图象的开口方向、顶点坐标和对称轴.解:y=1﹣4x﹣2x2,=﹣2(x2+2x+1)+2+1,=﹣2(x+1)2+3,∴,∵a=﹣2<0,∴它的图象的开口方向向下,顶点坐标为(﹣1,3),对称轴为直线x=﹣1.16.(1997•安徽)通过配方,确定抛物线y=﹣2x2﹣5x+7的开口方向、对称轴和顶点坐标.解:y=﹣2x2﹣5x+7=﹣2(x2+x)+7=﹣2(x+)2+,∵a=﹣2<0,∴抛物线开口向下,对称轴是直线x=﹣,顶点坐标为(﹣,).17.(2014•虹口区一模)已知二次函数y=﹣﹣x+.(1)用配方法把该二次函数的解析式化为y=a(x+m)2+k的形式;(2)指出该二次函数图象的开口方向、顶点坐标和对称轴.解:(1)y=﹣x2﹣x+,=﹣(x2+2x+1)++,=﹣(x+1)2+4;(2)∵a=﹣<0,∴二次函数图象的开口向下,顶点坐标为(﹣1,4),对称轴为直线x=﹣1.18.(2009•门头沟区二模)已知二次函数y=2x2﹣4x+5,(1)将二次函数的解析式化为y=a(x﹣h)2+k的形式;(2)将二次函数的图象先向右平移2个单位长度,再向下平移1个单位长度后,所得二次函数图象的顶点为A,请你直接写出点A的坐标;(3)若反比例函数y=的图象过点A,求反比例函数的解析式.解:(1)y=2x2﹣4x+5=2(x2﹣2x+)=2(x﹣1)2+3;(2)由题意有:移动后的函数变为y=2(x﹣3)2+2,∴A(3,2).(3)∵反比例函数的图象经过点A(3,2),∴m=6.∴反比例函数的解析式是.。
数学人教版九年级上册配方法求二次函数的对称轴、顶点坐标
教学目标
1、能求出y=ax +bx+c的开口方向、 对称轴、顶点坐标。 2 2、理解y=ax +bx+c的顶点坐标公 式
2
新课导入
2 说出二次函数y=-3(x-1) +1
图象的开口方向,对称轴,顶点坐 标。它是由y=-3x2怎样平移得到的?
知识讲解 我们已经学习了二次函数 2 y=3x 的图象,如何通过平移二次 2 2 函数y=3x 得到二次函数y=3x 6x+5的图象呢?
课外作业
1、抛物线y=(x-1)2-3的对称轴是( A、y轴 B、直线x=﹣1 C、直线x=1 D、直线x=﹣3 x-5的图象的对称轴为( )
C、x=2 D、x=-2
3、如果抛物线y=x2+(m-1)x-m+2的对称轴是y轴, 那么m的值是_________ 4、已知抛物线y=x2﹣x﹣1 (1) 求抛物线y=x2﹣x﹣1的顶点坐标、对称轴; (2) 抛物线y=x2﹣x﹣1与x轴的交点为(m,0), 求代数式m2+1的值.
x2-6x+21
= (x-6)2+3
1 2 由此可知,抛物线y= x -6x+21的顶点是点(6,3), 对称轴是直线x=6 2
你能把函数y=ax²+bx+c通过配方法 化成顶点式吗?
