一类新型改进的广义蚁群优化算法

合集下载

一种改进蚁群算法在配电网优化规划中的应用

一种改进蚁群算法在配电网优化规划中的应用

文献标志码
电网规划 是 电力 系 统 规划 的重 要 组 成 部 分 , 其
任 务是 根据 规 划 期 间 的 负 荷增 长 给 电 源规 划 方 案
的过程 中释放 了 有 关 食 物 源 的启 发 性 信 息 来 召 集 同伴 。不 同的物 种有 不 同 的 召集 机 制 , 可 以是 直 既 接 的信 息传递 , 可 以是 间 接 的 。大 多 蚁 群利 用 信 也 息 素来进 行 间接 通 信 。 当一 只 蚂 蚁发 现食 物 以后 ,
21 0 1年 5月 2 3日收 到
式 ( ) 目标 函 数 , 城 市 i .之 间 的 距 离 。 1为 d是 和 d d 为 对称 T P问题 。m 为蚁 群 中蚂 蚁 的数 量 , = S
() 示 t t表 时刻在 残 留的信息 量 ; =1d , 和 叼 / O t

2 1 SiT c. nn. 0 c. eh E g g l

种 改进 蚁 群 算 法 在 配 电 网优 化 规 划 中 的 应 用
刘 立 王 建 兴 秦 书硕 莫 城 恺
( 明理 工 大 学 电力 工 程 学 院 , 明 6 00 昆 昆 50 0)


配电 网规划是一个 复杂的非线性组合优化 问题 。为解决这 一难题 , 出一种 基于 改进 蚁群 算法 的配 电网优 化规划 提
启发 式算法 , 比如 : 传 算 法 J 模 拟 退 火 算 法 , 遗 , 粒
子群算 法 , 群算 法等 , 步开始 应用 于 电 网规 划 。 蚁 逐
1 基本蚁群算法介绍
蚁群 算 法 是 由 意 大 利 学 者 D r o等 在 2 oi g 0
城 市 的最短 长度 闭合 ( 密 尔顿 ) 径 。令 7表 示 哈 路 r

智能控制课件蚁群优化算法

智能控制课件蚁群优化算法

实验数据(算法复杂度)
摘自Ant Colony Optimization
4 实例:JSP
Job-shop Scheduling Problem
M:机器数量 J :任务数 ojm:工序 djm:工时
O ,o jm, :工序集合
JSP(Muth & Thompson 6x6)
m.t Job1 3.1 Job2 2.8 Job3 3.5 Job4 2.5 Job5 3.9 Job6 2.3
Update the shortest tour found
TSP蚁群算法(ant-cycle)
Step 4.2
For every edge (i,j) For k:=1 to m do
m
ij
k ij
k 1
k ij
Q Lk
0
if (i, j) tour described by tabuk otherwise
TSP蚁群算法(ant-cycle)
Step 6
If (NC < NCMAX) and (not stagnation behavior) then Empty all tabu lists Goto step 2 else Print shortest tour Stop
3 蚁群算法调整与参数设置
符合TSP规则; 完成一次旅行后,在经过的路径上释放信息
素; 无需按原路返回。
实例:TSP(参数与机制)
路径上的信息素浓度 ij (t) 信息素更新
ij (t n) ij (t) ij
信息素释放(ant-cycle)
m
ij
k ij
k 1
k ij
Q Lk
if k - th ant uses edge (i, j) in its tour (between time t and t n)

一类新型改进的广义蚁群优化算法

一类新型改进的广义蚁群优化算法

ht cmp e wt aio a at ln pi zt g r ta,o a ilrdt n l n oo yo t iaina o tm, eI AC g r m h odprom neb t o lb l o ma r d lt i c m o l i h t G O a oi a go e r a c o ngo a y  ̄ l h l h t s f h l
数 , 出 了蚂蚁 在某 一源节 点选 择下 一个 节点 的更 一般 的表 达式 。证 明了算 法 收敛 的重 要定 理 : 足 够大 的迭 代 次数 , 给 即对
改进 的广 义蚁 群优 化算 法至少 找 到最优 解一 次 的概率 趋近 于 1 。提 出 了信 息 素渐 近平 衡原 理 。在 信息 素 更新 规 则 中 , 引
最 优 解 的 收 敛 性 证 明 , 们 将 这 类 算 法 取 名 为 他 A0 C 算法 。与传统 的 A O算 法一样 , C g 算 C A Ob 算法 的概率选 法中信息素蒸发率是常数 。 C AO
∈ 【 b ,是 时间参 数 ,( ) a。i t 】 rt 表示 t 时刻 的源 , ( ) dt
张 代 远
( 南京 邮 电大学 计算机 学院 , 苏 南京 2 00 ; 江 103
江 苏省 无线传 感 网 高技 术研 究重点 实验 室 , 苏 南 京 2 0 0 ; 江 10 3
南京 邮 电大 学 计 算机技 术研 究所 , 苏 南京 2 00 ) 江 10 3
摘 要 : 出 了一类新 型蚁 群优 化算 法 。该 算 法改进 了概 率 选 择 函数 , 概 率选 择 函 数 由严 格单 调 增 函数 推 广为 有 界 函 提 将
rh A O算 法 ) 它是组合优化问题 的一种后启发式 i m, C t , 近似求解方法 。 在蚁群优化算法 中, 些人 工蚂蚁 模拟 真实 蚂蚁 一 通过环境 的间接交 流来求解 问题…。优 良解 的构造就 是这些人 工 蚂蚁 之 间交互 合 作 的结 果 。为 了讨 论 方

