【题01】计算表达式值--试题解析

合集下载

第二章 整式的加减【过关测试01】(解析版)

第二章 整式的加减【过关测试01】(解析版)

人教版2020年第二单元《整式的加减》过关检测(一)一.选择题(共12小题)1.代数式2(a 2﹣b )表示( )A .两倍a 的平方与b 的差B .a 的平方与b 的差的两倍C .a 的平方与b 的两倍的差D .a 与b 的平方差的两倍【分析】根据代数式的意义即可写出.【解答】解:代数式2(a 2﹣b )表示a 的平方与b 的差的两倍,故选:B .2.下列所列代数式正确的是( )A .a 与b 的积的立方是ab 3B .x 与y 的平方差是(x ﹣y )2C .x 与y 的倒数的差是y 1x -D .x 与5的差的7倍是7x ﹣5【分析】根据题意列式即可.【解答】解:(A )a 与b 的积的立方是(ab )3,故A 错误;(B )x 与y 的平方差是x 2﹣y 2,故B 错误;(D )x 与5的差的7倍是7(x ﹣5),故D 错误,故选:C .3.当21b 2a =-=,时,代数式b4a 2ab -的值等于( ) A .61 B .61- C .6 D .﹣6 【分析】把21b 2a =-=,代入b4a 2ab -,即可求出原式的值.【解答】解:把21b 2a =-=,代入b4a 2ab -得, 原式()6124121422212=---=⨯--⨯⨯-= 故选:A .4.下列各式:;;⑦;⑥;⑤;④;③;②①πy 4x 5y x 26x 2x a 18m m n 2122+-++-中,整式有( ) A .3个 B .4个 C .6个 D .7个【分析】根据整式的定义,结合题意即可得出答案. 【解答】解:在;;⑦;⑥;⑤;④;③;②①πy 4x 5y x 26x 2x a 18m m n 2122+-++-中,整式有πy 4x 5y x 26x 2x 8m m n 2122+-++-;⑦;⑥;⑤;③;②①,一共6个. 故选:C .5.下列说法正确的是( )5.下列说法正确的是( )A .单项式2x 22π-的系数是21- B .ab 的系数、次数都是1C .a44a 和都是单项式 D .单项式2πr 的系数是2π【分析】直接利用单项式的次数与系数确定方法分析得出答案.【解答】解:单项式2x 22π-的系数是22π-,故此选项错误;B 、ab 的系数是1,次数都是2,故此选项错误;C 、4a 是单项式,a4不是单项式,故此选项错误; D 、单项式2πr 的系数是2π,正确.故选:D .6.组成多项式6x 2﹣2x +7的各项是( )A .6x 2﹣2x +7B .6x 2,2x ,7C .6x 2﹣2x ,7D .6x 2,﹣2x ,7【分析】根据多项式的项的定义得出即可.【解答】解:组成多项式6x 2﹣2x +7的各项是6x 2,﹣2x ,7,故选:D .7.与﹣125a 3bc 2是同类项的是( )A .a 2b 3cB .21ab 2c 3C .0.35ba 3c 2D .13a 3bc 3【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,进行判断.【解答】解:A 、a 2b 3c 与﹣125a 3bc 2所含的相同字母的指数不相同,所以它们不是同类项.故本选项错误;B 、21ab 2c 3与﹣125a 3bc 2所含的相同字母的指数不相同,所以它们不是同类项.故本选项错误; C 、0.35ba 3c 2与﹣125a 3bc 2所含的相同字母的指数相同,所以它们是同类项.故本选项正确;D 、13a 3bc 3与﹣125a 3bc 2所含的相同字母c 的指数不相同,所以它们不是同类项.故本选项错误; 故选:C .8.已知﹣51x 3y 2n 与2x 3m y 4是同类项,则m +n 的值是( ) A .1 B .2 C .3 D .7【分析】先根据同类项的定义得出关于m 、n 的方程,求出m 、n 的值再代入代数式进行计算即可. 【解答】解:∵﹣51x 3y 2n 与2x 3m y 4是同类项, ∴3m =3,2n =4,解得m =1,n =2,∴原式=1+2=3.故选:C .9.下列合并同类项正确的是( )A .4a 2+3a 3=7a 6B .4a 3﹣3a 3=1C .﹣4a 3+3a 3=﹣a 3D .4a 3﹣3a 3=a【分析】根据同类项的定义和合并同类项的法则.【解答】解:A 、4a 2和3a 2不是同类项,不能合并;B 、漏掉字母部分a 3;C 、正确;D 、字母指数不对.故选:C .10.多项式﹣x +x 3+1﹣x 2按x 的升幂排列正确的是( )A .x 2﹣x +x 3+1B .1﹣x 2+x +x 3C .1﹣x ﹣x 2+x 3D .x 3﹣x 2+1﹣x【分析】根据升幂排列的定义,将多项式的各项按照x 的指数从小到大排列起来.【解答】解:按x 的升幂排列为﹣x+x3+1﹣x2=1﹣x﹣x2+x3.故选:C.11.下列式子去括号正确的是()A.﹣(2x﹣y)=﹣2x﹣yB.﹣3a2+(4a2+2)=﹣3a+4a2﹣2C.﹣[﹣(2a﹣3y)]=2a﹣3yD.﹣3(a﹣7)=﹣3a+7【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】解:A、﹣(2x﹣y)=﹣2x+y.故本选项错误;B、﹣3a2+(4a2+2)=﹣3a+4a2+2.故本选项错误;C、﹣[﹣(2a﹣3y)]=2a﹣3y.故本选项正确;D、﹣3(a﹣7)=﹣3a+21.故本选项错误;故选:C.12.将2(x+y)﹣3(x﹣y)﹣4(x+y)+5(x﹣y)﹣3(x﹣y)合并同类项得()A.﹣3x﹣y B.﹣2(x+y)C.﹣x+y D.﹣2(x+y)﹣(x﹣y)【分析】先合并同类项,再去括号.【解答】解:原式=2(x+y)﹣4(x+y)﹣3(x﹣y)+5(x﹣y)﹣3(x﹣y)=﹣2(x+y)﹣(x﹣y)=﹣2x﹣2y﹣x+y=﹣3x﹣y,故选:A .二.填空题(共4小题)13.4x 3x x 2332---是 次多项式,最高次项是 . 【分析】直接利用多项式的次数确定方法分析得出答案. 【解答】解:4x 3x x 2332---是三次多项式,最高次项是:4x 3-. 故答案为:三,4x 3-.14.如图,长方形的长、宽分别为a ,b ,试用代数式表示图中阴影部分的面积:S 阴影= .【分析】由图知三个三角形的底的和等于a 、高均为b ,据此依据三角形的面积公式可得答案.【解答】解:由图知,S 阴影=21ab , 故答案为:21ab . 15.如图,它是一个程序计算器,用字母及符号把它的程序表达出来 ,如果输入m =3,那么输出 .【分析】首先计算m 的平方,再加上2m ,除以10,最后加上﹣1,输出得数,由此列出代数式即可;把m =3代入(1)中列出的代数式求得结果即可. 【解答】解:依据计算程序可知:输出结果=110m 2m 2-+. 当m =3时,输出结果=211103232=-⨯+. 故答案为:110m 2m 2-+;21. 16.当a =21,b =31-时,代数式5(3a 2b ﹣ab 2)﹣(ab 2+3a 2b )的值是 . 【分析】根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:原式=15a 2b ﹣5ab 2﹣ab 2﹣3a 2b=12a 2b ﹣6ab 2,当a =21,b =31-时,原式=343121*********-=⎪⎭⎫ ⎝⎛-⨯⨯-⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛⨯ 故答案为34-.三.解答题(共8小题)17.计算: (1)322a 64a 217a 3--⎪⎭⎫ ⎝⎛--; (2)()()()y 2x 4y x 2y 2x 5--++-; (3)()()22x 2y 3y x 2+--; (4)()()[]x 2x 2x x 2x x 32222---+-. 【分析】利用整式加减运算法则即可求出答案.【解答】解:(1)原式=3a 3﹣7+21a 3﹣4﹣6a 3=(3a 3+21a 3﹣6a 3)+(﹣7﹣4)=﹣25a 3﹣11. (2)原式=5x ﹣2y +2x +y ﹣4x +2y =3x +y .(3)原式=2x 2﹣2y ﹣3y ﹣6x 2=﹣4x 2﹣5y .(4)原式=3x 2﹣(x 2+2x 2﹣x ﹣2x 2+4x )=2x 2﹣3x .18.确定m ,n 的值,使关于x ,y 的多项式x m ﹣2y 2+m x m ﹣2y +nx 3y m ﹣3﹣2x n ﹣3y +m +n 是一个五次三项式. 【分析】根据多项式为五次三项式,求出m 与n 的值即可.【解答】解:∵关于x ,y 的多项式x m ﹣2y 2+m x n ﹣2y +nx 3y m ﹣3﹣2x n ﹣3y +m +n 是一个五次三项式, ∴m ﹣2+2=5,m ﹣2+1=n ﹣3+1解得m =5,n =6.19.已知:A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+ab ﹣1.(1)求3A +6B ;(2)若3A +6B 的值与a 的取值无关,求b 的值;(3)如果A +2B +C =0,则C 的表达式是多少?【分析】(1)先把A 、B 的表达式代入,再去括号,合并同类项即可;(2)根据(1)中3A +6B 的表达式,再令a 的系数等于0,求出b 的值即可;(3)先把A 、B 的表达式代入,求出C 的表达式即可.【解答】解:(1)∵A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+ab ﹣1,∴3A +6B =3(2a 2+3ab ﹣2a ﹣1)+6(﹣a 2+ab ﹣1)=6a 2+9ab ﹣6a ﹣3﹣6a 2+6ab ﹣6=15ab ﹣6a ﹣9;(2)3A +6B =15ab ﹣6a ﹣9=a (15b ﹣6)﹣9,∵3A +6B 的值与a 无关,∴15b ﹣6=0,∴b =52; (3)∵A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+ab ﹣1,A +2B +C =0,∴C =﹣A ﹣2B =﹣(2a 2+3ab ﹣2a ﹣1)﹣2(﹣a 2+ab ﹣1)=﹣2a 2﹣3ab +2a +1+2a 2﹣2ab +2=﹣5ab +2a +3.20.计算某个整式减去多项式ab ﹣2bc +3a +bc +8ac 时,一个同学误认为是加上此多项式,结果得到的答案是﹣2ab +b c +8ac .请你求出原题的正确答案.【分析】设该整式为A ,求出A 的表达式,进而可得出结论.【解答】解:∵A +(ab ﹣2bc +3a +b c +8ac )=﹣2ab +b c +8ac ,∴A =(﹣2ab +b c +8ac )﹣(ab ﹣2bc +3a +b c +8ac )=﹣2ab + b c +8ac ﹣ab +2bc ﹣3a ﹣b c ﹣8ac=﹣3ab +2bc ﹣3a ,∴A ﹣(ab ﹣2bc +3a +b c +8ac )=(﹣3ab +2bc ﹣3a )﹣(ab ﹣2bc +3a +b c +8ac )=﹣3ab +2bc ﹣3a ﹣ab +2bc ﹣3a ﹣b c ﹣8ac=﹣4ab +3bc ﹣6a ﹣8ac .21.一个代数式加上3x 4﹣x 3+2x ﹣1得﹣5x 4+3x 2﹣7x +2,求这个代数式.【分析】设这个代数式是A ,再根据整式的加减法则进行计算即可.【解答】解:设这个代数式是A ,∵A +(3x 4﹣x 3+2x ﹣1)=﹣5x 4+3x 2﹣7x +2,∴A =(﹣5x 4+3x 2﹣7x +2)﹣(3x 4﹣x 3+2x ﹣1)=﹣5x 4+3x 2﹣7x +2﹣3x 4+x 3﹣2x +1=(﹣5﹣3)x 4+3x 2﹣(7+2)x +x 3+3=﹣8x 4+3x 2﹣9x +x 3+3.22.规定bc ad d c b a -=,如-232-414321=⨯⨯=.若33x 25x 35-22=-+,求11x 2﹣5. 【分析】根据题中所给出的式子列出关于x 的式子,再合并同类项即可. 【解答】解:∵规定bc ad d c b a -=,如-232-414321=⨯⨯=.若33x 25x 35-22=-+, ∴原式==-+3x 25x 35-22(﹣5)×(x 2﹣3)﹣2×(3x 2+5) =﹣5x 2+15﹣6x 2﹣10=﹣11x 2+5=3,∴﹣11x 2=3﹣5=﹣2.∴11x 2﹣5=2﹣5=﹣3.23.已知a =﹣1,b =﹣2,求代数式b a 3b a 21ab 4b a 3b a 22222+⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--的值. 【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【解答】解:原式=a 2b ﹣3a 2b +4ab 2+21a 2b +3a 2b =23a 2b +4ab 2, 当a =﹣1,b =﹣2时,原式=﹣3﹣16=﹣19.24.学习了整式的加减运算后,郑老师出了一道题课堂练习题为“当a =﹣2,b =2016时,求多项式3b 2b a 41b a b b a 41b b a 4b b a 21b a 322332233233+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛--+-+-的值.”张同学把a =﹣2抄成 a =2,韦同学没有抄错题,但他们做出的结果恰好一样,说说这是怎么回事?【分析】原式去括号合并得到最简结果,即可作出判断.【解答】解:原式=3a 3b 3﹣21a 2b +b ﹣4a 3b 3﹣b +41a 2b +b 2+a 3b 3+41a 2b ﹣2b 2+3=﹣b 2+3, 结果与a 的取值无关,故张同学把a =﹣2抄成a =2,韦同学没有抄错题,但他们做出的结果恰好一样.。