y=ax2+bx+c
b 2 =a(x + a a
x)+c x+(2 a
)2+
b b 2 2 ) -( ) ]+c 2a
2
b 2 =a[x +
=a(x+
b 2a
4 ac b 4a
2 4 ac b 所以抛物线的顶点式y =a(x+ b )2+ 4a 2a
2023年中考九年级数学高频考点 专题训练--二次函数的三种形式
2023年中考九年级数学高频考点专题训练--二次函数的三种形式一、综合题1.已知二次函数y=x2﹣(2k+1)x+k2+k(k>0)(1)当k= 12时,将这个二次函数的解析式写成顶点式;(2)求证:关于x的一元二次方程x2﹣(2k+1)x+k2+k=0有两个不相等的实数根.2.求二次函数的顶点坐标和对称轴.(1)用配方法:y=3x2﹣6x+2;(2)用公式法:y=﹣5x2+80x﹣319.3.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.4.在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.5.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?6.利用配方法,把下列函数写成y=a(x﹣h)2+k的形式,并写出它们图象的开口方向、对称轴和顶点坐标.(1)y=﹣x2+6x+1(2)y=2x2﹣3x+4(3)y=﹣x2+nx(4)y=x2+px+q.7.对于二次函数y= 12x2﹣3x+4,(1)配方成y=a(x﹣h)2+k的形式.(2)求出它的图象的顶点坐标和对称轴.(3)求出函数的最大或最小值.8.已知二次函数的解析式是y=x2﹣2x﹣3(1)用配方法将y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;(2)在直角坐标系中,用五点法画出它的图像;(3)利用图象求当x为何值时,函数值y<0(4)当x为何值时,y随x的增大而减小?(5)当﹣3<x<3时,观察图象直接写出函数值y的取值的范围.9.如图,△M的圆心M(﹣1,2),△M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣12x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是△M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF△y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.10.如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.11.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F 四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN△BD,交线段AD于点N,连接MD,使△DNM△△BMD?若存在,求出点T的坐标;若不存在,请说明理由.12.如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2与y轴交于点C(0,4),其中x1,x2是方程x2﹣4x﹣12=0的两个根.(1)求抛物线的解析式;(2)点M是线段AB上的一个动点,过点M作MN△BC,交AC于点N,连结CM,当△CMN 的面积最大时,求点M的坐标;(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的点F的坐标;若不存在,请说明理由.13.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l△x轴于H,交抛物线于点M,过点C作CF△l于F.(1)求抛物线解析式;(2)如图2,当点F恰好在抛物线上时(与点M重合)①求点F的坐标;②求线段OD的长;③试探究在直线l上,是否存在点G,使△EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.(3)在点D的运动过程中,连接CM,若△COD△△CFM,请直接写出线段OD的长.14.如图,已知抛物线与x轴交于A(1,0),B(﹣3,0)两点,与y轴交于点C(0,3),抛物线的顶点为P,连接AC.