两角和差正弦余弦正切练习题标准题
两角和与差的正弦余弦正切公式练习题(含答案)
两角和与差的正弦余弦正切公式练习题(含答案)两角和差的正弦余弦正切公式练题一、选择题1.给出如下四个命题:①对于任意的实数α和β,等式cos(α+β)=cosαcosβ-sinαsinβ恒成立;②存在实数α,β,使等式cos(α+β)=cosαcosβ+sinαsinβ能成立;③公式tan(α+β)=tanα+tanβ成立的条件是α≠kπ+π(k∈Z)且β≠kπ+π(k∈Z);1-tanαtanβ/2④不存在无穷多个α和β,使sin(α-β)=sinαcosβ-cosαsinβ。
其中假命题是()A。
①②B。
②③C。
③④D。
②③④2.函数y=2sinx(sinx+cosx)的最大值是()A。
1+2B。
2-1C。
2D。
2/33.当x∈[-π/2,π/2]时,函数f(x)=sinx+3cosx的()A。
最大值为1,最小值为-1B。
最大值为1,最小值为-1/2C。
最大值为2,最小值为-2D。
最大值为2,最小值为-14.已知tan(α+β)=7,tanαtanβ=2/3,则cos(α-β)的值()A。
1/2B。
2/2C。
-2D。
±25.已知π/2<β<α<3π/4,cos(α-β)=12/13,sin(α+β)=-3/5,则sin2α=()A。
56/65B。
-56/65C。
6565/56D。
-5/66.sin15°sin30°sin75°的值等于()A。
3/4B。
3/8C。
1/8D。
1/47.函数f(x)=tan(x+π/4)+1+tanx/4,g(x)=1-tanx,h(x)=cot(π/4-x)。
其中为相同函数的是()A。
f(x)与g(x)B。
g(x)与h(x)C。
h(x)与f(x)D。
f(x)与g(x)及h(x)8.α、β、γ都是锐角,tanα=1/2,tanβ=1/5,tanγ=1/8,则α+β+γ等于()A。
π/3B。
π/4C。
π/5D。
三角函数恒等变换练习题与答案详解
两角和与差的正弦、余弦、正切1. 利用两角和与差的正弦、余弦、正切公式进行三角变换;2•利用三角变换讨论三角函数的图象和性质2.1.牢记和差公式、倍角公式,把握公式特征;2•灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键•知识点回顾1 •两角和与差的余弦、正弦、正切公式cos( a—0)= cos acos0+ sin ocsin0(C a- 0cos( a+ 0)= cos. acos _ 0—sin__ asin_ 0(C a+ 0sin( a—0 = sin a cos0- cos ocsin(S a—0sin( a+ 0 = sin a cos0+ cos ocsin0(S a+ 0tan a—tan 卩tan( a—® ;(T a—01 + tan atan 卩tan a+ tan 卩tan(%+ ® = (T a + 01 —tan %tan 02 •二倍角公式sin 2 a= 2sin : cos:;cos 2 a= cos2a—sin2a= 2cos 2a—1 = 1 —2sin2a;2ta n atan 2 a= .1 —tan a3 •在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等•如T a±0可变形为tan a± tan 0= tan( a± 0(1? tan_ %tan_ 0,tan a+ tan 0 tan a—tan 0tan %tan 0= 1 —= —1.tan a+ 0 tan a—04 • 函数f( a= a cos a+ b sin a(a, b 为常数),可以化为f( a = \i a2+ b2sin( a+ 0)或f( %)=':::[a2+b2cos( a—0),其中0可由a, b的值唯一确定.[难点正本疑点清源]三角变换中的三变”(1) 变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是配凑”.(2) 变名:通过变换函数名称达到减少函数种类的目的,其手法通常有切化弦”、升幕与降幕”等.(3) 变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有换”、逆用变用公式”、通分约分”、分解与组合”、配方与平方”等.热身训练2 1 tan a1. 已知sin( a+ , sin( a—3 =—-,贝U 的值为 ____________ .3 5 tan 32. 函数f(x)= 2sin x(sin x+ cos x)的单调增区间为________________________3. (2012江苏)设a为锐角,若cos = 4,则I 6丿5sin a+ COS a1则tan 2 a等于( )4. (2012江西)若=sin a一(cos a23344A.—-B.C.—-D._4433n15. (2011 辽宁)设sin(+4B)= 3,则sin 2 B等于( )7117A.—_B. 一—C- D._9999典例分析题型一三角函数式的化简、求值问题【例1】(1)化简:I 1 a、f—tan _ |a 2 | 1 + tan a •⑵求值:[2sin 50 ° + sin 10 3tan (10 +° 摩in 280 °常值代a tan";2丿变J: i.l兔I在厶ABC中,已知三个内角AA, B, C成等差数列,则tan-2 + tan 值为 _______题型二三角函数的给角求值与给值求角问题【例2]n(1)已知0<仟_<2口r兀、a n,且cos II 2丿1_, sin9求cos(a+ 3的值;1⑵已知a,氏(0, n )且tan(「沪2,tan A1~,求2 a-卩的值.A C—ta n 一的 2 2题型三三角变换的简单应用f 1 \f 兀、【例 3】 已知 f(x) = 1 + ------ [sin 2x — 2sin x +— !'I tan x 丿 < 4 丿(1)若 tan a = 2,求 f ( a 的值;变式训练2 已知COSa=13 nCOS ( a — ®=,且 0< 仟 %<一,求(3.14 2n n求f(x)的取值范围⑵若x€五,2变出讣映3已知函数f(x)= J3sin i 2x厂+2sin2「-巨丿x R)-⑴求函数f(x)的最小正周期;⑵求使函数f(x)取得最大值时x的集合.利用三角变换研究三角函数的性质典例:(12分)(2011 •北京)已知函数f(x) = 4cos x - si(x +巴L 1 I 6丿(1)求f(x)的最小正周期;⑵求f(x)在区间,一上的最大值和最小值•II 6 4总结方法与技巧巧用公式变形和差角公式变形:tan x ± tai y = tan (x 土y ) • ?1tan x tan y );有-a 2 + b 2>|y |. 3.重视三角函数的 三变”:三变”是指变角、变名、变式”;变角:对角的分拆要尽可能化成同名 、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形 式中的差异,再选择适当的三角公式恒等变形 4.已知和角函数值,求单角或和角的三角函数值的技巧 :把已知条件的和角进行加减或二倍角后再加 减,观察是不是常数角,只要是常数角,就可以从此入手,给这个等式两边求某一函数值 ,可使所求的复杂问题简单化. 5.熟悉三角公式的整体结构,灵活变换.本节要重视公式的推导,既要熟悉三角公式的代数结构 ,更 要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形 失误与防范1 .运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意1 ”的各种变通.所对应的角 a +卩不是唯一的2 .在(0, n 范围内,Sin( a + (3)=23.在三角求值时,往往要估计角的范围后再求值倍角公式变形:降幕公式cos1 + COS2 a1 — COS2 a2a=, Sin a=配方变形:1 ± sin a =sin2 ± aCOS 2,1 + cos2丿a aa = 2cos 2—, 1 — cos a = 2sin 2—.2 2利用辅助角公式求最值 、单调区间、周期. 由 y = a sin a + b cos a = A / a 2 + b 2sin ( a + 0)(其中 tan 0=_ )过手训练(时间:25分钟,满分:43分)、选择题(每小题5分,共15分)函数 f (x )= sin x + - 3cos x 的A. 最大值是1 ,最小值是一 11B. 最大值是1 ,最小值是一—2C. 最大值是2,最小值是一 2 D .最大值是2,最小值是一 1、填空题(每小题5分,共15分)已知锐角 a 满足cos 2 a= cos贝U sin 2a = 已知cos —= MU 丿13 a€ 0,-, .4cos 2 a 则― sin(2012山东 >若灰一4'2sin 23 A.— 54 B.- 53 D.— 4已知tan (z=5怕…144 '那么tanJIn4等于13 A.— 1813 B.— 223 c.— 221 D7 6n n 当-尹笃时,三、解答题(13分)(2012广东)已知函数f (x ) = 2cos B X +二i (其中o>0 , x € R )的最小正周期为I 6丿⑴求co 的值;课后习题、选择题(每小题5分,共20分)6.设x €0, 一 i,贝V 函数y = 2si n 2x + 1的最小值为sin 2 x:(5、65 \ 阻0, — ,f 5 a+ — nf 5 (3-_n2< 3丿5< 6丿⑵设a ,16=石,求COS (计®的值. (时间:35分钟, 满分:57分)(2012江西)若tan1°+恳4,则sin 2。
2022秋新教材高中数学第五章两角和与差的正弦余弦正切公式课后提能训练新人教A版必修第一册
第五章 5.5.1 第2课时A级——基础过关练1.sin 105°的值为( )A.B.C.D.【答案】D 【解析】sin 105°=sin(45°+60°)=sin 45°·cos 60°+cos 45°sin 60°=×+×=.2.(多选)下列四个选项,化简正确的是( )A.cos(-15°)=B.cos 15°cos 105°+sin 15°sin 105°=cos(15°-105°)=0C.cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α)=D.sin 14°cos 16°+sin 76°cos 74°=【答案】BCD 【解析】对于A,(方法一)原式=cos(30°-45°)=cos 30°cos 45°+sin 30°sin 45°=×+×=,(方法二)原式=cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin 30°=×+×=,A错误.对于B,原式=cos(15°-105°)=cos(-90°)=cos 90°=0,B正确.对于C,原式=cos[(α-35°)-(25°+α)]=cos(-60°)=cos 60°=,C正确.对于D,原式=cos 76°cos 16°+sin 76°sin 16°=cos(76°-16°)=cos 60°=,D正确.故选BCD.3.(2020年青岛高一期中)已知α,β为锐角,tan α=,cos(α+β)=-,则tan β=( )A.2B.C.D.【答案】A 【解析】因为α,β为锐角,所以0<α+β<π,所以sin(α+β)==,tan(α+β)==-2,则tan β=tan[(α+β)-α]===2.故选A.4.(2020年抚州高一期中)已知cos=2cos(π+α),且tan(α+β)=,则tan β的值为( )A.-7B.7C.1D.-1【答案】B 【解析】因为cos=2cos(π+α),所以sin α=-2cos α,即 tan α=-2.又因为tan(α+β)===,解得tan β=7.故选B.5.已知cos(α-β)=,sin β=-,且α∈,β∈,则cos α=( )A.B.C.- D.-【答案】B 【解析】因为0<α<,-<β<0,所以0<α-β<π.又cos(α-β)=,所以sin(α-β)=.因为-<β<0,sin β=-,所以cos β=.所以cos α=cos[(α-β)+β]=cos(α-β)cos β-sin(α-β)sin β=×-×=.6.(2020年上海黄浦区高一期中)已知sin x=,x∈,则tan的值等于________.【答案】- 【解析】因为sin x=,x∈,所以cos x=-,tan x=-.所以tan===-.7.若sin α+2cos α=0(0<α<π),则tan α=________,tan=________.【答案】-2 - 【解析】因为sin α+2cos α=0(0<α<π),所以sin α=-2cos α,即tan α=-2.所以tan===-.8.(2020年湘潭高一期中)已知tan α,tan β是方程2x2+3x-5=0的两个实数根,则tan(α+β)=________.【答案】- 【解析】因为tan α,tan β是方程2x2+3x-5=0的两个实数根,所以tan α+tan β=-,tan αtan β=-.所以tan(α+β)===-.9.已知cos α=(α为第一象限角),求cos,sin的值.解:因为cos α=,且α为第一象限角,所以sin α= ==.所以cos=cos cos α-sin sin α=×-×=,sin=sincos α+cossin α=×+×=.B级——能力提升练10.sin(θ+75°)+cos(θ+45°)-cos(θ+15°)=( )A.±1B.1C.-1D.0【答案】D 【解析】原式=sin[60°+(θ+15°)]+cos(θ+45°)-cos(θ+15°)=-cos(θ+15°)+sin(θ+15°)+cos(θ+45°)=sin(θ-45°)+cos(θ+45°)=0.故选D.11.已知tan(α+β)=3,tan(α-β)=5,则tan 2α的值为( )A.-B.C.D.-【答案】A 【解析】tan 2α=tan[(α+β)+(α-β)]====-.12.在△ABC中,cos A=,cos B=,则△ABC的形状是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形【答案】B 【解析】由题意得sin A=,sin B=,所以cos C=cos(π-A-B)=-cos(A+B)=-cos A·cos B+sin A sin B=-×+×=-=-=-<0,所以C是钝角,故△ABC是钝角三角形.13.在△ABC中,tan A+tan B+=tan A·tan B,则角C等于( )A.B.C.D.【答案】A 【解析】由已知,得tan A+tan B=·(tan A tan B-1),即=-.所以tan(A +B)=-.所以tan C=tan[π-(A+B)]=-tan(A+B)=,得C=.14.已知cos α=,sin(α-β)=,且α,β∈.(1)求cos(2α-β)的值;(2)求β的值.解:(1)因为α,β∈,所以α-β∈.又因为sin(α-β)=>0,所以0<α-β<.所以sin α==,cos(α-β)==.cos(2α-β)=cos[α+(α-β)]=cos αcos(α-β)-sin αsin(α-β)=×-×=.(2)cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=×+×=.又因为β∈,所以β=.C级——探究创新练15.已知函数f(x)=(sin x+cos x)2-2cos2x(x∈R).(1)求函数f(x)的周期和递增区间;(2)若函数g(x)=f(x)-m在上有两个不同的零点x1,x2,求tan(x1+x2)的值.解:(1)因为f(x)=(sin x+cos x)2-2cos2x=1+2sin x·cos x-2cos2x=sin 2x-cos 2x=sin(x∈R),所以函数f(x)的周期T==π.因为函数y=sin x的单调递增区间为(k∈Z),所以函数f(x)的单调递增区间由2kπ-≤2x-≤2kπ+(k∈Z),化简得kπ-≤x≤kπ+(k∈Z),即(k∈Z).(2)因为方程g(x)=f(x)-m=0同解于f(x)=m.在直角坐标系中画出函数f(x)=sin在上的图象,如图,当且仅当m∈[1,)时,方程f(x)=m在上的区间和有两个不同的解x1、x2,且x1与x2关于直线x=对称,即=,所以x1+x2=,故tan(x1+x2)=tan=-1.。
完整版)两角和与差的正弦、余弦、正切经典练习题