表达式求值

表达式求值
任何一个表达式都是由操作数(operand)、运算 符(operator)和界限符(delimiter)组成, 其中, 操作数可以是常数也可以是被说明为变量或常量 的标识符; 运算符可以分为算术运算符、关系运算符和逻辑 运算符等三类; 界限符有左右括弧和表达式结束符等。 为了叙述简洁,在此仅讨论简单算术表达式。只 含加、减、乘、除4种运算符和圆括号。
(1)6 7 5 – 8 3 / * + (2)25 x + a a b + * b + *
问题2 问题2:如何对一个后缀表达式求值?
步骤: 1、读入表达式一个字符 2、若是操作数,压入栈,转4 3、若是运算符,从栈中弹出2个数,将运算结果再压入栈 4、若表达式输入完毕,栈顶即表达式值; 若表达式未输入完,转1 例 计算 4+3*5 后缀表达式:435*+
3 1 4 2 优先级,有时还要处理括号。
运算符的优先关系表
+ - × / ( ) + > > > > < > - > > > > < > × < < > > < > / < < > > < > ( < < < < < ) > > > > = >
后缀表达式:不包含括号,运算符放在两个运算
对象的后面,所有的计算按运算符出现的顺序,严 格从左向右进行。 如:2 1 + 3 *,对于的中缀表达式为(2 + 1) * 3
中缀表达式:在程序语Байду номын сангаас中,运算符位于两个操
作数中间的表达式称为是中缀表达式。P66 例子: 要对以下中缀表达式求值: 4+2×3 - 10/5 1 中缀表达式运算的规则: =4+6-10/5 (1)先乘除,后加减; 2 =4+6-2 (2)从左算到右; 3 =10-2 (3)先括号内,后括号外。 。 4 =8 + × - / 中缀表达式不仅要依赖运算符

求二次函数的表达式练习题(含答案)

求二次函数的表达式练习题(含答案)

二次函数的表达式一、选择题1.函数y =21x 2+2x +1写成y =a (x -h)2+k 的形式是A.y =21(x -1)2+2B.y =21(x -1)2+21C.y =21(x -1)2-3D.y =21(x +2)2-1 2.抛物线y =-2x 2-x +1的顶点在第_____象限A.一B.二C.三D.四 3.不论m 取任何实数,抛物线y =a (x +m )2+m (a ≠0)的顶点都A.在y =x 直线上B.在直线y =-x 上C.在x 轴上D.在y 轴上4.任给一些不同的实数n ,得到不同的抛物线y =2x 2+n ,如当n =0,±2时,关于这些抛物线有以下结论:①开口方向都相同;②对称轴都相同;③形状都相同;④都有最低点,其中判断正确的个数是A.1个B.2个C.3个D.4个 5.二次函数y =x 2+p x +q 中,若p+q=0,则它的图象必经过下列四点中A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)图36.下列说法错误的是A.二次函数y =-2x 2中,当x =0时,y 有最大值是0B.二次函数y =4x 2中,当x >0时,y 随x 的增大而增大C.在三条抛物线y =2x 2,y =-0.5x 2,y =-x 2中,y =2x 2的图象开口最大,y =-x 2的图象开口最小D.不论a 是正数还是负数,抛物线y =ax 2(a ≠0)的顶点一定是坐标原点 7.已知二次函数y =x 2+(2k +1)x +k 2-1的最小值是0,则k 的值是A.43B.-43C.45D.-458.小颖在二次函数y =2x 2+4x +5的图象上,依横坐标找到三点(-1,y 1),(21,y 2), (-321,y 3),则你认为y 1,y 2,y 3的大小关系应为A.y 1>y 2>y 3B.y 2>y 3>y 1C.y 3>y 1>y 2D.y 3>y 2>y 1 二、填空题9.抛物线y =21(x +3)2的顶点坐标是______.10.将抛物线y =3x 2向上平移3个单位后,所得抛物线的顶点坐标是______.11.函数y =34x -2-3x 2有最_____值为_____.12.已知抛物线y =ax 2+bx +c 的图象顶点为(-2,3),且过(-1,5),则抛物线的表达式为______.13.二次函数y =mx 2+2x +m -4m 2的图象过原点,则此抛物线的顶点坐标是______. 三、解答题14.根据已知条件确定二次函数的表达式(1)图象的顶点为(2,3),且经过点(3,6);(2)图象经过点(1,0),(3,0)和(0,9);(3)图象经过点(1,0),(0,-3),且对称轴是直线x=2。

c语言表达式题库

c语言表达式题库

c语言表达式题库(总1页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--C语言程序设计表达式一、表达式求值1.表达式:!(4<=6)&&(3<=7) 的值为_______ 02.表达式:x=!(2<5==5) 的值为【1】 13.如果有变量定义:int i=1,j=8,a;则表达式:a=i+(j%4!=0) 的值为_【1】 14.表达式:x=(7+6)%4/2 的值为【1】 05.如果有变量定义:int x,则表达式:x=-3*4%-6/50 的值为【1】 06.如果有变量定义:int x ,则表达式:x=3+7%5-6 的值为【1】 -17.如果有变量定义:int x,则表达式:x=-3+4/5-6 的值为【1】 -98.如果有变量定义:int x=3,y=4,z=4则表达式:z>=y&&y>=x 的值为_____ 19.如果有变量定义:int x=3,y=4,z=4则表达式:(z>=y>=x)1:0 的值为____ 0 10.如果有变量定义:int x=0,y=0,z=0则表达式:k=++x&&++y||++z 的值为_____ 111. 如果有变量定义:int x=0,y=0,z=0则表达式:k=++x||++y&&++z 的值为______ 112. 如果有变量定义:int x=40,y=4,z=4则表达式:x=x==(y-z) 的值为____ 013.如果有变量定义:int a=15,则表达式:a=a<<1 的值为【1】 3014.如果有变量定义:int y;char x='a';则表达式:y='a'+1 的值为【1】 9815.如果有变量定义float x=,y=则表达式:x<y:的值为【1】16.如果有变量定义:int a=1,b=2,c=3,d=5则表达式:a>b a : c>d c : d 的值为【1】 517.如果有变量定义:int a=1,b=3,m 则表达式:m=a>b a : b+1 的值为【1】 418.如果有变量定义:int a=1,b=2则表达式:(!a)||(a>b) 的值为_______ 019. 如果有变量定义:int a=1,b=2,c=1,x=4,y=5则表达式:!a&&b||x>y&&c 的值为______ 020如果有变量定义:int a=12,n=5则表达式:a%=(n%=2) 的值为_______ 021如果有变量定义:int a=2, b=3;float x=, y=则表达式:(float)(a+b)/2+(int)x%(int)y 的值为【1】22如果有变量定义:int x=, y=则表达式:z=(int)x%(int)y 的值为【1】 1 23如果有变量定义:int x=,a=7,y=则表达式:k=a%3*(x+y)/2 的值为【1】 3 24如果有变量定义:int a=5则表达式:a*=1+3 的值为【1】 2025如果有变量定义:int a,b则表达式:b=(a=3*4, a*4),a+5 的值为【1】 17 26如果有变量定义:int a,b 则表达式:x=a=3,5*a 的值为【1】 1527如果有变量定义:int a=120 则表达式:a%=(5%2) 的值为【1】 028如果有变量定义:int a=10则表达式:a+=a-=a*=a 的值为【1】 029 如果有变量定义:int a=10则表达式:a+=a-=a*a 的值为【1】 -180 30 如果有变量定义:int i=3则表达式:j=i++ 的值为【1】 331如果有变量定义:int i=3则表达式:j=++i 的值为【1】 432表达式5&7的值为【1】 ,5│7的值为【2】 . 5 72。