解决作业车间调度问题的改进蚁群优化算法

解决作业车间调度问题的改进蚁群优化算法
第2 卷 第2 8 期
2 0 3 01 生 B






V_1 8 No.2 0 .2
Ma .0 0 r2 1
J OURNAL OF APPLI ED CI S ENCES — —Elc r n c n nor to gn e ig e to isa d I f ma in En ie rn
基 于作业车间调度 问题邻域结构的局部搜 索. 实验表 明该文算法有效. 关键 词 : 业 车 间 调度 ; 群 优化 算 法 ; 先 规 则 ;邻域 结 构 作 蚁 优
中 图分 类 号 : TN3 l 0 文 献 标 志码 : A
I pr v d A n m o e t Co o y Optm i a i n A l o ihm o o ho ln i z to g rt frJ b S p Sc e uln o e h d i g Pr bl m
Z HANG h —in Z Z i a g , HANG ig , Z q Jn HANG a g , L h -u n Xin IS uj a 。
1 F c l { o ue ce c n n ier g Xi n U iest lT c n l y Xi n7 0 4 , hn . aut o C mp trS in ea dE gn ei nv ri o eh oo . 1 0 8 C ia y n a y g a
al rt go ihm .
Ke wo ds j b s o c e ui g a tc ln p i z to p irt ul,n ih o h o tu t r y r : o h p s h d l , n oo y o tmia in, ro iy r e eg b r o d s r c u e n

蚁群优化算法

蚁群优化算法
规则虽然简单,但在地点数目增多后求解却极为复杂。以42个地点 为例,如果要列举所有路径后再确定最佳行程,那么总路径数量之 大,几乎难以计算出来。 多年来全球数学家绞尽 脑汁,试图找到一个高 效的算法。 TSP问题在物流中的描 述是对应一个物流配送 公司,欲将n个客户的 订货沿最短路线全部送 到。如何确定最短路线。
第9章 智能优化方法
Contents
1 2
遗传算法
蚁群优化算法 粒子群优化算法
3
蚁群优化算法
先看1个最优化例子
“旅行商问题”(Travel Salesman Problem, TSP 问题)常被称为“旅行推销员问题”,是指一名推销员要 拜访多个地点时,如何找到在拜访每个地点一次后再回到 起点的最短路径。
k 1 m
5.2 算法流程
路径构建 信息素更新
5.2 算法流程
例5.1 给出用蚁群算法求解一个四城市的TSP问题的执 行步骤,四个城市A、B、C、D之间的距离矩阵如下
3 1 2 3 5 4 W dij 1 5 2 2 4 2
假设蚂蚁种群的规模m=3,参数=1,=2,r=0.5。
5.2 算法流程
信息素更新
(1)在算法初始化时,问题空间中所有的边上的信息素都被初始 化为0。 (2)算法迭代每一轮,问题空间中的所有路径上的信息素都会发 生蒸发,我们为所有边上的信息素乘上一个小于1的常数。信息素 蒸发是自然界本身固有的特征,在算法中能够帮助避免信息素的 无限积累,使得算法可以快速丢弃之前构建过的较差的路径。 (3)蚂蚁根据自己构建的路径长度在它们本轮经过的边上释放信 息素。蚂蚁构建的路径越短、释放的信息素就越多。一条边被蚂 蚁爬过的次数越多、它所获得的信息素也越多。 (4)迭代(2),直至算法终止。

蒙特卡洛树蚁群算法

蒙特卡洛树蚁群算法

蒙特卡洛树蚁群算法一、引言蒙特卡洛树蚁群算法(Monte Carlo Tree Ant Colony Algorithm)是一种基于蚁群算法和蒙特卡洛树搜索的优化算法。

