概率分布与数学期望(难点突破,教师版)
高中数学教案认识概率分布和期望值的计算方法和应用

高中数学教案认识概率分布和期望值的计算方法和应用【教案认识】概率分布和期望值的计算方法和应用导语:在高中数学课程中,概率与统计是一个重要的内容模块。
而概率分布和期望值的计算方法及其应用是概率与统计中的重要概念,也是学习者们需要掌握的一种基本技能。
本文将介绍高中数学教案中,概率分布和期望值的计算方法及其应用。
一、概率分布的计算方法1. 离散型概率分布的计算方法在数学教学中,我们经常会遇到一些离散型的概率分布,比如二项分布、几何分布等。
计算离散型概率分布的方法主要包括如下几步:(1)确定试验的基本单位。
(2)列出所有可能的试验结果,并确定每个结果发生的概率。
(3)计算事件的概率,即各事件对应的概率。
(4)计算事件的期望值,即各事件对应的值与其概率的乘积之和。
2. 连续型概率分布的计算方法除了离散型的概率分布,数学教学中也会出现一些连续型的概率分布,比如正态分布、指数分布等。
计算连续型概率分布的方法包括以下几个步骤:(1)写出密度函数或分布函数。
(2)根据题目给出的条件,确定被积函数。
(3)确定被积区间。
(4)进行积分计算。
二、期望值的计算方法1. 离散型随机变量的期望值计算方法(1)计算每个可能结果的期望值,即将每个结果乘以其对应的概率。
(2)将所有结果的期望值相加,得到离散型随机变量的期望值。
2. 连续型随机变量的期望值计算方法对于连续型随机变量,其期望值的计算方法和离散型随机变量略有不同,具体步骤如下:(1)写出密度函数或分布函数。
(2)计算被积函数的乘积。
(3)根据题目给出的条件,确定被积区间。
(4)进行积分计算。
三、概率分布和期望值的应用1. 风险评估与处理概率分布和期望值的应用在风险评估与处理中具有重要意义。
通过概率分布的计算方法,我们可以根据历史数据和实际情况,预测未来事件发生的概率,并计算出其相应的期望值。
在风险管理中,我们可以根据概率分布及期望值的计算结果,制定相应的风险管理策略。
2. 金融领域的应用在金融领域,概率分布和期望值的计算方法被广泛应用于风险评估、股票收益的预测、期权定价等。
高中数学 第三章 概率章末分层突破学案 北师大版必修3(2021年最新整理)

2018版高中数学第三章概率章末分层突破学案北师大版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第三章概率章末分层突破学案北师大版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第三章概率章末分层突破学案北师大版必修3的全部内容。
第三章概率[自我校对]①整个图形的面积②试验的所有可能的基本事件总数③P(A)+P(B)④P(错误!)随机事件的频率与概率1统计规律性,但对单次试验来说,随机事件的发生是随机的.2.解决实际问题时,要注意频率与概率的区别与联系:概率是一个常数,频率是一个变数,它随着试验次数的变化而变化,试验次数越多,频率就越接近于概率.3.判断一个事件是否是随机事件,关键是看它是否可能发生.空气质量已成为城市居住环境的一项重要指标,空气质量的好坏由空气质量指数确定,空气质量指数越高,代表空气污染越严重:空气质量指数0~3535~7575~115115~150150~250≥250空气质量类别优良轻度污染中度污染重度污染严重污染:图3。
1(1)估计该市一个月内空气受到污染的概率(若空气质量指数大于或等于75,则空气受到污染);(2)在空气质量类别为“良”“轻度污染”“中度污染"的监测数据中用分层抽样的方法抽取一个容量为6的样本,若在这6个数据中任取2个数据,求这2个数据所对应的空气质量的类别不都是轻度污染的概率.【精彩点拨】(1)频率是事件发生的次数m与试验次数n的比值,利用此公式可求出它们的频率.(2)借分层抽样和列举法,求出这两天的空气质量类别不都是轻度污染的概率.【规范解答】(1)空气受到污染的概率P=错误!+错误!+错误!=错误!=错误!.(2)易知用分层抽样的方法从“良”“轻度污染”“中度污染”的监测数据中抽取的个数分别为2,3,1.设它们的数据依次为a1,a2,b1,b2,b3,c1,则抽取2个数据的所有基本事件为(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c1),(a2,b1),(a2,b2),(a2,b3),(a2,c1),(b1,b2),(b1,b3),(b1,c1),(b2,b3),(b2,c1),(b3,c1),共15种.设“这两天的空气质量类别不都是轻度污染”为事件A,则A中的基本事件数为12,所以P(A)=1215=错误!,即这两天的空气质量类别不都是轻度污染的概率为错误!.[再练一题]1.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)0 1 000 2 000 3 000 4 000车辆数(辆) 500 130 100 150 120(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.【解】(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元",以频率估计概率得P(A)=错误!=0.15,P(B)=错误!=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4 000元",由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0。
