全球卫星导航定位技术
GNSS全球导航卫星系统与GPS全球定位系统对比
GNSS全球导航卫星系统与GPS全球定位系统对比全球导航卫星系统(GNSS)是一组卫星,用于生成坐标、授时和导航数据并将其从太空转发到地球上的连接传感器,这些数据通常嵌入物联网(IoT)设备中。
GNSS已成为全球不可或缺的一部分,主要应用于精准农业、自动驾驶、航海或航空测量以及国防应用。
全球定位系统(GPS)是一个支持全球高精度定位、导航和授时(PNT)测量的卫星,GPS 是GNSS系统的一部分。
GPS与GNSS有什么区别?GPS是组成GNSS的卫星之一。
GNSS由GPS、GLONASS、BDS、GALILEO等许多卫星组成。
定位技术依赖于许多不同的卫星来提供准确可靠的PNT。
正如正方形是矩形的一种,GPS是GNSS的一种。
GNSS是任何使用卫星信号的全球导航系统的总称。
接收器可以使用轨道卫星发送的信号找到您的位置。
GPS的问题是卫星信号很容易被恶劣天气和山脉等其他障碍物阻挡。
GPS接收器只能使用全球定位系统中部分卫星的信号。
GNSS接收器可以使用所有定位卫星的信号,不仅仅是GPS系统中的信号。
这就意味着GNSS的信号比GPS更强,定位数据也更加准确和可靠。
GNSS(全球导航卫星系统)工作原理示意:全球导航卫星系统是如何工作的?每个GNSS系统都包含三个主要组成部分:1.卫星卫星将坐标、授时和导航数据这些信息共享到地球,然后接收器使用该信息。
2.控制部分GNSS系统在赤道周围建有基站来控制、监视、跟踪卫星并与卫星通信。
3.用户部分用户通过带有GNSS接收器的手机、汽车、飞机获取信号并精确定位我们的位置。
GNSS的性能指标:精度:衡量实际位置、速度或时间与GNSS测量值相比的真实程度。
精度越高的GNSS 设备性能越强。
刷新率:刷新率越高的GNSS设备得到的数据越准确。
功耗:越来越多的定位设备会对GNSS的功耗上做出要求,所以低功耗也是GNSS性能指标之一。
稳定性:表示GNSS系统不间断运行的能力。
GPS全球卫星定位导航系统
GPS地图
GPS地图是GPS中一个重要的组成部分,光有机器还不行,还得 有地图和软件支持,这样才能让GPS为我们引路,找地方。。。 既然有这么多地图,那肯定各有各的长处,听小生一一道来。 市场上的GPS地图资源主要有以下这些 凯立德:公司总部在深圳,地图主要优势在华南,尤其是 广东省及周边,信息点全,地图绘制较详细。 道道通:公司名叫瑞图万方,有十年的地图绘制经验,兴 趣点比较全面且较准确。 四维地图:主要应用于车载GPS(装在中控上的),一些 高端品牌也有使用,使用成本较高。 高德地图:地图测绘厂家的后来者,目前市场上使用该地 图的品牌不是很多。 灵图天行者:主要应用于智能手机,大家常见的多普达就 是用灵图的地图。
功能
GPS的实时监控功能: 在任意时刻通过发出指令查询运输工具 所在的地理位置(经度、纬度、速度等 信息)并在电子地图上直观地显示出来。
GPS的双向通讯功能
网络GPS的用户可使用GSM的话音功能与司 机进行通话或使用本系统安装在运输工具上的 移动设备的汉字液晶显示终端进行汉字消息收 发对话。 驾驶员通过按下相应的服务、动作键,将该 信息反馈到网络GPS,质量监督员可在网络 GPS工作站的显示屏上确认其工作的正确性, 了解并控制整个运输作业的准确性(发车时间、 到货时间、卸货时间、返回时间等等)。
GPS方案
为什么要像大家详细解说GPS方案,这是因为方案不 同,机器采用的硬件和价格有很大的差异! 国内市场 上主流的GPS大多采用三星或者掌微的方案。 一般来讲,采用三星方案的多为高端机器,用的是三 星的CPU(频率为400M赫兹),价格一般在2千元以上, 贵一些的甚至要四五千。掌微方案可谓是GPS市场的 推动者,使GPS进入广大车友的功臣。为何? 听我慢 慢道来,首先从成本上来说,三星的CPU性能是没得 说,但是价格不菲就注定了它竞争不过物美价廉的掌 微。目前,从性能上来说,掌微并不比三星落后,只 是采用的工艺不同,两者在各方面的表现各有长短, 三星的信号强度好,掌微的搜星速度快。目前市场上 采用三星方案的多为高端品牌,比如:神达、任我游, 价位一般在2000以上,贵的甚至要四五千。 用掌微方 案的就多了,价格一般1000-2500左右,以市场畅销品 牌为主。Biblioteka GPS的数据存储、分析功能
卫星定位技术—GNSS概述(工程测量)
GNSS的基本定位原理
我们先要清楚几个问题!
根据几何与物理基本原理,利用空间分 布的卫星以及卫星与地面点间距离交会 出地面点位置。
R3
R1
R2
GNSS的基本定位原理
GPS定位为什么必须接收至少4颗卫星?
1、考虑到各种误差的影响,为了达到 定位精度要求,至少需要同步观测4颗 以上的卫星。
2 、 GPS 定 位 包 括 确 定 一 个 点 的 三 维 坐 标与实现同步这四个未知参数。
2、根据接收机运动状态的不同
动态定位:至少有一台接收机处于运动状态
GPS定位为什么必须接收至少4颗卫星?
GPS定位采用的方法主要有哪些?
3、根据接收机的数量
单点定位
GPS定位为什么必须接收至少4颗卫星?
GPS定位采用的方法主要有哪些?
3、根据接收机的数量
相对定位
3、未知数:纬度,经度,高程和时间。
GPS系统定位原理图
GPS定位为什么必须接收至少4颗卫星?