它结合了蚁群算法的全局搜索能力和蒙特卡洛树搜索的局部搜索能力,能够在解决复杂问题时提供较好的性能和效果。

二、蚁群算法简介蚁群算法是一种模拟蚂蚁觅食行为的启发式优化算法。

蚂蚁在觅食过程中,通过释放信息素来引导其他蚂蚁选择路径,从而实现全局最优解的搜索。

蚁群算法在解决旅行商问题、资源调度、路径规划等优化问题中具有优秀的性能。

三、蒙特卡洛树搜索简介蒙特卡洛树搜索(Monte Carlo Tree Search,简称MCTS)是一种用于决策问题的搜索算法。

它通过不断模拟随机决策,并根据模拟结果调整决策策略,最终找到最优解。

蒙特卡洛树搜索在围棋、五子棋等复杂博弈游戏中取得了重大突破。

四、蒙特卡洛树蚁群算法原理蒙特卡洛树蚁群算法是将蚁群算法和蒙特卡洛树搜索相结合的一种优化算法。

它通过蚁群算法的全局搜索能力找到问题的大致解空间,然后利用蒙特卡洛树搜索的局部搜索能力进一步优化解空间,从而得到最优解。

蒙特卡洛树蚁群算法的具体步骤如下:1. 初始化蚁群:在解空间中随机生成一组蚂蚁,并将它们放置在解空间的不同位置。

2. 全局搜索:每只蚂蚁根据信息素和启发式信息选择下一步的移动方向,并更新信息素。

3. 局部搜索:根据蒙特卡洛树搜索的原理,在当前解空间中随机选择一个节点进行模拟,并评估模拟结果。

4. 更新解空间:根据模拟结果调整解空间,并更新信息素。

5. 重复步骤2~4,直到达到停止条件。

6. 输出最优解:根据信息素的浓度和解空间的评估结果,输出最优解。

五、蒙特卡洛树蚁群算法的应用蒙特卡洛树蚁群算法在许多领域具有广泛的应用,如路径规划、资源调度、智能交通等。

以路径规划为例,蒙特卡洛树蚁群算法可以在复杂的道路网络中找到最短路径,并考虑交通流量、拥堵等因素,从而提供更加准确和可靠的路径规划结果。

蚁群优化算法及其理论进展

蚁群优化算法及其理论进展

蚁群优化算法及其理论进展摘要:蚁群优化算法作为一种新的智能计算模式,近年来在理论研究上取得了丰硕成果。

本文主要阐述蚁群优化算法的研究成果,论述了算法在离散域、连续域问题上的理论进展,然后对收敛性研究做了介绍。

最后,阐述了蚁群优化算法的发展趋势。

关键词:蚁群算法离散域连续域收敛性中图分类号:tp301.6 文献标识码:a 文章编号:1674-098x(2012)04(a)-0032-021 引言意大利学者dorigo[1]等人根据真实蚂蚁觅食行为,提出了蚁群优化算法的(aco)最早形式—蚂蚁系统(as),并应用在tsp旅行商问题中。

该算法采用分布式并行计算机制,易与其他方法结合,具有较强的鲁棒性。

as算法提出之后,其应用范围逐渐广泛,已经由单一的tsp领域渗透到了多个应用领域[2],算法本身也不断完善和改进,形成了一系列改进aco算法。

2 蚁群算法理论研究2.1 基本蚂蚁算法与真实蚂蚁觅食行为类似,基本蚁群算法主要包括路径选择和信息素更新两个步骤。

以蚁群算法求解tsp问题为例[1]:tsp问题可表述成,旅行商走完n个城市有多种走法,每周游完所有城市可得长度为i的路径,它们构成解的集合。

而每个解是依次走过n个城市的路径距离构成的集合,可表示设是在第g次周游中城市i上的蚂蚁数。

在算法周游过程中,每只蚂蚁根据概率转换规则生成一个有n步过程的行动路线,整个算法的周游过程以g为刻度,。

其中是预先设定的算法最大周游次数,当所有蚂蚁移动一次后,周游次数计数器加1。

经过次周游,基本可找到一条最短路径。

设,np为算法中总蚂蚁数。

基本步骤为:算法开始时,每条路径上初始信息素设置为常数,并对每只蚂蚁设置随机起始城市。

蚂蚁移动过程中,从城市i选择移动到城市j主要是根据概率启发公式(1)来完成,每次选择的城市都是从可选城市列表中取出。

(1)其中为启发优先系数且。

可以改变信息素与启发优先系数的相对重要性。

如果则最近的城市容易被选择,这类似经典的随机贪婪算法。

一种求解多目标优化问题的改进蚁群算法

一种求解多目标优化问题的改进蚁群算法

一种求解多目标优化问题的改进蚁群算法1.简介多目标优化问题在实际应用中普遍存在,例如工程设计、金融投资与风险管理等领域。

而蚁群算法(Ant Colony Optimization,ACO)作为一种基于自组织方法的启发式优化算法,已经在许多领域得到了成功的应用。

然而,原始的ACO 算法仅适用于单目标优化问题,而多目标优化问题则需要改进ACO 算法才能更好地解决。

在本文中,我们将介绍一种改进的ACO 算法,用于求解多目标优化问题。

该算法结合了传统的ACO 算法与一些有效的技术,并优化了算法的选择策略和信息素更新策略,以实现更准确和高效的解。

2.多目标优化问题多目标优化问题(Multi-objective Optimization Problem,MOP)通常包括一个目标函数集合,每个目标函数都需要最小化或最大化。