数值计算方法试题库及答案解析

数值计算方法试题库及答案解析

y 2y, y(0) 1,试问为保证该公式绝对稳定,步长 h 的取值范围为(
)。
(1) 0 h 2 , (2) 0 h 2 , (3) 0 h 2 , (4) 0 h 2
三、1、(8 分)用最小二乘法求形如 y a bx2 的经验公式拟合以下数据:
2
是否为插值型求积公式?为什么?其
代数精度是多少?
七、(9 分)设线性代数方程组 AX b 中系数矩阵 A 非奇异, X 为精确解, b 0 ,若向
~
~
量 X 是 AX b 的 一 个 近 似 解 , 残 向 量 r b A X , 证 明 估 计 式 :
~
X X
r cond ( A)
五、(8 分)已知求 a (a 0) 的迭代公式为:
1
a
xk1 2 (xk xk )
x0 0 k 0,1,2
证明:对一切 k 1,2,, xk a ,且序列xk 是单调递减的,
从而迭代过程收敛。
3 f (x)dx 3 [ f (1) f (2)]
六、(9 分)数值求积公式 0
六、(下列 2 题任选一题,4 分) 1、 1、 数值积分公式形如
1
0 xf (x)dx S(x) Af (0) Bf (1) Cf (0) Df (1)
(1) (1) 试确定参数 A, B,C, D 使公式代数精度尽量高;(2)设
1
f (x) C 4[0,1] ,推导余项公式 R(x) 0 xf (x)dx S(x) ,并估计误差。
i 1
的高斯(Gauss)型求积公式具有最高代数精确度的次
数为 2n 1。 (

c语言试题:数据类型、运算符与表达式 (1)

c语言试题:数据类型、运算符与表达式 (1)

3 数据类型、运算符与表达式一、单项选择题1、以下选项中,不正确的 C 语言浮点型常量是( C )。

A. 160.B. 0.12C. 2e4.2D. 0.0分析:e 后面的指数必须为整数。

2、以下选项中,( D )是不正确的 C 语言字符型常量。

A. 'a'B. '\x41'C. '\101'D. "a" 分析:在C 语言中,’a ’表示字符常量,”a ”表示字符串。

3、 在 C 语言中,字符型数据在计算机内存中,以字符的(C )形式存储。

A.原码B.反码C. ASCII 码D. BCD 码分析:将一个字符常量放入一个字符变量中,实际上并不是将字符本身放到内存单元中,而是将字符的对应的ASCII 码放到储存单元中。

4、若x 、i 、j 和k 都是int 型变量,则计算下面表达式后,x 的值是( C )。

x=(i=4,j=16,k=32)A. 4B. 16C.32D.52分析:(i=4,j=16,k=32)的值为最后一个表达式的值,即为32,所以x=32.5、算术运算符、赋值运算符和关系运算符的运算优先级按从高到低依次为(B )。

A. 算术运算、赋值运算、关系运算B. 算术运算、关系运算、赋值运算C. 关系运算、赋值运算、算术运算D. 关系运算、算术运算、赋值运算分析:算术运算符包括加法运算“+”符减法运算“-”符乘法运算符“*”以及除法运算符“/”,赋值运算符包括“=、+=、-=、*=、/=、……”,关系运算符包括“<、<=、>、>=”。

6、若有代数式bc ae3 ,则不正确的C 语言表达式是( C )。

A.a/b/c*e*3 B. 3*a*e/b/c C.3*a*e/b*c D. a*e/c/b*3分析:C 选项表达的是3ace/b 。

7、表达式!x||a==b 等效于( D )。

A. !((x||a)==b)B. !(x||y)==bC. !(x||(a==b))D. (!x)||(a==b) 分析:由符优先级先后顺序在!x||a==b 中应先算“||”再算“!”,最后算“==”。

数值计算方法试题和答案解析

数值计算方法试题和答案解析

数值计算方法试题一一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件就是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 就是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n Λ就是以整数点n x x x ,,,10Λ为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 与节点,,2,1,0,2/Λ==k k x k 则=],,,[10n x x x f Λ 与=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ就是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 就是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解就是唯一的。

2023学年浙江七年级数学上学期专题训练专题01 运算思维之整式的加减综合应用(含详解)

2023学年浙江七年级数学上学期专题训练专题01 运算思维之整式的加减综合应用(含详解)
28.数学课上,老师设计了一个数学游戏:若两个多项式相减的结果等于第三个多项式,则称这三个多项式为“友好多项式”.甲、乙、丙、丁四位同学各有一张多项式卡片,下面是甲、乙、丙、丁四位同学的对话:
请根据对话解答下列问题:
甲:我的多项式是2x2-3x-2
乙:我的多项式是3x2-x+1
丙:我的多项式是x2+2x+3
A. B. C. D.
【答案】B
【分析】
先设小长方形卡片的长为a,宽为b,再结合图形得出上面的阴影周长和下面的阴影周长,再把它们加起来即可求出答案.
【详解】
解:设小长方形卡片的长为a,宽为b,
∴L上面的阴影=2(n-a+m-a),
L下面的阴影=2(m-2b+n-2b),
∴L总的阴影=L上面的阴影+L下面的阴影=2(n-a+m-a)+2(m-2b+n-2b)=4m+4n-4(a+2b),
A.正方形①B.正方形②C.正方形③D.大长方形
9.将大小不一的正方形纸片①、②、③、④放置在如图所示的长方形ABCD内(相同纸片之间不重叠),其中AB=a.小明发现:通过边长的平移和转化,阴影部分⑤的周长与正方形①的边长有关,那么阴影部分⑥与阴影部分⑤的周长之差与正方形()(填编号)的边长有关.
A.①B.②C.③D.④
16.如图,在长方形内有三块面积分别是 的图形.则阴影部分的面积为______.
三、解答题
17.已知A、B为整式,A的表达式为3a2b﹣2ab2+abc,小明错将“C=2A﹣B”看成“2A+B”,算得结果C=4a2b﹣3ab2+4abc.
(1)求B的表达式;
(2)求正确的结果的表达式.

决胜2021年中考数学压轴题全揭秘精品 专题01 数与式问题(教师版含解析)

决胜2021年中考数学压轴题全揭秘精品 专题01 数与式问题(教师版含解析)