完整版)两角和与差的正弦、余弦、正切经典练习题两角和与差的正弦、余弦、正切cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ1、求值:1)cos15°2)cos80°cos20°+sin80°sin20°3)cos130°cos10°+sin130°sin10°5)sin75°7)cos(A+B)cosB+sin(A+B)sinB2.1)证明:cos(π/2-α)=sinα4)cos105°6)求cos75°cos105°+sin75°sin105°8)cos91°cos29°-sin91°sin29°2)已知sinθ=15π,且θ为第二象限角,求cos(θ-π)的值.3)已知sin(30°+α)=√3/2,60°<α<150°,求cosα.4)化简cos(36°+α)cos(α-54°)+sin(36°+α)sin(α-54°).5)已知sinα=-4/5,求cosα的值。
6)已知cosα=-3π/32,α∈(π/2,π),求sin(α+π/4)的值。
7)已知α,β都是锐角,cosα=32π/53,α∈(π/3,π/2),cosβ=-3π/52,β∈(π/6,π/4),求cos(α+β)的值。
8)已知cos(α+β)=-11/53,求cosβ的值。
9)在△ABC中,已知sinA=√3/5,cosB=1/4,求cosC的值.两角和与差的正弦sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβ利用和差角公式计算下列各式的值:1)sin72°cos42°-cos72°sin42°2)3sinx+cosx3)cos2x-sin2x证明:1)sinα+cosα=sin(α+π/2)2)cosθ+sinθ=2sin(θ+π/4)3)2(sin x+cos x)=2cos(x-π/4)1)已知sinα=-3/5,α是第四象限角,求sin(-α)的值。
5.4 两角和与差的余弦、正弦和正切
5.4两角和与差的余弦、正弦和正切基本公式βαβαβαsin cos cos sin )sin(-=- βαβαβαsin cos cos sin )sin(+=+βαβαβαsin sin cos cos )cos(+=- βαβαβαsin sin cos cos )cos(-=+βαβαβαtan tan 1tan tan )tan(⋅+-=- βαβαβαtan tan 1tan tan )tan(⋅-+=+ 任意三角比的第五组诱导公式ααπcos 2sin =⎪⎭⎫ ⎝⎛- ααπsin 2cos =⎪⎭⎫⎝⎛- ααπcot 2t =⎪⎭⎫ ⎝⎛-an ααπtan 2cot =⎪⎭⎫⎝⎛- 任意三角比的第六组诱导公式ααπcos 2sin =⎪⎭⎫ ⎝⎛+ ααπsin 2c -=⎪⎭⎫⎝⎛+os ααπcot 2t -=⎪⎭⎫ ⎝⎛+an ααπtan 2cot -=⎪⎭⎫⎝⎛+ 任意三角比的诱导公式(1)要化的角的形式为α+2(k 为常整数);把α始终看成第一象限角 (2)记忆方法:“奇变偶不变,符号看象限”;理解公式:a sin α+b cos α=22b a +sin (α+ϕ) (其中,ϕ通常取πϕ20<≤,2222sin ,cos b a b b a a +=+=ϕϕ,ab=ϕtan α为任意角). 例1.求证:)4cos(2)cos (sin 2)3()4sin(2sin cos )2()6sin(cos 21sin 23)1(ππθθθπααα-=++=++=+x x x例2.利用和(差)角公式化简:)3cos(66)3sin(62)4(cos sin 3)3(cos 53sin 153)2(cos 21sin 23)1(x x x x x x x x -+---+ππ)6sin(cos 21sin 23πααα+=+例3.求证:)4tan(cos sin cos sin π-=+-x xx x x例4.若0<α<β<4π,sin α+cos α=a ,sin β+cos β=b ,则( )A.ab <1B.a >bC.a <b D.ab >2 【当堂练习】1.化简)sin()sin()cos()cos(γββαγββα-----为 ( )A .)2sin(γβα+-B .)sin(γα- .cos()C αγ-D .)2cos(γβα+- 2.已知3tan =α,则αααα22cos 9cos sin 4sin 2-+的值为( )A .3B .2110C .13 D .1303.已知4sin 25α=-,(,)44ππα∈-,sin 4α的值为 ( )A .2425B .2425-C .45D .7254.已知sin αcos α=38,且4π<α<2π,则cos α-sin α的值为 ( ) A .12 B .—12 C .14- D .12±5.已知α+ β =3π, 则cos αcos β–sin αcos β–cos αsin β – sin αsin β 的值为( )A.B .–1C .1 D.6. 已知1tan 23α=,求tan α的值.7.已知4sin 5α=,(,)2παπ∈5cos 13β=-,β是第三象限角,求cos()αβ-的值.【家庭作业】 一、选择题1.tan 70°+tan 50°-3tan 70°·tan 50°= ( )A. 3B.33C .-33D .- 32.若3sin x -3cos x =23sin(x -φ),φ∈(-π,π),则φ=( )A .-π6 B.π6 C.5π6 D .-5π63.已知sin ⎝ ⎛⎭⎪⎫π4-x =35,则sin 2x 的值为( )A.725B.1625C.1425D.19254.已知cos ⎝ ⎛⎭⎪⎫π6-α=33,则sin2⎝ ⎛⎭⎪⎫α-π6-cos ⎝ ⎛⎭⎪⎫5π6+α的值是 ( )A.2+33B .-2+33C.2-33D.-2+33二、填空题5.函数y =2cos2x +sin 2x 的最小值是________.6.若0<α<π2<β<π,且cos β=-13,sin(α+β)=13,则cos α=________.7.已知α、β为锐角,且cos α=17,cos(α+β)=-1114,则β的值为________.三、解答题8.已知tan ⎝ ⎛⎭⎪⎫π4+α=12.(1)求tan α的值; (2)求sin 2α-cos2α1+cos 2α的值.【综合】 一、选择题1.有四个关于三角函数的命题:p1:∃x ∈R ,sin2x 2+cos2x 2=12; p2:∃x 、y ∈R ,sin(x -y)=sin x -sin y ;p3:∀x ∈[0,π],1-cos 2x 2=sin x ; p4:sin x =cos y ⇒x +y =π2. 其中的假命题是 ( )A .p1,p4B .p2,p4C .p1,p3D .p2,p4 二、填空题2. 3-sin 70°2-cos210°=________.3.若cos(α+β)=15,cos(α-β)=35,则tan α·tan β=________.三、解答题4.如图在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐 角α、β,它们的终边分别与单位圆相交于A 、B 两点.已 知A 、B 两点的横坐标分别为210、255. (1)求tan(α+β)的值; (2)求α+2β的大小.5.已知函数f(x)=4cos4x -2cos 2x -1cos 2x .(1)求f ⎝ ⎛⎭⎪⎫-1112π的值;(2)当x ∈⎣⎢⎡⎭⎪⎫0,π4时,求g(x)=f(x)+sin 2x 的最大值和最小值.6.sin14cos16cos14sin16︒︒+︒︒=7.比较大小:036cos 36sin + 038cos 38sin +;8.已知tan2α=2,求:(1)tan()4πα+的值; (2)6sin cos 3sin 2cos αααα+-的值.9.设α、β为锐角, sinα求α+β.10.(1) 已知tan (α+β)=1, tan α=3, 求tan β. (2) 设cos(α-2β)=19-, sin(2α-β)=23, 且2παπ<<, 0<β<2π,求cos(α+β).11.求值:(1) 已知sinθ=35, θ为锐角,求sin 2θ; (2) 已知sinθ=35,sin2θ<0, 求tan 2θ.参考答案:例1(1))6sin(cos 21sin 23πααα+=+ 证法一:左边=sin αcos 6π+cos αsin 6π=sin (α+6π)=右边 证法二:右边=sin αcos 6π+cos αsin 6π=23sin α+21cos α=左边 (2)cos θ+sin θ=2sin (θ+4π)证法一:左边=2(22cos θ+22sin θ)=2(sin 4πcos θ+cos 4πsin θ) =2sin (θ+4π)=右边证法二:右边=2(sin θcos 4π+cos θsin 4π)=2(22sin θ+22cos θ)=cos θ+sin θ=左边(3) 2(sinx+cosx )=2cos (x-4π)证法一:左边=2(sinx +cosx )=2(22sinx +22cosx )=2(cosxcos 4π+sinxsin 4π) =2cos (x -4π)=右边证法二:右边=2cos (x -4π)=2(cosxcos 4π+sinxsin 4π)=2(22cosx +22sinx )=2(cosx +sinx )=左边例2.解:(1) 23sinx +21cosx =sinxcos 6π+cosxsin 6π=sin (x +6π)或:原式=sinxsin 3π+cosxcos 3π=cos (x -3π)(2)315sinx -35cosx =65(23sinx -21cosx )=65(sinxcos 6π-cosxsin 6π) =65sin (x -6π)或:原式=65(sin 3πsinx -cos 3πcosx )=-65cos (x +3π)(3) 3sinx -cosx =2(23sinx -21cosx )=2sin (x -6π)=-2cos (x +3π)(4) 26sin (3π-x )+66cos (3π-x ) =32[21sin (3π-x )+23cos (3π-x )] =32[sin 6πsin (3π-x )+cos 6πcos (3π-x )] =32cos [6π-(3π-x )]=32cos (x -6π)或:原式=32[sin (3π-x )cos 3π+cos (3π-x )sin 3π]=32sin [(3π-x )+3π]=32sin(32π-x )例3证明:左边=)4tan()4cos(2)4sin(2πππ-=--x x x =右边或:右边=tan (x -4π)=xx xx x x x x x x cos sin cos sin 4sinsin 4cos cos 4sincos 4cos sin )4cos()4sin(+-=+-=--ππππππ=左边例4:解:sin α+cos α=2sin (α+4π)=a sin β+cos β=2sin (β+4π)=b 又∵0<α<β<4π∴0<α+4π<β+4π<2π∴sin (α+4π)<sin (β+4π) ∴a <b答案:C 当堂练习 1答案:C解析:利用两角差的余弦公式的逆用 2答案:B解析:二倍角的应用 3答案:B解析:三角函数基本关系式的平方关系的应用 4答案:B解析:平方关系、倍角公式的应用 5答案:B6解析:1tan 23α=,由此得2tan 6tan 10αα+-=解得tan 2α=-+tan 2α=-7答案:33cos()65αβ-=-解析:因为,(,)2παπ∈由此得4sin 5α=所以3cos 5α=-又因为5cos 13β=-,β是第三象限角,所以12sin 13β=-所以33cos()65αβ-=-家庭作业:1 解析:tan 70°+tan 50°-3tan 70°·tan 50° =tan 120°(1-tan 70°·tan 50°)-3tan 70°·tan 50° =- 3. 答案:D2 解析:23sin(x -φ)=23(sin xcos φ-cos xsin φ) =3sin x -3cos x ,∴cos φ=32,sin φ=12. 又φ∈(-π,π),∴φ=π6. 答案:B3 解析:sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =cos 2⎝ ⎛⎭⎪⎫π4-x =1-2sin2⎝ ⎛⎭⎪⎫π4-x =1-2×⎝ ⎛⎭⎪⎫35 2=725. 答案:A 4 解析:sin2⎝ ⎛⎭⎪⎫α-π6-cos ⎝ ⎛⎭⎪⎫5π6+α =1-cos2⎝ ⎛⎭⎪⎫π6-α+cos ⎝ ⎛⎭⎪⎫π6-α=2+33.答案:A5 解析:y =(2cos2x -1)+sin 2x +1=cos 2x +sin 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π4+1 ∴y 的最小值为1- 2.答案:1- 26 解析:∵0<α<π2<β<π,∴π2<α+β<3π2, ∴sin β=223,cos(α+β)=-223,∴cos α=cos[(α+β)-β] =cos(α+β)cos β+sin(α+β)sin β =⎝ ⎛⎭⎪⎫-223×⎝ ⎛⎭⎪⎫-13+13×223 =49 2.答案:4297 解析:cos β=cos[(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =17×⎝ ⎛⎭⎪⎫-1114+437×5314=12. ∴β=π3. 答案:π38 解:(1)由tan ⎝ ⎛⎭⎪⎫π4+α=1+tan α1-tan α=12.解得tan α=-13. (2)sin 2α-cos2α1+cos 2α=2sin αcos α-cos2α2cos2α =tan α-12=-56.综合训练1 解析:p1:∃x ∈R ,sin2x 2+cos2x 2=12是假命题;p2是真命题,如x =y =0时成立;p3是真命题, ∵∀x ∈[0,π],sin x≥0, ∴1-cos 2x2=sin2x =|sin x|=sin x ;p4是假命题,如x =π2,y =2π时; sin x =cos y ,但x +y≠π2. 答案:A 2 解析:3-sin 70°2-cos210°=3-sin 70°2-1+cos 20°2=23-sin 70°3-cos 20°=23-cos 20°3-cos 20°=2. 答案:23 解析:∵cos(α+β)=cos αcos β-sin αsin β=15,cos(α-β)=cos αcos β+sin αsin β=35, ∴cos αcos β=25,sin αsin β=15. ∴sin αsin βcos αcos β=12,即tan α·tan β=12. 答案:124 解:(1)由已知条件及三角函数的定义可知,cos α=210,cos β =255.因为α为锐角,故sin α>0, 从而sin α=1-cos2α=7210,同理可得sin β=55,因此tan α=7,tan β=12. 所以tan(α+β)=tan α+tan β1-tan αtan β=7+121-7×12=-3. (2)tan(α+2β)=tan[(α+β)+β]=-3+121--3×12=-1. 又0<α<π2,0<β<π2,故0<α+2β<3π2,从而由tan(α+2β)=-1得α+2β=3π4. 5 解:f(x)=2cos2x -12cos2x +1-2cos2x cos 2x =cos 2x 2cos2x +1-2cos 2x cos 2x =2cos2x +1-2=2cos2x -1=cos 2x.(1)f ⎝ ⎛⎭⎪⎫-11π12=cos 2⎝ ⎛⎭⎪⎫-11π12=cos 11π6=cos π6=32. (2)g(x)=cos 2x +sin 2x =2sin ⎝⎛⎭⎪⎫2x +π4. 由0≤x<π4,故π4≤2x+π4<3π4, ∴22≤sin ⎝ ⎛⎭⎪⎫2x +π4≤1,1≤2sin ⎝⎛⎭⎪⎫2x +π4≤ 2.即g(x)的最小值是1,最大值是 2.6. 答案:12解析:sin14cos16cos14sin16︒︒+︒︒=sin 30︒=127. 答案:<8. 解析:(1)∵ tan 2α=2, ∴4tan 3α=-; 所以tan tan 4tan()41tan tan 4παπαπα++=-=17-; (2)由(1), 4tan 3α=-;6sin cos 6tan 173sin 2cos 3tan 26αααααα++==--. 9.答案:α+β=4π 解析:α、β为锐角, sinα∴ cosα, ∴cos(α+β)=cosαcosβ-sinαsinβ∴α+β=4π 10. 答案:tan β=12- cos(α+β) =239729- 解析:(1) ∵tan (α+β)=1, tan α=3,∴tan β=tan [(α+β)-β]=12-. (2) ∵cos(α-2β)=19-, sin (2α-β)=23, 且2παπ<<, 0<β<2π, ∴α-2β∈(4π, π), 2α-β∈(4π-, 2π), sin(α-2β)=92α-β)=3 ∴ cos 2αβ+=cos[(α-2β)-(2α-β)]+β)=2cos 22αβ+-1=239729- 11.答案:sin2θ==. t a n 32θ= 解析:(1) ∵sinθ=35, θ为锐角, ∴ cosθ=45, sin 2θ==. (2) ∵sinθ=35,sin2θ<0, ∴cosθ<0, cosθ=-45,tan 32θ=.。