与单目标优化问题不同的是,MOP 存在多个最优解,而这些最优解不可比较显著。

例如,对于两个最优解x1 和x2,如果x1 的第一个目标函数优于x2,但x2 的第二个目标函数优于x1,则无法判断哪个解更好。

在MOP 中,通常是存在一个Pareto 最优集合P,其中的解都是不可比较的最优解。

在求解过程中,我们希望找到尽可能多的Pareto 最优解。

因此,MOP 的求解算法需要能够实现有效的Pareto 最优搜索,并在保证收敛性和多样性的同时尽可能接近Pareto 最优集合。

3.ACO 算法ACO 算法是群智能中的一种最受欢迎的启发式优化算法,已经在许多领域得到了广泛应用。

在ACO 算法中,许多无序的蚂蚁会在图中随机移动并留下信息素,通过信息素的积累和更新,最终使整个蚁群能够找到最佳路径。

ACO 算法的核心是信息素的积累和更新,以及蚂蚁的选择策略。

在ACO 算法中,每个蚂蚁都有一个当前城市和一些已经遍历过的城市。

蚂蚁在城市之间移动时,将信息素沿其路径释放。

当选择下一个城市时,蚂蚁会考虑信息素和城市间的距离,并采用轮盘赌选择策略选择下一个城市。

蚁群优化算法技术介绍

蚁群优化算法技术介绍
蚁群优化算法技术介绍
目录
• 蚁群优化算法概述 • 蚁群优化算法的基本原理 • 蚁群优化算法的实现过程 • 蚁群优化算法的改进与优化 • 蚁群优化算法的案例分析
01 蚁群优化算法概述
定义与原理
定义
蚁群优化算法是一种模拟自然界 中蚂蚁觅食行为的仿生优化算法 。
原理
通过模拟蚂蚁的信息素传递过程 ,利用正反馈机制寻找最优解。
算法特点
分布式计算
蚁群算法中的蚂蚁可以并行地搜索解空间,提高了算法的搜索效 率。
鲁棒性
对初始解和参数选择不敏感,能在多变的搜索空间中寻找到最优 解。
易于实现
算法实现简单,可扩展性强,适用于解决复杂优化问题。
应用领域
路径规划
任务调度
用于解决车辆路径规划、 物流配送等问题。
应用于多核处理器任务 调度、云计算资源分配
蚂蚁的移动规则
随机选择
蚂蚁在移动时,会根据当前位置和目标位置之间的路径上信息素浓度随机选择 下一个移动的节点。
避免重复
为了避免重复访问同一个节点,蚂蚁会根据一定的概率选择新的节点,这个概 率与路径上的信息素浓度成正比。
蚂蚁之间的协作机制
共享信息
蚂蚁通过释放和感知信息素来共享彼此的路径信息和状态,从而在群体中形成一 种协作效应。
网络路由问题求解
总结词
蚁群优化算法在网络路由问题求解中具有较好的应用 效果,能够优化网络路由和提高网络性能。
详细描述
网络路由问题是一个重要的网络通信问题,旨在根据 网络拓扑结构和通信需求,选择最优的路由路径和转 发策略,以实现数据包的可靠传输和网络性能的提升 。蚁群优化算法通过模拟蚂蚁的行为,利用信息素传 递机制来指导搜索过程,能够有效地解决网络路由问 题,优化网络路由和提高网络性能。

一种改进的求解多目标优化问题的蚁群算法

一种改进的求解多目标优化问题的蚁群算法
中 图 分 类号 :P 9 T 31 文 献标 识 码 : A
在科学 与工程 实践 中经常会 涉及到对 多个 目标 进 行 同时优 化 , 各 目标 之 间 又 由于受 限于决 策 变 但
略, 防止无 用搜索 , 提高 了算法 的效率 。
量 而常常存 在相 互 冲突 而且 不 可公 度 , 类 问题 被 这 抽 象为多 目标 优化 问题 ( l —O jci pii — Mut beteO t z i v m a
t n MO P 。与单 目标 优化 问题 解 的 明确性 不 同 , i , O ) o 多 目标 问题 对最 优解 的定 义 通 常很 复 杂 , 而且 很 难
客观 的评 价解 的优 劣性 。这种 问题 的最优 解通 常是

1 背 景知 识
1 1 多 目标 优化 问题 .
解决含 多 目标 和多 约束 的优 化 问题 称为 多 目标 优 化问题 , 了具体 化考 虑多 目标 优化 问题 , 为 首先给
其 中 , 为 目标 空间 , =( , , , ) ∈X是解 向 y 。 … ‘
量 或称决 策 向量 , 为决 策域 j 。 多 目标 优化 区别 于单 目标 优化 的本质在 于解 的 定 义 。单 目标优 化问题 的一个 解可 能成为 多 目标优 化 问题可接 受 的一 个 “ 不坏 解 ” 单 目标 优 化 问题 中 ,
保持群体 多样性 。此外 ,早 熟 现象 ” “ 和收 敛速 度慢 也是该算 法求解 多 目标 优化 问题时 的一个很 普遍 的
问题 。本 文基 于这些 问题提 出 了一 种改进后 的蚁群 算法来求 解多 目标优 化问 题 , 用 “ 英策 略 ” 利 精 保存
为的决 策 。在 解决一 个多 目标优 化问题 时存在 两个

蚁群优化算法PPT

蚁群优化算法PPT

ACO首次被系统的提出
自然界中真实蚁群集体行为
4
蚁群算法原理
如何找到最短路径 ?
• 信息素:信息素多的地方显然经过这里的蚂蚁多, 因而会有更多的蚂蚁聚集过来。
• 正反馈现象:某一路径上走过的蚂蚁越多,则后来 者选择该路径的概率就越大。
类比:
大肠杆菌在人体肠道内觅食的过程
5
蚁群算法原理
自然蚂蚁的智能特点
Meet the requirement of the solution
Y
output
31
实现过程
32
实现过程
33
实现过程
·
当 比较小时,搜索的全局性好,但收敛速度变慢; 当 比较大时,收敛速度比较快,但是容易陷入局部最优。
13
蚁群算法参数选择
因子 和 的选取
启发式因子 的大小则反映了在蚁群路径搜索中的随机性因素作 用的强度;
启发式因子 的大小反映了在蚁群路径搜索中确定性因素作用的 强度。
1.Ant-cycle
Q / Lk,第k只蚂蚁从城市i访问城市j k ii 0, 其他
k ii
Q / dij,第k只蚂蚁从城市i访问城市j 2.Ant-quantity 0, 其他
Q,第k只蚂蚁从城市i访问城市j 3.Ant-density 0, 其他
8
求解组合优化问题的蚁群算法
9
基本蚁群算法
蚂蚁k(k=1,2,…,m)根据各个城市间连接路径上的信 息素浓度决定其下一个访问城市,设 Pijk t 表示t时刻蚂蚁 k从城市i转移到城市j的概率,其计算公式为:
is (t )is (t ) , s allowk Pijk (t ) is (t )is (t ) xallowk 0, s allowk