概率分布与数学期望

概率分布与数学期望例谈离数型随机变量概率分布与数学期望数学期望=每个个数X每个它的概率,再相加从2008年全国各省市高考数学试题中,概率统计考题,可谓“军书十二卷,卷卷有爷名”,显然它是高考的必考内容,特别是离散型随机变量概率分布与数学期望内容的考题分布极为广泛,确实是一个重要考点,但纵观其解法,可以归纳为定义法、公式法、分析法与变量推理法四种,2009年考生务必对上述四种解题方法引起高度重视,本文就其命题特点,解题规律作专题阐述,以飨读者。
一、定义法求解概率分布与数学期望定义法即根据随机事件的概率、随机变量、概率分布、数学期望的定义求解概率分布与数学期望的方法。
可使用本法解题的考题,一般以古典离散型概率为特征,它可直接利用排列组合的加法原理与乘法原理写出离散型随机变量概率的计算式,进而求得随机变量各值条件下的概率分布与数学期望。
此类题型解题思路明确,利用定义法求解,其方法容易掌握。
例1,(08浙江理)一个袋中装有若干个大小相同的黑球,白球和红球.已知从袋中任意摸出1;从袋中任意摸出2个球,得到黑球的概率是25.个球,至少得到1个白球的概率是79(1)若袋中共有10个球,(1)若袋中共有10个球,(ⅰ)求白球的个数;(ⅱ)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望Eξ.(2)求证:从袋中任意摸出2个球,至少得到1.并指出袋中哪种颜色的个黑球的概率不大于710球个数最少.分析:本题是以古典概率为题材的高考题,由于从袋中摸球是有回放地摸球,且每次摸球都是互相独立的,系互不影响事件,所发生的概率是等可能的。
故可根据概率定义,利用排列组合计算方法求解随机变量各值的概率。
解:袋中共有10个球,且至少得到1个白球7,设其中有X个白球,我们将至少得到的概率为97,又∵P(A)一个白球的事件为A,则P(A)=9=9721021110=+C C C C x x ,∴9721021110=+C C C C x x ,化简后解之得x=5或14(舍去),∴袋中有5个白球。
2021-2022年高考数学一轮复习专题11.3概率分布与数学期望方差讲理

2021年高考数学一轮复习专题11.3概率分布与数学期望方差讲理【最新考纲解读】【考点深度剖析】1. 江苏高考中,一般考古典概型、相互独立、二项概型基础上的随机变量的分布,期望与方差。
2. 随机变量的概率分布及期望,内容多,处理方式灵活,可以考查其中一块,可以内部综合,可以作为问题的背景与其他内容结合考,复习时要注重基础,以不变应万变.【课前检测训练】【判一判】判断下面结论是否正确(请在括号中打“√”或“×”)(1)抛掷均匀硬币一次,出现正面的次数是随机变量.( )(2)离散型随机变量的分布列描述了由这个随机变量所刻画的随机现象.( ) (3)某人射击时命中的概率为0.5,此人射击三次命中的次数X 服从两点分布.( ) (4)从4名男演员和3名女演员中选出4名,其中女演员的人数X 服从超几何分布.( ) (5)离散型随机变量的分布列中,随机变量取各个值的概率之和可以小于1.( ) (6)离散型随机变量的各个可能值表示的事件是彼此互斥的.( ) (7)条件概率一定不等于它的非条件概率.( ) (8)相互独立事件就是互斥事件.( )(9)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( )(10)二项分布是一个概率分布,其公式相当于(a +b )n二项展开式的通项公式,其中a =p ,b =1-p .( ) (11)P (B |A )表示在事件A 发生的条件下,事件B 发生的概率,P (AB )表示事件A ,B 同时发生的概率.( ) (12)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰好第3次测试获得通过的概率是P =C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-133-1=49.( )(13)随机变量的均值是常数,样本的平均值是随机变量,它不确定.( )(14)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量的平均程度越小.( )(15)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的均值,σ是正态分布的标准差.( )(16)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( )(17)均值是算术平均数概念的推广,与概率无关.( )1. √2. √3. ×4. √5. ×6. √7. ×8. ×9. ×10. ×11. √12. ×13. √14. √15. √16. √17. × 【练一练】1.袋中有3个白球、5个黑球,从中任取2个,可以作为随机变量的是( ) A .至少取到1个白球 B .至多取到1个白球 C .取到白球的个数 D .取到的球的个数 【答案】C2.从标有1~10的10支竹签中任取2支,设所得2支竹签上的数字之和为X ,那么随机变量X 可能取得的值有( )A .17个B .18个C .19个D .20个 【答案】A【解析】X 可能取得的值有3,4,5,…,19共17个. 3.