GPS定位基本原理图所示,有四颗已知坐标的卫星S1(x1,y1,z1),S2(x2,y2,z2), S3(x3,y3,z3),S4(x4,y4,z4),以及一个位置坐标的观测点rP(x,y,z)。
由 以 上 四 个 方 程 即 可 解 出 观 测 点 的 坐 标 ( x , y , x ) 和 本 地 钟 差 tp , 其 中 c 为 光 速 299792458m/s,从而得到观测点的位置信息。
多个卫星星座
• GPS • GLONASS • BeiDou • Galileo •…
>100颗卫星
增强系统
• WAAS • EGNOS • MASAS •…
GNSS的基本定位原理
全球卫星导航系统GNSS技术现状与发展趋势
全球卫星导航系统GNSS技术现状与发展趋势全球卫星导航系统(Global Navigation Satellite System,GNSS)是一种由多个卫星组成的定位与导航系统,它能提供24小时全天候的导航、定位和时间服务。
GNSS技术广泛应用于交通、车辆管理、测绘、航空航天等领域,为人类日常生活和经济发展提供了很大的便利。
本文将介绍GNSS技术的现状与发展趋势。
一、 GNSS技术的现状目前主要使用的GNSS系统包括美国的GPS系统、俄罗斯的GLONASS系统、欧盟的伽利略系统以及中国的北斗系统。
这些系统均能够提供高精度的定位、导航和时间服务,但各自的性能略有不同。
GPS系统是最早建立和应用的GNSS系统,全球已有数十年的应用历史,准确性较高,可实现厘米级的位置测量。
在交通、车辆管理、航空等领域得到广泛应用,是全球范围内最受欢迎的GNSS系统之一。
GLONASS系统由俄罗斯建立,系统中的卫星数量较少,但其在北极地区的覆盖能力较强,适用于极地航行和勘探等领域。
伽利略系统是欧盟建立的独立GNSS系统,与GPS系统类似,但其准确度更高,可实现毫米级的精度测量,在测绘等精密领域应用广泛。
中国的北斗系统是近年来快速崛起的GNSS系统之一,其在亚洲地区获得了广泛的应用。
北斗系统在精度、可靠性和成本方面具有很大优势,适用于车辆管理、海洋渔业、港口物流等多个领域。
二、 GNSS技术的发展趋势随着GNSS技术的不断发展,其在精度、覆盖范围等方面得到不断提升,未来仍将有以下几个发展趋势:1. 精度提升:对于需要高精度的应用领域,如航空、海洋工程等,GNSS技术将不断追求更高的精度。
例如,目前正在研究的双星定位技术,能够在超过1000公里的距离上实现毫米级精度的定位测量。
2. 成本降低:随着GNSS技术的普及和应用领域的扩大,GNSS产品的价格将逐渐降低,特别是对于中小型企业和个人用户。
如现在广泛使用的GPS导航仪等产品,价格已经相对较低,未来还将越来越便宜。
全球定位系统的技术研究与应用
全球定位系统的技术研究与应用一、简介全球定位系统(GPS)是一种基于卫星的导航系统,可以准确地确定地球上任何一个位置的坐标。
GPS技术已经在军事、民用、商业等领域得到了广泛的应用。
本文将介绍GPS技术的原理、发展历程、应用领域以及未来发展趋势。
二、原理GPS系统由27颗卫星和地面控制站组成。
卫星发射的信号包含有关卫星位置和时间的信息。
GPS接收器通过接收卫星信号来计算物体的位置、速度和方向。
GPS接收器通过计算卫星信号的到达时间差值来确定接收器和卫星之间的距离。
接收器需要从至少三颗卫星接收信号才能确定其位置。
通过接收更多的卫星信号,GPS接收器可以使用三角形测量法来精确测定物体的位置。
三、发展历程GPS起源于20世纪60年代,最初被用于美国国防部的军事目的。
在20世纪80年代,美国政府决定将其开放给民用部门使用。
1994年,GPS接收器的商业化生产开始了。
目前,几乎所有的新车型都配备了GPS导航系统。
四、应用领域1. 航空航天:GPS技术在航空航天领域发挥着非常重要的作用。
它可以用来帮助飞行员确定机器的位置,以及规划最合适的航线。
2. 海洋:GPS技术在海洋上的应用领域十分广泛,包括船舶导航、渔业、海洋勘测、海上救援和海洋气象。
3. 交通运输:GPS在交通运输领域的应用也越来越广泛。
GPS导航仪已成为车辆安装AC、音响系统之后的重装附件,不仅仅是在私人车辆中得到了普及,公共交通(如公交车、出租车、地铁等)的使用也很常见了。
4. 地质勘测:GPS技术可以用来跟踪地震,以及监测地球活动的情况,包括地面下面的变化和大气环境的影响。
5. 研究和开发:GPS可以用于研究和开发领域,例如跟踪大气中的温度变化,或者检测物体的运动轨迹。
五、未来发展GPS技术将继续发展和创新。
一些新的GPS系统正在研发中,例如欧洲伽利略系统和中国北斗导航系统。
这些系统将进一步提高导航的精度和可靠性。
此外,GPS技术也将被应用于更多的领域,例如医疗保健、安全和防御等领域。
全球卫星导航系统GNSS的技术
全球卫星导航系统GNSS的技术随着现代科技的迅速发展,全球卫星导航系统(GNSS)已经成为我们日常生活中不可缺少的一部分,但是有多少人真正了解有关GNSS的技术呢?本文将探讨GNSS的技术背景、现状和未来发展方向。
一、技术背景GNSS技术完全革新了人们的定位和导航方式。
在1983年,美国建立了GPS(Global Positioning System),通过一组24颗人造卫星来提供全球性的定位服务,GNSS因此得以发展。
后来,欧洲、俄罗斯、印度和中国也建立了自己的GNSS系统。
GNSS系统是由卫星和地面控制站组成的。
卫星位于地球轨道上,每颗卫星都用时钟来标识其位置信息。
地面控制站对卫星进行控制以及监视卫星的运行状态。
用户可以通过GNSS接收器,接收卫星发出的信号,以确定自己的位置信息。
目前商用GNSS接收器在球形覆盖之内大都有高度可靠的定位精度。
二、技术现状GNSS技术在多个领域应用广泛,如航空航天、交通运输、农业、测绘、导航和定位等。
航空公司使用GNSS系统来确保航班准时且路径安全;农民用GNSS技术来测量土壤水分和肥力,以调整农业生产和减少浪费。