(1)求此抛物线的解析式;(2)在抛物线上找一点D,使得DC与AC垂直,且直线DC与x轴交于点Q,求点D的坐标;(3)抛物线对称轴上是否存在一点M,使得SΔMAP=2SΔACP,若存在,求出M点坐标;若不存在,请说明理由.15.已知抛物线G: y=x2−2tx+3( t为常数)的顶点为P.(1)求点P的坐标;(用含t的式子表示)(2)在同一平面直角坐标系中,存在函数图象H,点A(m,n1)在图象H上,点B(m,n2)在抛物线G上,对于任意的实数m,都有点A,B关于点(m,m)对称.①当t=1 时,求图象H对应函数的解析式;②当1≤m≤t+1时,都有n1>n2成立,结合图象,求t的取值范围.16.抛物线y= 13x2+bx+c经过点A(﹣4,0)、B(2,0)两点,与y轴交于点C,顶点为D,对称轴与x轴交于点H,过点H的直线m交抛物线于P、Q两点,其中点P位于第二象限,点Q在y轴的右侧.(1)求D点坐标;(2)若△PBA= 12△OBC,求点P的坐标;(3)设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.答案解析部分1.【答案】(1)解:把k= 12代入y=x2﹣(2k+1)x+k2+k(k>0)得y=x2﹣2x+ 34,因为y=(x﹣1)2﹣1 4所以抛物线的顶点坐标为(1,﹣1 4)(2)证明:△=(2k+1)2﹣4(k2+k)=1>0,所以关于x的一元二次方程x2﹣(2k+1)x+k2+k=0有两个不相等的实数根2.【答案】(1)解:y=3x2﹣6x+2=3(x﹣1)2﹣1,顶点坐标为(1,﹣1),对称轴为x=1(2)解:∵a=﹣5,b=80,c=﹣319,∴﹣b2a=﹣802×(−5)=8,4ac−b2 4a = 4×(−5)×(−319)−8024×(−5)=1,∴顶点坐标为(8,1),对称轴为x=83.【答案】(1)解:用交点式函数表达式得:y=(x−1)(x−3)=x2−4x+3;故二次函数表达式为:y=x2−4x+3(2)解:①当AB为平行四边形一条边时,如图1,则AB=PF=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:m+2 2,即:m+22=2,解得:m=2,故点P(2,−1);综上:点P(4,3)或(0,3)或(2,−1);(3)解:利用待定系数法求得直线BC的表达式为:y=−x+3,设点E坐标为(x,x2−4x+3),则点D(x,−x+3),S四边形AEBD =12AB(yD−yE)=−x+3−x2+4x−3=−x2+3x,∵−1<0,故四边形AEBD面积有最大值,当x=32,其最大值为94,此时点E(32,−34).4.【答案】(1)解:设抛物线解析式为y=a(x+4)(x﹣2),将B(0,﹣4)代入得:﹣4=﹣8a,即a= 1 2,则抛物线解析式为y= 12(x+4)(x﹣2)=12x2+x﹣4;(2)解:过M作MN△x轴,将x=m代入抛物线得:y= 12m2+m﹣4,即M(m,12m2+m﹣4),∴MN=| 12m2+m﹣4|=﹣12m2﹣m+4,ON=﹣m,∵A(﹣4,0),B(0,﹣4),∴OA=OB=4,∴△AMB的面积为S=S△AMN+S梯形MNOB﹣S△AOB= 12×(4+m)×(﹣12m2﹣m+4)+ 12×(﹣m)×(﹣12m2﹣m+4+4)﹣12×4×4 =2(﹣12m2﹣m+4)﹣2m﹣8=﹣m2﹣4m=﹣(m+2)2+4,当m=﹣2时,S取得最大值,最大值为4.5.【答案】(1)解:由图象可知其顶点坐标为(2,﹣2),故可设其函数关系式为:S=a(t﹣2)2﹣2.∵所求函数关系式的图象过(0,0),于是得:a(0﹣2)2﹣2=0,解得a= 1 2.∴所求函数关系式为:S= 12(t﹣2)2﹣2,即S= 12t2﹣2t.答:累积利润S与时间t之间的函数关系式为:S= 12t2﹣2t(2)解:把S=30代入S= 12(t﹣2)2﹣2,得12(t﹣2)2﹣2=30.解得t1=10,t2=﹣6(舍去).答:截止到10月末公司累积利润可达30万元(3)解:把t=7代入关系式,得S= 12×72﹣2×7=10.5,把t=8代入关系式,得S= 12×82﹣2×8=16,16﹣10.5=5.5,答:第8个月公司所获利是5.5万元.6.