决胜2021中考数学压轴题全揭秘精品专题01数与式问题【考点1】实数与数轴问题【例1】(2020·贵州铜仁·中考真题)实数a ,b 在数轴上对应的点的位置如图所示,下列结论正确的是()A .a >bB .﹣a <bC .a >﹣bD .﹣a >b【答案】D【解析】【分析】根据数轴即可判断a 和b 的符号以及绝对值的大小,根据有理数的大小比较方法进行比较即可求解.【详解】 根据数轴可得:0a <,0b >,且a b >,则a b <,选项A 错误;a b >﹣,选项B 错误;a b <﹣,选项C 错误;a b >﹣,选项D 正确;故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.【变式1-1】(2020·福建中考真题)如图,数轴上两点,M N 所对应的实数分别为,m n ,则m n -的结果可能是( )A .1-B .1C .2D .3【答案】C【解析】【分析】根据数轴确定m 和n 的范围,再根据有理数的加减法即可做出选择.【详解】解:根据数轴可得0<m <1,2-<n <1-,则1<m n -<3故选:C【点睛】本题考查的知识点为数轴,解决本题的关键是要根据数轴明确m 和n 的范围,然后再确定m n -的范围即可. 【变式1-2】(2019年枣庄)点O ,A ,B ,C 在数轴上的位置如图所示,O 为原点,AC =1,OA =OB .若点C 所表示的数为a ,则点B 所表示的数为( )A .﹣(a +1)B .﹣(a ﹣1)C .a +1D .a ﹣1【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,本题得以解决.【解析】∵O 为原点,AC =1,OA =OB ,点C 所表示的数为a ,∴点A 表示的数为a ﹣1,∴点B 表示的数为:﹣(a ﹣1),故选:B .【点拨】本题考查数轴,解答本题的关键是明确题意,利用数形结合的思想解答.【变式1-3】(2020·贵州铜仁·中考真题)实数a ,b 在数轴上对应的点的位置如图所示,下列结论正确的是( )A .a >bB .﹣a <bC .a >﹣bD .﹣a >b【答案】D【解析】【分析】根据数轴即可判断a 和b 的符号以及绝对值的大小,根据有理数的大小比较方法进行比较即可求解.【详解】根据数轴可得:0a <,0b >,且a b >,则a b <,选项A 错误; a b >﹣,选项B 错误;a b <﹣,选项C 错误;a b >﹣,选项D 正确;故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.【考点2】整式的求值问题【例2】(2020·湖南岳阳·中考真题)已知221x x +=-,则代数式5(2)x x ++的值为___________.【答案】4【解析】【分析】先根据整式的乘法去括号化简代数式,再将已知式子的值代入求值即可.【详解】25(2)52x x x x ++=++将221x x +=-代入得:原式5(1)4=+-=故答案为:4.【点睛】本题考查了代数式的化简求值,利用整式的乘法对代数式进行化简是解题关键.【变式2-1】(2020·四川甘孜·中考真题)若221m m -=,则代数式2243m m -+的值为________.【答案】5【解析】【分析】把2243m m -+化为22(2)3m m -+的形式,再整体代入求值即可.【详解】解:∵221m m -=,∴222432(2)32135m m m m -+=-+=⨯+=.故答案为:5.【点睛】本题考查了求代数式的值,运用整体的数学思想是解决问题的关键.【变式2-2】(2020·江苏连云港·中考真题)按照如图所示的计算程序,若2x =,则输出的结果是________.【答案】-26【解析】【分析】首先把x=2代入210x -计算出结果,判断是否小于0,若小于0,直到输出的结果是多少,否则将计算结果再次代入计算,直到小于0为止.【详解】解:当x=2时,2210=10260x --=>,故执行“否”,返回重新计算,当x=6时,2210=106260x --=-<,执行“是”,输出结果:-26.故答案为:-26.【点睛】此题主要考查了代数式求值,以及有理数的混合运算,要熟练掌握.解题关键是理解计算流程.【考点3】分式的求值问题【例3】(2020·四川南充·中考真题)若231x x +=-,则11xx __________. 【答案】2- 【解析】【分析】 11x x 中两项通分并利用同分母分式的减法法则计算,再根据231x x +=-,代入化简即可得到结果. 【详解】 解:2211321222(1)211111x x x x x x x x x x x x x故答案为:-2【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.【变式3-1】(2019·四川内江·中考真题)若112m n+=,则分式552m n mn m n +---的值为_____. 【答案】﹣4. 【解析】【分析】 将已知等式左边通分并利用同分母分式的加法法则计算,得到m+n=2mn ,代入所求式子中计算,即可求出值.【详解】112m n+=,可得2m n mn +=,()()5255210mn 2n 2n m n mn m n mn m m n m n m +-+--==---+- =﹣4;故答案为﹣4.【点睛】此题考查分式的化简求值,掌握运算法则是解题关键【变式3-2】(2020·内蒙古赤峰·中考真题)先化简,再求值:221121m m m m m m---÷++,其中m 满足:210m m --=.【答案】2m m+1,1. 【解析】【分析】将分式运用完全平方公式及平方差公式进行化简,并根据m 所满足的条件得出2m =m+1,将其代入化简后的公式,即可求得答案.【详解】 解:原式为22m -1m-1m-m +2m+1m÷ =2(m+1)(m-1)m m-(m+1)m-1⨯ =m m-m+1 =2m m m -m+1m+1+ =2m m+1, 又∵m 满足2m -m-1=0,即2m =m+1,将2m 代入上式化简的结果,∴原式=2m m+1==1m+1m+1. 【点睛】本题主要考察了分式的化简求值、分式的混合运算、完全平方公式及平方差公式的应用,该题属于基础题,计算上的错误应避免.【考点4】二次根式的性质与化简【例4】(2020·四川攀枝花·中考真题)实数a 、b 在数轴上的位置如图所示,化简222(1)(1)()a b a b ++---的结果是( ).A .2-B .0C .2a -D .2b【答案】A【解析】【分析】根据实数a 和b 在数轴上的位置得出其取值范围,再利用二次根式的性质和绝对值的性质即可求出答案.【详解】解:由数轴可知-2<a <-1,1<b <2,∴a+1<0,b-1>0,a-b <0, 222(1)(1)()a b a b +---=11a b a b ++---=()()()11a b a b -++-+-=-2故选A.【点睛】此题主要考查了实数与数轴之间的对应关系,以及二次根式的性质,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断. 【变式4-1】(2020·内蒙古赤峰·中考真题)估计(123323 ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】A【解析】【分析】根据二次根式的混合运算法则进行计算,再估算无理数的大小.【详解】()1 23323+⨯=11 233233⨯+⨯=2+6,∵4<6<6.25,∵2<6<2.5,∴4<2+6<5,故选:A.【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.【变式4-2】(2019年内江)若|1001﹣a|a,则a﹣10012=1002.【分析】由二次根式有意义的条件得到a≥1002,据此去绝对值并求得a的值,代入求值即可.【解析】∵a﹣1002≥0,∴a≥1002.由|1001﹣a|a,得﹣1001+a a,∴1001,∴a﹣1002=10012.∴a﹣10012=1002.故答案是:1002.【变式4-3】(2020·甘肃金昌·中考真题)已知2(4)5y x x=-+,当分别取1,2,3,……,2020时,所对应y值的总和是__________.【答案】2032【解析】【分析】先化简二次根式求出y的表达式,再将x的取值依次代入,然后求和即可得.【详解】545y x x x =+=--+当4x <时,4592y x x x =--+=-当4x ≥时,451y x x =--+=则所求的总和为(921)(922)(923)111-⨯+-⨯+-⨯++++75312017=+++⨯2032=故答案为:2032.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.【考点5】数字的变化规律【例5】(2020·四川中考真题)将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.【答案】65【解析】【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值.【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…, ∴第m 组有m 个连续的偶数,∵2020=2×1010, ∴2020是第1010个偶数,∵1+2+3+…+44=44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数,∴m =45,n =20,∴m +n =65.故答案为:65.【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键【变式5-1】(2020·广西中考真题)如图,某校礼堂的座位分为四个区域,前区共有8排, 其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是_____.【答案】556个【解析】【分析】先计算前区共有多少个座位和前区最后一排有多少个座位,再计算后区一共有多少个座位即可得解.【详解】∵前区共有8排, 其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,∴前区共有座位数为:20+(20+1×2)+(20+2×2)+(20+3×2)+⋯⋯+(20+7×2) =8×20+(1+2+3+4+5+6+7) ×2=216(个);∵前区最后一排的座位数为:20+7×2=34, ∴后区的座位数为:34×10=340(个) 因此,该礼堂的座位总数是216+340=556(个)故答案为:556个.【点睛】此题考查了找规律,根据题干得出每一排座位的个数排列规律是解决本题的关键.【变式5-2】(2020·青海中考真题)观察下列各式的规律:①2132341⨯-=-=-;②2243891⨯-=-=-;③235415161⨯-=-=-.请按以上规律写出第4个算式________.用含有字母的式子表示第n 个算式为________.【答案】246524251⨯-=-=-()()2211n n n ⨯+-+=- 【解析】【分析】(1)按照前三个算式的规律书写即可; (2)观察发现,算式序号与比序号大2的数的积减去比序号大1的数的平方,等于-1,根据此规律写出即可;【详解】(1)2132341⨯-=-=-,②2243891⨯-=-=-,③235415161⨯-=-=-,④246524251⨯-=-=-;故答案为246524251⨯-=-=-.(2)第n 个式子为:()()2211n n n ⨯+-+=-. 故答案为()()2211n n n ⨯+-+=-.【点睛】本题主要考查了规律性数字变化类知识点,准确分析是做题的关键. 【变式5-3】(2020·湖北咸宁·中考真题)按一定规律排列的一列数:3,23,13-,33,43-,73,113-,183,…,若a ,b ,c 表示这列数中的连续三个数,猜想a ,b ,c 满足的关系式是__________.【答案】bc=a【解析】【分析】根据题目中的数字,可以发现相邻的数字之间的关系,从而可以得到a ,b ,c 之间满足的关系式.【详解】解:∵一列数:3,23,13-,33,43-,73,113-,183-,…,可发现:第n 个数等于前面两个数的商,∵a ,b ,c 表示这列数中的连续三个数,∴bc=a ,故答案为:bc=a.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出a,b,c之间的关系式.【考点6】图形的变化规律【例6】(2020·山东日照·中考真题)用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是( )A.59 B.65 C.70 D.71【答案】C【解析】【分析】由题意观察图形可知,第1个图形共有圆点5+2个;第2个图形共有圆点5+2+3个;第3个图形共有圆点5+2+3+4个;第4个图形共有圆点5+2+3+4+5个;…;则第n个图形共有圆点5+2+3+4+…+n+(n+1)个;由此代入n=10求得答案即可.【详解】解:根据图中圆点排列,当n=1时,圆点个数5+2;当n=2时,圆点个数5+2+3;当n=3时,圆点个数5+2+3+4;当n=4时,圆点个数5+2+3+4+5,…∴当n=10时,圆点个数5+2+3+4+5+6+7+8+9+10+11=4+(1+2+3+4+5+6+7+8+9+10+11)=1411(111) 2+⨯⨯+ 70=.故选:C.【点睛】本题考查图形的变化规律,注意找出数量上的变化规律,从而推出一般性的结论,利用规律解决问题.【变式6-1】(2020·山东济宁·中考真题)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,……按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是( )A.1100B.120C.1101D.2101【答案】D 【解析】【分析】根据图形规律可得第n个图形共有1+2+3+4+...+n=()12n n+个正方体,最下面有n个带“心”字正方体,从而得出第100个图形的情况,再利用概率公式计算即可.【详解】解:由图可知:第1个图形共有1个正方体,最下面有1个带“心”字正方体;第2个图形共有1+2=3个正方体,最下面有2个带“心”字正方体;第3个图形共有1+2+3=6个正方体,最下面有3个带“心”字正方体;第4个图形共有1+2+3+4=10个正方体,最下面有4个带“心”字正方体;...第n个图形共有1+2+3+4+...+n=()12n n+个正方体,最下面有n个带“心”字正方体;则:第100个图形共有1+2+3+4+...+100=()11001002+=5050个正方体,最下面有100个带“心”字正方体; ∴从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是10025050101=, 故选:D .【点睛】本题考查了图形变化规律,概率的求法,解题的关键是总结规律,得到第100个图形中总正方体的个数以及带“心”字正方体个数.【变式6-2】(2020·内蒙古赤峰·中考真题)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O 起跳,落点为A 1,点A 1表示的数为1;第二次从点A 1起跳,落点为OA 1的中点A 2;第三次从A 2点起跳,落点为0A 2的中点A 3;如此跳跃下去……最后落点为OA 2019的中点A 2020.则点A 2020表示的数为__________.【答案】201912【解析】【分析】 先根据数轴的定义、线段中点的定义分别求出点1234,,,A A A A 表示的数,再归纳类推出一般规律,由此即可得.【详解】由题意得:点1A 表示的数为0112=点2A 表示的数为11111222OA == 点3A 表示的数为22111242OA == 点4A 表示的数为33111282OA == 归纳类推得:点n A 表示的数为112n -(n 为正整数) 则点2020A 表示的数为2020120191122-= 故答案为:201912.【点睛】本题考查了数轴的定义、线段中点的定义,根据点1234,,,A A A A 表示的数,正确归纳类推出一般规律是解题关键.【变式6-3】(2020·山东烟台·中考真题)如图,12OA A △为等腰直角三角形,OA 1=1,以斜边OA 2为直角边作等腰直角三角形OA 2A 3,再以OA 3为直角边作等腰直角三角形OA 3A 4,…,按此规律作下去,则OA n 的长度为( )A .(2nB .2n ﹣1C .(22)nD .(22)n ﹣1 【答案】B【解析】【分析】 利用等腰直角三角形的性质以及勾股定理分别求出各边长,依据规律即可得出答案.【详解】解:∵△OA 1A 2为等腰直角三角形,OA 1=1,∴OA 22∵△OA 2A 3为等腰直角三角形,∴OA 3=2=2(2);∵△OA 3A 4为等腰直角三角形,∴OA 4=23(2).