在高速公路上,汽车导航和交通管理系统都可以通过GNSS技术进行协调,以实现更高效率的交通流动。
此外,GNSS技术也可以用于地震灾害等自然灾害的研究。
GNSS的技术现状还有一些问题。
首先,室内场景限制了GNSS定位的精度。
室内信号接收困难,导致定位精度受到影响,所以室内区域需要更多的信号基站或者其他先进的技术来弥补。
此外,降低造价也是GNSS技术需要解决的问题。
现在,GNSS技术涉及到昂贵的硬件、软件和维护成本,发展新技术和改进现有系统以在更广泛的范围内使用是必要的。
三、技术发展方向未来GNSS技术的发展趋势是多样化和精细化。
对于多样化,这意味着GNSS系统将被用于支持更多的应用场景,例如:野外作业、室内导航、智能制造等;对于精细化,这意味着GNSS定位精度将逐渐提高,并且确保GNSS在高速移动、室内、垂直方向等区域内具有较高的定位精度。
全球定位系统技术的应用与发展趋势
全球定位系统技术的应用与发展趋势全球定位系统(GPS)是一种基于卫星通讯系统的定位技术,它可以提供全球性的位置信息和时间信息。
GPS技术已经广泛应用于航空、海洋、陆地、天文、测量等领域,并且随着卫星导航系统的不断发展,GPS技术将有更广泛的应用。
一、GPS技术在航空航天领域的应用GPS技术在航空航天领域是最早得到应用的领域。
在航空领域中,GPS可以提供航空器的实时位置信息,以及航空路线等数据,可以大大提高航空器的安全性和航行效率。
GPS技术也是航空器导航和飞行控制系统的重要组成部分,对航空器航行的安全保障有着重要的作用。
在航天领域中,GPS技术可以用来精确计算卫星的轨道位置和卫星钟差,是卫星导航系统的核心技术。
二、GPS技术在海洋领域的应用GPS技术在海洋领域中也有着广泛的应用。
在海洋测量中,GPS技术可以提供船舶的实时位置信息和姿态信息,可以大大提高测量的准确性和精度。
在海洋勘测和资源开发中,GPS技术也可以提供实时位置信息,对海域的资源储量和分布进行探测和评估。
此外,在海洋气象和海洋环境保护中,GPS技术也可以起到重要的作用。
三、GPS技术在陆地领域的应用GPS技术在陆地领域中的应用也非常广泛。
在交通运输领域中,GPS技术可以提供道路交通实时信息,协助车辆导航和行车安全。
在航运行业中,GPS技术可以帮助船舶导航、检测航线、虚拟编队等。
在海岸管理和救援中,GPS技术可以精确定位失踪人员和船只的位置,实现及时救援。
在农业和林业中,GPS技术可以提供地块定位和定量生产,实现精细化管理和节约成本。
四、GPS技术的发展趋势随着卫星导航系统的不断发展,GPS技术将有更广泛的应用。
未来,随着人工智能技术的发展,GPS技术也将应用于自动驾驶和自动导航等方面。
此外,随着物联网技术的发展,GPS技术将成为物联网的重要组成部分,实现对全球物联网设备的精确定位和追踪。
总之,GPS技术是一种非常重要的定位技术,已经广泛应用于各个领域。
GPS卫星导航原理:卫星信号定位技术
GPS卫星导航原理:卫星信号定位技术全球定位系统(GPS)是一种通过卫星信号进行定位的导航技术。
GPS系统由一组卫星、地面控制站和接收设备组成。
以下是GPS卫星导航的基本原理:1. GPS卫星系统组成:卫星: GPS系统由一组绕地球轨道运行的卫星组成,这些卫星携带精确的时钟和GPS系统的控制信息。
地面控制站:位于地球表面的控制站负责监测卫星的状态、时钟校准和轨道调整等任务,以确保系统的正常运行。
接收设备:用户使用的GPS接收器通过接收卫星发射的信号来确定自身的位置。
2. 卫星信号传播原理:GPS卫星发射射频信号,这些信号包含了卫星的位置、时间等信息。
这些信号以电磁波的形式向地球传播。
GPS接收器接收来自多颗卫星的信号,并通过测量信号的传播时间来计算卫星与接收器之间的距离。
3. 距离测量和三边测量原理:GPS接收器通过测量信号传播的时间(即信号的往返时间)来计算卫星与接收器之间的距离。
速度等于距离除以时间。
GPS接收器同时接收多颗卫星的信号,并根据这些卫星与接收器之间的距离,采用三边测量的原理确定自身的位置。
4. 多普勒效应:GPS接收器还利用接收到的信号的多普勒效应,即由于接收器和卫星之间的相对运动,信号频率发生变化。
通过测量频率的变化,接收器可以计算速度。
5. 位置计算:GPS接收器通过测量来自至少三颗卫星的距离,可以在三维空间中确定自身的位置。
更多卫星的信号可以提高精度和稳定性。
6. 误差校正:GPS系统引入了一些误差校正的方法,如差分GPS、增强型GPS等,以提高定位的准确性。
GPS卫星导航系统利用卫星信号的传播时间和多普勒效应,通过测量距离和计算位置,为用户提供准确的定位信息。
该技术在航海、航空、汽车导航、军事应用等领域得到了广泛应用。
全球导航卫星系统定位原理
全球导航卫星系统定位原理全球导航卫星系统(GNSS)是一种通过卫星来提供定位、导航和时间同步服务的系统。
它利用定位接收器接收来自多个卫星的信号,通过计算这些信号的时间差来确定接收器的位置。
全球导航卫星系统定位原理主要包括信号发射、信号接收和位置计算三个主要步骤。
首先,在全球导航卫星系统中,卫星发射设备通过肯定的轨道运行,并向地球上的接收器发送信号。
全球导航卫星系统(包括美国的GPS、俄罗斯的GLONASS、欧洲的Galileo和中国的北斗)各有自己的卫星网络,这些卫星以不同的轨道高度和角度分布在地球上的各个位置。
这些卫星通过高精度的原子钟同步发送信号。
接下来,接收器接收到卫星发射的信号。
接收器通常包含一个天线,用于接收卫星发射的无线电信号。
卫星发送的信号包括有关卫星位置和时间信息的数据,以及以特定频率传输的导航信号。
天线上的接收器将接收到的信号传输到处理单元。
最后,处理单元计算接收器的位置。
为了确定接收器在地球上的位置,接收器需要接收到至少四颗卫星的信号。
通过测量信号的到达时间差,接收器可以计算出信号从卫星到达接收器的时间。
每颗卫星发送的信号都带有时间戳,以确定发送信号的确切时间。
通过知道光速,接收器可以计算出从每颗卫星到达接收器所花费的时间。