高中数学必修四同步练习题库:两角和差的正弦、余弦和正切公式(简答题:容易)
两角和差的正弦、余弦和正切公式(简答题:容易)1、.已知,求的值2、已知为锐角,,,求的值.3、中,若,且为锐角,求角.4、求证:-2cos(α+β)=.5、已知在中,为中点,,(Ⅰ)求的值;(Ⅱ)求的值.6、在中,角所对边分别为的面积为6.(Ⅰ)求的值;(Ⅱ)求的值.7、函数的最大值为,它的最小正周期为. (1)求函数的解析式;(2)若,求在区间上的最大值和最小值.8、已知分别是的内角所对的边,.(1)证明:;(2)若,求.9、(2015秋•淮南期末)=()A.1B.2C.3D.410、已知,求的值11、已知函数⑴求的最小正周期及对称中心;⑵若,求的最大值和最小值.12、阅读下面材料:根据两角和与差的正弦公式,有------①------②由①+②得------③令有代入③得.(Ⅰ) 类比上述推理方法,根据两角和与差的余弦公式,证明:;(Ⅱ)若的三个内角满足,试判断的形状. (提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)13、如图,在平面直角坐标系中,以轴为始边,两个锐角,的终边分别与单位圆相交于A,B 两点.(Ⅰ)若,,求的值;(Ⅱ)若角的终边与单位圆交于点,设角的正弦线分别为,试问:以作为三边的长能否构成一个三角形?若能,请加以证明;若不能,请说明理由.14、已知15、已知(Ⅰ)求的值;(Ⅱ)求的值.16、阅读下面材料:根据两角和与差的正弦公式,有------①------②由①+②得------③令有代入③得.(1) 类比上述推理方法,根据两角和与差的余弦公式,证明:;(2)若的三个内角满足,直接利用阅读材料及(1)中的结论试判断的形状.17、已知为锐角,且求.18、(本小题满分12分)已知,写出用表示的关系等式,并证明这个关系等式.19、如图,有三个并排放在一起的正方形,.(1)求的度数;(2)求函数的最大值及取得最大值时候的x值。
20、(本小题12分)已知0<a<p,;(1)求的值;(2)求的值;21、求值: .22、(本题满分14分)在中,分别是所对的边,已知,,三角形的面积为,(1)求C的大小;(2)求的值.23、已知,(1)求的值;(2)求角.24、阅读下面材料:根据两角和与差的正弦公式,有------①------②由①+②得------③令有代入③得.(Ⅰ) 类比上述推理方法,根据两角和与差的余弦公式,证明:;(Ⅱ)若的三个内角满足,试判断的形状.(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)25、化简(1)(2)26、已知,求下列各式的值:(1)(2)27、已知均为锐角,求的值。
两角和与差正弦-余弦-正切公式试题
7. 已知角 的终边经过点 P3a,4aa 0 则 sin 2
2 的值等于______. 5 5 1 2 sin cos 1 9.已知 tan ,则 2 2 sin cos 2
.
8. log4 cos log4 cos
两角和、差的正弦、余弦、正切测验题
班级
学号
姓名
得分
.
一、选择题(本大题共 5 小题,每小题 5 分,共 25 分。) 1. ( ) A.0 D.
1 2
cos 24o cos 36o cos 66o cos 54o
的
值
等
于
B.
1 2
C.
3 2
2. 在 △ ABC 中 , 如 果 sinA=2sinCcosB. 那 么 这 个 三 角 形 是 ( ) A.锐角三角形 等边三角形 3. 已 知
10.函数 y 2 x 2 ( x 2) 的反函数是
。
三、解答题(本大题共 3 小题,共 35 分.解答应写出文字说明、证明 过程或演算步骤) 11.( 本 小 题 满 分 10 分 ) 已 知
4 4 7 3 cos , cos , ,2 , , , 5 5 4 4
1 3
A. a n 34 8n
D. a n 162 ( ) n
1 3
二、填空题(本大题共 5 小题,每小题 8 分,共 40 分)
6.化简 cos 2 x cos x sin 2 x sin x ______.
1 tan 21 1 tan 22 1 tan 23 1 tan 24
第三章 第5节 两角和与差的正弦、余弦和正切公式
第三章 第五节 两角和与差的正弦、余弦和正切公式1.2cos10°-sin20°sin70°的值是 ( )A.12B.32C. 3D. 2 解析:原式=2cos(30°-20°)-sin20°sin70°=2(cos30°·cos20°+sin30°·sin20°)-sin20°sin70°=3cos20°cos20°= 3.答案:C2.2+2cos8+21-sin8的化简结果是 ( ) A .4cos4-2sin4 B .2sin4 C .2sin4-4cos4 D .-2sin4 解析:原式=4cos 24+2(sin4-cos4)2=2|cos4|+2|sin4-cos4|, ∵5π4<4<3π2,∴cos4<0,sin4<cos4. ∴原式=-2cos4+2(cos4-sin4)=-2sin4. 答案:D3.(2010·辽宁模拟)已知α、β均为锐角,且tan β=cos α-sin αcos α+sin α,则tan(α+β)=________.解析:∵tan β=cos α-sin αcos α+sin α,∴tan β=1-tan α1+tan α=tan(π4-α).又∵α、β均为锐角,∴β=π4-α,即α+β=π4,∴tan(α+β)=tan π4=1.答案:14.sin(π4-x )=35,则sin2x 的值为 ( )A.725 B.1425 C.1625 D.1925解析:∵sin(π4-x )=35∴22cos x -22sin x =22(cos x -sin x )=35. ∴cos x -sin x =325. ∴(cos x -sin x )2=1-sin2x =1825, ∴sin2x =725. 答案:A5.已知α为钝角,且sin(α+π12)=13,则cos(α+5π12)的值为 ( ) A.22+36 B.22-36 C .-22+36 D.-22+36解析:∵α为钝角,且sin(α+π12)=13, ∴cos(α+π12)=-223, ∴cos(α+5π12)=cos[(α+π12)+π3]=cos(α+π12)cos π3-sin(α+π12)sin π3=(-223)·12-13·32=-22+36. 答案:C6.已知cos ⎝⎛⎭⎫x -π4=210,x ∈⎝⎛⎭⎫π2,3π4. (1)求sin x 的值; (2)求sin ⎝⎛⎭⎫2x +π3的值.解:(1)法一:因为x ∈⎝⎛⎭⎫π2,3π4, 所以x -π4⎝⎛⎭⎫π4,π2,sin ⎝⎛⎭⎫x -π4=1-cos 2⎝⎛⎭⎫x -π4=7210.sin x =sin[⎝⎛⎭⎫x -π4+π4]=sin(x -π4)cos π4+cos(x -π4)sin π4=7210×22+210×22=45. 法二:由题设得22cos x +22sin x =210即cos x +sin x =15.又sin 2x +cos 2x =1,从而25sin 2x -5sin x -12=0, 解得sin x =45或sin x =-35.因为x ∈⎝⎛⎭⎫π2,3π4,所以sin x =45. (2)因为x ∈⎝⎛⎭⎫π2,3π4,故cos x =-1-sin 2x =-1-⎝⎛⎭⎫452=-35.sin2x =2sin x cos x =-2425,cos2x =2cos 2x -1=-725.所以sin ⎝⎛⎭⎫2x +π3=sin2x cos π3+cos2x sin π3=-24+7350.7.已知A 、B ( ) A.5π4 B.7π4 C.5π4或7π4 D.9π4解析:由已知可得cos A =-255,cos B =-31010,∴cos(A +B )=cos A cos B -sin A sin B =22, 又∵π2A <π,π2<B <π,∴π<A +B <2π,∴A +B =7π4.答案:B8.在△ABC 中,3sin A +4cos B =6,4sin B +3cos A =1,则C 等于 ( ) A .30° B .150° C .30°或150° D .60°或120°解析:已知两式两边分别平方相加,得25+24(sin A cos B +cos A sin B )=25+24sin(A +B )=37, ∴sin(A +B )=sin C =12,∴C =30°或150°.当C =150°时,A +B =30°,此时3sin A +4cos B <3sin30°+4cos0°=112,这与3sin A +4cos B =6相矛盾,∴C =30°. 答案:A9.如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A 、B 两点.已知A 、B 的横坐标分别为210,255.(1)求tan(α+β)的值; (2)求α+2β的值.解:(1)由已知条件及三角函数的定义可知,cos α=210,cos β=255.因α为锐角,故sin α >0,从而sin α=1-cos 2α=7210,同理可得sin β=55.因此tan α=7,tan β=12. 所以tan(α+β)=tan α+tan β1-tan αtan β=7+121-7×123.(2)tan(α+2β)=tan[(α+β)+β]=-3+121-(-3)×12=-1.又0<α<π2,0<β<π20<α+2β<3π2,从而由tan(α+2β)=-1得α+2β=3π4.10.(2010·晋城模拟)已知向量a =(sin(α+π6),1),b =(4,4cos α-3),若a ⊥b ,则sin(α+4π3)等于 ( ) A .-34 B .-14 C.34 D.14解析:a ·b =4sin(α+π6)+4cos α- 3=23sin α+6cos α-3=43sin(α+π3)-3=0,∴sin(α+π3)=14.∴sin(α+4π3)=-sin(α+π3)=-14. 答案:B11.已知cos(α-π6)+sin α=453,则sin(α+7π6)的值为________.解析:∵cos(α-π6)+sin α=32cos α+32sin α=453,∴12cos α+32sin α=45, ∴sin(α+7π6)=-sin(α+π6)=-(32sin α+12cos α) =-45答案:-4512.(文)已知点M (1+cos2x,1),N (1,3sin2x +a )(x ∈R ,a ∈R ,a 是常数),设y =OM ON(O 为坐标原点).(1)求y 关于x 的函数关系式y =f (x ),并求f (x )的最小正周期;(2)若x ∈[0,π2]时,f (x )的最大值为4,求a 的值,并求f (x )在[0,π2]上的最小值.解:(1)依题意得:O M =(1+cos2x,1),O N=(1,3sin2x +a ), ∴y =1+cos2x +3sin2x +a =2sin(2x +π6)+1+a .∴f (x )的最小正周期为π.(2)若x ∈[0,π2],则(2x +π6)∈[π6,7π6,∴-12sin(2x +π6)≤1,此时y max =2+1+a =4,∴a =1, y min =-1+1+1=1.(理)已知α、β为锐角,向量a =(cos α,sin α),b =(cos β,sin β),c =(12,-12).(1)若a·b =22,a·c =3-14,求角2β-α的值; (2)若a =b +c ,求tan α的值. 解:(1)∵a·b =(cos α,sin α)·(cos β,sin β)=cos αcos β+sin αsin β =cos(α-β)=22, ① a·c =(cos α,sin α)·(12,-12)=12cos α-12sin α=3-14, ② 又∵0<α<π2,0<β<π2,∴-π2α-β<π2由①得α-β=±π4,由②得α=π6.由α、β为锐角,∴β=5π12.从而2β-α=23π.(2)由a =b +c 可得⎩⎨⎧cos β=cos α-12, ③sin β=sin α+12, ④③2+④2得cos α-sin α=12,∴2sin αcos α=34.又∵2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=34, ∴3tan 2α-8tan α+3=0. 又∵α为锐角,∴tan α>0, ∴tan α=8±82-4×3×36=8±286 =4±73.。
最新两角和与差的正弦余弦正切公式练习题(含答案)
两角和差的正弦余弦正切公式练习题一、选择题1.给出如下四个命题①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立; ②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβαβαtan tan 1tan ⋅-+an 成立的条件是)(2Z k k ∈+≠ππα且)(2Z k k ∈+≠ππβ;④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是( )A .①②B .②③C .③④D .②③④ 2.函数)cos (sin sin 2x x x y +=的最大值是( )A .21+B .12-C .2D . 2 3.当]2,2[ππ-∈x 时,函数x x x f cos 3sin )(+=的( ) A .最大值为1,最小值为-1 B .最大值为1,最小值为21-C .最大值为2,最小值为-2D .最大值为2,最小值为-1 4.已知)cos(,32tan tan ,7)tan(βαβαβα-=⋅=+则的值 ( )A .21 B .22 C .22-D .22±5.已知=-=+=-<<<αβαβαπαβπ2sin ,53)sin(,1312)cos(,432则 ( )A .6556B .-6556C .5665D .-56656. 75sin 30sin 15sin ⋅⋅的值等于( )A .43 B .83 C .81D .41 7.函数)4cot()(,tan 1tan 1)(),4tan()(x x h x x x g x x f -=-+=+=ππ其中为相同函数的是 ( )A .)()(x g x f 与B .)()(x h x g 与C .)()(x f x h 与D .)()()(x h x g x f 及与8.α、β、γ都是锐角,γβαγβα++===则,81tan ,51tan ,21tan 等于 ( )A .3π B .4π C .π65D .π459.设0)4tan(tan 2=++-q px x 是方程和θπθ的两个根,则p 、q 之间的关系是( )A .p+q+1=0B .p -q+1=0C .p+q -1=0D .p -q -1=0 10.已知)tan(),sin(4sin ,cos βαβααβ++==则a 的值是( )A .412--a aB .-412--a aC .214a a --±D .412--±a a11.在△ABC 中,90C >,则B A tan tan ⋅与1的关系为( )A .1tan tan >+B A B .1tan tan <⋅B AC .1tan tan =⋅B AD .不能确定12. 50sin 10sin 70cos 20sin +的值是( )A .41B .23C .21D .43二、填空题(每小题4分,共16分,将答案填在横线上)13.已知m =-⋅+)sin()sin(αββα,则βα22cos cos -的值为 . 14.在△ABC 中,33tan tan tan =++C B A ,C A B tan tan tan 2⋅= 则∠B=.15.若),24cos()24sin(θθ-=+ 则)60tan( +θ= . 16.若y x y x cos cos ,22sin sin +=+则的取值范围是 . 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.化简求值:)34sin(x -π)36cos()33cos(x x +--⋅ππ)34sin(x +⋅π.18.已知 0βαβαcos ,cos ,90且 <<<是方程02150sin 50sin 222=-+- x x 的两根,求)2tan(αβ-的值.19.求证:yx xy x y x 22sin cos 2sin )tan()tan(-=-++.20.已知α,β∈(0,π)且71tan ,21)tan(-==-ββα,求βα-2的值.21.证明:xx xx x 2cos cos sin 22tan 23tan +=-.22.已知△ABC 的三个内角满足:A+C=2B ,B C A cos 2cos 1cos 1-=+求2cos CA -的值.两角和差的正弦余弦正切公式练习题参考答案一、1.C 2.A 3.D 4.D 5.B 6.C 7.C 8.B 9.B 10.D 11.B 12.A二、13.m 14.3π15.32-- 16.]214,214[-三、17.原式=)34cos()33sin()33cos()34sin(x x x x -----ππππ=462-.18.)4550sin(2)2150(sin 4)50sin 2(50sin 222 ±=---±=x ,12sin 95cos5,sin 5cos85,x x ∴====3275tan )2tan(+==- αβ.19.证:yx y x y x y x y x y x y x y x 2222sin sin cos cos )]()sin[()cos()sin()cos()sin(⋅-⋅-++=--+++=左=-=+-=yx xy x x x x 222222sin cos 2sin sin )sin (cos cos 2sin 右. 20.13tan ,tan(2)1,2.34ααβαβπ=-=-=-21.左==+=⋅=⋅-x x x x x x x x x x x x 2cos cos sin 22cos23cos sin 2cos 23cos 2sin23cos 2cos 23sin右.22.由题设B=60°,A+C=120°,设2CA -=α知A=60°+α, C=60°-α,22cos ,2243cos cos cos 1cos 12=-=-=+ααα即CA故222cos =-C A .。