∵△OA 4A 5为等腰直角三角形,∴OA 5=4=4(2),……∴OA n的长度为(2)n﹣1,故选:B.【点睛】此题主要考查了等腰直角三角形的性质以及勾股定理,熟练应用勾股定理得出是解题关键.1.(2020·山东临沂·中考真题)如图,数轴上点A对应的数是32,将点A沿数轴向左移动2个单位至点B,则点B对应的数是( )A.12-B.2-C.72D.12【答案】A【解析】【分析】数轴上向左平移2个单位,相当于原数减2,据此解答. 【详解】解:∵将点A沿数轴向左移动2个单位至点B,则点B对应的数为:32-2=12-,故选A.【点睛】本题考查了数轴,利用了数轴上的点右移加,左移减,在学习中要注意培养数形结合的数学思想.2.(2020·广西玉林·中考真题)观察下列按一定规律排列的n个数:2,4,6,8,10,12,…;若最后三个数之和是3000,则n等于()A.499 B.500 C.501 D.1002【答案】C【解析】【分析】根据题意列出方程求出最后一个数,除去一半即为n 的值.【详解】设最后三位数为x -4,x -2,x .由题意得: x -4+x -2+x =3000,解得x =1002.n =1002÷2=501.故选C .【点睛】本题考查找规律的题型,关键在于列出方程简化步骤.3.(2020·内蒙古呼伦贝尔·中考真题)已知实数a 在数轴上的对应点位置如图所示,则化简2|1|(2)a a ---的结果是( )A .32a -B .1-C .1D .23a - 【答案】D【解析】【分析】根据数轴上a 点的位置,判断出(a−1)和(a−2)的符号,再根据非负数的性质进行化简.【详解】解:由图知:1<a <2,∴a−1>0,a−2<0,原式=a−1-2a=a−1+(a−2)=2a−3.故选D .【点睛】此题主要考查了二次根式的性质与化简,正确得出a−1>0,a−2<0是解题关键.4.(2020·北京中考真题)实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A .2B .-1C .-2D .-3【答案】B【解析】【分析】 先根据数轴的定义得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴的定义得:12a <<21a ∴-<-<-2a ∴<又a b a -<<b ∴到原点的距离一定小于2观察四个选项,只有选项B 符合故选:B .【点睛】本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键.5.(2020·湖南娄底·中考真题)下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为( )A .135B .153C .170D .189【答案】C【解析】【分析】 由观察发现每个正方形内有:224,236,248,⨯=⨯=⨯=可求解b ,从而得到a ,再利用,,a b x 之间的关系求解x 即可.【详解】解:由观察分析:每个正方形内有:224,236,248,⨯=⨯=⨯=218,b ∴=9,b ∴=由观察发现:8,a =又每个正方形内有:2419,36220,48335,⨯+=⨯+=⨯+=18,b a x ∴+=1898170.x ∴=⨯+=故选C .【点睛】本题考查的是数字类的规律题,掌握由观察,发现,总结,再利用规律是解题的关键.6.(2020·云南中考真题)按一定规律排列的单项式:a ,2a -,4a ,8a -,16a ,32a -,…,第n 个单项式是( )A .()12n a --B .()2n a -C .12n a -D .2n a【答案】A【解析】【分析】先分析前面所给出的单项式,从三方面(符号、系数的绝对值、指数)总结规律,发现规律进行概括即可得到答案.【详解】 解: a ,2a -,4a ,8a -,16a ,32a -,…,可记为:()()()()()()0123452,2,2,2,2,2,,a a a a a a ------•••∴ 第n 项为:()12.n a --故选A .【点睛】 本题考查了单项式的知识,分别找出单项式的系数和次数的规律是解决此类问题的关键.7.(2020·内蒙古呼和浩特·中考真题)下列运算正确的是( )A12==± B .()325ab ab =C .22422()xy xy y x y x y x y x y y x ⎛⎫⎛⎫--+++=+ ⎪ ⎪--⎝⎭⎝⎭ D .223152845c a c c ab ab a-÷=- 【答案】C【解析】【分析】分别根据二次根式的乘法,幂的乘方和积的乘方,分式的混合运算,分式的除法法则判断即可.【详解】解:A12===,故选项错误; B 、()3236ab a b =,故选项错误;C 、2422xy xy y x y x y x y y x ⎛⎫⎛⎫--+++ ⎪ ⎪--⎝⎭⎝⎭=()()()22422x y x y y x xy xy y x y x y y x y x ⎛⎫-+-⎛⎫-++ ⎪ ⎪ ⎪----⎝⎭⎝⎭ =()()22x y x y x y y x+-⋅--- =()2x y +,故选项正确;D 、22222315348481510c a c c ab c ab ab ab a c a-÷=⨯=--,故选项错误; 故选C.【点睛】本题考查了二次根式的乘法,幂的乘方和积的乘方,分式的混合运算,分式的除法法则,解题的关键是学会计算,掌握运算法则.8.(2020·湖北黄冈·中考真题)计算:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是____________. 【答案】1x y- 【解析】 【分析】先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得. 【详解】 解:221y x x y x y ⎛⎫÷- ⎪-+⎝⎭()()yx y x x y x y x y x y ⎛⎫+=÷- ⎪+-++⎝⎭()()yyx y x y x y=÷+-+ ()()yx yx y x y y+=⋅+- 1x y=-, 故答案为:1x y-. 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 9.(2020·四川成都·中考真题)已知73a b =-,则代数式2269a ab b ++的值为_________. 【答案】49 【解析】 【分析】先将条件的式子转换成a +3b =7,再平方即可求出代数式的值. 【详解】解:∵73a b =-, ∴37a b +=,∴()2222693749a ab b a b ++=+==,故答案为:49. 【点睛】本题考查完全平方公式的简单应用,关键在于通过已知条件进行转换. 10.(2020·山东临沂·中考真题)若1a b +=,则2222a b b -+-=________. 【答案】-1 【解析】 【分析】将原式变形为()()22a b a b b +-+-,再将1a b +=代入求值即可. 【详解】解:2222a b b -+- =()()22a b a b b +-+- 将1a b +=代入, 原式=22a b b -+- =2a b +- =1-2 =-1故答案为:-1. 【点睛】本题考查了代数式求值,其中解题的关键是利用平方差公式将原式变形为()()22a b a b b +-+-. 11.(2020·山东烟台·中考真题)按如图所示的程序计算函数y 的值,若输入的x 值为﹣3,则输出y 的结果为_____.【答案】18 【解析】 【分析】根据﹣3<﹣1确定出应代入y =2x 2中计算出y 的值. 【详解】解:∵﹣3<﹣1,∴x =﹣3代入y =2x 2,得y =2×9=18, 故答案为:18. 【点评】本题主要考查函数值的计算,理解题意是前提条件,熟练掌握函数值的定义是解题的关键.12.(2020·山西中考真题)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形按此规律摆下去,第n 个图案有_______个三角形(用含n 的代数式表示).【答案】()31n + 【解析】 【分析】由图形可知第1个图案有3+1=4个三角形,第2个图案有3×2+ 1=7个三角形,第3个图案有3×3+ 1=10个三角形...依此类推即可解答.【详解】解:由图形可知:第1个图案有3+1=4个三角形, 第2个图案有3×2+ 1=7个三角形, 第3个图案有3×3+ 1=10个三角形, ...第n 个图案有3×n+ 1=(3n+1)个三角形. 故答案为(3n+1). 【点睛】本题考查图形的变化规律,根据图形的排列、归纳图形的变化规律是解答本题的关键.13.(2020·海南中考真题)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.图是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有_____________个菱形, 第n 个图中有____________个菱形(用含n 的代数式表示).【答案】41 2221n n -+ 【解析】 【分析】根据第1个图形有1个菱形,第2个图形有2×2×1+1=5个菱形,第3个图形有2×3×2+1=13个菱形,第4个图形有2×4×3+1=25个菱形,据此规律求解即可. 【详解】解:∵第1个图形有1个菱形, 第2个图形有2×2×1+1=5个菱形, 第3个图形有2×3×2+1=13个菱形, 第4个图形有2×4×3+1=25个菱形, ∴第5个图形有2×5×4+1=41个菱形, 第n 个图形有2×n ×(n-1)+1=2221n n -+个菱形.故答案为:41,2221n n -+. 【点睛】本题考查了规律型—图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.14.(2020·黑龙江绥化·中考真题)在函数15y x =+-中,自变量x 的取值范围是_________. 【答案】3x ≥且5x ≠ 【解析】 【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围. 【详解】根据题意得:301050x x x -≥⎧⎪+>⎨⎪-≠⎩,解得:3x ≥且5x ≠. 故答案为:3x ≥且5x ≠. 【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.(2020·山东安丘·初三三模)观察下列各式:11111122⎛⎫=+=+- ⎪⨯⎝⎭,111112323⎛⎫=+=+- ⎪⨯⎝⎭,111113434⎛⎫=+=+- ⎪⨯⎝⎭,请利用你发现的规律,计算:2222222211111111111112233420182019+++++++++⋯+++,其结果为____. 【答案】201820182019. 【解析】 【分析】根据题意找出规律,根据二次根式的性质计算即可. 【详解】2222222211111111111112233420182019++++++++++++ 11111111122320182019⎛⎫⎛⎫⎛⎫=+-++-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111201812233420182019=+-+-+-++- 201820182019=,故答案为:201820182019.【点睛】本题考查的是二次根式的化简、数字的变化规律,掌握二次根式的性质是解题 的关键.16.(2020·黑龙江大庆·中考真题)如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为_________.【答案】440 【解析】 【分析】先观察图形得出前四个图中黑色棋子的个数,再归纳类推出一般规律,由此即可得. 【详解】观察图形可知,黑色棋子的个数变化有以下两条规律:(1)正多边形的各顶点均需要1个黑色棋子(2)从第1个图开始,每个图的边上黑色棋子的个数变化依次是0,1,2,3,即第1个图需要黑色棋子的个数为330+⨯ 第2个图需要黑色棋子的个数为441+⨯第3个图需要黑色棋子的个数为552+⨯ 第4个图需要黑色棋子的个数为663+⨯归纳类推得:第n 个图需要黑色棋子的个数为(2)(2)(1)(2)n n n n n +++-=+,其中n 为正整数 则第20个图需要黑色棋子的个数为20(202)440⨯+= 故答案为:440. 【点睛】本题考查了整式的图形规律探索题,依据图形,正确归纳类推出一般规律是解题关键.17.(2020·辽宁鞍山·中考真题)先化简,再求值:2344111x x x x x ++⎛⎫--÷⎪++⎝⎭,其中2x =.【答案】22x x -+,1-【解析】 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值代入计算即可求出值. 【详解】解:原式=()()()21131112x x x x x x +-⎡⎤+-⨯⎢⎥+++⎣⎦=()()()211222x x x x x ++⨯+-+=22x x -+当2x =时,原式1-【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 18.(2020·山东菏泽·中考真题)先化简,再求值:21242244a a a a a a -⎛⎫-÷ ⎪+++⎝⎭,其中a 满足2230a a +-=. 【答案】2a 2+4a,6 【解析】 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,再代值计算即可求出值. 【详解】解:原式=2224124()+22(2)a a a a a a a +--÷++ =22284+2(2)a a a a a --÷+ =22(4)(+2)+24a a a a a -⨯- =2a(a+2) =2a 2+4a.∵2230a a +-=, ∴a 2+2a=3.∴原式=2(a 2+2a )=6. 【点睛】此题主要考查了分式的化简求值,正确化简分式是解题关键.19.(2020·贵州黔南·中考真题)在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点12348A A A A ⋯、、分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x 与通电话次数y 之间的关系用如图模型表示:(1)填写上图中第四个图中y 的值为_______,第五个图中y 的值为_______.(2)通过探索发现,通电话次数y 与该班级人数x 之间的关系式为________,当48x =时,对应的y =________.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生? 【答案】(1)10,15;(2)(1)2x x y -=,1128;(3)20 【解析】 【分析】(1)观察图形,可以找出第四和第五个图中的y 值; (2)根据y 值随x 值的变化,可找出(1)2x x y -=,再代入48x =可求出当48x =时对应的y 值; (3)根据(2)的结论结合九年级1班全体女生相互之间共通话190次,即可得出关于x 的一元二次方程,解之取其正值即可得出结论. 【详解】解:(1)观察图形,可知:第四个图中y 的值为10,第五个图中y 的值为15. 故答案为:10;15.(2)∵21324354651,3,6,10,1522222⨯⨯⨯⨯⨯=====, ∴(1)2x x y -=,当48x =时,48(481)11282y ⨯-==. 故答案为:(1)2x x y -=;1128.(3)依题意,得:(1)1902x x -=, 化简,得:23800x x --=,解得:1220,19x x ==-(不合题意,舍去).答:该班共有20名女生. 【点睛】本题考查了一元二次方程的应用以及图形的变化规律,观察图形找出变化规律是解题的关键. 20.(2019·江苏徐州·中考真题)(阅读理解)用1020cm cm 的矩形瓷砖,可拼得一些长度不同但宽度均为20cm 的图案.已知长度为10cm 、20cm 、30cm 的所有图案如下:(尝试操作)(1)如图,将小方格的边长看作10cm ,请在方格纸中画出长度为40cm 的所有图案.(归纳发现)(2)观察以上结果,探究图案个数与图案长度之间的关系,将下表补充完整. 图案的长度10cm 20cm 30cm 40cm50cm60cm所有不同图案的个数123【答案】(1)见解析;(2)5,8,13. 【解析】 【分析】(1)根据已知条件作图可知40cm 时,所有图案个数5个;(2)推出长度为50cm 时的所有图案,继而根据已知猜想60cm 时所有图案的个数即可. 【详解】 (1)如图:根据作图可知40cm 时,所有图案个数5个;(2)50cm时,如图所示,所有图案个数8个;同理,60cm时,所有图案个数13个,故答案为5,8,13.【点睛】本题考查应用与设计作图,规律探究;能够根据条件作图图形,探索规律是解题的关键.。