通过同时测量四颗卫星的信号到达时间差,接收器可以计算出自己相对于卫星的距离。
通过测量到达四颗卫星的距离,接收器可以确定自己相对于每颗卫星的位置。
这种三角测量方法通常称为“多普勒(DOP)解算”。
利用这些距离信息,接收器可以计算出自己在地球上的位置,并显示在导航设备上。
除了确定位置外,全球导航卫星系统还可以提供导航和时间同步服务。
通过接收到来自多个卫星的信号,用户可以确定自己的方向和航向,并通过全球导航卫星提供的时间同步服务来保持准确的时间。
总结起来,全球导航卫星系统通过接收来自多颗卫星的信号,并通过计算信号的时间差来确定接收器的位置。
这种定位原理不仅可以提供准确的位置信息,还可以提供导航和时间同步服务,为人们的生活和工作提供了便利。
全球四大卫星定位系统
全球四大卫星导航系统简介一、美国的GPS系统:美国的GPS系统,由24颗(3颗为备用卫星)在轨卫星组成。
GPS的信号有两种C/A码,P码。
民用:C/A码的误差是29.3m到2.93米。
一般的接收机利用C/A码计算定位。
美国在90代中期为了自身的安全考虑,在信号上加入了SA(Selective Availability),令接收机的误差增大,到100米左右。
在2000年5月2日,SA取消,所以,咱们现在的GPS精度应该能在20米以内。
军用:P码的误差为2.93米到0.293米是C/A码的十分之一。
但是P码只能美国军方使用,AS(Anti-Spoofing),是在P码上加上的干扰信号。
二、中国的“北斗”卫星导航定位系统:“北斗”卫星导航定位系统需要发射35颗卫星,足足要比GPS多出11颗。
按照规划,“北斗”卫星导航定位系统将有5颗静止轨道卫星和30颗非静止轨道卫星组成,采用“东方红”-3号卫星平台。
30颗非静止轨道卫星又细分为27颗中轨道(MEO)卫星和3颗倾斜同步(IGSO)卫星组成,27颗MEO卫星平均分布在倾角55度的三个平面上,轨道高度21500公里。
“北斗”卫星导航定位系统将提供开放服务和授权服务。
开放服务在服务区免费提供定位,测速和授时服务,定位精度为10米,授时精度为50纳秒,测速精度为0.2米/秒。
授权服务则是军事用途的马甲,将向授权用户提供更安全与更高精度的定位,测速,授时服务,外加继承自北斗试验系统的通信服务功能,精度可以达到重点地区水平10米,高程10米,其他大部分地区水平20米,高程20米;测速精度优于0.2米/秒。
这和美国GPS的水平是差不多的。
另外,“北斗一号”还可以提供用户的双向通讯功能,用户与用户、用户与中心控制系统间均可实现双向简短数字报文通信。
通过“北斗”系统,用户一次最多可以传输120个字符【汉字】。
在国产的GPS——“北斗二号”投入使用后,会不会取代GPS呢?曹冲研究员的答案是否定的。
全球卫星定位系统的原理
全球卫星定位系统的原理一、概述全球卫星定位系统(GPS,GlobalPositioningSystem)是由美国国防部开发的一种全天候、全球性的卫星导航系统。
该系统利用人造卫星广播位置信息,用户设备通过接收卫星信号,计算出自身在地球上的位置。
GPS系统广泛应用于航空、航海、车辆导航、地震监测、地形测量等领域。
二、工作原理1.卫星定位原理GPS系统由24颗卫星组成,均匀分布在地球的六个轨道上(轨道高度约20000公里)。
用户设备通过接收至少三颗卫星的信号,来确定自身的位置。
卫星信号包括卫星的位置信息(纬度、经度、高度)和时钟信息。
2.伪距测量用户设备通过测量卫星信号的传输时间,计算出与卫星的距离,称为伪距。
伪距测量涉及到多边差分算法,以提高测量精度。
3.坐标系GPS系统使用WGS84坐标系,这是一种全球性的地理坐标系,具有固定的椭球参数。
用户设备可以根据接收到的卫星位置和伪距测量结果,计算出自身的纬度、经度和高度。
三、应用领域1.导航与定位GPS系统广泛应用于车辆导航、移动设备定位、户外活动定位等场景。
通过接收卫星信号,用户可以获得自身的位置信息,并实现路径规划、导航等功能。
2.农业与土地资源调查GPS系统可用于农业领域的土地资源调查、农田管理等。
通过GPS 定位,可以实现精准播种、施肥、灌溉等作业。
3.地震监测与应急救援GPS系统可用于地震监测和应急救援。
在地震发生后,GPS系统可以用于确定地震位置、受灾程度等信息。
同时,救援队伍可以利用GPS 系统进行快速定位和救援。
4.地形测量与城市规划GPS系统可用于地形测量和城市规划。
通过接收卫星信号,可以获取地形的三维信息,为城市规划和土地资源开发提供数据支持。
四、结论全球卫星定位系统是一种高效、精确的导航和定位工具,广泛应用于各个领域。
了解GPS系统的原理和应用,对于更好地发挥GPS系统的优势具有重要意义。
随着技术的不断进步,GPS系统的应用场景也将不断拓展,为人类生活带来更多便利。
全球定位系统(GPS)的原理
GPS的基本原理和功能介绍全球定位系统(GPS)是一种用于确定地球上特定位置的卫星导航系统。
它由一系列卫星、地面控制站和GPS接收器组成。
GPS的基本原理是利用卫星之间的距离测量和三角定位的原理来确定接收器的位置。
1.GPS卫星组成和运行原理•GPS系统由一组运行在中轨道上的卫星组成,这些卫星分布在地球的不同位置,以确保全球范围的覆盖。
目前,GPS系统中通常有24颗卫星运行。
•GPS卫星通过精确的轨道控制和时间同步,以稳定的速度绕地球运行。
卫星的运行轨道和位置信息由地面控制站进行监测和调整。
2.GPS接收器的工作原理和定位方法•GPS接收器是用于接收和处理来自卫星的信号的设备。
接收器通过接收多颗卫星发射的信号,并计算信号的传播时间和距离来确定接收器的位置。
•GPS接收器使用三角定位的原理,通过同时接收来自至少三颗卫星的信号来确定接收器的位置。
通过接收更多卫星的信号,精度可以进一步提高。
3.GPS的定位精度和误差来源•GPS定位的精度取决于多种因素,包括卫星的几何分布、接收器的性能、大气条件等。
•可能的误差来源包括信号传播时的大气延迟、卫星钟的不准确、接收器钟的不准确、多径效应等。