随机变量X 的分布列如下:X -1 0 1Pa b c其中a ,b ,c 成等差数列,则P (|X |=1)等于( ) A.16 B.13 C.12 D.23 【答案】D【解析】∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.4.随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,则n =________. 【答案】10【解析】P (X <4)=P (X =1)+P (X =2)+P (X =3)=1n +1n +1n =3n=0.3,得n =10.5.一盒中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为______. 【答案】272206.袋中有3红5黑8个大小形状相同的小球,从中依次摸出两个小球,则在第一次摸得红球的条件下,第二次仍是红球的概率为( ) A.38 B.27 C.28 D.37 【答案】B【解析】第一次摸出红球,还剩2红5黑共7个小球,所以再摸到红球的概率为27.7.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.45 【答案】A【解析】已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.8.如图,用K ,A 1,A 2三类不同的元件连接成一个系统.当K 正常工作且A 1,A 2至少有一个正常工作时,系统正常工作.已知K ,A 1,A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( )A .0.960B .0.864C .0.720D .0.576 【答案】B9.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________. 【答案】35【解析】设该队员每次罚球的命中率为p ,则依题意有1-p 2=1625,即p 2=925.又0<p <1,故p =35.10.国庆节放假,甲去北京旅游的概率为13,乙去北京旅游的概率为14,假定二人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________. 【答案】1211.某射手射击所得环数ξ的分布列如下:ξ 7 8 9 10Px 0.10.3y已知ξ的均值E (ξ)=8.9,则y 的值为( ) A .0.4 B .0.6 C .0.7 D .0.9 【答案】A【解析】由⎩⎪⎨⎪⎧x +0.1+0.3+y =1,7x +8×0.1+9×0.3+10y =8.9,可得y =0.4.12.设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若y i =x i +a (a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( ) A .1+a,4 B .1+a,4+a C .1,4 D .1,4+a【答案】A 【解析】x 1+x 2+…+x 1010=1,y i =x i +a ,所以y 1,y 2,…,y 10的均值为1+a ,方差不变仍为4.故选A.13.设随机变量X 的分布列为P (X =k )=15(k =2,4,6,8,10)则D (X )等于( )A .5B .8C .10D .16 【答案】B【解析】∵E (X )=15(2+4+6+8+10)=6,∴D (X )=15[(-4)2+(-2)2+02+22+42]=8.14.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.【答案】25【解析】设P (ξ=1)=a ,P (ξ=2)=b ,则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎪⎨⎪⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.15.抛掷两枚骰子,当至少一枚5点或一枚6点出现时,就说这次试验成功,则在10次试验中成功次数的均值为________. 【答案】509【题根精选精析】考点1 离散型随机变量及其分布列【1-1】随机变量X 的概率分布规律为P (X =n )= (n =1,2,3,4),其中a 是常数,则P (<X <)的值为 . 【答案】【解析】因为随机变量X 的概率分布规律为 (n =1,2,3,4),所以()()()()==+=+=+=4321X p X p X p X p ,所以()()==+==⎪⎭⎫ ⎝⎛<<212521X p X p X p .【1-2】若随机变量X 的分布列如下表,且EX=6.3, 则表中a 的值为 .【答案】7【解析】由得,()3.64.091.05.04=⨯+⨯+⨯=a X E ,解【1-3】口袋中有n(n ∈N *)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X.若P(X =2)=730,则n 的值为 .【答案】7【1-4】在对某渔业产品的质量调研中,从甲、乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图:21006542098874286438210乙地甲地规定:当产品中的此种元素含量毫克时为优质品.