两角和与差的正弦、余弦和正切
§4.5 两角和与差的正弦、余弦和正切1.cos(α-β)=cos αcos β+sin αsin β (Cα-β)cos(α+β)= (Cα+β)sin(α-β)= (Sα-β)sin(α+β)= (Sα+β)tan(α-β)= (Tα-β)tan(α+β)= (Tα+β)前面4个公式对任意的α,β都成立,而后面两个公式成立的条件是α≠kπ+,β≠kπ+,k∈Z,且α+β≠kπ+(Tα+β需满足),α-β≠kπ+(Tα-β需满足)k∈Z时成立,否则是不成立的.当tan α、tan β或tan(α±β)的值不存在时,不能使用公式Tα±β处理有关问题,应改用诱导公式或其它方法来解.2.二倍角公式sin 2α=______________;cos 2α=________________=____________=______________;tan 2α=______________.3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如Tα±β可变形为:tan α±tan β=______________________,tan αtan β=________________=________________.4.函数f(α)=a cos α+b sin α(a,b为常数),可以化为f(α)=______________或f(α)=________________,其中φ可由a,b的值唯一确定.[难点正本 疑点清源]1.正确理解并掌握和、差角公式间的关系理解并掌握和、差角公式间的关系对掌握公式十分有效.如cos(α-β)=cos αcos β+sin αsin β可用向量推导,cos(α+β)只需转化为cos[α-(-β)]利用上述公式和诱导公式即可.2.辩证地看待和角与差角为了灵活应用和、差角公式,可以对角进行适当的拆分变换:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.如α=(α+β)-β=(α-β)+β,2α=(α+β)+(α-β),2α=(β+α)-(β-α),α+β=2·,=-等.1.化简:sin 200°cos 140°-cos 160°sin 40°=________________________________.2.已知sin(α+β)=,sin(α-β)=-,则的值为________.3.函数f(x)=2sin x(sin x+cos x)的单调增区间为______________________.4.设sin(+θ)=,则sin 2θ等于 ( )A.-B.-C.D.5.若sin=,则cos的值为 ( )A. B.- C. D.-题型一 三角函数式的化简求值问题例1 (1)化简: (0<θ<π);(2)求值:-sin 10°.探究提高 (1)三角函数式的化简要遵循“三看”原则,一看角,二看名,三看式子结构与特征.(2)对于给角求值问题,往往所给角都是非特殊角,解决这类问题的基本思路有:①化为特殊角的三角函数值;②化为正、负相消的项,消去求值;③化分子、分母出现公约数进行约分求值.(1)化简:·;(2)求值:[2sin 50°+sin 10°(1+tan 10°)]·.题型二 三角函数的给角求值与给值求角问题例2 (1)已知0<β<<α<π,且cos=-,sin=,求cos(α+β)的值;(2)已知α,β∈(0,π),且tan(α-β)=,tan β=-,求2α-β的值.探究提高 (1)注意变角-=,可先求cos 或sin 的值.(2)先由tan α=tan[(α-β)+β],求tan α的值,再求tan 2α的值,这种方法的优点是可确定2α的取值范围.(3)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为,选正弦较好.(4)解这类问题的一般步骤为:①求角的某一个三角函数值;②确定角的范围;③根据角的范围写出所求的角.(2011·广东)已知函数f(x)=2sin,x∈R.(1)求f的值;(2)设α,β∈,f=,f(3β+2π)=,求cos(α+β)的值.题型三 三角变换的简单应用例3 已知f(x)=sin2x-2sin·sin.(1)若tan α=2,求f(α)的值;(2)若x∈,求f(x)的取值范围.探究提高 (1)将f(x)化简是解题的关键,本题中巧妙运用“1”的代换技巧,将sin 2α,cos 2α化为正切tan α,为第(1)问铺平道路.(2)把形如y=a sin x+b cos x化为y=sin(x+φ),可进一步研究函数的周期、单调性、最值与对称性.(2010·天津)已知函数f(x)=2sin x cos x+2cos2x-1(x∈R).(1)求函数f(x)的最小正周期及在区间[0,]上的最大值和最小值;(2)若f(x0)=,x0∈[,],求cos 2x0的值. 6.构造辅助角逆用和角公式解题试题:(14分)已知函数f(x)=2cos x cos-sin2x+sin x cos x.(1)求f(x)的最小正周期;(2)当α∈[0,π]时,若f(α)=1,求α的值.审题视角 (1)在f(x)的表达式中,有平方、有乘积,而且还表现为有不同角,所以要考虑到化同角、降幂等转化方法.(2)当f(x)=a sin x +b cos x的形式时,可考虑辅助角公式.规范解答解 (1)因为f(x)=2cos x cos-sin2x+sin x cos x=cos2x+sin x cos x-sin2x+sin x cos x [4分]=cos 2x+sin 2x=2sin,所以最小正周期T=π. [8分] (2)由f(α)=1,得2sin=1,又α∈[0,π],所以2α+∈, [12分]所以2α+=或2α+=,故α=或α=. [14分]第一步:将f(x)化为a sin x+b cos x的形式.第二步:构造:f(x)=(sin x·+cos x·).第三步:和角公式逆用f(x)=sin(x+φ)(其中φ为辅助角).第四步:利用f(x)=sin(x+φ)研究三角函数的性质.第五步:反思回顾.查看关键点、易错点和解题规范.批阅笔记 (1)在本题的解法中,运用了二倍角的正、余弦公式,还引入了辅助角,技巧性较强.值得强调的是:辅助角公式a sin α+b cos α=sin(α+φ)(其中tan φ=),或a sin α+b cos α= cos(α-φ) (其中tan φ=),在历年高考中使用频率是相当高的,几乎年年使用到、考查到,应特别加以关注.(2)本题的易错点是想不到引入辅助角或引入错误.在定义域大于周期的区间上求最值时,辅助角的值一般不用具体确定.方法与技巧1.巧用公式变形:和差角公式变形:tan x±tan y=tan(x±y)·(1∓tan x·tan y);倍角公式变形:降幂公式cos2α=,sin2α=;配方变形:1±sin α=2,1+cos α=2cos2,1-cos α=2sin2.2.利用辅助角公式求最值、单调区间、周期.y=a sin α+b cos α=sin(α+φ)(其中tan φ=)有:≥|y|.3.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角为:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.4.已知和角函数值,求单角或和角的三角函数值的技巧:把已知条件的和角进行加减或二倍角后再加减,观察是不是常数角,只要是常数角,就可以从此入手,给这个等式两边求某一函数值,可使所求的复杂问题简单化.5.熟悉三角公式的整体结构,灵活变换.本节要重视公式的推导,既要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形.失误与防范1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在(0,π)范围内,sin(α+β)=所对应的角α+β不是唯一的.3.在三角求值时,往往要估计角的范围后再求值.§4.5 两角和与差的正弦、余弦和正切(时间:60分钟)A组 专项基础训练题组一、选择题1.已知sin α=,则cos(π-2α)等于 ( )A.-B.-C.D.2.(2011·福建)若α∈,且sin2α+cos 2α=,则tan α的值等于( )A. B. C. D.3.(2011·浙江)若0<α<,-<β<0,cos=,cos=,则cos等于 ( )A. B.- C. D.-二、填空题4.(2011·江苏)已知tan=2,则的值为____________.5.函数f(x)=2cos2x+sin 2x的最小值是____________.6.sin α=,cos β=,其中α,β∈,则α+β=____________.三、解答题7.已知A、B均为钝角且sin A=,sin B=,求A+B的值.8.已知函数f(x)=cos+2sin·sin,求函数f(x)在区间上的最大值与最小值.B组 专项能力提升题组一、选择题1.已知锐角α满足cos 2α=cos,则sin 2α等于 ( )A. B.- C. D.-2.若将函数y=A cos·sin (A>0,ω>0)的图象向左平移个单位后得到的图象关于原点对称,则ω的值可能为 ( )A.2B.3C.4D.53.已知tan(α+β)=,tan=,那么tan等于 ( )A. B. C. D.二、填空题4.化简:sin2x+2sin x cos x+3cos2x=____________.5.=____________.6.已知cos=,α∈,则=____________.三、解答题7.已知cos α=,cos(α-β)=,且0<β<α<,(1)求tan 2α的值;(2)求β.8.设函数f(x)=cos+sin2x.(1)求函数f(x)的最大值;(2)设A,B,C为△ABC的三个内角,若cos B=,f=-,且C为锐角,求sin A.答案要点梳理1.cos αcos β-sin αsin β sin αcos β-cos αsin β sin αcos β+cos αsin β 2.2sin αcos α cos2α-sin2α 2cos2α-11-2sin2α 3.tan(α±β)(1∓tan αtan β) 1--14. sin(α+φ) cos(α-φ)基础自测1. 2. 3. (k∈Z)4.A5.D题型分类·深度剖析例1 解 (1)原式===.因为0<θ<π,所以0<<,所以cos >0,所以原式=-cos θ.(2)原式=-sin 10°=-sin 10°·=-sin 10°·.=-2cos 10°=====.变式训练1 (1) (2)例2 解 (1)∵0<β<<α<π,∴-<-β<,<α-<π,∴cos==,sin==,∴cos =cos=coscos+sin·sin=×+×=,∴cos(α+β)=2cos2-1=2×-1=-.(2)∵tan α=tan[(α-β)+β]===>0,∴0<α<,又∵tan 2α===>0,∴0<2α<,∴tan(2α-β)===1.∵tan β=-<0,∴<β<π,-π<2α-β<0,∴2α-β=-.变式训练2 (1) (2)例3 解 (1)f(x)=(sin2x+sin x cos x)+2sin·cos =+sin 2x+sin=+(sin 2x-cos 2x)+cos 2x=(sin 2x+cos 2x)+.由tan α=2,得sin 2α===.cos 2α===-.所以,f(α)=(sin 2α+cos 2α)+=.(2)由(1)得f(x)=(sin 2x+cos 2x)+=sin+.由x∈,得≤2x+≤π.∴-≤sin≤1,0≤f(x)≤,所以f(x)的取值范围是.变式训练3 (1)最小正周期为π,最大值为2,最小值为-1(2)课时规范训练A组1.B2.D3.C4.5.1-6.7.8.解 由题意,得f(x)=cos+2sin·sin=cos 2x+sin 2x+(sin x-cos x)(sin x+cos x)=cos 2x+sin 2x+sin2x-cos2x=cos 2x+sin 2x-cos 2x=sin,又x∈,所以2x-∈.又f(x)=sin在区间上单调递增,在区间上单调递减,所以当x=时,f(x)取得最大值1.又f=-<f=,所以当x=-时,f(x)取得最小值-.故函数f(x)在区间上的最大值与最小值分别为1与-. B组1.A2.D3.C4.sin+25.-46.7.解 (1)由cos α=,0<α<,得sin α===,∴tan α==×=4.于是tan 2α===-.(2)由0<β<α<,得0<α-β<.又∵cos(α-β)=,∴sin(α-β)===.由β=α-(α-β),得cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=×+×=.∴β=.8.解 (1)f(x)=cos 2x cos -sin 2x sin +=cos 2x-sin 2x+-cos 2x=-sin 2x.所以,当2x=-+2kπ,k∈Z,即x=-+kπ (k∈Z)时,f(x)取得最大值,f(x)max=.(2)由f=-,即-sin C=-,解得sin C=,又C为锐角,所以C=.由cos B=求得sin B=.因此sin A=sin[π-(B+C)]=sin(B+C)=sin B cos C+cos B sin C=×+×=.。
高一 两角和与差的余弦、正弦、正切公式知识点+例题+练习 含答案
