最新人教版七年级数学上册第四章正多面体

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正多面体
有一次一个平常的英国孩子詹姆斯,在醉心于制作多面体模型时,写信给父亲:“……我做了四面体、十二面体以及两个不知道名称的多面体.”他当时还是一个毫无名气的孩子.这些话意味着伟大物理学家詹姆斯·克拉克·麦克斯韦尔诞生了.想象一下,你们自己和你们亲人醉心于制作几何物体模型的情形.本书的这几页是家庭作业.新年临近,这是最欢乐和美丽的节日.除了传统的枫树装饰(炮仗和小挂灯)外,你们可以制作几何玩具.这是用彩色纸做成的正多面体模型.考察下图,在这图上画着四面体、正方体、八面体、十二面体和二十面体.它们的形状是完美的典型!
你们能觉察到一系列有趣的特点,也正是这些性质使它们得到了相应的名称.每一个正多面体的所有面都是相同的正多边形,在每一个顶点集聚着同样数量的棱,而相邻的面在相等角下毗连.
数一下每一个多面体具有的顶点数(V)、棱数(E)和面数(F),并且把结果记入表中.
在最后一栏,这些多面体得到的是同一个结果:V+F-E=2.最令人惊奇的是它不仅对正多面体,而且对所有多面体都正确!
若有兴趣你们可以对某些胡乱取得的多面体进行验证.最伟大的数学家之一列昂纳德·欧拉(1707-1783)证明了这一令人惊叹的关系式,因此公式以他命名:欧拉公式.这位出生于瑞士的天才学者几乎整个一生居住在俄罗斯,我们完全有理由和自傲地将他引为自己的同胞.
正多面体还有一个特点.我们发现:正四面体有一性质:如果把它的每个面的中心作为新的多面体的顶点,那么我们重新得到一个正四面体.余下的4个正多面体恰可分成两对.正方体各面的中心组成一个正八面体,而正八面体各面的中心则组成正方体.同样,可以发生的另一对类似联系是正十二面体和正二十面体.
正多面体所具有的完美的形状和漂亮的数学规律使这五种几何物体具有某种神秘色彩,以致于很久以前它们就是神术者和占星家的必要伴侣.如果你们致力于正多面体的研究和制作,那么肯定会使你们感到欢乐和满意,甚至有可能在新的一年里给你带来好运气!
在下图中给出这些枞树上玩具的展开图.在制作模型时不要忘记在需要的地方留一片瓣膜为粘接用.
还有一种制作多面体模型的方法,不用胶水,由一些纸带编织而成.在嵌入最后一段纸带后,模型就具有刚性的结构.
下图展示了怎样用两条由4个三角形组成的纸带编织四面体.
按虚线屈折后又展开一条纸带,使得形成屈折处——“凹地”.把色纸盖在白纸带上,用白纸带折叠成四面体,使得有色三角形出现在它内部,随后用色纸带包裹四面体的两个面,并且把留下的三角形嵌入两个白三角形之间的裂缝中.图中给出一种用三条划分成5个正方形的纸带编织正方体的方法.
1.割出三条这样的纸带(白色、黑色、红色).
2.折叠白色纸带.
3.用黑色纸带裹住它.
4.得到正方体,其前面和后面是白色的,而其余面是黑色的.
5.你从正方体背后让第三条(红色)纸带穿过白色和黑色纸带的缝隙,折
弯并且最终两个面也穿过正前方的白色面和黑色纸带之间的缝隙.
如果纸带是不同颜色的,那么所得的正方体有同样颜色的对面.在这种图上所展
示的方法的特点是:任何两条纸带彼此都没有钩住,而整个三条却钩住了.还有
另一种也是用纸带编制正方体的方法.在这种情况下每两条纸带是钩住的,而相
邻的一对面将是同一种颜色.独立地试试找出这第二种编制正方体的方法.
摘自《直观几何》。

相关文档
最新文档