【答案】(1)解:y=﹣x2+6x+1=﹣(x2﹣6x)+1=﹣(x﹣3)2+10,对称轴x=3,顶点坐标为:(3,10),开口向下(2)解:y=2x2﹣3x+4=2(x2﹣32x)+4=2(x﹣34)2+ 238,对称轴x= 34,顶点坐标为:(34,238),开口向上(3)解:y=﹣x2+nx=﹣(x﹣n2)2+n24,对称轴x= n2,顶点坐标为:(n2,n24),开口向下(4)解:y=x2+px+q=(x+ p2)2+4q−p24,对称轴x=﹣p2,顶点坐标为:(p2,4q−p24),开口向上7.【答案】(1)解:y= 12x2﹣3x+4 = 12(x2﹣6x)+4= 12[(x﹣3)2﹣9]+4= 12(x﹣3)2﹣12(2)解:由(1)得:图象的顶点坐标为:(3,﹣1 2),对称轴为:直线x=3(3)解:∵a= 12>0,∴函数的最小值为:﹣1 28.【答案】(1)解:y=x2﹣2x﹣3=(x﹣1)2﹣4,即y=(x﹣1)2﹣4(2)解:由(1)可知,y=(x﹣1)2﹣4,则顶点坐标为(1,﹣4),令x=0,则y=﹣3,∴与y轴交点为(0,﹣3),令y=0,则0=x2﹣2x﹣3,解得x1=﹣1,x2=3,∴与x轴交点为(﹣1,0),(3,0).列表:描点、连线:(3)解:由图象知,当﹣1<x<3时,函数值y<0(4)解:由图象知,当x<1时,y随x的增大而减小(5)解:当x=﹣3时,y=9+6﹣3=12,则﹣3<x<3时,0<y<129.【答案】(1)解:设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣2 9.∴抛物线的解析式为y=﹣29x2﹣49x+169(2)解:连接AM,过点M作MG△AD,垂足为G.把x=0代入y=﹣12x+4得:y=4,∴A(0,4).将y=0代入得:0=﹣12x+4,解得x=8,∴B(8,0).∴OA=4,OB=8.∵M(﹣1,2),A(0,4),∴MG=1,AG=2.∴tan△MAG=tan△ABO= 1 2.∴△MAG=△ABO.∵△OAB+△ABO=90°,∴△MAG+△OAB=90°,即△MAB=90°.∴l是△M的切线(3)解:∵△PFE+△FPE=90°,△FBD+△PFE=90°,∴△FPE=△FBD.∴tan△FPE= 1 2.∴PF:PE:EF= √5:2:1.∴△PEF的面积= 12PE•EF=12×2√55PF• √55PF= 15PF2.∴当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣29x2﹣49x+169),则F(x,﹣12x+4).∴PF=(﹣12x+4)﹣(﹣29x2﹣49x+169)=﹣12x+4+29x2+ 49x﹣169=29x2﹣118x+209=29(x﹣18)2+ 7132.∴当x= 18时,PF有最小值,PF的最小值为7132.∴P(18,5532).∴△PEF的面积的最小值为= 15×(7132)2= 5041512010.【答案】(1)解:∵抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴方程x2+bx+c=0的两根为x=﹣1或x=3,∴﹣1+3=﹣b,﹣1×3=c,∴b=﹣2,c=﹣3,∴二次函数解析式是y=x2﹣2x﹣3(2)解:∵y=﹣x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴x=1,顶点坐标(1,﹣4)(3)解:设P 的纵坐标为|y P |,∵S △PAB =8,∴12AB•|y P |=8,∵AB=3+1=4,∴|y P |=4, ∴y P =±4,把y P =4代入解析式得,4=x 2﹣2x ﹣3,解得,x=1±2 √2 ,把y P =﹣4代入解析式得,﹣4=x 2﹣2x ﹣3,解得,x=1,∴点P 在该抛物线上滑动到(1+2 √2 ,4)或(1﹣2 √2 ,4)或(1,﹣4)时,满足S △PAB =8 11.【答案】(1)解:设抛物线的解析式为:y=a (x ﹣1)2+4,∵点B 的坐标为(3,0).∴4a+4=0,∴a=﹣1,∴此抛物线的解析式为:y=﹣(x ﹣1)2+4=﹣x 2+2x+3(2)解:存在.