1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C (α-β))cos(α+β)=cos αcos β-sin αsin β (C (α+β))sin(α-β)=sin αcos β-cos αsin β (S (α-β))sin(α+β)=sin αcos β+cos αsin β (S (α+β))tan(α-β)=tan α-tan β1+tan αtan β(T (α-β)) tan(α+β)=tan α+tan β1-tan αtan β(T (α+β)) 2.二倍角公式sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;tan 2α=2tan α1-tan 2α. 3.公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan αtan β);(2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )(2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( √ )1.化简cos 40°cos 25°1-sin 40°= . 答案 2解析 原式=cos 40°cos 25°1-cos 50°=cos (90°-50°)cos 25°·2sin 25°=sin 50°22sin 50°= 2. 2.若sin α+cos αsin α-cos α=12,则tan 2α= . 答案 34解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3, 则tan 2α=2tan α1-tan 2α=34. 3.(2015·重庆改编)若tan α=13,tan(α+β)=12,则tan β= . 答案 17解析 tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17. 4.(教材改编)sin 347°cos 148°+sin 77°cos 58°= .答案 22 解析 sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58°=(-cos 77°)·(-sin 58°)+sin 77°cos 58°=sin 58°cos 77°+cos 58°sin 77°=sin(58°+77°)=sin 135°=22. 5.设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为 . 答案 17250解析 ∵α为锐角,cos(α+π6)=45, ∴α+π6∈⎝⎛⎭⎫π6,2π3,∴sin(α+π6)=35, ∴sin(2α+π3)=2sin(α+π6)cos(α+π6)=2425, ∴cos(2α+π3)=2cos 2(α+π6)-1=725, ∴sin(2α+π12)=sin(2α+π3-π4) =22[sin(2α+π3)-cos(2α+π3)]=17250.题型一 三角函数公式的基本应用例1 (1)已知sin α=35,α∈(π2,π),则cos 2α2sin (α+π4)= . (2)设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是 .答案 (1)-75(2) 3 解析 (1)cos 2α2sin ⎝⎛⎭⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝⎛⎭⎫π2,π, ∴cos α=-45. ∴原式=-75. (2)∵sin 2α=2sin αcos α=-sin α,∴cos α=-12, 又α∈⎝⎛⎭⎫π2,π,∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2 α=-231-(-3)2= 3. 思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征.(2)使用公式求值,应先求出相关角的函数值,再代入公式求值.(1)若α∈(π2,π),tan(α+π4)=17,则sin α= . (2)已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是 . 答案 (1)35(2)-1 解析 (1)∵tan(α+π4)=tan α+11-tan α=17, ∴tan α=-34=sin αcos α, ∴cos α=-43sin α. 又∵sin 2α+cos 2α=1,∴sin 2α=925. 又∵α∈(π2,π),∴sin α=35. (2)cos x +cos(x -π3)=cos x +12cos x +32sin x =32cos x +32sin x =3(32cos x +12sin x ) =3cos(x -π6)=-1. 题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为 . (2)求值:cos 15°+sin 15°cos 15°-sin 15°= . 答案 (1)22(2) 3 解析 (1)原式=sin(65°-x )·cos(x -20°)+cos(65°-x )cos [90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin [(65°-x )+(x -20°)]=sin 45°=22. (2)原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为 .(2)函数f (x )=2sin 2(π4+x )-3cos 2x 的最大值为 . 答案 (1)π4(2)3 解析 (1)由题意知:sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C 得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C=-1=-tan A ,所以A =π4.(2)f (x )=1-cos ⎣⎡⎦⎤2(π4+x )-3cos 2x =sin 2x -3cos 2x +1=2sin ⎝⎛⎭⎫2x -π3+1, 可得f (x )的最大值是3.题型三 角的变换问题例3 (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β= . (2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是 . 答案 (1)2525 (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45. 又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β).因为45>55>-45, 所以cos(α+β)=-45. 于是cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-45×55+35×255=2525. (2)∵cos(α-π6)+sin α=453, ∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453, ∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45. 思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等. 若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2= . 答案 539解析 cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2 =cos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2, ∵0<α<π2,∴π4<π4+α<3π4, ∴sin ⎝⎛⎭⎫π4+α=223.又-π2<β<0,则π4<π4-β2<π2, ∴sin ⎝⎛⎭⎫π4-β2=63. 故cos ⎝⎛⎭⎫α+β2=13×33+223×63=539.5.三角函数求值忽视角的范围致误典例 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,则cos(α+β)的值为 .(2)已知在△ABC 中,sin(A +B )=23,cos B =-34,则cos A = . 易错分析 (1)角α2-β,α-β2的范围没有确定准确,导致开方时符号错误. (2)对三角形中角的范围挖掘不够,忽视隐含条件,B 为钝角.解析 (1)∵0<β<π2<α<π, ∴-π4<α2-β<π2,π4<α-β2<π, ∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β=53, sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2=459,∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1 =2×49×5729-1=-239729. (2)在△ABC 中,∵cos B =-34, ∴π2<B <π,sin B =1-cos 2B =74. ∵π2<B <A +B <π,sin(A +B )=23, ∴cos(A +B )=-1-sin 2(A +B )=-53, ∴cos A =cos [(A +B )-B ]=cos(A +B )cos B +sin(A +B )sin B=⎝⎛⎭⎫-53×⎝⎛⎭⎫-34+23×74=35+2712. 答案 (1)-239729 (2)35+2712温馨提醒 在解决三角函数式的求值问题时,要注意题目中角的范围的限制,特别是进行开方运算时一定要注意所求三角函数值的符号.另外,对题目隐含条件的挖掘也是容易忽视的问题,解题时要加强对审题深度的要求与训练,以防出错.[方法与技巧]1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2, 配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2. 2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[失误与防范]1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在三角函数求值时,一定不要忽视题中给出的或隐含的角的范围.A 组 专项基础训练(时间:40分钟)1.cos 85°+sin 25°cos 30°cos 25°= . 答案 12解析 原式=sin 5°+32sin 25°cos 25°=sin (30°-25°)+32sin 25°cos 25°=12cos 25°cos 25°=12. 2.若θ∈[π4,π2],sin 2θ=378,则sin θ= . 答案 34解析 由sin 2θ=378和sin 2θ+cos 2θ=1得 (sin θ+cos θ)2=378+1=(3+74)2, 又θ∈[π4,π2],∴sin θ+cos θ=3+74. 同理,sin θ-cos θ=3-74,∴sin θ=34. 3.若tan θ=3,则sin 2θ1+cos 2θ= . 答案3 解析 sin 2θ1+cos 2θ=2sin θcos θ1+2cos 2θ-1=tan θ= 3. 4.已知cos α=-55,tan β=13,π<α<32π,0<β<π2,则α-β的值为 . 答案 54π 解析 因为π<α<32π,cos α=-55,所以sin α=-255,tan α=2,又tan β=13,所以tan(α-β)=2-131+23=1,由π<α<32π,-π2<-β<0得π2<α-β<32π,所以α-β=54π. 5.已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4= . 答案 322解析 因为α+π4+β-π4=α+β, 所以α+π4=(α+β)-⎝⎛⎭⎫β-π4, 所以tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322. 6.sin 250°1+sin 10°= .答案 12解析 sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos (90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12. 7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α= . 答案 1解析 根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β,cos β(cos α-sin α)+sin β(cos α-sin α)=0,即(cos β+sin β)(cos α-sin α)=0.又α、β为锐角,则sin β+cos β>0,∴cos α-sin α=0,∴tan α=1.8.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)= . 答案 7210解析 因为sin 2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45, 又由θ∈(0,π4),得2θ∈(0,π2), 所以cos 2θ=1-sin 22θ=35, 所以sin(2θ+π4) =sin 2θcos π4+cos 2θsin π4=45×22+35×22=7210. 9.已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值;(2)求tan α-1tan α的值.解 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2,故-π2<α-β<π2. 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35 =-43+310. B 组 专项能力提升(时间:20分钟)11.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)= . 答案 -255解析 由tan(α+π4)=tan α+11-tan α=12, 得tan α=-13. 又-π2<α<0, 所以sin α=-1010. 故2sin 2α+sin 2αcos (α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α =-255. 12.已知α∈⎝⎛⎭⎫0,π2,且sin 2α-sin αcos α-2cos 2α=0,则tan ⎝⎛⎭⎫π3-α= . 答案 8-5311解析 ∵sin 2α-sin αcos α-2cos 2α=0,cos α≠0,∴tan 2α-tan α-2=0.∴tan α=2或tan α=-1,∵α∈⎝⎛⎭⎫0,π2,∴tan α=2, tan ⎝⎛⎭⎫π3-α=tan π3-tan α1+tan π3tan α =3-21+23=(3-2)(23-1)(23-1)(23+1)=8-5312-1=8-5311. 13.已知cos 4α-sin 4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3= . 答案 2-156解析 ∵cos 4α-sin 4α=(sin 2α+cos 2α)(cos 2α-sin 2α)=cos 2α=23, 又α∈⎝⎛⎭⎫0,π2, ∴2α∈(0,π),∴sin 2α=1-cos 22α=53, ∴cos ⎝⎛⎭⎫2α+π3=12cos 2α-32sin 2α =12×23-32×53=2-156. 14.设f (x )=1+cos 2x 2sin ⎝⎛⎭⎫π2-x +sin x +a 2sin ⎝⎛⎭⎫x +π4的最大值为2+3,则常数a = . 答案 ±3解析 f (x )=1+2cos 2x -12cos x+sin x +a 2sin ⎝⎛⎭⎫x +π4=cos x +sin x +a 2sin ⎝⎛⎭⎫x +π4 =2sin ⎝⎛⎭⎫x +π4+a 2sin ⎝⎛⎭⎫x +π4 =(2+a 2)sin ⎝⎛⎭⎫x +π4. 依题意有2+a 2=2+3, ∴a =±3.15.已知函数f (x )=1-2sin ⎝⎛⎭⎫x +π8 ·⎣⎡⎦⎤sin ⎝⎛⎭⎫x +π8-cos ⎝⎛⎭⎫x +π8. (1)求函数f (x )的最小正周期;(2)当x ∈⎣⎡⎦⎤-π2,π12,求函数f ⎝⎛⎭⎫x +π8的值域. 解 (1)函数f (x )=1-2sin ⎝⎛⎭⎫x +π8[sin ⎝⎛⎭⎫x +π8-cos ⎝⎛⎭⎫x +π8] =1-2sin 2⎝⎛⎭⎫x +π8+2sin ⎝⎛⎭⎫x +π8cos ⎝⎛⎭⎫x +π8 =cos ⎝⎛⎭⎫2x +π4+sin ⎝⎛⎭⎫2x +π4=2sin ⎝⎛⎭⎫2x +π2 =2cos 2x ,所以f (x )的最小正周期T =2π2=π. (2)由(1)可知f ⎝⎛⎭⎫x +π8=2cos ⎝⎛⎭⎫2x +π4. 由于x ∈⎣⎡⎦⎤-π2,π12, 所以2x +π4∈⎣⎡⎦⎤-3π4,5π12, 所以cos ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-22,1, 则f ⎝⎛⎭⎫x +π8∈[-1,2], 所以f ⎝⎛⎭⎫x +π8的值域为[-1,2].。
两角和与差的正弦、余弦和正切公式Word版含答案