(Ⅰ)试用上述样本数据估计甲、乙两地该产品的优质品率(优质品件数/总件数);(Ⅱ)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数的分布列及数学期望. 【解析】 (I)甲厂抽取的样本中优等品有7件,优等品率为 乙厂抽取的样本中优等品有8件,优等品率为 (II)的取值为1,2,3.所以的分布列为 1 2 3故的数学期望为123.1515155E ξ=⨯+⨯+⨯=() 【1-5】甲、乙、丙三个车床加工的零件分别为350个,700个,1050个,现用分层抽样的方法随机抽取6个零件进行检验.(1)从抽取的6个零件中任意取出2个,已知这两个零件都不是甲车床加工的,求其中至少有一个是乙车床加工的零件;(2)从抽取的6个零件中任意取出3个,记其中是乙车床加工的件数为X ,求X 的分布列和期望.X 0 1 2P 0.2 0.6 0.2E x=⨯+⨯+⨯=.X的期望为()00.210.620.21【基础知识】1.离散型随机变量的分布列(1)随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用字母X,Y,ξ,η等表示.(2)离散型随机变量对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若是随机变量,,其中是常数,则也是随机变量.2.常见离散型随机变量的分布列(1)两点分布:若随机变量服从两点分布,即其分布列为0 1(2)超几何分布:在含有件次品的件产品中,任取件,其中恰有件次品,则事件{}发生的概率为,,其中,且≤≤∈,称分布列为超几何分布列.n N M N n M N N*,,,,01…m分布列的两个性质①,;②.【思想方法】1. 求分布列的三种方法(1)由统计数据得到离散型随机变量的分布列;(1)可设出随机变量Y,并确定随机变量的所有可能取值作为第一行数据;(2)由统计数据利用事件发生的频率近似地表示该事件的概率作为第二行数据.由统计数据得到分布列可帮助我们更好理解分布列的作用和意义.(2)由古典概型求出离散型随机变量的分布列;求离散型随机变量的分布列,首先要根据具体情况确定X的取值情况,然后利用排列、组合与概率知识求出X取各个值的概率.而超几何分布就是此类问题中的一种.(3)由互斥事件的概率、相互独立事件同时发生的概率及n次独立重复试验有k次发生的概率求离散型随机变量的分布列.2. 求离散型随机变量分布列的步骤(1)找出随机变量X的所有可能取值x i(i=1,2, 3,…,n);(2)求出各取值的概率P(X=x i)=p i;(3)列成表格并用分布列的性质检验所求的分布列或某事件的概率是否正确.3. 解答离散型随机变量的分布列及相关问题的一般思路(1)明确随机变量可能取哪些值.(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值.(3)根据分布列和期望、方差公式求解.注意解题中要善于透过问题的实际背景发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题.【温馨提醒】求离散型随机变量的分布列的关键是正确理解随机变量取每一个所表示的具体事件,然后综合应用各类求概率的公式,求出概率.考点2 二项分布及应用【2-1】【盐城xx调研】袋中装有完全相同的5个小球,其中有红色小球3个,黄色小球2个,如果不放回地依次摸出2个小球,则在第一次摸出红球的条件下,第二次摸出红球的概率是 .【答案】【2-2】已知在一次试验中,,那么在次独立重复试验中,事件恰好在前两次发生的概率是 .【答案】【解析】因为,所以在次独立重复试验中,事件恰好在前两次发生的概率.【2-3】设服从二项分布的随机变量X的期望和方差分别是2.4和1.44,则二项分布的参数的值为 . 【答案】【解析】由二项分布的期望和方差得,解的【2-4】【xx四川模拟】一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为,求的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.【解析】试题分析:(1)由得,1331(200),(10),(20),(100)8888P X P X P X P X=-=======.所以的分布列为X -200 10 20 100【2-5】【北京市西城区xx模拟】在某批次的某种灯泡中,随机地抽取个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于天的灯泡是优等品,寿命小于天的灯泡是次品,其余的灯泡是正品.寿命(天)频数频率合计(1)根据频率分布表中的数据,写出、的值;(2)某人从灯泡样品中随机地购买了个,如果这个灯泡的等级情况恰好与按三个等级分层抽样.........所得的结果相同,求的最小值;(3)某人从这个批次的灯泡中随机地购买了个进行使用,若以上述频率作为概率,用表示此人所购买的灯泡中次品的个数,求的分布列和数学期望.所以的数学期望()279130123646464644E X =⨯+⨯+⨯+⨯=. (注:写出,()3311144k k k P X k C -⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭,、、、. 请酌情给分)【基础知识】1.条件概率及其性质 (1)对于任何两个事件和,在已知事件发生的条件下,事件发生的概率叫做条件概率,用符号来表示,其公式为.在古典概型中,若用表示事件中基本事件的个数,则.(2)条件概率具有的性质:①;② 如果和是两互斥事件,则()()()///p BC A p B A p C A =+.2.