抛物线的对称轴方程为:x=1,∵点E 的横坐标为2,∴y=﹣4+4+3=3,∴点E (2,3),∴设直线AE 的解析式为:y=kx+b ,∴{−k +b =02k +b =3, ∴{k =1b =1, ∴直线AE 的解析式为:y=x+1,∴点F (0,1),∵D (0,3),∴D 与E 关于x=1对称,作F 关于x 轴的对称点F′(0,﹣1),连接EF′交x 轴于H ,交对称轴x=1于G ,四边形DFHG 的周长即为最小,设直线EF′的解析式为:y=mx+n ,∴{n =−12m +n =3, 解得: {m =2n =−1, ∴直线EF′的解析式为:y=2x ﹣1,∴当y=0时,2x ﹣1=0,得x= 12, 即H ( 12,0), 当x=1时,y=1,∴G (1,1);∴DF=2,FH=F′H= √(12)2+12 = √52 ,DG= √22+12 = √5 , ∴使D 、G ,H 、F 四点所围成的四边形周长最小值为:DF+FH+GH+DG=2+ √52 + √52+ √5 =2+2 √5(3)解:存在.∵BD= √32+32 =3 √2 ,设M (c ,0),∵MN△BD ,∴MN BD =AN AB, 即 3√2= 1+c 4 , ∴MN= 3√24(1+c ),DM= √32+c 2 , 要使△DNM△△BMD ,需 DM BD =MN DM,即DM 2=BD•MN , 可得:9+c 2=3 √2 × 3√24 (1+c ), 解得:c= 32或c=3(舍去). 当x= 32 时,y=﹣( 32 ﹣1)2+4= 154.∴存在,点T的坐标为(32,154)12.【答案】(1)解:∵x2﹣4x﹣12=0,∴x1=﹣2,x2=6.∴A(﹣2,0),B(6,0),又∵抛物线过点A、B、C,故设抛物线的解析式为y=a(x+2)(x﹣6),将点C的坐标代入,求得a= 1 3,∴抛物线的解析式为y= 13x2﹣43x﹣4.(2)解:设点M的坐标为(m,0),过点N作NH△x轴于点H(如图(1)).∵点A的坐标为(﹣2,0),点B的坐标为(6,0),∴AB=8,AM=m+2,∵MN△BC,∴△MNA△△BCA.∴NHCO=AMAB,∴NH4=m+28,∴NH= m+2 2,∴S△CMN=S△ACM﹣S△AMN= 12•AM•CO﹣12AM•NH,= 12(m+2)(4﹣m+22)=﹣14m2+m+3,=﹣14(m﹣2)2+4.∴当m=2时,S△CMN有最大值4.此时,点M的坐标为(2,0).(3)解:∵点D(4,k)在抛物线y= 13x2﹣43x﹣4上,∴当x=4时,k=﹣4,∴点D的坐标是(4,﹣4).①如图(2),当AF为平行四边形的边时,AF平行且等于DE,∵D(4,﹣4),∴DE=4.∴F1(﹣6,0),F2(2,0),②如图(3),当AF为平行四边形的对角线时,设F(n,0),∵点A的坐标为(﹣2,0),则平行四边形的对称中心的横坐标为:n+(−2)2,∴平行四边形的对称中心坐标为(n−22,0),∵D(4,﹣4),∴E'的横坐标为:n−22﹣4+n−22=n﹣6,E'的纵坐标为:4,∴E'的坐标为(n﹣6,4).把E'(n﹣6,4)代入y= 13x2﹣43x﹣4,得n2﹣16n+36=0.解得n=8±2 √7.F3(8﹣2 √7,0),F4(8+2 √7,0),综上所述F1(﹣6,0),F2(2,0),F3(8﹣2 √7,0),F4(8+2 √7,0).13.【答案】(1)解:把x=0代入抛物线的解析式得:y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣5),将点C的坐标代入得:﹣5a=3,解得:a=﹣3 5.∴抛物线的解析式为y=﹣35x2+125x+3(2)解:①∵CF△l,OB△l,∴CF△x轴.∴点F的纵坐标为3.将y=3代入抛物线的解析式得:﹣35x2+ 125x+3=3,解得x=0或x=4.∴点F的坐标为(4,3).②∵点F的坐标为(4,3),∴点H的坐标为(4,0).∵△CDE=90°,∴△CDO+△EDH=90°.∵△OCD+△CDO=90°,∴△OCD=△EDH.由旋转的性质可知:CD=DE.在Rt△OCD和Rt△HDE中,{∠OCD=∠EDH∠COD=∠DHECD=DE,∴Rt△OCD△Rt△HDE.∴CO=DH=3.又∵OH=4,∴OD=1.③如图1所示:将CD绕点C逆时针旋转90°得到线段CN,则N(3,4)且四边形CDEN为正方形.∵四边形CDEN为正方形,∴△GDE=45°.设DN的解析式为y=kx+b,将点D和点N的坐标代入得:{k+b=03k+b=4,解得:k=2,b=﹣2.∴DN的解析式为y=2x﹣2.把x=4代入得:y=6,∴G(4,6).设直线DG′的解析式为y=﹣12x+c,将点D的坐标代入得:﹣12+c=0,解得:c=12.∴直线DG′的解析式为y=﹣12x+12.将x=4代入得:y=﹣3 2.∴点G′的坐标为(4,﹣3 2).综上所述,点G的坐标为(4,6)或(4,﹣3 2)(3)解:如图2所示:设点D的坐标为(a,0),则点M的坐标(a+3,﹣35a2﹣65a+245).