两角和与差的正弦、余弦和正切公式【课前回顾】1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β; cos(α∓β)=cos_αcos_β±sin_αsin_β; tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.公式的常用变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 【课前快练】1.sin 20°cos 10°-cos 160°sin 10°=( ) A .-32B.32C .-12D.12解析:选D 原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.2.设角θ的终边过点(2,3),则tan ⎝⎛⎭⎫θ-π4=( ) A.15 B .-15C .5D .-5解析:选A 由于角θ的终边过点(2,3),因此tan θ=32,故tan ⎝⎛⎭⎫θ-π4=tan θ-11+tan θ=32-11+32=15,选A. 3.(2017·山东高考)已知cos x =34,则cos 2x =( )A .-14B.14 C .-18D.18解析:选D ∵cos x =34,∴cos 2x =2cos 2x -1=18.4.化简:2sin (π-α)+sin 2αcos 2α2=________.解析:2sin (π-α)+sin 2αcos 2α2=2sin α+2sin αcos α12(1+cos α)=4sin α(1+cos α)1+cos α=4sin α.答案:4sin α5.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4 =tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:75考点一 三角函数公式的直接应用三角函数公式的应用策略(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.【典型例题】1.已知cos α=-35,α是第三象限角,则cos ⎝⎛⎭⎫π4+α的值为( ) A.210B .-210 C.7210D .-7210解析:选A ∵cos α=-35,α是第三象限的角,∴sin α=-1-cos 2α=-1-⎝⎛⎭⎫-352=-45, ∴cos ⎝⎛⎭⎫π4+α=cos π4cos α-sin π4sin α =22×⎝⎛⎭⎫-35-22×⎝⎛⎭⎫-45=210. 2.已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan(π-β)=12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112解析:选A 因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.因为tan(π-β)=12=-tan β,所以tan β=-12,则tan(α-β)=tan α-tan β1+tan αtan β=-211.3.已知α∈⎝⎛⎭⎫π2,π,sin α=55,则cos ⎝⎛⎭⎫5π6-2α的值为______. 解析:因为α∈⎝⎛⎭⎫π2,π,sin α=55, 所以cos α=-1-sin 2α=-255. sin 2α=2sin αcos α=2×55×⎝⎛⎭⎫-255=-45, cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫552=35, 所以cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α =⎝⎛⎭⎫-32×35+12×⎝⎛⎭⎫-45 =-4+3310.答案:-4+3310考点二 三角函数公式的逆用与变形用1.注意三角函数公式逆用和变形用的2个问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.2.熟记三角函数公式的2类变式 (1)和差角公式变形:sin αsin β+cos(α+β)=cos αcos β, cos αsin β+sin(α-β)=sin αcos β, tan α±tan β=tan(α±β)·(1∓tan α·tan β). (2)倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2. 考法(一) 三角函数公式的逆用 1.sin 10°1-3tan 10°=________. 解析:sin 10°1-3tan 10°=sin 10°cos 10°cos 10°-3sin 10°=2sin 10°cos 10°4⎝⎛⎭⎫12cos 10°-32sin 10°=sin 20°4sin (30°-10°)=14.答案:142.在△ABC 中,若tan A tan B = tan A +tan B +1, 则cos C =________.解析:由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B =-1,即tan(A +B )=-1,又A +B ∈(0,π),所以A +B =3π4,则C =π4,cos C =22.答案:223.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435,∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45, ∴sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 答案:-45考法(二) 三角函数公式的变形用 4.化简sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-15.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换1.迁移要准(1)看到角的范围及余弦值想到正弦值;看到β,α+β,α想到凑角β=(α+β)-α,代入公式求值.(2)看到两个角的正切值想到两角和与差的正切公式;看到α+β,β,α-β想到凑角.2.思路要明(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.3.思想要有转化思想是实施三角变换的主导思想,恒等变形前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.【典型例题】1.(2018·南充模拟)已知α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且cos α=17,cos(α+β)=-1114,则sin β=________.解析:因为α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且cos α=17,cos(α+β)=-1114,所以α+β∈(0,π), 所以sin α=1-cos 2α=437, sin(α+β)=1-cos 2(α+β)=5314, 则sin β=sin[(α+β)-α]=sin(α+β)cos α-cos(α+β)sin α =5314×17-⎝⎛⎭⎫-1114×437=32. 答案:322.已知tan(α+β)=25,tan β=13,则tan(α-β)的值为________.解析:∵tan(α+β)=25,tan β=13,∴tan α=tan[(α+β)-β]=tan (α+β)-tan β1+tan (α+β)·tan β=25-131+25×13=117,tan(α-β)=tan α-tan β1+tan αtan β=117-131+117×13=-726.答案:-726【针对训练】1.(2017·全国卷Ⅰ)已知α∈⎝⎛⎭⎫0,π2,tan α=2,则cos ⎝⎛⎭⎫α-π4=________. 解析:∵α∈⎝⎛⎭⎫0,π2,tan α=2,∴sin α=255,cos α=55, ∴cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4 =22×⎝⎛⎭⎫255+55=31010. 答案:310102.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,从而-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. 【课后演练】1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12 C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin ⎝⎛⎭⎫θ+π3=3sin(π-θ),则tan θ等于( ) A .-33B.32C.233D .2 3解析:选B 由已知得sin θ+3cos θ=3sin θ, 即2sin θ=3cos θ,所以tan θ=32. 3.(2018·石家庄质检)若sin(π-α)=13,且π2≤α≤π,则sin 2α的值为( )A .-429B .-229C.229D.429解析:选A 因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.4.(2018·衡水调研)若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118 B.118 C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.5.计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12B.12C.32D .-32解析:选Bsin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310° =cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.6.(2017·全国卷Ⅲ)函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( ) A.65B .1C.35D.15解析:选A 因为cos ⎝⎛⎭⎫x -π6=cos ⎣⎡⎦⎤⎝⎛⎭⎫x +π3-π2=sin ⎝⎛⎭⎫x +π3,所以f (x )=65sin ⎝⎛⎭⎫x +π3,于是f (x )的最大值为65.7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2018·贵州适应性考试)已知α是第三象限角,且cos(α+π)=45,则tan 2α=________.解析:由cos(α+π)=-cos α=45,得cos α=-45,又α是第三象限角,所以sin α=-35,tan α=34,故tan 2α=2tan α1-tan 2α=247. 答案:2479.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3=________. 解析:cos x +cos ⎝⎛⎭⎫x -π3 =cos x +12cos x +32sin x=32cos x +32sin x =3cos ⎝⎛⎭⎫x -π6 =3×⎝⎛⎭⎫-33 =-1. 答案:-110.(2018·石家庄质检)已知α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫α+π3=-23,则cos α=________. 解析:因为α∈⎝⎛⎭⎫0,π2,所以α+π3∈⎝⎛⎭⎫π3,5π6, 所以sin ⎝⎛⎭⎫α+π3=53,所以cos α=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3-π3=cos ⎝⎛⎭⎫α+π3cos π3+sin ⎝⎛⎭⎫α+π3sin π3=-23×12+53×32=15-26. 答案:15-2611.(2018·陕西高三教学质量检测)已知角α的终边过点P (4,-3),则cos ⎝⎛⎭⎫α+π4的值为( )A .-7210 B.7210 C .-210D.210解析:选B 由于角α的终边过点P (4,-3),则cos α=442+(-3)2=45,sin α=-342+(-3)2=-35,故cos ⎝⎛⎭⎫α+π4=cos αcos π4-sin αsin π4=45×22-⎝⎛⎭⎫-35×22=7210. 12.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π3的值为( ) A.1225 B.2425 C .-2425D .-1225解析:选B 因为α为锐角,且cos ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+π6= 1-cos 2⎝⎛⎭⎫α+π6=35, 所以sin ⎝⎛⎭⎫2α+π3=sin2⎝⎛⎭⎫α+π6 =2sin ⎝⎛⎭⎫α+π6cos ⎝⎛⎭⎫α+π6=2×35×45=2425. 13.(2018·广东肇庆模拟)已知sin α=35且α为第二象限角,则tan ⎝⎛⎭⎫2α+π4=( ) A .-195 B .-519 C .-3117D .-1731解析:选D 由题意得cos α=-45,则sin 2α=-2425,cos 2α=2cos 2α-1=725.∴tan 2α=-247, ∴tan ⎝⎛⎭⎫2α+π4=tan 2α+tan π41-tan 2αtan π4=-247+11-⎝⎛⎭⎫-247×1=-1731. 14.若锐角α,β满足tan α+tan β=3-3tan αtan β,则α+β=________. 解析:由已知可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3. 又α+β∈(0,π),所以α+β=π3. 答案:π315.(2018·安徽两校阶段性测试)若α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫π4-α=22cos 2α,则sin 2α=________.解析:由已知得22(cos α+sin α)=22(cos α-sin α)·(cos α+sin α),所以cos α+sin α=0或cos α-sin α=14,由cos α+sin α=0得tan α=-1,因为α∈⎝⎛⎭⎫0,π2,所以cos α+sin α=0不满足条件;由cos α-sin α=14,两边平方得1-sin 2α=116,所以sin 2α=1516. 答案:151616.(2018·广东六校联考)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12 =sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2, 所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ) =22×⎝⎛⎭⎫2425-725=17250. 17.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解:(1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-1-sin 2α=-32. (2)因为π2<α<π,π2<β<π, 所以-π2<α-β<π2. 又由sin(α-β)=-35,得cos(α-β)=45. 所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×⎝⎛⎭⎫-35=-43+310. 18.已知cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 解:(1)cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+αsin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3,∴cos ⎝⎛⎭⎫2α+π3=-32, ∴ sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3 =-12×12-⎝⎛⎭⎫-32×32=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。
原创1:4.5 两角和与差的正弦、余弦、正切
1 A.18
B.1178
8
2
C.9
D. 9
解析:.∵sin α+cos α=13,∴(sin α+cos α)2=1+2sin
α cos
α
=
1 9
,
∴
sin
2
α
=
-
8 9
,
∴
sin2
π4 -α
=
1-cos2π2 -2α=1-si2n 2α=1178.故选 B.
(1)求 A 的值;
(2)若 f(θ)+f(-θ)=32,θ∈0,π2 ,求 f34π-θ.
[解]
(1)∵f51π2 =Asin51π2 +π4 =Asin
2π 3
=Asin π3 = 23A=32,
∴A= 3.
(2)由(1)知 f(x)= 3sinx+π4 ,
故 f(θ)+f(-θ)
= 3sinθ+π4 + 3sin-θ+π4 =32,
3.角的变换技巧
α=(α+β)-β; α=β-(β-α); α=12[(α+β)+(α-β)]; β=12[(α+β)-(α-β)];
π4 +α=π2 -π4 -α.
[做一做] 3.sin 68°sin 67°-sin 23°cos 68°的值为( B )
A.-
2 2
2 B. 2
3 C. 2
D.1
1.已知
π α∈(0, 2 ),tan
α=12,求
tan
2α
和
π
si解n(:2αt+an32)α的=值1.2-tatnanα2α=1-2(×2121)2=43.