这些误差需要进行校正和纠正,以提高定位的精度。
4.GPS在导航、测量和定位应用中的作用•GPS在导航领域是非常重要的,它被广泛应用于航空、航海、汽车导航等。
通过GPS定位,人们可以准确地确定自己的位置并导航到目的地。
•在测量领域,GPS被用于测量地球表面的形状、地壳运动、地震活动等。
它在地理测量、地质勘探等领域发挥着重要作用。
•GPS还被用于定位和追踪移动设备、车辆和人员,例如物流追踪、紧急救援等。
5.GPS技术的发展和未来趋势•GPS技术在过去几十年中取得了巨大的发展,定位精度和覆盖范围不断提高。
现代的GPS接收器可以实现亚米级的定位精度。
•随着技术的进步,GPS系统的性能将进一步改善,包括更多卫星的部署、更高的定位精度、更快的信号更新速度等。
全球定位导航系统的工作原理
全球定位导航系统(如GPS)的工作原理基于卫星导航技术,通过接收卫星发送的信号,计算出用户所在的位置、速度、时间等信息。
1.卫星系统:全球定位导航系统由一组卫星组成,这些卫星分布在
不同的轨道上,以确保地球上任何位置都能至少接收到4颗卫星的信号。
卫星不断发送包含当前时间和卫星位置的信号。
2.接收设备:用户使用具有GPS功能的设备(如手机、汽车导航仪
等)接收卫星信号。
设备中的GPS接收器会计算信号传播时间,从而计算出设备与卫星之间的距离。
3.三维定位:根据接收到的四颗或更多卫星的信号,接收机使用三
角定位法(三球交汇法)计算出自身所在的三维坐标(经度、纬度、高度)。
由于地球曲率和大气层折射的影响,还需要对信号传播时间做进一步修正,最终得到高精度的位置信息。
4.差分定位技术:为了提高定位精度,全球定位导航系统采用了差
分定位技术。
该技术通过在已知位置设置基准站,接收卫星信号并计算误差,然后将误差信息传输给附近的GPS用户设备,从而校正原始定位数据,提高定位精度。
5.实时导航:一旦获取了准确的位置信息,GPS接收机就可以结合
电子地图和其他传感器数据为用户提供实时的导航指引,包括方向、速度、航迹等信息。
第七章全球卫星定位导航技术(1)精品PPT课件
纬度
赤道
φ
南极
900 Z
绝对定位例子:天文纬度测量
R adar
(X 1,Y 1,Z 1) (X 0,Y 0,Z 0)
X X
x2 x1 cos sin
y
2
y
1
D
c
o
s
cos
z 2 z 1 s i n
相对定位的例子:目标的雷达定位
绝对定位
相对定位
7.1.3定位与导航的方法和技术
天文定位与导航技术 常规大地测量定位技术 惯性导航定位技术 无线电导航定位技术 卫星导航定位技术
7.1.5组合导航定位技术
20世纪70年代发展于航海、航空与航天等领域 可提高导航定位精度和可靠性 组合导航的方式
➢ 惯性导航与多普勒组合导航系统 ➢ 惯性导航与测向/测距(VOR/DME)组合导航系统 ➢ 惯性导航与罗兰(LORAN) ➢ 以及惯性导航与全球定位系统(INS/GPS)组合导航系统
7.1.2定位需求与技术的发展过程
7.1.3绝对定位方式与相对定位方式
绝对定位:直接确定信息、事件和目标相对于参考坐标系统的 坐标位置测量。
相对定位:确定信息、事件和目标相对于坐标系统内另一已知
或相关的信息、事件和目标的坐标位置关系。
天顶角 Z
地球自转轴
Z Y
(X 2,Y 2,Z 2)
Z
Y
D
北极
空间测量与制图 4209903
第7章 全球卫星定位导航技术
ห้องสมุดไป่ตู้录
❖概 述 ❖ 全球卫星定位系统的工作原理
和使用方法 ❖ GPS卫星定位导航系统的应用
7.1概 述 No Image
7.1.1定位与导航的概念
使用全球导航卫星系统进行位置定位的原理
使用全球导航卫星系统进行位置定位的原理全球导航卫星系统(GNSS)是一种基于人工卫星组成的网络,可以提供全球范围内的位置定位服务。
它是现代导航和定位技术中的重要一环,广泛应用于交通运输、航空航天、地理测绘、军事等领域。
本文将介绍使用GNSS进行位置定位的原理。
GNSS系统由多颗卫星组成,例如全球定位系统(GPS)、俄罗斯的格洛纳斯系统、中国的北斗卫星导航系统以及欧洲的伽利略系统等。
这些卫星通过地面的接收设备与用户的接收器进行通信交互,从而实现位置定位。
首先,GNSS系统依赖于空间中的卫星星座。
这些人工卫星在通常情况下固定轨道上以不同角度和高度分布,以覆盖整个地球。
通过接收器接收到多颗卫星发出的信号,我们可以确定自己所处的位置。
其次,GNSS系统利用卫星的时间和位置信息来进行位置定位。
每颗卫星都会定期地广播它们的当前时间和位置。
用户的接收器收到至少4颗卫星的信号后,可以通过计算信号在空间中的传播时间以及飞行时间差来确定自身的位置。
定位的原理可以简单概括为三角测量。
接收器采集到卫星信号后,它会知道每颗卫星的时间和位置信息,以及信号传播的速度。
接收器通过计算信号的传输时间和接收时间差,从而确定自己与各颗卫星之间的距离。
现代接收器通常使用精确的时间戳,并考虑到信号传输的延迟,以提高测量的准确性。
最后,位置定位还需要考虑到误差因素。
由于信号传播时存在大气层的影响,以及卫星钟的不精确性等原因,定位结果可能存在一定的误差。
为了减小误差,GNSS系统会通过多颗卫星的信号来进行差分定位。
差分定位比单点定位更精确,它利用参考站收集到的原始数据和已知位置作为参考,从而消除传输中的各种误差。
总结来说,使用全球导航卫星系统进行位置定位的原理是通过测量卫星发出的信号的传输时间差,以及卫星的时间和位置信息,从而计算出接收器与卫星之间的距离,并基于此来推算出用户的位置。
在实际应用中,GNSS系统还需要考虑误差因素,并采取相应的校正措施以提高测量的准确性。
GPS及其定位技术原理
GPS及其定位技术原理GPS(全球定位系统)是基于卫星导航技术的一种定位系统。
它通过一系列卫星在空间中进行广播,接收用户设备信号并计算出设备的位置信息。
GPS定位技术原理主要包括卫星轨道和时钟校正、信号传输和接收以及位置解算三个部分。