蚁群算法改进及应用研究

蚁群算法改进及应用研究

蚁群算法改进及应用研究摘要:蚁群算法是一种启发式优化算法,其物理现象的模拟和仿生方法使其在多个领域得到广泛应用。

本文将介绍蚁群算法的基本原理,并对其改进方法进行探讨。

在应用方面,将重点讨论蚁群算法在路线规划、图像处理、机器学习和网络优化等领域的应用。

通过对蚁群算法的研究和改进,将有助于提高算法的性能和适应性。

1. 引言蚁群算法是一种基于觅食行为的模拟算法,最早由意大利科学家Marco Dorigo等人于1992年提出。

蚁群算法的基本原理来自于觅食过程中蚂蚁的行为,通过模拟蚂蚁的觅食路径选择和信息素沉积行为,实现对问题的优化求解。

2. 蚁群算法的基本原理蚁群算法的基本原理是通过蚂蚁之间的正反馈作用进行信息传递和问题求解。

蚂蚁在觅食过程中会留下一种称为信息素的物质,用于标记路径的好坏。

蚂蚁选择路径时,会倾向于选择信息素浓度高的路径,从而形成一种积累性的正反馈循环。

在这个过程中,较短路径上的信息素浓度会逐渐增加,吸引更多的蚂蚁选择该路径,集中力量探索更优解。

3. 蚁群算法的改进方法为了提高蚁群算法的搜索效率和求解能力,研究者们提出了多种改进方法。

其中,一些方法采用了参数调整和策略改进的方式,如引入启发式信息和适应性参数。

另一些方法则通过改变信息素更新策略和蚂蚁的移动方式来改进算法性能。

例如,引入局部更新策略和全局更新策略,以增加算法的全局搜索能力和局部搜索能力。

4. 蚁群算法在路线规划中的应用蚁群算法在路线规划中具有很好的应用潜力。

通过模拟蚂蚁在寻找食物过程中的路径选择行为,可以有效地解决旅行推销员问题等路线规划问题。

在实际应用中,蚁群算法已经被用于城市交通规划、船舶调度和智能导航系统等领域,取得了良好的效果。

5. 蚁群算法在图像处理中的应用蚁群算法在图像处理中也有不少应用。

例如,通过模拟蚂蚁的觅食路径选择行为,可以实现图像分割、边缘检测和图像增强等任务。

此外,蚁群算法还可以用于图像压缩、图像重建和图像分类等方面。

改进的蚁群算法及其在弹道优化中的应用

改进的蚁群算法及其在弹道优化中的应用
航天科工集团二院二部 , 北京 10 5 0 84
T e Scn cdmyo hn eop c c n e& Id sy C roai .e ig 10 5 , hn h eo d A ae fC ia A rsaeS i c e n ut o rt n B in 0 84 C ia r p o j W A a Y G u —u L U He g jnI r vd a tcln loi m n t a pi t n o rjco y o t z t n NG Hu . AN C n f . I n -a . mp o e n oo y ag rt h a d i p l ai n tae tr pi ai . s c o mi o
问离散化[ 以及在蚁群 框架中引入进化机 制等¨ 2 1 , j I 文通过离 。本 散化的方法处 理连 续的搜索 空间 ,引入了信息 素扩散机制 , 并 提 出了 自适应调整 搜索空间的方法 , 并将这种改进 的蚁群 算法
o u o —d p e rh s a e i r s n e t i h e h a g f s a c p c r d al . h r mo e i u in me h n s i a o t d f a t— a t s a c p c s p e e td o t tn t e r n e o e r h s a e g a u l P e o n d f so c a im s d p e a g y f t e h n e h s ac n a h o t l o u in W i t e e o n a c t e e r h e r t e pi s l t . t h s me h d h a t c l n ag rt m h s mp o e c n e g n e p e ma o h t o s t e n o o y lo i h a i r v d o v r a e s e d

蚁群优化算法

蚁群优化算法

一、蚁群算法的背景信息蚁群优化算法(ACO)是一种模拟蚂蚁觅食行为的模拟优化算法,它是由意大利学者Dorigo M等人于1991年首先提出,之后,又系统研究了蚁群算法的基本原理和数学模型,并结合TSP优化问题与遗传算法、禁忌搜索算法、模拟退火算法、爬山法等进行了仿真实验比较,为蚁群算法的发展奠定了基础,并引起了全世界学者的关注与研究蚁群算法是一种基于种群的启发式仿生进化系统。