∴FM=﹣35a2﹣65a+95.∵△COD△△CFM,∴OCDO=CFFM,即3a=3+a−35a2−65a+95,整理得:14a2+33a﹣27=0,解得a= 914或a=﹣3(舍去).∴OD= 9 14.如图3所示:设点D的坐标为(a,0),则点M的坐标(a+3,﹣35a2﹣65a+245).∴FM= 35a2+ 65a﹣95.∵△COD△△CFM,∴OCDO=CFFM,3a=a+335a2+65a−95,整理得:4a2+3a﹣27=9,解得:a=﹣3(舍去)或a=94.∴OD= 9 4.综上所述,OD 的长为 914 或 9414.【答案】(1)解:设此抛物线的解析式为: y =ax 2+bx +c ,由题意得: {a +b +c =09a +3b +c =0c =3 ∴{a =−1b =−2c =3∴所求解析式为y =−x 2−2x +3(2)解:∵点A (1,0),点C (0,3),∴OA=1,OC=3,∵DC△AC ,OC△x 轴,∴△QOC△△COA ,∴OQ OC =OC OA ,即 OQ 3=31, ∴OQ=9,又∵点Q 在x 轴的负半轴上,∴Q (﹣9,0),设直线DC 的解析式为:y=mx+n ,则 {−9m +n =0n =3, 解之得: {m =13n =3, ∴直线DC 的解析式为: y =13x +3 , ∵点D 是抛物线与直线DC 的交点,∴{y =13x +3y =−x 2−2x +3, 解之得: {x 1=−73y 1=209, {x 2=0y 2=3 (不合题意,应舍去), ∴点D (−73,209) , (3)解:如图,点M 为直线x=﹣1上一点,连接AM ,PC ,PA ,设点M (﹣1,y ),直线x=﹣1与x 轴交于点E ,∴AE=2,∵抛物线y=﹣x 2﹣2x+3的顶点为P ,对称轴为x=﹣1,∴P (﹣1,4),∴PE=4,则PM=|4﹣y|,∵S 四边形AEPC =S 四边形OEPC +S △AOC ,= 12×1×(3+4)+12×1×3 = 12(3+7) =5,又∵S 四边形AEPC =S △AEP +S △ACP ,S △AEP 12AE ×PE =12×2×4=4,∴+S △ACP =5﹣4=1,∵S △MAP =2S △ACP ,∴12×2×|4−y|=2×1 ,∴|4﹣y|=2,∴y 1=2,y 2=6,故抛物线的对称轴上存在点M 使S△MAP=2S△ACP,点M(﹣1,2)或(﹣1,6)15.【答案】(1)y=x2−2tx+3=x2−2tx+t2−t2+3=(x−t)2−t2+3∴顶点P的坐标为(t,−t2+3);(2)解:①当t=1时,得G的解析式为:y=x2−2x+3,点B(m,n2)在G上,∴n2=m2−2m+3∵点A(m,n1)与点B关于点(m,m)对称,则点A,B到点(m,m)的距离相等,此三点横坐标相同,有n2−m=m−n1.∴(m2−2m+3)−m=m−n1整理,得n1=−m2+4m−3,由于m为任意实数,令m为自变量x,n1为y.即可得H的解析式为:y=−x2+4x−3;①关于抛物线G的性质:点B(m,n2)在G上,∴n2=m2−2tm+3由G:y=x2−2tx+3,知抛物线G开口向上,对称轴为x=t,顶点P(t,−t2+3),且图象恒过点(0,3).∴当t≤x≤t+1时,图象G的y随着x的增大而增大.当x=t+1时,y取最大值−t2+4;当x=t时,y取最小值−t2+3;最大值比最小值大1.关于图象H的性质:∵点A(m,n1)与点B关于点(m,m)对称,有n2−m=m−n1,(m2−2tm+3)−m=m−n1,整理,得n1=−m2+2tm+2m−3所以,图象H的解析式为:y H=−x2+2tx+2x−3.=−[x−(t+1)]2+(t2+2t−2)配方,得yH∴图象H为一抛物线,开口向下,对称轴为x=t+1,顶点P(t+1,t2+2t−2),且图象恒过点(0,−3).∴当t≤x≤t+1时,图象H的y随着x的增大而增大.当x=t+1时,y取最大值t2+2t−2;当x=t时,y取最小值y=t2+2t−3,即过Q(t,t2+2t−3);最大值比最小值大1.情况1:当P,Q两点重合,即两个函数恰好都经过(t,t),(t+1,t+1)时,把(t,t)代入y=x2−2tx+3得t=t2−2t⋅t+3,解得,t=−1+√132或t=−1−√132.