首先,GPS系统由一组卫星构成,它们分布在固定的轨道上。
通过恒星导航计算得到星座中每颗卫星的精确位置,并利用测控站进行周期性的轨道修正。
此外,为了保持卫星的时间准确性,GPS系统采用了高精度的原子钟进行时钟校正,以确保卫星和地面设备之间的时间同步。
其次,GPS系统通过无线电波在卫星与用户设备之间进行信号传输。
卫星将包含时间、位置和健康状态等信息的导航消息进行广播,用户设备则通过天线接收这些信号。
GPS信号频率较高,可直接穿过大气层,但在传输过程中还是会受到电离层、大气湿度和建筑物等的影响。
因此,GPS系统通过频率扩展、编码和差分改正等技术来提高信号质量和抗干扰能力。
最后,用户设备通过接收多个卫星的信号并计算出其与各卫星之间的距离,从而进一步确定设备的位置。
设备需要同时接收至少4颗卫星的信号才能进行定位,因为每颗卫星提供了三个未知数(x,y,z坐标)以及一个时间未知数。
设备利用接收到的卫星信号中包含的导航数据计算出距离,并通过多边测量法来确定自己的位置。
这个过程采用了三角形计算、椭球面模型和时间同步等数学原理和方法。
需要指出的是,由于各种因素的影响,GPS定位并不是百分之百准确的,可能存在一定的误差。
常见的误差主要包括天线相位中心偏差、大气延迟、多径效应(信号反射导致的多个接收点)和钟差等。
为了提高定位精度,现代GPS系统还引入了差分GPS和增强型GPS技术。
差分GPS利用信号传输过程中的误差参量进行纠正,而增强型GPS则结合了其他辅助定位技术,如惯性导航系统和地面基站等,提供更高精度的定位结果。
总之,GPS定位技术基于卫星导航原理,通过卫星轨道和时钟校正、信号传输和接收以及位置解算等步骤来确定用户设备的具体位置。
全球卫星导航系统原理
全球卫星导航系统原理一、概述全球卫星导航系统(GNSS)是由一组卫星和地面控制站组成的,用于提供全球性的导航和定位服务。
目前主要有美国的GPS、俄罗斯的GLONASS、欧洲的Galileo、中国的北斗等四个系统。
二、卫星定位原理1. GPS原理GPS是由24颗卫星组成的,它们围绕着地球轨道运行,每颗卫星都具有精确的时钟和广播天线。
接收器接收到来自4颗或更多卫星发射的信号后,可以通过测量信号传播时间来确定自己所在位置。
2. GLONASS原理GLONASS也是由24颗卫星组成,它们分布在3个不同高度的轨道上。
接收器接收到来自4颗或更多卫星发射的信号后,可以通过测量信号传播时间来确定自己所在位置。
3. Galileo原理Galileo由30颗卫星组成,它们分布在3个不同高度的轨道上。
与GPS和GLONASS不同,Galileo采用了双频技术,在L1和L5频段同时广播信号。
这种技术可以减少误差,并提高定位精度。
4. 北斗原理北斗由35颗卫星组成,它们分布在3个不同高度的轨道上。
接收器接收到来自4颗或更多卫星发射的信号后,可以通过测量信号传播时间来确定自己所在位置。
三、地面控制站地面控制站是GNSS系统的重要组成部分,它们负责监控卫星状态、计算卫星轨道和时钟误差、广播导航消息等。
每个GNSS系统都有多个地面控制站,它们分别位于不同的地理位置,并相互连接以确保系统的稳定运行。
四、应用领域GNSS技术已经广泛应用于交通运输、农业、测绘、航空航天等领域。
其中最为常见的应用是车载导航和手机定位服务。
五、精度与误差GNSS定位精度取决于多种因素,包括接收器质量、信号传播路径长度和干扰等。
此外,由于大气层折射和电离层扰动等因素的影响,GNSS定位存在一定误差。
为了提高精度和减少误差,GNSS系统采用了多种技术手段,如双频技术、差分GPS技术等。
六、总结全球卫星导航系统是一种基于卫星技术的全球性导航和定位服务。
它由卫星和地面控制站组成,可以提供高精度的定位服务。
四大全球卫星导航系统简介
四大全球卫星导航系统简介目前有四大全球卫星导航系统,其中包括: 美国的全球卫星定位系统GPS、俄罗斯GLONASS卫星导航系统、中国的北斗卫星导航系统、欧洲“伽利略”卫星导航系统。
一、美国的全球卫星定位系统GPS1、简介:GPS 是英文Global Positioning System(全球定位系统)的简称,而其中文简称为“球位系”。
GPS是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统。
GPS系统由28颗地球同步卫星组成(4颗为备用星),均匀地分布在距离地球20000公里高空的6个轨道面上。
这些卫星与地面支撑系统组成网络,每隔1-3秒向全球用户播报一次其位置(经纬度)、速度、高度和时间信息,能使地球上任何地方的用户在任何时候都能利用GPS接收机同时收到至少4颗卫星的位置信息,应用差分定位原理计算确定自己的位置,精度约为10米。
2、特点:(1)全球、全天候工作。
(2)定位精度高。
单机定位精度优于10m,采用差分定位,精度可达厘米级和毫米级。
(3)功能多,应用广。
(4)高效率、操作简便、应用广泛。
二、俄罗斯GLONASS卫星导航系统1、简介:“格洛纳斯GLONASS”是俄语中“全球卫星导航系统GLOBAL NAVIGATION SATELLITE SYSTE”的缩写。
GLONASS的正式组网比GPS还早,这也是美国加快GPS建设的重要原因之一。
不过苏联的解体让格洛纳斯受到很大影响,正常运行卫星数量大减,甚至无法为为俄罗斯本土提供全面导航服务,更不要说和GPS竞争。
到了21世纪初随着俄罗斯经济的好转,格洛纳斯也开始恢复元气。
GLONASS的工作卫星有21颗,分布在3个轨道平面上,同时有三颗备份星。
这三个轨道平面两两相隔120度,同平面内的卫星之间相隔45度。
每颗卫星都在19100千米高、64.8度倾角的轨道上运行。
每颗卫星需要11小时15分钟完成一个轨道周期,精度约为10米。
2、特点:(1)抗干扰能力强(2)GLONASS系统采用了军民合用、不加密的开放政策(3)GLONASS系统采用频分多址(FDMA)方式,根据载波频率来区分不同卫星(GPS是码分多址(CDMA),根据调制码来区分卫星)三、中国的北斗卫星导航系统1、简介:北斗卫星导航系统﹝BeiDou(COMPASS)Navigation Satellite System﹞是中国正在实施的自主研发、独立运行的全球卫星导航系统。