∵α∈(0,π2 ),2α∈(0,π),tan 2α=43>0,
(完整版)两角和与差的正弦、余弦、正切经典练习题
两角和与差的正弦、余弦、正切一、两角和与差的余弦βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-1、求值:(1) 15cos (2) 20802080sin sin cos cos +(3) 1013010130sin sin cos cos +(4)cos105°(5)sin75°(6)求cos75°cos105°+sin75°sin105°(7)cos (A +B )cosB +sin (A +B )sinB .(8) 29912991sin sin cos cos -2. (1)求证:cos (2π-α) =sin α.(2)已知sin θ=1715,且θ为第二象限角,求cos (θ-3π)的值. (3)已知sin (30°+α)=,60°<α<150°,求cos α.3. 化简cos (36°+α)cos (α-54°)+sin (36°+α)sin (α-54°).4. 已知32=αsin ,⎪⎭⎫ ⎝⎛∈ππα,2,53-=βcos ,⎪⎭⎫ ⎝⎛∈23ππβ,,求)cos(βα+的值.5.已知1312-=αcos ,⎪⎭⎫ ⎝⎛∈23ππα,,求)cos(4πα+的值。
6. 已知α,β都是锐角,31=αcos ,51-=+)cos(βα,求βcos 的值。
7.在△ABC 中,已知sin A =53,cos B =135,求cos C 的值.二、两角和与差的正弦sin()sin cos cos sin αβαβαβ+=+sin()sin cos cos sin αβαβαβ-=-1利用和差角公式计算下列各式的值(1)sin 72cos 42cos 72sin 42︒︒-︒︒ (2)13cos sin 22x x -(3)3sin cos x x + (4)22cos 2sin 222x x -二、证明: )4cos(2)cos (sin 2)3()4sin(2sin cos )2()6sin(cos 21sin 23)1(ππθθθπααα-=++=++=+x x x3(1)已知3sin 5α=-,α是第四象限角,求sin()4πα-的值。
3.1.2 两角和与差的正弦、余弦、正切公式(同步练习)
3.1.2 两角和与差的正弦、余弦、正切公式(同步练习)一、和角与差角公式应用的规律两角和与差的正、余弦公式主要用于求值、化简、证明等三角变换,常见的规律如下:①配角的方法:通过对角的“合成”与“分解”,寻找欲求角与已知角的内在联系,灵活应用公式,如α=(α+β)-β,α=21(α+β)+21(α-β)等.②公式的逆用与变形公式的活用:既要会从左到右展开,又要会从右到左合并,还要掌握公式的变形.③“1”的妙用:在三角函数式中,有许多关于“1”的“变形”,如1=sin 2α+cos 2α,也有1=sin90°=tan45°等.二、备用习题1.在△ABC 中,sinAsinB<cosAcosB,则△ABC 是( )A.直角三角形B.钝角三角形C.锐角三角形D.等腰三角形 2.3cos 12π-sin 12π的值是( ) A.0 B.-2 C.2 D.23.在△ABC 中,有关系式tanA=BC C B sin sin cos cos --成立,则△ABC 为( ) A.等腰三角形 B.A=60°的三角形C.等腰三角形或A=60°的三角形D.不能确定4.若cos(α-β)=31,cosβ=43,α-β∈(0,2π),β∈(0,2π),则有( ) A.α∈(0,2π) B.α∈(2π,π) C.α∈(-2π,0) D.α=2π 5.求值:25cos 25sin 5cos 2-=_________ 6.若sinα·sinβ=1,则cosα·cosβ=____________7.已知cos(α+β)=31,cos(α-β)=51,则t anα·tanβ=___________ 8.求函数y=2sin(x+10°)+2cos(x+55°)的最大值和最小值.9.求tan70°+tan50°-3tan50°tan70°的值.10.已知sinβ=m·sin (2α+β).求证:tan (α+β)=m m -+11tanα. 11.化简AB A sin )2sin(+-2cos(A+B). 12.已知5sinβ=sin(2α+β).求证:2tan(α+β)=3tanα.13.(2007年高考湖南卷,16) 已知函数f(x)=1-2sin 2(x+8π)+2sin(x+8π)cos(x+8π).求: (1)函数f(x)的最小正周期;(2)函数f(x)的单调增区间.参考答案:1.B2.C3.C4.B5.36.07.41- 8.∵y=2sin(x+10°)+2cos [(x+10°)+45°]=2sin(x+10°)+cos(x+10°)-sin(x+10°)=sin(x+10°)+cos(x+10°) =2cos [(x+10°)+45°] =2cos(x+55°),又∵-1≤sin(x+55°)≤1,∴当x+55°=k·360°-90°,即x=k·360°-145°(k ∈Z)时,y min =-2;当x+55°=k·360°+90°,即x=k·360°+35°(k ∈Z)时,y max =2.9.原式=tan (70°+50°)(1-tan70°tan50°)-3tan50°tan70°=-3(1-tan70°tan50°)-3tan50°tan70°=-3+3tan70°tan50°-3tan50°tan70° =-3.∴原式的值为-3.10.证明:由sinβ=msin (2α+β)sin [(α+β)-α]=msin [(α+β)+α]sin (α+β)cosα-cos (α+β)sinα=m [sin (α+β)cosα+cos (α+β)sinα](1-m)·sin (α+β)cosα=(1+m)·cos (α+β)sinαtan (α+β)=mm -+11tanα. 点评:仔细观察已知式与所证式中的角,不要盲目展开,要有的放矢,看到已知式中的2α+β可化为结论式中的α+β与α的和,不妨将α+β作为一个整体来处理.此方法是综合法,利用综合法证明恒等式时,必须有分析的基础,才能顺利完成证明.11.原式=AA B A A B A A A B A A B A sin sin )cos(cos )sin(sin sin )cos(2])sin[(+-+=+-++ =.sin sin sin ])sin[(A B A A B A =-+ 点评:本题中三角函数均为弦函数,所以变换的问题只涉及角.一般来说,三角函数式的化简问题首先考虑角,其次是函数名,再次是代数式的结构特点.12.∵β=(α+β)-α,2α+β=(α+β)+α,∴5sin [(α+β)-α]=sin [(α+β)+α],即5sin(α+β)cosα-5cos(α+β)sinα=sin(α+β)cosα+cos(α+β)sinα.∴2sin(α+β)cosα=3cos(α+β)sinα.∴2tan(α+β)=3tanα.点评:注意到条件式的角是β和2α+β,求证式中的角是α+β和α,显然“不要”的角β和2α+β应由要保留下来的角α+β与α来替代.三角条件等式的证明,一般是将条件中的角(不要的)用结论式中的角(要的)替代,然后选择恰当的公式变形.三角变换中经常要化复角为单角,化未知角为已知角.因此,看准角与角的关系十分重要.哪些角消失了,哪些角变化了,结论中是哪些角,条件中有没有这些角,在审题中必须对此认真观察和分析.常见的变角方式有:α=(α+β)-β,2α=(α+β)+(α-β),2α-β=(α-β)+α当然变换形式不唯一,应因题而异,要具体问题具体分析. 13.f(x)=cos(2x+4π)+sin(2x+4π) =2sin(2x+4π+4π) =2sin(2x+2π) =2cos2x.(1)函数f(x)的最小正周期是T=22π=π; (2)当2kπ-π≤2x≤2kπ,即kπ-2π≤x≤kπ(k ∈Z )时,函数f(x)=2cos2x 是增函数,故函数f(x)的单调递增区间是[kπ-2π,kπ](k ∈Z ).。
两角和差的正弦、余弦、正切公式及二倍角公式
两角和差的正弦、余弦、正切公式及二倍角公式1、两角和与差的正弦、余弦和正切公式: (1)()cos cos cos sin sin αβαβαβ-=+; (2)()cos cos cos sin sin αβαβαβ+=-; (3)()sin sin cos cos sin αβαβαβ-=-; (4)()sin sin cos cos sin αβαβαβ+=+; (5)()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+);(6)()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-)。
2、、二倍角的正弦、余弦和正切公式: (1)sin22sin cos ααα=; (2)2222cos2cos sin 2cos 112sin ααααα=-=-=-(2cos 21cos2αα+=,21cos 2sin 2αα-=); (3)22tan tan 21tan ααα=-。
3、()sin cos αααϕA +B =+,其中tan ϕB =A。
例1:已知sin(45)α+=,则sin 2α等于( )A .-45B .-35C .35D .45例2:若02πβα<<<且45513cos(),sin()αβαβ+=-=,那么2cos α的值是( )A 、6365B 、6365-C 、3365D 、5665或1365-例3:已知函数2()cos 2cos 1()f x x x x x R =+-∈,求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值。
例4:已知函数2()2cos 2sin f x x x =+;(Ⅰ)求()3f π的值;(Ⅱ)求()f x 的最大值和最小值。
训练一、选择题1、计算212sin 22.5-的结果等于( )A .2B .3C .12D .22、若ABC ∆的内角A 满足2sin 23A =,则sin cos A A +=( )A B . C .53D .53-3、已知3cos()5αβ-=,5sin 13β=-,且α∈(0,π2),β∈(-π2,0),则sin α等于 ( )A .3365B .6365C .-3365D .-63654、如果(,)2παπ∈,且4sin 5α=,那么sin(α+π4)+cos(α+π4)=( )A .425B .-425C .325D .-3255、2cos10sin 20sin 70-的值是( )A .12B .32C . 3D . 2 6、(09·山东潍坊模拟)sin 45cos15cos 225sin15⋅+⋅的值为( )A .2-B .12-C .12 D .2二、填空题6、已知sin cos 3αα-=,则cos(2)2πα-= ; 7、已知α为第二象限的角,3sin 5a =,则tan 2α= ;8、设02x π≤≤sin cos x x =+ 则x 的范围是 ; 9、若sin cos 3sin cos αααα+=-,tan()2αβ-=,则tan(2)βα-=________。
2014届高三数学一轮复习 两角和与差的正弦、余弦、正切提分训练题
两角和与差的正弦、余弦、正切一、选择题1.cos13计算sin43cos 43-sin13的值等于( )A.12解析 原式=1sin (43-13)=sin 30=2,故选A. 答案 A2.已知锐角α满足cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α,则sin 2α等于( ) A.12 B .-12 C.22 D .-22解析:由cos 2α=cos ⎝⎛⎭⎪⎫π4-α得(cos α-sin α)(cos α+sin α)=22(cos α+sin α) 由α为锐角知cos α+sin α≠0. ∴cos α-sin α=22,平方得1-sin 2α=12. ∴sin 2α=12.答案:A3.已知x ∈⎝ ⎛⎭⎪⎫-π2,0,cos x =45,则tan 2x 等于( ).A.724 B .-724 C.247 D .-247 解析 ∵x ∈⎝ ⎛⎭⎪⎫-π2,0,cos x =45.∴sin x =-35,∴tan x =-34.∴tan 2x =2tan x 1-tan 2x =2×⎝ ⎛⎭⎪⎫-341-⎝ ⎛⎭⎪⎫-342=-247. 答案 D4.已知α,β都是锐角,若sin α=55,sin β=1010,则α+β= ( ).A.π4B.3π4C.π4和3π4D .-π4和-3π4解析 由α,β都为锐角,所以cos α=1-sin 2α=255,cos β=1-sin 2β=31010.所以cos(α+β)=cos α·cos β-sin α·sin β=22,所以α+β=π4. 答案 A5.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝ ⎛⎭⎪⎫α+β2=( ). A.33B .-33C.539D .-69解析 对于cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2,而π4+α∈⎝ ⎛⎭⎪⎫π4,3π4,π4-β2∈⎝ ⎛⎭⎪⎫π4,π2,因此sin ⎝ ⎛⎭⎪⎫π4+α=223,sin ⎝ ⎛⎭⎪⎫π4-β2=63,则cos ⎝ ⎛⎭⎪⎫α+β2=13×33+223×63=539.答案 C6.已知α是第二象限角,且sin(π+α)=-35,则tan2α的值为( )A.45 B .-237 C .-247 D .-83解析 由sin (π+α)=-35,得sin α=35,又α是第二象限角,故cos α=-1-sin 2α=-45,∴tan α=-34,tan 2α=2tan α1-tan 2α=2×⎝ ⎛⎭⎪⎫-341-⎝ ⎛⎭⎪⎫-342=-247. 答案 C7.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin ⎝⎛⎭⎪⎫α+7π6的值是( ).A .-235 B.236 C .-45 D.45解析 cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435⇒32sin α+32cos α=435⇒sin ⎝⎛⎭⎪⎫α+π6=45, 所以sin ⎝ ⎛⎭⎪⎫α+7π6=-sin ⎝ ⎛⎭⎪⎫α+π6=-45. 答案 C 二、填空题8.已知cos ⎝ ⎛⎭⎪⎫α+π4=13,α∈⎝ ⎛⎭⎪⎫0,π2,则cos α=________.