高中计算能力练习题及讲解带答案

高中计算能力练习题及讲解带答案

高中计算能力练习题及讲解带答案### 高中计算能力练习题及讲解#### 练习题1:代数运算题目:计算以下表达式:\[ (3x^2 + 2x - 5) - (x^2 - 4x + 7) \]解答:首先,我们需要去掉括号并合并同类项。

括号前的负号意味着括号内的每一项都要变号。

\[ (3x^2 + 2x - 5) - (x^2 - 4x + 7) = 3x^2 + 2x - 5 - x^2 + 4x - 7 \]接下来,合并同类项:\[ = (3x^2 - x^2) + (2x + 4x) + (-5 - 7) \]\[ = 2x^2 + 6x - 12 \]答案:\[ 2x^2 + 6x - 12 \]#### 练习题2:指数运算题目:计算以下指数表达式:\[ (2^3)^2 \]解答:根据指数的乘方法则,当一个指数被另一个指数所乘时,指数相乘。

\[ (2^3)^2 = 2^{3 \times 2} = 2^6 \]计算 \(2^6\):\[ 2^6 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 64 \]答案:\[ 64 \]#### 练习题3:三角函数题目:如果 \(\sin(\theta) = \frac{3}{5}\),求 \(\cos(\theta)\) 的值。

解答:我们知道 \(\sin^2(\theta) + \cos^2(\theta) = 1\)。

因此,我们可以解出 \(\cos(\theta)\):\[ \cos^2(\theta) = 1 - \sin^2(\theta) \]\[ \cos^2(\theta) = 1 - \left(\frac{3}{5}\right)^2 \]\[ \cos^2(\theta) = 1 - \frac{9}{25} \]\[ \cos^2(\theta) = \frac{16}{25} \]由于 \(\cos(\theta)\) 可以是正数也可以是负数,我们得到两个可能的解:\[ \cos(\theta) = \pm \frac{4}{5} \]答案:\[ \cos(\theta) = \pm \frac{4}{5} \]#### 练习题4:对数运算题目:计算以下对数表达式:\[ \log_2(8) + \log_2(32) \]解答:根据对数的乘法法则,\(\log_b(m) + \log_b(n) = \log_b(mn)\)。

求对数函数的解析式专项练习60题(有答案)

求对数函数的解析式专项练习60题(有答案)

求对数函数的解析式专项练习60题(有答案)1. 求解方程 $\log_{2} x = 4$。

解:由题意,可写出方程:2^4 = x。

解得 x = 16。

2. 求解方程 $\ln(x+5) = 2$。

解:由题意,可写出方程:e^2 = x + 5。

解得 x = e^2 - 5。

3. 求解方程 $\log_{3}(x-2) = 2$。

解:由题意,可写出方程:3^2 = x - 2。

解得 x = 11。

4. 求解方程 $\log_{4}(x+1) = 3$。

解:由题意,可写出方程:4^3 = x + 1。

解得 x = 63。

5. 求解方程 $\ln(2x-1)-\ln(x-3) = 1$。

解:由题意,可写出方程:ln(2x-1)/(x-3) = 1。

解得 x = 4。

6. 求解方程 $\log_{5}(x^2) = 4$。

解:由题意,可写出方程:5^4 = x^2。

解得 x = ±5。

7. 求解方程 $\ln(e^{2x-1}) = 3$。

解:由题意,可写出方程:e^{2x-1} = e^3。

解得 x = 2。

8. 求解方程 $\log(x+2) - \log(x-3) = 2$。

解:由题意,可写出方程:log((x+2)/(x-3)) = 2。

解得 x = 1。

9. 求解方程 $\log(3x+1) + \log(2x-1) = 2$。

解:由题意,可写出方程:log((3x+1)(2x-1)) = 2。

解得x ≈ 0.5。

10. 求解方程 $\log(x^2+1) - \log(2x-1) = 1$。

解:由题意,可写出方程:log((x^2+1)/(2x-1)) = 1。

解得 x = 2。

...继续解答剩余的题目......根据以上解答,可以得到求对数函数的解析式专项练习60题的文档。

请参考答案进行自我练习和验证。

计算方法考试题及其答案

计算方法考试题及其答案

计算方法考试题及其答案题目一:1. 计算以下方程的实根个数:3x^2 - 5x + 2 = 0解答一:首先,我们需要判断方程的判别式是否大于0。

判别式 D = b^2 - 4ac,其中 a、b、c 分别为方程中各项的系数。

对于方程 3x^2 - 5x + 2 = 0,a = 3,b = -5,c = 2。

将这些值代入判别式公式得到 D = (-5)^2 - 4 * 3 * 2 = 25 - 24 = 1。

由于判别式大于0,根据二次方程解的性质可知,该方程有两个不相等的实根。

题目二:2. 求下列函数的导数:f(x) = sin(2x) + 3x^2 - 2x解答二:对于这个函数,我们需要分别求出各项的导数,然后将其相加。

f'(x) = (sin(2x))' + (3x^2)' - (2x)'对于第一项,根据链式求导法则,其导数为 cos(2x) * (2x)' =2cos(2x)。

对于第二项,使用幂函数求导法则,其导数为 3 * 2x^(2-1) = 6x。

对于第三项,一次项的导数为常数系数,即 -2。

将上述导数相加,得到 f'(x) = 2cos(2x) + 6x - 2。

题目三:3. 某公司年利润为 100 万元,假设每年增长 10%,那么经过 n 年后公司的利润是多少?解答三:假设 n 年后公司的利润为 P(万元)。

根据题意可知,公司每年的利润增长率为 10%,也即每年的利润增加量为当前利润的 10%。

因此,我们可以得到以下关系式:P = 100 + 0.1 * 100 + 0.1^2 * 100 + ... + 0.1^n * 100这是一个等比数列求和的问题,我们可以使用等比数列求和公式来解决:P = 100 * [(1 - 0.1^(n+1)) / (1 - 0.1)]简化上述公式后可得 P = 1000 * (1 - 0.1^(n+1)) / (1 - 0.1)。

代数式规律题与代数式求值(原卷版)--中考数学重难点专题训练

代数式规律题与代数式求值(原卷版)--中考数学重难点专题训练

回归教材重难点01代数式规律题与代数式求值本考点是中考三星高频考点,难度中等偏上,在全国部分地市的中考试卷中也多次考查。

(2022年广州卷第10题)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n个图形需要2022根小木棒,则n的值为()A.252B.253C.336D.337【分析】根据图形特征,第1个图形需要6根小木棒,第2个图形需要6×2+2=14根小木棒,第3个图形需要6×3+2×2=22根小木棒,按此规律,得出第n个图形需要的小木棒根数即可.【解答】解:由题意知,第1个图形需要6根小木棒,第2个图形需要6×2+2=14根小木棒,第3个图形需要6×3+2×2=22根小木棒,按此规律,第n个图形需要6n+2(n﹣1)=(8n﹣2)根小木棒,当8n﹣2=2022时,解得n=253,故选:B.【点评】本题主要考查了图形的变化规律,解决问题的关键是由特殊找到规律:第n个图形需要(8n﹣2)根小木棒是解题的关键.代数式规律题是代数式章节衍生出的一类经典题型,可以说是贯穿整个初中的学习。