蚁群算法最早成功应用于解决著名的旅行商问题(TSP),该算法采用了分布式正反馈并行计算机制,易于与其他方法结合,而且具有较强的鲁棒性。

二、蚁群算法的原理[1]蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的一种仿生算法。

蚂蚁在运动过程中,能够在它所经过的路径上留下一种称之为外激素(pheromo ne)的物质进行信息传递,而且蚂蚁在运动过程中能够感知这种物质,并以此指导自己的运动方向,因此由大量蚂蚁组成的蚁群集体行为便表现出一种信息正反馈现象 :某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。

基本的ACO模型由下面三个公式描述:a g(2-1;m号("1)二05®)+》蚯(2-2;(如果第k个蚂蚁经过了由i到j的路轻)〈2-3)btagJBJ.CDdTYykrLaoiO 式(2-1)、式(2-2)和式(2-3)中:m为蚂蚁个数;n为迭代次数;i为蚂蚁所在位置;j为蚂蚁可以到达的置;为蚂蚁可以到达位置的集合;为启发性信息(3-8>(3-9>Dlog. iirykii_2O1CJ式(3-9)中根据进行信息素更新的蚂蚁的类别可以是已知的最优解的路径长度或者是本次循环中的最优解的路径长度。

(2)信息素浓度的限制。

为了防止某条路径上的信息素出现大或者过小的极端情况,设定信息素浓度区间为。

通过这种方式使得在某条路径上的信息素浓度增大到超过区间上限或者减小到低于区间下限时,算法采用强制手段对其进行调整,以此提高算法的有效性。

蚁群算法 蚁狮算法

蚁群算法 蚁狮算法

蚁群算法蚁狮算法
蚁群算法(Ant Colony Algorithm)是一种模拟蚂蚁觅食行为的启发式优化算法。

它通过模拟蚂蚁在寻找食物过程中释放信息素的行为,来解决组合优化问题。

蚂蚁在寻找食物时会在路径上释放一种化学物质,称为信息素,其他蚂蚁通过感知到信息素的浓度来选择路径,从而实现最优路径的搜索。

蚁群算法的基本思想是:在解空间中随机生成一群蚂蚁,每只蚂蚁根据当前位置和信息素浓度选择下一个移动位置,移动后释放信息素。

信息素浓度会随着时间的推移逐渐蒸发。

蚂蚁根据信息素浓度和启发函数来选择下一个位置,启发函数一般根据问题的特性来设计。

最终,通过迭代更新信息素浓度和蒸发,蚂蚁群体会逐渐收敛到最优解。

蚁狮算法(Ant Lion Optimizer)是一种基于蚁狮捕食行为的启发式优化算法。

蚁狮是一种昆虫,它会在沙地上挖掘坑穴,然后隐藏在坑穴中等待猎物。

当猎物掉进坑穴时,蚁狮会迅速捕捉并吃掉它。

蚁狮算法模拟了蚁狮捕食行为,通过追踪猎物的行为来寻找最优解。

蚁狮算法的基本思想是:在解空间中随机生成一群蚂蚁,每只蚂蚁根据当前位置和信息素浓度选择下一个移动位置。

与蚁群算法不同的是,蚁狮算法引入了一个蚁狮,它代表了当前最优解,蚂蚁会追踪蚁狮的位置。

当蚂蚁接近蚁狮时,它会增加信息素浓度,从而吸引其他蚂蚁朝着蚁狮方向移动。

蚁狮会不断更新自身位置,以寻找
更优解。

最终,通过迭代更新信息素浓度和蚁狮位置,蚂蚁群体会逐渐收敛到最优解。

蚁群优化算法的理论、改进及应用

蚁群优化算法的理论、改进及应用
验 )采 J 随 机 决 策 规 则 选 择 移 动 方 向 , 步 构 造 出 问 题 的 可 . H j 逐
蚂 蚁 是一 种 社 会 性 昆 虫 , 过 一 种 特 有 的 通 信 机 制 , 通 其
题 的 一 类仿 生算 法
A t ytm 算 e s 用
人工 蚂蚁这一群简 单智能体 . 助所求解问题原始 的一种 近 借
似算 法 来 模 拟 真 实 蚂 蚁 的 食 物 搜 索 行 为 . 而得 到 所 求 削题 从 的一 种 更 精 确 的 算 法 人 工 蚂 蚁 住 搜 索 过 程 中 , 们 收 集 当 它 前环 境 的局 部 信 息 ( 于 问 题 特 点 的 描 述 和 蚁 群 的 学 习 经 关
Ab ta t An l n tmia in Alo ih ( src : tCoo y Op i z t g rt m ACO ) i o e id o i ua e v l t n r o s a n v lk n fsm l td e o u i a y o
o t z to l o ih ,wh c r v d s a n w t o o o l a e o p i a i n a g rt m mi i h p o i e e me h d f rc mp i t d c mb n t ra p i z t n c iao il t o mia i o
宋雪梅 ,李 兵
(. 1河北理工大学 计算机与 自动控 制学 院, 河北 唐 山 0 3 0 I. 60 9 2 唐山学院 , 河北 唐山 0 3 0 ) 6 00
摘要: 蚁群 优 化算法 是 一种 新 型的模拟进 化优 化算 法, 求解复 杂 的组 合优 化 问题 提供 了一种新 的 为