分别对应图3,图4两种情形,由图可知,当m=t,或m=t+1时,A与B重合,即有n1=n2,不合题意,舍去;情况2:当点P在点Q下方,即t>−1+√132时,大致图象如图1,当t<−1−√132时,大致图象如图2,都有点A在点B的上方,即n1>n2成立,符合题意;情况3:当点P在点Q上方,即−1−√132<t<−1+√132时,大致图象如图5,图6,当t≤m≤t+1时,存在A在B的下方,即存在n1<n2,不符合题意,舍去;综上所述,所求t的取值范围为:t>−1+√132或t<−1−√132.16.【答案】(1)解:∵y= 13x2+bx+c经过点A(﹣4,0)、B(2,0)两点,∴y= 13(x+4)(x﹣2)=13(x2+2x﹣8)= 13(x+1)2﹣3.∴D(﹣1,﹣3).(2)解:在x轴上点E(﹣2,0),连接CE,并延长CE交PB于点F,过点F作FG△x轴,垂足为G.∵点E与点B关于y轴对称,∴△OBC=△OEC.∴△OBC=△GEF.∵△PBA= 12△OBC,∴△PBA=△EFB.∴EF=EB=4.∵OE=2,OC= 8 3,∴EC= 10 3.∵GF△OC,∴△FGE△△COE.∴FGOC=EGOE=EFEC,即FG83= EG2=4103,解得:FG= 165,EG=125,∴F(﹣225,165).设BP的解析式为y=kx+b,将点F和点B的坐标代入得:{2k+b=0−225k+b=165,解得:k=﹣12,b=1,∴直线BP的解析式为y=﹣12x+1.将y=﹣12x+1与y=13x2+ 23x﹣83联立,解得:x=﹣112,x=2(舍去),∴y= 15 4.∴P(﹣112,154);(3)解:设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.由{y=kx+ky=13x2+23x−83得:13x2+(23﹣k)﹣83﹣k=0∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,解得:x1=﹣1,x2=3k﹣1,∵点M是线段PQ的中点,∴由中点坐标公式的点M(32k﹣1,32k2).假设存在这样的N点如图2,直线DN△PQ,设直线DN的解析式为y=kx+k﹣3由{y=kx+k−3y=13x2+23x−83,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3).∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=(3k2)2+ 32k2+3)2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=± 2√33,∵k<0,∴k=﹣2√33,∴P(﹣3 √3﹣1,6),M(﹣√3﹣1,2),N(﹣2 √3﹣1,1).∴PM=DN=2 √7,∵PM△DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2 √3﹣1,1).。
二次函数配方口诀.doc
二次函数配方口诀求二次函数y=ax2+bx+c的顶点坐标、对称轴方程、最大值或最小值等都需要运用配方法将二次函数化为y=a(x-h)2+k的形式,其中配方是学习中的难点,这里的配方虽然与一元二次方程的配方有点类似,但不尽相同,不少初学者茫然无措.现将配方过程归纳为如下口诀,方便大家的学习.二次系数先提取,常数暂且往后移;一次系数取一半,平方以后再加减;前三配方四相乘,最后再算常数项.口诀解析:二次系数先提取,常数暂且往后移的意思是:把y=ax2+bx+c的二次项系数a作为公因式提取,常数项c放到括号外的后面,化为:一次系数取一半,平方以后再加减的意思是:在括号内的x2+bx/a,取一次项的系数b/a的一半b/(2a),加上和减去它的平方[b/(2a)]2,化为:前三配方四相乘的意思是:具体运用看如下例子:例1 把y=2x2-3x-5化为y=a(x-h)2+k的形式.解:二次系数先提取,常数暂且往后移,得:y=2(x2-3x/2)-5;一次系数取一半,平方以后再加减得:y=2(x2-3x/2+9/16-9/16)-5;前三配方后相乘,得y=2(x-3/2)2-9/16×2-5;再加后面常数项,得:y=2(x-3/2)2-49/8.例2 用配方法求二次函数y=-x2+4x+1的图象顶点坐标.解:根据配方口诀,得:y=-( x2-4x)+1=-( x2-4x+4-4)+1=-[ (x-2)2-4]+1=-(x-2)2-4×(-1)+1=-(x-2)2+5.所以顶点坐标为(2,5).例3 求二次函数y=3x2/2+9x-7的最小值.解:根据配方口诀,得:y=3/2(x2+6x)-7=3/2(x2+6x+9-9)-7=3/2[(x+3)2-9]-7=3/2(x+3)2-9×3/2-7=3/2(x+3)2-41/2,因为a=3/20,所以当x=-3时,y最小值=-41/2.例4 求抛物线y=ax2-4ax+1的对称轴方程.解:y=a(x2-4x)+1=a(x2-4x+4-4)+1=a[(x-2)2-4]+1=a(x-2)2-4a+1,所以对称轴方程为x=2.。