gnss卫星定位原理
gnss卫星定位原理GNSS(全球导航卫星系统)是一种基于卫星定位的技术,它能够提供全球范围内的位置信息和导航服务。
GNSS卫星定位原理是指通过接收来自卫星的信号,利用测距和三角定位等技术手段,确定接收器的位置和速度。
GNSS系统由一组卫星、地面控制站和用户接收器组成。
卫星以地球轨道的形式运行,每颗卫星都携带有精确的原子钟和广播导航信号。
地面控制站负责监控卫星的运行状态和时钟精度,并向卫星发送校正信号。
用户接收器则是GNSS系统的终端设备,用于接收卫星信号并进行位置计算。
GNSS系统的工作原理是基于三角测量原理。
当接收器接收到来自至少四颗卫星的信号时,它可以通过测量信号的传播时间来确定卫星与接收器之间的距离。
这个测量过程称为测距。
通过测距和知道卫星的位置信息,接收器可以利用三角定位算法计算出自己的位置。
在进行测距时,接收器会比较卫星发送信号的时间和接收信号的时间,通过计算时间差来确定距离。
由于信号的传播速度是已知的,所以可以通过时间差来计算距离。
同时,接收器还会考虑信号在大气层中传播时受到的影响,如延迟和折射等,以提高测距的精度。
除了测距,GNSS系统还利用卫星的轨道参数和钟差信息来进行位置计算。
卫星的轨道参数包括卫星的位置、速度和加速度等信息,而钟差指的是卫星钟与地面控制站钟之间的差异。
接收器可以通过这些信息来计算出自己的位置和速度。
GNSS系统的精度受到多种因素的影响,包括信号传播时的大气层干扰、接收器的硬件性能、地形和建筑物的遮挡等。
为了提高定位精度,GNSS系统采用了差分定位和增强定位技术。
差分定位是指利用两个或多个接收器同时测量信号,并比较它们的测距结果,从而消除误差。
增强定位技术则是通过使用地面基站和外部参考数据来提高定位精度。
近年来,GNSS技术在各个领域得到了广泛应用。
它被用于航空航天、交通运输、军事防务、测绘和地理信息等领域。
在航空航天领域,GNSS系统可以提供飞行导航和飞行管理服务,提高航班的安全性和效率。
全球四大导航系统
全球四大卫星定位系统目前,世界上只有少数几个国家能够自主研制生产卫星导航系统。
当前全球有四大卫星定位系统,分别是美国的全球卫星导航定位系统GPS、俄罗斯的格罗纳斯GLONASS系统、欧洲在建的“伽利略”系统、和中国的北斗卫星导航系统。
一、美国GPS长期垄断美国国防部从1973年开始实施的GPS系统,这是世界上第一个全球卫星导航系统,在相当长的一段时间内垄断了全球军用和民用卫星导航市场。
GPS全球定位系统计划自1973年至今,先后共发射了41颗卫星,总共耗资190亿美元。
GPS 原来是专门用于为洲际导弹导航的秘密军事系统,在1991年的海湾战争中首次得到实战应用。
随后,在科索沃战争、阿富汗战争和伊拉克战争中大显身手。
从克林顿时代起,该系统开始应用在了民用方面。
现运行的GPS系统由24颗工作卫星和4颗备用卫星组成。
美国利用GPS获得了巨大的经济利益,多年来在出售信号接收设备方面赚取了巨额利润。
以1986年为例,当时一台一般精度的GPS定位仪价格5万美元,高精度的则达到10万美元。
现在价格虽然有所下降,但也可推算出20年来GPS“收获颇丰”。
以GPS为代表的卫星导航定位应用产业,已成为八大无线产业之一。
据美国国家公共管理研究院进行的调查评估表明,GPS的全球销售额将以每年38%的速度增长,2005年全球GPS市场已达到310亿美元。
长期以来,美国对本国军方提供的是精确定位信号,对其他用户提供的则是加了干扰的低精度信号——也就是说,地球上任何一个目标的准确位置,只有美国人掌握,其他国家只知道个“大概”。
在海湾战争时,美国还曾置欧盟各国利益不顾,一度关闭对欧洲GPS服务。
2003年3月20日,伊拉克战争爆发。
大批轰炸机、战斗机猛扑向伊拉克首都巴格达,用炸弹准确地将一座建筑彻底摧毁,行动代号:“斩首行动”;4月,一架B-1B“枪骑兵”轰炸机临时接到任务,用炸弹摧毁了另一座建筑。
他们的目标都是一个人:萨达姆侯赛因,他们所使用的炸弹都是一种:联合攻击炸弹(JDAM),这些炸弹之所以都能够精确的打击目标,是因为他们都是通过卫星定位来实现定位,提供这种定位服务的正是由24颗美国卫星组成的全球定位系统--GPS。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全球卫星导航定位技术
摘要:卫星导航定位系统在国民经济建设中占有重要的位置,是国民经济信息化建设的重要组成部分和推进力量,是建设国家信息体系的重要基础设施,是直接关系到国家安全、经济发展的关键性系统技术平台。
以GPS为代表的卫星导航定位(GNSS)应用产业已逐步成为一个全球性的高新技术产业。
国家对卫星导航定位产业的发展高度重视,“十五”计划发展纲要确定卫星导航定位为国家高技术工程的12个专项之一,国家发改委在2002年实施了卫星导航产业化专项,以北斗卫星导航试验系统和其他卫星定位导航系统的广泛应用为推动力的我国卫星导航定位产业,正进入高速发展的关键时期。
本文介绍了全球卫星导航系统的现状以及分析其原理,并分析了全球卫星导航的发展应用。
关键词:卫星导航定位系统;高新技术