蚁群算法ppt课件

蚁群算法ppt课件

,则以概率
pij
ij (k 1) , j T ij (k 1)
, pij 0, j T
lT
到达j,L(s) L(s) { j},i : j;若L(s) N且T {l | (i,l) A,l L(s)}{i0}
则到达 i0, L(s) L(s) {i0},i : i0; 重复STEP 2。 16
在STEP 3中,蚁群永远记忆到目前为止的最优解。
19
图的蚁群系统(GBAS)
四个城市的非对称TSP问题,距离矩阵和城市图示如下:
0 1 0.5 1
D
(dij
)
1
1.5
0 5
1 0
1
1
1 1 1 0
20
5 初始的蚁群优化算法—基于图的蚁群 系统(GBAS)
假设共4只蚂蚁,所有蚂蚁都从城市A出发,挥发因子
出 蚂计 蚁s算行得走到的的城最市好集解合。,否初则始使L蚂(s蚁) 为s从空起集点,1i0出s发,m用。L(s) 表示
STEP 2 (内循环) 按蚂蚁1 s m的顺序分别计算。当蚂 蚁在城市i,若 L(s) N或{l | (i,l) A,l L(s)}
完成第s只蚂蚁的计算。否则,若
L(s) N且T {l | (i,l) A,l L(s)} {i0}
31 168
1 24
0
这是第一次外循环结束的状态。
为了说明蚁群算法的原理,先简要介绍一下蚂蚁搜寻食物的具 体过程。在蚁群寻找食物时,它们总能找到一条从食物到巢穴之间 的最优路径。这是因为蚂蚁在寻找路径时会在路径上释放出一种特 殊的信息素。当它们碰到一个还没有走过的路口时.就随机地挑选 一条路径前行。与此同时释放出与路径长度有关的信息素。路径越 长,释放的激索浓度越低.当后来的蚂蚁再次碰到这个路口的时 候.选择激素浓度较高路径概率就会相对较大。这样形成一个正反 馈。最优路径上的激索浓度越来越大.而其它的路径上激素浓度却 会随着时间的流逝而消减。最终整个蚁群会找出最优路径。

蚁群优化算法

蚁群优化算法
信息素是一种化学物质,由蚂蚁自身释放,是实现蚁群内 间接通信的物质。蚂蚁随机选择路径,但是能感知当前地 面上的信息素浓度,并倾向于往信息素浓度高的方向前进。
信息素
1.1 基本原理
双桥实验
蚁穴
食物源
(a)两个路具有同样的长度
自身催化(正反馈)过程
1.起初两条分支上不存在信息 素,蚂蚁以相同的概率进行 选择。 2.随机波动的出现,选择某一 条分支的蚂蚁数量可能比另 外一条多。 3.实验最终结果:所有的蚂蚁 都会选择同一分支。
2
蚂蚁数目过少时,算法的探索能力变差,容易出现早熟现象。特别是当问题的规模很大时,算法的全局寻优能力会十分糟糕
3
在用蚂蚁系统、精华蚂蚁系统、基于排列的蚂蚁系统和最大最小蚂蚁系统求解TSP时,m取值等于城市数目时有较好性能。
蚂蚁数目
2.3 蚂蚁系统理论
参数设置
1
信息素挥发因子较大,信息素挥发速率大,从未被蚂蚁选择过的边上信息素急剧减少到接近0,降低算法的全局探索能力。
2
信息素会不断的蒸发。
3
路径探索也是必需的,否则容易陷入局部最优。
1.1基本理论
蚁群觅食现象
蚁群优化算法
蚁群
搜索空间的一组有效解(种群规模m)
觅食空间
问题的搜索空间(问题的规模、解的维数n)
信息素
信息素浓度变量
蚁巢到食物的一条路径
一个有效解
找到的最短路
问题的最优解
蚁群觅食现象和蚁群优化算法的基本定义对照表
3.3 最大最小蚂蚁系统
最大最小蚂蚁系统
提出背景:
1.对于大规模的TSP,由于搜索蚂蚁的个数有限,而初始化时蚂蚁的 分布是随机的,这会不会造成蚂蚁只搜索了所有路径中的小部分就 以为找到了最好的路径,而真正优秀的路径并没有被探索到呢? 2.当所有蚂蚁都重复构建着同一条路径的时候,意味着算法已经进入 了停滞状态,有没有办法利用算法停滞后的迭代过程进一步搜索以 保证找到更接近真实目标的解呢?