二次函数y=ax+bx+c的图像和性质
对称轴的轴对称图形,有以下性质:
y
1.抛物线上关于对称轴对称的两点纵坐标相等;
抛物线上纵坐标相等的两点一定关于对称轴对称。 O
x
2.如果抛物线交x轴于两点, 那么这两点一定关于对称 轴对称。
3.若设抛物线上关于对称轴对称 的两点横坐标为x1,x 2, 则抛物线 的对称轴是直线x x1 +x 2
2
1 2
x2-6x+21
= 1 (x-6)2+3 2
由此可知,抛物线
y=
1 2
x2-6x+21
的顶点是点(6,3),对称轴是直线 x=6.
直接画函数
y 1 x2 6x 21 2
的图象
根据顶点式确定开口方向,对称轴,顶点坐标. ∵a= 1 >0,
2
∴开口向上;
对称轴:直线x=6;
顶点坐标:(6,3).
再见
二次函数y=ax +bx+c(a≠0)的图象和性质 123...顶 位 增23个|个..不联单单点置减同系位位坐与性:点(当y(:当标开与=(a((14234(ab与口最)axc4))位a对最-bh>对方值置2称值)0²+>不时轴不称向k0同,(时不同向a轴≠(向:同右20分))上顶:平分别的平点移别是图移不4;是当a象2直c4;同当a可线b:224分xb以aac和4别看a<0b0是2成b2.<时a0y,时2=向ba和a,,左x向4ya²轴c的平4下a.b图移平2 象)移和,再先)(得0沿沿,0到对x).的轴称.整轴体整左体(上右()下平)移平|移 2|b4aac4|a b2
y a x
b
2
4ac
b2
.
2a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配方法求二次函数的对称轴和顶点坐标
提取二次项系数 加上再减去一次项系数一半的平方 例1、试用配方法把二次函数①y =-2x 2+4x -4 ②5632+-=x x y 化为k h x a y +-=2)(的形式并完成下表:
练习;一、填空题: 1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。
2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = .
3.抛物线y =x 2+3x 的顶点在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )
c bx ax y ++=2⎪⎭⎫ ⎝
⎛++=a c x a b x a 2⎪⎪⎭⎫ ⎝
⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛++=a c a b a b x a b x a 22222⎥⎥⎦⎤⎢⎢⎣⎡-+⎪⎭⎫ ⎝⎛+=222442a b ac a b x a .44222a b ac a b x a -+⎪⎭⎫ ⎝⎛+=.2:a b x -=它的对称轴是直线.44,22⎪⎪⎭⎫ ⎝
⎛--a b ac a b 它的顶点是
5.已知抛物线y =x 2+(m -1)x -14
的顶点的横坐标是2,则m 的值是_ .
6.抛物线y=x 2+2x -3的对称轴是 。
7.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。
8.当n =______,m =______时,函数y =(m +n)x n +(m -n)x 的图象是抛物线,
且其顶点在原点,此抛物线的开口________.
9.已知二次函数y=x 2-2ax+2a+3,当a= 时,该函数y 的最小值为0.
10.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。
11.已知二次函数y=x 2-4x+m -3的最小值为3,则m = 。
二、用配方法求二次函数的对称轴和顶点坐标
1、y=x 2-x-2
2、y=12
1212++-x
3、y=12
1212+--x x 4、y=22++-x x。