Abstract: the satellite navigation and positioning system in the development of national economy, holds the important position, the informationization of the national economy is the important part of the construction and promote the strength, the construction of national information system is the important infrastructure, is directly related to national security, economic development and the key system technology platform. As a representative of the with GPS satellite navigation and positioning (GNSS) application industry has gradually become a global new high technology industry. National satellite navigation and positioning of the development of the industry, more attention of the tenth five-year plan to determine the program for the development of satellite navigation and positioning for the national high technology project of one of the 12 special, the national development and reform commission in 2002, the industrialization of the satellite navigation special to beidou satellite navigation test system and other positioning satellite navigation system for the wide application of driving force of China’s satellite navigation and positioning industry, entering the critical period of development. This paper introduces the present situation of the global satellite navigation system and analyzes the principle, and analyzed the development and the application of the global satellite navigation.
Keywords: satellite navigation and positioning system; High and new technology
按照定位导航的方式可分成:卫星定位导航、自主式导航、组合导航以及无源导航。
1、全球卫星导航系统介绍
世界上现有卫星导航系统有美国的GPS、俄罗斯的GLONASS以及欧洲
GALILEO卫星系统(建设中)和中国的北斗卫星导航(建设中)。
1.1 GPS卫星导航
GPS是美国国防部为军事目的建立的,旨在彻底解决海上、空中和陆地运载工具的导航和定位问题,全部24颗导航卫星(21颗工作卫星和3颗备用卫星)系统已经建成。
GPS采用码分多址(CDMA),定位精度通常15m左右,主要应用于单点导航定位与相对测地定位,具有全天候、定位迅速、精度高、可连续提供三维位置(纬度、经度和高度)、三维速度和时间信息等一系列优点,是实现全球导航定位的高新技术。
通常GPS接收机接收到四颗卫星的信号就能够确定移动载体的方位,是当前移动目标导航定位的主流。
1992年GPS正式向全世界开放,1994年在中国市场开始得到应用。
GPS以精确位置与定时信息,已成为支持世界范围各种民用、科研和商业活动的一种资源。
1.2 GLONASS卫星导航系统
GLONASS是前苏联研制并为俄罗斯继续发展的全球卫星导航系统,其组成和功能与美国的GPS相类似,可用于陆、海、空等各类用户的定位、测速及精密定时等。
目前已完成了24颗工作卫星加一颗备用卫星空间星座布局,每天24小时每时刻各地的用户可见5~8颗卫星。
卫星识别采用频分多址(FDMA),24颗卫星各占一个频率,现已向全世界开放。
1.3 GALILEO卫星导航系统
欧洲为了满足本地区导航定位的需求,计划开发针对GPS和GLONASS的广域星基增强系统(EGNOS),包括地面设施和空间卫星,以提高GPS 和GLONASS系统的精度、完备性和可用性。
同时,为了打破目前世界美、俄全球定位系统在这一领域的垄断,欧洲决定启伽利略计划,建立自主的民用全球卫定位系统(GALILEO)。
EGNOS是欧洲GALILEO计划的第一阶段,也是GALILEO 计划的基础。
GALILEO系统将建成全球性的定位和导航系统,它由星座部分、有效载荷、地面监控系统以及区域控制部分组成。
GALILEO系统将成为独立性、全球性、欧洲人控制的,以卫星为基础的民用导航和定位系统。
其总的战略意图是:(1)建立一个高效的民用导航及定位系统;(2)使之具备欧洲乃至世界运输业可以信赖的高度安全性,并确保任何未来系统安全置于欧洲人的控制之下;(3)该系统的实施将为欧洲工业进军正在兴起的卫星导航市场的各个方面提供一个良好的机会,使他们能够站在一个合理的基础上公平竞争。
1.4 北斗卫星导航系统
北斗卫星导航系统﹝BeiDou(COMPASS)Navigation Satellite System﹞是中国正在实施的自主研发、独立运行的全球卫星导航系统。
北斗卫星导航系统由空间端、地面端和用户端三部分组成。
空间端包括5颗静止轨道卫星和30颗非静止轨道卫星。
地面端包括主控站、注入站和监测站等若干个地面站。
用户端由北斗用户终端以及与美国GPS、俄罗斯“格洛纳斯”(GLONASS)、欧洲“伽利略”
(GALILEO)等其他卫星导航系统兼容的终端组成。