而代数式求值问题也是初中数学中比较重要的内容,代数式包含整式、分式、根式三大部分,考察较多的是整式的求值。

在解决代数式求值问题时,常用到的思想方法有整体思想、转化思想、方程思想等,个别综合性较高的问题对学生的逻辑思维能力要求也较高。

因此,在复习代数式规律题和代数式求值问题时,一是要熟悉对应题型,掌握对应解决办法,二是要融合各思想方法,提高对综合题目的逻辑理解力。

本考点是中考四星高频考点,难度中等或偏上,在全国部分地市的中考试卷中也多次考查。

技法01:周期型规律题常见处理办法:①.找出第一周期的几个数,确定周期数②.算出题目中的总数和待求数③.用总数÷周期数=m……n(表示这列数中有m个整周期,最后余n个)④.最后余几,待求数就和每周期的第几个一样;技法02:推理型规律题常见处理办法:①依题意推出前3~4项规律的表达式;②类推第N项表达式技法03:代数式求值问题常用处理办法:①变形已知条件,使其符合待求式中含字母部分的最简组合形式②将待求式变形,使其成为含有上面最简组合式的表达式,③代入未知最简组合形式部分的值,求出最后结果代数式规律题【中考真题练】1.(2022•济宁)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是()A.297B.301C.303D.4002.(2022•牡丹江)观察下列数据:,﹣,,﹣,,…,则第12个数是()A.B.﹣C.D.﹣3.(2022•玉林)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF的顶点A处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是()A.4B.2C.2D.04.(2022•恩施州)观察下列一组数:2,,,…,它们按一定规律排列,第n个数记为a n,且满足+=.则a4=,a2022=.5.(2022•大庆)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是.6.(2022•泰安)将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是.【中考模拟练】1.(2023•云南模拟)有一组按规律排列的多项式:a﹣b,a2+b3,a3﹣b5,a4+b7,…,则第2023个多项式是()A.a2023+b4047B.a2023﹣b4047C.a2023+b4045D.a2023﹣b40452.(2023•德城区一模)已知整数a1,a2,a3,a4,……满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……依此类推,则a2023的值为()A.﹣1011B.﹣1010C.﹣2022D.﹣20233.如图,被称为“杨辉三角”或“贾宪三角”.其规律是:从第二行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和,表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n.则a100的值为()A.100B.199C.5050D.100004.(2023春•硚口区月考)我国宋朝时期的数学家杨辉,曾将大小完全相同的圆弹珠逐层堆积,形成“三角垛”.如图,第1个图有1颗弹珠;第2个图有3颗弹珠;第3个图有6颗弹珠;第4个图有10颗弹珠;…;用a n表示第n个图的弹珠数,若…+=,则n的值是()A.1012B.2022C.2023D.20245.(2023•涟源市一模)如图,下列是一组有规律的图案,它们由边长相同的小正方形组成,按照这样的规律,第n个图案中涂有阴影的小正方形的数量是个.(用含有n的式子表示)代数式求值【中考真题练】1.(2022•郴州)若=,则=.2.(2022•成都)已知2a2﹣7=2a,则代数式(a﹣)÷的值为.3.(2022•邵阳)已知x2﹣3x+1=0,则3x2﹣9x+5=.4.(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b﹣1的值是.5.(2022•苏州)已知3x2﹣2x﹣3=0,求(x﹣1)2+x(x+)的值.6.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.7.(2022•金华)如图1,将长为2a+3,宽为2a的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长.(2)当a=3时,该小正方形的面积是多少?【中考模拟练】1.(2023•新华区模拟)已知a+2b﹣3=0,则2a+4b+6的值是()A.8B.12C.18D.242.(2023•香洲区校级一模)若,则=.3.(2023•化州市模拟)已知﹣2m+3n2+7=0,则代数式﹣12n2+8m+4的值等于.4.(2023•沭阳县模拟)按如图所示的运算程序,输入x的值为1时,则输出y值为.5.(2023•汉中一模)在数学活动课上,同学们利用如图所示的程序进行计算,计算按箭头指向循环进行.如,当初始输入5时,即x=5,第1次计算结果为16,第2次计算结果为8,第3次计算结果为4,…(1)当初始输入1时,第1次计算结果为;(2)当初始输入4时,第3次计算结果为;(3)当初始输入3时,依次计算得到的所有结果中,有个不同的值,第20次计算结果为.。

C语言运算符与表达式练习(附答案)

C语言运算符与表达式练习(附答案)

1、写出下列各逻辑表达式的值。

设,a=3,b=4,c=5。

(1)a+b>c&&b==c 0(2)a||b+c&&b—c 1(3)!(a>b)&&!c||1 1(4)!(x=a)&&(y=b)&&0 0(5)!(a+b)+c-1&&b+c/2 12、阅读程序,写出运行结果:#include 〈stdio。

h>main(){int a=3,b=1,x=2, y=0;printf(”%d,%d \n",(a>b)&&(x>y), a〉b&&x〉y);printf("%d, %d \n”,(y||b)&&(y||a),y||b&&y||a);printf("%d\n",!a||a〉b);}1,11,114、有以下程序main(){int a=1,b=2,m=0,n=0,k;k=(n=b〉a)||(m=a<b);printf(”%d,%d\n”,k,m);}程序运行后的输出结果是1,05、以下程序的输出结果是1main(){int a=4,b=5,c=0,d;d=!a&&!b||!c;printf("%d\n",d);}6、以下程序的输出结果是2,1。

#include<stdio.h>main(){int a ,b,d=241;a=d/100%9;b=(-1)&&(—1);printf("%d,%d\n”,a,b);}7、为表示关系x≥y≥z,应使用C语言表达式是(y〈=z)&&(y〉=x)。

8、已知:char c;int a,b,d;c=’w’; a=1; b=2;d=-5; 求下列表达式的值:(1)‘x’+1〈c 1(2)‘Y’!=c-5 1(3)-a—5*b〉=d+1 0(4) 3〉d<—1 0(5)d!=b+2==4 19、有以下程序,阅读后写出程序的运行结果.main(){int m=3,n=4,x;x=—m++;x=x+8/++n;printf(”%d\n",x);} —210、有以下程序,阅读后写出程序的运行结果。

C语言运算符与表达式训练附答案

C语言运算符与表达式训练附答案

逻辑表达式类型:与运算、 或运算、非运算
逻辑运算符:&&、||、!
逻辑表达式应用:条件判断、 循环控制
逻辑表达式注意事项:运算 符优先级、括号的使用
条件表达式定义
条件表达式的语法
条件表达式的应用
条件表达式的注意 事项
逗号表达式的定义 逗号表达式的语法结构 逗号表达式的执行顺序 逗号表达式的应用场景
编写一个C程序, 要求输入两个浮 点数,计算它们 的和、差、积、 商,并将结果输 出到屏幕上。
编写一个C程序, 要求输入一个字符 串和一个整数,将 字符串中的第几个 字符替换为指定的 字符,并将结果输 出到屏幕上。
编写一个C语 言程序,要求 实现两个数的 四则运算,并
输出结果。
编写一个C语言 程序,要求实 现一个简单的 计算器,可以 进行加减乘除
逻辑或(||):用于连接两个或多个条件,只要其中一个条件为真,结果就为真。
单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。单击此处添加正文, 文字是您思想的提炼,请言简意赅的阐述您的观点。
逻辑非(!):用于对一个条件取反,当条件为真时,结果为假;当条件为假时,结果为真。
单击此处添加正文,文字是您思想的提炼,请言简意赅的阐述您的观点。单击此处添加正文, 文字是您思想的提炼,请言简意赅的阐述您的观点。
条件运算符的语法:使用"?"和":"表示条件运算符的格式 条件运算符的执行顺序:先计算条件表达式,再执行相应的语句 条件运算符的应用示例:使用条件运算符进行条件判断和选择执行语句
注意事项:避免在条件表达式中过度嵌套条件运算符,以免影响代码可读性和性能
逗号运算符的定 义
逗号运算符的优 先级

运算符与表达式练习题附答案

运算符与表达式练习题附答案

运算符与表达式练习题附答案(总5页)-本页仅作为预览文档封面,使用时请删除本页-1. 以下运算符中优先级最高的是()。

A.&&B.+ C.!=D.:2.能正确表示逻辑关系:“a≥10或a≤0”的C语言表达式是()。

>=10 or a<=0 >=10|a<=0 >=10 && a<=0 >=10||a<=03. C语言中运算对象必需是整型的运算符是()。

(A)+ (B)/ (C)% (D)*4. 已知int i;float f;正确的表达式是()。

A)(int f)%i B) int(f)%i C) int(f %i) D) (int)f % i5. 下列程序的输出结果是()。

voidmain( ){ int a=7,b=5; printf("%d\n",b=b%a); }(A)0 (B)1 (C)5 (D)不确定值6. 若有定义:int a=8,b=5,c;,执行语句c=a/b+;后,c的值为()。

(A)(B)1 (C)(D)27. 已知x=,y=,求表达式(x+y)/2+(int)y%(int)x的值()。

A) 3 B)5 C) D)8. 已知各变量的类型如下int i=8,k,a,b;unsigned long w=5;double x=,y=;则以下符合C语言语法的表达式是()。

(A)a+=a-=(b=4)*(a=3)(B)a=a*3+2(C)x%(-3)(D)y=float(i)9. 已知int a,b;执行语句a=(b=3*2,b*4),a+6;后变量a的值为()。

A)6 B) 12 C) 24 D)3010. 若有以下程序main(){int k=2,i=2,m;m=(k+=i*=k); printf("%d,%d\n",m,i); }执行后的输出结果是()。

(A)8,6 (B)8,3 (C)6,4 (D)7,411. 设 int i,j=5;执行语句i=(++j)+(++j);后i 的值是()。

算术表达式求值算法解析

算术表达式求值算法解析
迭代算法
迭代算法在处理复杂表达式时效率较高,因为避免了重复计算,但在处理简单表达式时,由于需要遍历整个表达 式,效率较低。
算法适用范围比较
递归算法
递归算法适用于处理简单的算术表达式 ,如加减乘除等。
VS
迭代算法
迭代算法适用于处理复杂的算术表达式, 如包含括号、指数、对数等运算的表达式 。
算法优缺点比较
预测分析法的优点是处理效率较高,适用于大规模的算术 表达式处理,但缺点是需要使用大量的栈空间,且对于复 杂的算术表达式处理能力有限。
逆波兰表示法
逆波兰表示法是一种不需要括号来表示运算符优先级的方法,通 过将操作数放在前面,运算符放在后面来表示算术表达式。
逆波兰表示法将算术表达式转换为逆波兰表示形式后,可以直接 从左到右依次读取并计算表达式的值。
高程序的执行效率。例如,通过消除冗余计算、简化表达式等手段来优
化代码。
在数学计算器中的应用
表达式求值
数学计算器需要能够对用户输入的算术表达式进行求值,以便得到计算结果。算术表达式求值算法可以用于实现这一 功能,快速准确地计算表达式的值。
符号计算
数学计算器可能需要支持符号计算,即对包含未知数的算术表达式进行求解。算术表达式求值算法可以用于实现符号 计算,通过迭代和近似方法求解表达式的根或极值等。
多精度计算
在一些情况下,数学计算器需要支持多精度计算,以避免浮点数精度问题。算术表达式求值算法可以用 于实现多精度计算,提供更高的计算精度和可靠性。
在人工智能领域的应用
机器学习
数据推理
在机器学习领域,算术表达式求值算 法可以用于实现特征工程和模型训练 过程中的数值计算。例如,在神经网 络训练中,需要对权重、偏差等参数 进行迭代更新,算术表达式求值算法 可以高效地完成这些计算任务。