蚁群算法的基本原理与改进

蚁群算法的基本原理与改进

蚁群算法的基本原理与改进蚁群算法是一种模拟蚂蚁群体行为的启发式算法,通过模拟蚂蚁在寻找食物和归巢过程中的行为,来解决优化问题。

蚂蚁在移动的过程中,通过信息素的释放和感知,实现了全局信息传递和局部信息更新。

蚁群算法基于这种行为特性,通过模拟蚂蚁在解空间中的过程,找到问题的最优解。

1.初始化一群蚂蚁在问题的解空间中随机选择一个起点。

2.每只蚂蚁根据问题的特性和上一次的行走经验,利用概率选择下一步要行走的方向。

3.每只蚂蚁根据选择的方向进行移动,并释放一定量的信息素到路径上。

4.蚁群中的每只蚂蚁根据选择的方向和移动的结果,更新自己的经验和信息素矩阵。

5.重复步骤2-4,直到达到停止条件。

1.路径选择策略的改进:蚂蚁选择下一步行走方向的概率通常根据路径上的信息素浓度和启发式信息来计算,可以根据具体问题的特性,采用不同的路径选择策略,如轮盘赌选择、最大值选择等,来提升算法的能力。

2.信息素更新策略的改进:信息素释放和更新对算法的性能起到重要影响。

可以通过引入一定的衰减因子,控制信息素的挥发速率,降低过快的信息素挥发过程;同时,可以通过引入信息素增强/衰减机制,根据蚂蚁经验和当前信息素浓度调整信息素的更新速率,以提升算法的收敛速度和稳定性。

3.多种启发式信息的融合:在算法中,蚂蚁根据启发信息来选择下一步行走方向。

可以采用多种启发式信息,并将它们进行适当的融合,以增加算法对问题的能力。

4.并行计算和局部:蚁群算法由于全局信息传递的特性,容易陷入局部最优解。

可以通过引入并行计算和局部机制,增加算法的广度和多样性,提升算法的全局能力。

5.参数的自适应调节:蚁群算法中存在一些参数,如信息素释放量、信息素衰减因子等,合理的参数设置对算法的性能至关重要。

可以考虑通过自适应调节参数的方法,如基于概率或规则的自适应机制,自适应地调节参数值,以提高算法的效果。

总而言之,蚁群算法通过模拟蚂蚁的行为特性,实现了全局信息传递和局部信息更新,并通过适当的改进措施,提升了算法的能力和收敛速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A New Improved Generalized Ant Colony Optimization Algorithm
ZHANG Dai -yuan
( College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210003 , China; Jiangsu High Technology Research Key Laboratory for Wireless Sensor Netw orks, Nanjing 210003 , China; Institute of Computer Technology , Nanjing University of Posts and Telecommunications, Nanjing 210003 , China)
0


便, 文中也将人工蚂蚁简称为蚂蚁 。 虽然蚁群算法已经获得了广泛的应用 , 但是很多 学者只是从应用的角度表明了该算法的有效性 。 例 如, 实验表明 , 蚁群优化算法在许多组合优化的困难问 题
[1 ] [2 , 3 ]
M arco Dorigo 等学者在真实蚂蚁觅食行为的启发 下提出了蚁群优化算法 ( Ant Colony Optimization algorithm , ACO 算法) , 它是组合优化问题的一种后启发式 近似求解方法。 在蚁群优化算法中 , 一些人工蚂蚁模拟真实蚂蚁 通过环境的间接交流来求解问题 。优良解的构造就 是这些人工蚂蚁之间交互合作的结果 。 为了 讨论方
第பைடு நூலகம்22 卷 第 6 期 2012 年 6 月
计算机技术与发展
COMPUTER TECHNOLOGY AND DEVELOPMENT
Vol. 22 No. 6 June 2012
一类新型改进的广义蚁群优化算法
张代远
( 南京邮电大学 计算机学院, 江苏 南京 210003 ; 江苏省无线传感网高技术研究重点实验室 , 江苏 南京 210003 ; 南京邮电大学 计算机技术研究所, 江苏 南京 210003 )
Abstract:A new improved generalized ant colony optimization algorithm ( IGACO ) is proposed in this paper. The selected probability functions are generalized from strictly increasing continuous functions to bounded functions, w hich gives a more general form of expression for the probability of selecting the next node. An important theorem is proved for describing the convergence of IGACO algorithm , i. e. for a sufficiently large number of algorithm iterations, the probability of finding the globally optimal solution at least once tends to 1. A principle of pheromone asymptotic balance is proposed. In the pheromone update rule, the residual rate function of pheromone and the global increasing function of pheromone are presented. Prove that the residual pheromone tends to a positive number on the edges that are globally optimal solution, and tends to 0 on the edges that are not globally optimal solution. Finally , the computational simulation show s that, compared w ith traditional ant colony optimization algorithm , the IGACO algorithm has good performance both on globally optimal solution and convergent speed. Key words:artificial intelligence;ant colony optimization algorithm ;convergence;pheromone update rule
摘 要:提出了一类新型蚁群优化算法。该算法改进了概率选择函数 , 将概率选择函数由严格单调增函数推广为有界函
数, 给出了蚂蚁在某一源节点选择下一个节点的更一般的表达式 。证明了算法收敛的重要定理: 即对足够大的迭代次数, 改进的广义蚁群优化算法至少找到最优解一次的概率趋近于 1 。提出了信息素渐近平衡原理。 在信息素更新规则中 , 引 入了信息素残留率函数、 信息素增量函数。证明了渐近信息素在最优路径上将会趋于一个正数 , 而在非最优路径上将会 趋于 0 。最后, 计算机仿真实验结果表明, 无论是获得的最优解的质量还是算法的收敛速度, 文中提出的改进的广义蚁群 优化算法都优于传统的蚁群优化算法 。 关键词:人工智能; 蚁群优化算法; 收敛性; 信息素更新规则 中图分类号:TP31 文献标识码:A 文章编号:1673-629X( 2012 ) 06-0039-06
相关文档
最新文档