解析:∵α∈⎝ ⎛⎭⎪⎫0,π2,∴α+π4∈⎝ ⎛⎭⎪⎫π4,3π4, ∴sin ⎝ ⎛⎭⎪⎫α+π4=223. 故cos α=cos [⎝⎛⎭⎪⎫α+π4-π4]=cos ⎝ ⎛⎭⎪⎫α+π4cos π4+sin ⎝ ⎛⎭⎪⎫α+π4sin π4=13×22+223×22=4+26. 答案:4+269.化简[2sin50°+sin10°(1+3tan10°)]·2sin 280°的结果是________.解析 原式=2sin 50°+sin 10°·cos 10°+3sin 10°cos 10°·2sin 80°=⎣⎢⎢⎡⎦⎥⎥⎤2sin 50°+2sin 10°·12cos 10°+32sin 10°cos 10°·2cos 10° =⎣⎢⎡⎦⎥⎤2sin 50°+2sin 10°·cos -cos 10°·2cos 10°=22(sin 50°cos 10°+sin 10°cos 50°)=22sin 60°= 6. 答案 610.已知tan ⎝ ⎛⎭⎪⎫π4+θ=3,则sin 2θ-2cos 2θ的值为________.解析 法一 ∵tan ⎝ ⎛⎭⎪⎫π4+θ=3,∴1+tan θ1-tan θ=3,解得tan θ=12.∵sin 2θ-2cos 2θ=sin 2θ-cos 2θ-1 =2sin θcos θsin 2θ+cos 2θ-cos 2θ-sin 2θsin 2θ+cos 2θ-1 =2tan θ1+tan 2 θ-1-tan 2 θ1+tan 2θ-1 =45-35-1=-45. 法二 sin 2θ-2cos 2 θ=sin 2θ-cos 2θ-1=-cos ⎝ ⎛⎭⎪⎫π2+2 θ-sin ⎝⎛⎭⎪⎫π2+2θ-1=-1-tan 2⎝ ⎛⎭⎪⎫π4+θ1+tan 2⎝ ⎛⎭⎪⎫π4+θ-2tan ⎝ ⎛⎭⎪⎫π4+θ1+tan 2⎝ ⎛⎭⎪⎫π4+θ-1 =-1-91+9-2×31+9-1=-45.答案 -4511.函数f (x )=2cos 2x +sin 2x 的最小值是________.解析 ∵f (x )=2cos 2x +sin 2x =1+cos 2x +sin 2x =1+2sin ⎝ ⎛⎭⎪⎫2x +π4,∴f (x )min =1-2. 答案 1- 212.若cos(α+β)=15,cos(α-β)=35,则tan αtan β=________.解析 由已知,得cos αcos β-sin αsin β=15,cos αcos β+sin αsin β=35,则有cos αcos β=25,sin αsin β=15,sin αsin βcos αcos β=12,即tan αtan β=12.答案 12三、解答题13.已知sin ⎝ ⎛⎭⎪⎫π4+x =513,且x ∈⎝ ⎛⎭⎪⎫π4,3π4,求1-tan x 1+tan x .解析 ∵x ∈⎝ ⎛⎭⎪⎫π4,3π4,∴π4+x ∈⎝ ⎛⎭⎪⎫π2,π,∴cos ⎝ ⎛⎭⎪⎫π4+x =-1213, ∴tan ⎝ ⎛⎭⎪⎫π4+x =-512, ∴1-tan x 1+tan x =1tan ⎝⎛⎭⎪⎫x +π4=-125. 14.设函数f (x )=sin ωx +sin ⎝⎛⎭⎪⎫ωx -π2,x ∈R.(1)若ω=12,求f (x )的最大值及相应的x 的集合;(2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期.解析 (1)f(x)=sin ωx +sin ⎝⎛⎭⎪⎫ωx -π2=sin ωx -cos ωx , 当ω=12时,f(x)=sin x 2-cos x 2=2sin ⎝ ⎛⎭⎪⎫x 2-π4, 而-1≤sin ⎝ ⎛⎭⎪⎫x 2-π4≤1,所以f(x)的最大值为2, 此时,x 2-π4=π2+2k π,k ∈Z ,即x =3π2+4k π,k ∈Z ,相应的x 的集合为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =3π2+4k π,k ∈Z .(2)因为f (x )=2sin ⎝⎛⎭⎪⎫ωx -π4,所以,x =π8是f (x )的一个零点⇔f ⎝ ⎛⎭⎪⎫π8=sin ⎝ ⎛⎭⎪⎫ωπ8-π4=0,即ωπ8-π4=k π,k ∈Z ,整理,得ω=8k +2,又0<ω<10,所以0<8k +2<10,-14<k <1,而k ∈Z ,所以k =0,ω=2,f (x )=2sin ⎝⎛⎭⎪⎫2x -π4,f (x )的最小正周期为π. 15.在△ABC 中,A 、B 、C 为三个内角,f (B )=4cos B ·sin 2⎝ ⎛⎭⎪⎫π4+B 2+3cos 2B -2c os B .(1)若f (B )=2,求角B ;(2)若f (B )-m >2恒成立,求实数m 的取值范围.解析 (1)f (B )=4cos B ×1-cos ⎝ ⎛⎭⎪⎫π2+B 2+3cos 2B -2c os B=2cos B (1+sin B )+3cos 2B -2cos B =2cos B sin B +3cos 2B=sin 2B +3cos 2B =2sin ⎝ ⎛⎭⎪⎫2B +π3. ∵f (B )=2,∴2sin ⎝ ⎛⎭⎪⎫2B +π3=2,π3<2B +π3<73π,∴2B +π3=π2.∴B =π12.(2)f (B )-m >2恒成立,即2sin ⎝ ⎛⎭⎪⎫2B +π3>2+m 恒成立.∵0<B <π,∴2sin ⎝ ⎛⎭⎪⎫2B +π3∈[-2,2],∴2+m <-2.∴m <-4.16. (1)①证明两角和的余弦公式C (α+β):cos(α+β)=c os αcos β-sin αsin β; ②由C (α+β)推导两角和的正弦公式S (α+β):sin(α+β)=sin αcos β+cos αsin β.(2)已知cos α=-45,α∈⎝ ⎛⎭⎪⎫π,32π,tan β=-13,β∈⎝ ⎛⎭⎪⎫π2,π,求cos(α+β).解析 (1)证明 ①如图,在直角坐标系xOy 内作单位圆O ,并作出角α,β与-β,使角α的始边为Ox 轴非负半轴,交⊙O 于点P 1,终边交⊙O 于点P 2;角β的始边为OP 2,终边交⊙O 于点P 3,角-β的始边为OP 1,终边交⊙O 于点P 4.则P 1(1,0),P 2(cos α,sin α),P 3(cos(α+β),sin(α+β)),P 4(cos(-β),sin(-β)).由P 1P 3=P 2P 4及两点间的距离公式,得[cos(α+β)-1]2+sin 2(α+β)=[cos(-β)-cos α]2+[sin(-β)-sin α]2,展开并整理,得2-2cos(α+β)=2-2(cos αcos β-sin αsin β). ∴cos(α+β)=cos αcos β-sin αsin β.②由①易得,cos⎝ ⎛⎭⎪⎫π2-α=sin α,sin ⎝ ⎛⎭⎪⎫π2-α=cos α.sin(α+β)=cos ⎣⎢⎡⎦⎥⎤π2-α+β=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π2-α+-β=cos ⎝ ⎛⎭⎪⎫π2-αcos(-β)-sin ⎝ ⎛⎭⎪⎫π2-αsin(-β)=sin αcos β+cos αsin β.∴sin(α+β)=sin αcos β+cos αsin β. (2)∵α∈⎝ ⎛⎭⎪⎫π,32π,cos α=-45,∴sin α=-35. ∵β∈⎝⎛⎭⎪⎫π2,π,tan β=-13, ∴cos β=-31010,sin β=1010.cos(α+β)=cos αcos β-sin αsin β=⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-31010-⎝ ⎛⎭⎪⎫-35×1010=31010.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 两角和与差的正弦、余弦正切公式
1.sin
12
π25cos 6π11-cos 12π11sin 6π
5的值是( )
A .-22
B .2
2 C .-sin
12
π
D .sin
12
π 答案:B
2.若sin (α+β)cos β-cos (α+β)sin β=0,则sin (α+2β)+sin (α-2β)等于( ) A .1
B .-1
C .0
D .±1
答案:C
第1题. 已知15sin 17θ=
,θ是第二象限角,求cos 3θ⎛⎫
- ⎪⎝⎭
π的值( ).
第2题. 已知2sin 3α=-,3,2απ⎛⎫∈π ⎪⎝⎭,3cos 4β=,3,22βπ⎛⎫
∈π ⎪⎝⎭
,求()cos βα-的值( ).
第3题.化简sin119sin181sin91sin 29-o o o o 等于( )
A.
12 B.12
-
D. 答案:B 第4题. tan15cos15+o o 等于( )
A.2 B.2 C.4 答案:C
第5题.化简 ) A.2sin 4o B.2sin 44cos4-o o C.2sin 4-o D.4cos42sin 4-o o
答案:D
第6题.化简2
2πsin cos 2sin 2242ααα⎛⎫⎛⎫
++- ⎪ ⎪⎝⎭⎝⎭
的结果为( )
A.2sin α+ B.2α C.2
D.π24α⎛
⎫++ ⎪⎝
⎭
答案:C
第7题.化简tan10tan 20tan 20tan60tan60tan10++o o o o o
o ···的值等于( )
20o B.tan10o C.2 D.1
答案:D
第8题.设θ是三角形的最小内角,且22
2
2
cos sin cos sin 12
2
2
2
a a a θ
θ
θ
θ
+--=+,则a 的取
值范围是( )
A.3a <- B.3a -≤ C.1a <- D.1a -≤
答案:B
6.已知sin (α+β)=
32,sin (α-β)=4
3
,求βαtan tan 的值.
答案:.分析:当题中有异角、异名时,常需化角、化名,有时将单角转化为复角(和
或差).本题是将复角化成单角,正(余)切和正(余)弦常常互化.
欲求
βαtan tan 的值,需化切为弦,即β
αβ
αβαsin cos cos sin tan tan =,可再求sin αcos β、cos αsin β的值. 解:∵sin (α+β)=32,∴sin αcos β+cos αsin β=3
2
. ①
∵sin (α-β)=
43,∴sin αcos β-cos αsin β=4
3
.
②
由(①+②)÷(①-②)得β
α
tan tan =-17.
第9题.若a (tan 25tan 35=+o o ,b (1tan 25tan 35)=o
o ,·,则a b =·( )
.
第10题.已知tan 3α=,求tan 4α⎛
⎫
+ ⎪⎝⎭
π的值( )
. 答案:2-.
第11题. 已知12sin 13θ=-
,θ是第三象限角,求cos 6θ⎛⎫
+ ⎪⎝⎭
π的值 .
答案:
1226
-. 第12题. 1tan151tan165+=+o
o
.
第13题.若A B ,是锐角三角形ABC 的内角,则tan tan A B 的值 1.(填“大于”、“小于”、“等于”). 答案:大于
第14题.若1
sin cos 2
αβ=
,则cos sin αβ的取值范围是 .
答案:
11
22⎡⎤-⎢⎥⎣⎦
,
第15题.已知
3
sin
5
α=-,α是第四象限角,求sin
4
α
⎛⎫
-
⎪
⎝⎭
π
,cos
4
α
⎛⎫
+
⎪
⎝⎭
π
,tan
4
α⎛⎫
-
⎪
⎝⎭
π
的值.
答案:解:由
3
sin
5
α=-,α是第四象限角,得
4
cos
5
α===,
所以
3
sin3
5
tan
4
cos4
5
α
α
α
-
===-.
于是有sin sin cos cos sin
444
ααα
⎛⎫
-=-
⎪
⎝⎭
πππ
43
2525
⎛⎫
=--
⎪
⎝⎭
=
cos cos cos sin sin
444
ααα
⎛⎫
+=-
⎪
⎝⎭
πππ
43
2525
⎛⎫
=⨯-⨯-
⎪
⎝⎭
10
=;
tan tan tan1
4
tan
41tan
1tan tan
4
αα
α
α
α
--
⎛⎫
-==
⎪+
⎝⎭+
π
π
π
3
1
47
3
1
4
--
==-
⎛⎫
+- ⎪
⎝⎭
.
第16题.已知tan tan
αβ
,是一元二次方程2
2(42)230
mx m x m
+-+-=的两个不等实根,求
函数2()53tan()4f m m m αβ=+++的值域. 解:由已知,有12tan tan m m αβ-+=
,23
tan tan 2m m
αβ-=·, 24tan()3
m
αβ-∴+=. 又由0∆>,知10(0)2m ⎛⎫
∈-+ ⎪⎝⎭U ,,∞,
2224()534(1)33
m
f m m m m -∴=++=++·
. Q 当10(0)2m ⎛⎫
∈-+ ⎪⎝⎭
U ,,∞时()f m 在两个区间上都为单调递增,
故所求值域为134(4)4⎛⎫
+ ⎪⎝⎭
U ,,∞.
15. 已知函数y =sin x +cos x +2sin x cos x +2, (1)若x ∈R ,求函数的最大值和最小值; (2)若x ∈[0,
2
π],求函数的最大值和最小值. 答案15.解:(1)设t =sin x +cos x =2sin (x +4
π
)∈[-2,2], 则t 2
=1+2sin x cos x . ∴2sin x cos x =t 2
-1. ∴y =t 2
+t +1=(t +
21)2+43∈[43
,3+2] ∴y max =3+2,y min =4
3
. (2)若x ∈[0,
2
π],则t ∈[1,2]. ∴y ∈[3,3+2], 即y max =3+2y min =3.
7.已知A 、B 、C 是△ABC 的三个内角且lgsin A -lgsin B -lgcos C =lg2.试判断此三角形的形状特征.
答案.分析:从角与角的关系探究三角函数间的关系;反之,利用三角函数间的关系去判断角的大小及关系,这是常用的基本方法.可以先化去对数符号,将对数式转化为有理式,然后再考察A 、B 、C 的关系及大小,据此判明形状特征.
解:由于lgsin A -lgsin B -lgcos C =lg2, 可得lgsin A =lg2+lgsin B +lgcos C , 即lgsin A =lg2sin B cos C ,
sin A=2sin B cos C.
根据内角和定理,A+B+C=π,
∴A=π-(B+C).
∴sin(B+C)=2sin B cos C,
即sin B cos C+cos B sin C=2sin B cos C.移项化为sin C cos B-sin B cos C=0,即sin(B-C)=0.
∴在△ABC中,C=B.
∴△ABC为等腰三角形.。