c语言表达式测试题目及答案

c语言表达式测试题目及答案

c语言表达式测试题目及答案1. 以下哪个表达式是合法的?A. 5 + 3 = 8B. a = b = 5C. 5 && 3D. 5 < 3答案:D2. 计算表达式 `3 * 2 / 4` 的结果是多少?A. 1B. 2C. 3D. 6答案:A3. 以下哪个选项是正确的逻辑表达式?A. 5 && 0B. 5 || 0C. 5 && 5D. 0 || 5答案:C4. 计算表达式 `a = 10, b = a + 1, b * a` 的结果是多少,假设`a` 和 `b` 都是整型变量?A. 110B. 100C. 11D. 101答案:A5. 如果 `x` 是一个整型变量,那么表达式 `x = 5, x * 2, x + 3` 的值是多少?A. 5B. 10C. 8D. 3答案:A6. 以下哪个选项是正确的赋值表达式?A. a = b = c = 1B. a = (b = 1)C. a = b = (c = 1)D. a = b = c = 1 = 2答案:A7. 计算表达式 `3 + 4 * 2 / (6 - 2)` 的结果是多少?A. 2B. 3C. 5D. 6答案:C8. 以下哪个选项是正确的条件表达式?A. x ? : yB. x ? y : zC. x ? y : zD. x ? y答案:B9. 如果 `x` 和 `y` 是整型变量,且 `x` 的值为 10,`y` 的值为 5,那么表达式 `x % y` 的值是多少?A. 0B. 1C. 2D. 5答案:A10. 计算表达式 `a = 5, a * (b = 2, b + 3)` 的结果是多少,假设`a` 和 `b` 都是整型变量?A. 25B. 20C. 15D. 10答案:A。

求函数表达式的题20道

求函数表达式的题20道

求函数表达式的题20道下面是一些函数表达式的题目:1.函数f(x)的定义域为实数集合,f(x)=x^2-2x,求f(3)的值。

2.函数g(x)的定义域为实数集合,g(x)=2x^3+3x^2-x+1,求g(-1)的值。

3.函数h(x)的定义域为实数集合,h(x)=√(x+5),求h(9)的值。

4.函数p(x)的定义域为实数集合,p(x)=3/x,求p(2)的值。

5.函数q(x)的定义域为实数集合,q(x)=,x+3,求q(-2)的值。

6.函数r(x)的定义域为实数集合,r(x)=3x+1,求r(-2)的值。

7.函数s(x)的定义域为实数集合,s(x)=2x^2-5x+3,求s(2)的值。

8.函数t(x)的定义域为实数集合,t(x)=√(x^2+4x),求t(1)的值。

9.函数u(x)的定义域为实数集合,u(x)=4x^3+2x^2-x,求u(-1)的值。

10.函数v(x)的定义域为正整数集合,v(x)=x^2-3x+2,求v(4)的值。

11.函数w(x)的定义域为正整数集合,w(x)=x^2+2x,求w(5)的值。

12.函数y(x)的定义域为正整数集合,y(x)=2^x,求y(3)的值。

13. 函数z(x)的定义域为正整数集合,z(x) = log(x),求z(10)的值。

14.函数a(x)的定义域为正整数集合,a(x)=2x-1,求a(7)的值。

15.函数b(x)的定义域为正整数集合,b(x)=√(x),求b(16)的值。

16.函数c(x)的定义域为正整数集合,c(x)=x^3+x^2+x,求c(2)的值。

17.函数d(x)的定义域为正整数集合,d(x)=x^2+5x+6,求d(1)的值。

18.函数e(x)的定义域为正整数集合,e(x)=3^x,求e(2)的值。

19. 函数f(x)的定义域为正整数集合,f(x) = log(x + 1),求f(100)的值。

20.函数g(x)的定义域为正整数集合,g(x)=4x-3,求g(10)的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【题1】计算表达式值
输入一个表达式,该表达式含‘+’、‘-’、‘*’、‘/’和操作数,所含字符数不超过255,以‘@’
结束。

输出该表达式的值。

分析:
由于一个表达式含操作数、运算符和括号,因此只能采用字符串类型输入,而字符是不能进行
数值计算的。

在这种情况下,计算机又如何计算表达式的值呢。

一般方法是
中缀表达式→等价的后缀表达式→计算后缀表达式的值
1、中缀表达式和后缀表达式的特征
中缀表达式:中缀表达式与通常的表达式一样,运算符位于两个操作之间,计算规则为
①先括号内、后括号外;
②无括号或同层括号内先*、/、后+、-;
③同级运算按由左至右顺序进行。

为了计算方便,输入的中缀表达式串以‘@’为结束标志。

例如3*(5–2)+7@
后缀表达式:后缀表达式中不再引入括号,运算符放在两个运算对象之后。

所有计算按运算符
出现的顺序,严格地由左而右进行(不再考虑运算符的优先规则)。

为了计算方便,以‘.’为操作
数的结束标志,以‘@’为后缀表达式的结束标志。

例如3*(5-2)+7@ 对应的后缀表达式为
3.5.2.-*7.+。

后缀表达式是简化运算顺序的一种表达式。

2、将中缀表达式转换为等价的后缀表达式
在中缀表达式中,运算符出现次序与计算顺序不一致,实际计算顺序不仅要看它的出现次序,
还要受运算符的优先级和括号的影响。

如果把一个中缀表达式中所有的计算顺序都按计算规则用嵌
套括号的形式表示出来,其转换过程就要清楚的多。

例如中缀表达式3*(5–2)+7@可以改写成
((3*(5–2))+7)@。

这时可以看出,只要将每对括号中的运算符移到相应括号的后面,再删去所有
括号,便得到与之等价的后缀表达式3.5.2.*7.+@ 。

为了将中缀表达式转换为等价的后缀表达式,需要从左至右扫描中缀表达式,并使用一个栈s2
来存放中缀表达式中的开括号‘(’和暂时不能参与计算的运算符,显然s2栈的元素类型为char。

为了方便表达式值的计算,在转换后的后缀表达式中,每一个操作数尾添加一个‘.’。

例如计算
3*(5–2)+7@
具体算法如下:
var
a,e:string; {后缀表达式和中缀表达式}
s2:array[1..100]of char; {栈,存放暂不参与计算的运算符}
t,i:integer; {栈顶指针、中缀表达式的字符指针}
w:char;
begin
读中缀表达式e;
a←‘’; {后缀表达式初始化为空}
i←1;t←0; {从中缀表达式的第一个字符开始分析,栈空}
while e[i]<>’@’ do {由左而右扫描处理中缀表达式的每一个字符}
begin
case e[i]of
‘0’‥’9’:begin {操作数进入后缀表达式} while e[i] in[0..9] do
begin
a←a+e[i]; i←i+1;
end;{while}
a←a+’.’;i←i-1; {添加操作数的结尾标志} end;{‘0’‥’9’}
‘(’: push (s2.’(’, t); {‘(’入栈}
‘)’: begin {s2栈中栈顶至’(’间的所有运算符相继出栈,进入后缀表达式} w←pop(s2,t);
while w<>’(’ do
begin
a←a+w;w←pop(s2,t);
end;{while}
end;{‘)’}
‘+’,’-’: begin{s2栈中,栈顶至’(’前的所有运算符相继出栈,进入后缀表达式,e[i]进入s2栈}
if t<>0
then begin
w←top (s2,t);
while w<>’(’ do
begin
a←a+w;w←pop (s2,t);
if t=0 then break
else w←top (s2,t);
end;{while}
end;{then}
push (s2,e[i],t);
end;{‘+’,’-’}
‘*’,’/’: begin{s2栈中栈顶至第1个’+’或’-’前的所有运算符相继出栈,进入后缀表达式,e[i]进入s2栈}
if t<>0 then
begin
w←top (s2,t);
while (w=’*’) or (w=’/’)do
begin
a←a+w; w←pop (s2,t);
if t=0 then break
else w←top (s2,t);
end;{while}
end;{then}
push(s2,e[i],t);
end;{‘*’,’/’}
end;{case}
i←i+1; {准备扫描处理中缀表达式的下一个字符} end;{while}
while t<>0 do {s2栈中的运算符相继出栈,进入后缀表达式} begin
a←a+pop (s2,t);
end;{while}
a←a+’@’;
输出后缀表达式a;
end; {算法结束}
3、计算后缀表达式的值
有了后缀表达式,便可以按照由左而右的顺序计算表达式的值。

3.5.2.-*7.+@
=3.3.*7.+@
=9.7.+@
=16
这个计算结果正好为表达式3*(5–2)+7的值。

在计算过程中,我们使用栈s存放操作数和计算结果,显然s的元素类型为整型。

计算过程如下:
由左而右处理后缀表达式串a中的每一个字符。

如遇到一个操作数,就送入s栈中保存;如遇到一个运算符,就从栈中取出栈顶的两个操作数进行计算,然后将计算结果重新压入栈中。

依次类推,直至表达式最后一个运算符处理完毕,这时的栈顶元素值即为计算结果。

例如计算后缀表达式3.5.2.-*7.+@的值
具体算法如下:
var
s: array[1..100]of longint; {栈} a: string; {后缀表达式} t,i,j,k :integer; {t—栈顶指针;i—后缀表达式的字符指针;k、j—操作数值} begin
输入中缀表达式,计算等价的后缀表达式a;
i←1; t←0; {后缀表达式的字符指针和栈顶指针初始化} while a[i]<> ’@’ do {若后缀表达式末处理完,则循环} begin
case a[i] of
’0’‥’9’: begin {取出以a[i]为首的操作数,存入s栈} k←0;
repeat
k←10*k+ord(a[i])-ord(’0’);
i←i+1;
until a[i]=’.’;
push (s,k,t); {操作数k压入s栈} end;{’0’‥’9’}
’+’: push(s,pop (s,t)+pop(s,t),t);{取出栈顶的两个操作数进行加法运算,其和重新压入栈中}
’-’: begin {取出栈顶的两个操作数进行减法运算,其差重新压入栈中} j←pop (s,t);
push (s,pop (s,t) –j, t);
end;{’-’}
’*’: push (s,pop(s,t)*pop(s,t),t);{取出栈顶的两个操作数进行乘法运算,其积重新压入栈中}
’/’: begin {取出栈顶的两个操作数进行除法运算,其商重新压入栈中} j←pop(s,t); push(s,pop(s,t)div j, t);
end;{’/’}
end;{case}
i←i+1; {分析后缀表达式的下一个字符} end;{while}
writeln(pop(s,t)); {输出表达式的值} end.{main}。

相关文档
最新文档