相互独立事件(1)对于事件、,若的发生与的发生互不影响,则称、是相互独立事件.(2)若与相互独立,则,()()()()()/p AB p B A P A P A P B =⋅=⋅.(3)若与相互独立,则与,与,与也都相互独立.(4)若,则与相互独立.3.独立重复试验与二项分布(1)独立重复试验独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)二项分布在次独立重复试验中,设事件发生的次数为,在每次试验中事件发生的概率为,那么在次独立重复试验中,事件恰好发生次的概率为()()1n k k k n P X k C p p -==- (),此时称随机变量服从二项分布,记作,并称为成功概率.【思想方法】1. 条件概率的求法(1)定义法:先求和,再由,求;(2)基本事件法:借古典概型概率公式,先求事件包含的基本事件数,再求事件所包含的基本事件数,得.2. 求相互独立事件同时发生的概率的方法(1)利用相互独立事件的概率乘法公式直接求解;(2)正面计算较繁或难以入手时,可从其对立事件入手计算.相互独立事件的概率通常和互斥事件的概率综合在一起考查,这类问题具有一个明显的特征,那就是在题目的条件中已经出现一些概率值,解题时先要判断事件的性质(是互斥还是相互独立),再选择相应的公式计算求解.3. 二项分布满足的条件(1)每次试验中,事件发生的概率是相同的.(2)各次试验中的事件是相互独立的.(3)每次试验只有两种结果:事件要么发生,要么不发生.(4)随机变量是这n 次独立重复试验中事件发生的次数.4.二项展开式的通项与二项分布的概率公式的“巧合”一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即与,每次试验中.我们将这样的试验称为次独立重复试验,也称为伯努利试验.在次独立重复试验中,每次试验事件发生的概率均为,即,.由于试验的独立性,次试验中,事件在某指定的次发生,而在其余次不发生的概率为.而在次试验中,事件恰好发生次的概率为,.它恰好是的二项展开式中的第项.5. 牢记且理解事件中常见词语的含义:(1) 、中至少有一个发生的事件为;(2) 、都发生的事件为;(3) 、都不发生的事件为;(4) 、恰有一个发生的事件为;(5) 、至多一个发生的事件为.【温馨提醒】这些都是二项分布问题,关键是正确求出随机变量的分布列,可直接使用公式求解. 因此牢记公式,,并深刻理解其含义.考点3 离散型随机变量的均值与方差【3-1】设随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,则的值为 .【答案】n =8,p =0.2【解析】因为随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,所以()()()8,2.026.116.1==⇒⎩⎨⎧=-===n p p np X D np X E . 【3-2】设服从二项分布X ~B (n ,p )的随机变量X 的均值与方差分别是15和,则n 、p 的值分别是 .【答案】60,【解析】由二项分布X ~B (n ,p )的均值与方差可知E(X)=np=15,D(X)=np(1-p)=,解得n=60,p=,所以【3-3】变量X 的概率分布列如右表,其中成等差数列,若,则_________.【答案】【3-4】【常州xx 调研】某公司计划在迎春节联欢会中设一项抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.(1)求员工甲抽奖一次所得奖金ξ的分布列与期望;(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?【3-5】【无锡xx模拟】在xx年俄罗斯索契冬奥会某项目的选拔比赛中,A,B两个代表队进行对抗赛,每队三名队员,A队队员是A1,A2,A3,B队队员是B1,B2,B3,按以往多次比赛的统计,对阵队员之间胜负概率如下表,现按表中对阵方式出场进行三场比赛,每场胜队得1分,负队得0分,设A队,B队最后所得总分分别为.(1)求A 队得分为1分的概率;(2)求的分布列;并用统计学的知识说明哪个队实力较强.【基础知识】1.均值若离散型随机变量X 的分布列为… … … …称1122i i n n p 为随机变量的均值或数学期望,它反映了离散型随机变量取值的平均水平.. 若,其中为常数,则也是随机变量,且.若服从两点分布,则;若,则.2.方差若离散型随机变量X 的分布列为… … … …则描述了 ()相对于均值的偏离程度,而()()()21n ii i D X x E X p ==-∑为这些偏离程度的加权平均,刻画了随机变量与其均值的平均偏离程度.称为随机变量的方差,其算术平方根为随机变量的标准差. 若,其中为常数,则也是随机变量,且.若服从两点分布,则.若,则.【思想方法】1. 求离散型随机变量均值、方差的基本方法(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量的均值、方差,求的线性函数的均值、方差和标准差,可直接用的均值、方差的性质求解;(3)如能分析所给随机变量是服从常用的分布(如两点分布、二项分布等),可直接利用它们的均值、方差公式求解.2. 求离散型随机变量均值的步骤(1)理解随机变量的意义,写出可能取得的全部值;(2)求的每个值的概率;(3)写出的分布列;(4)由均值定义求出.3. 六条性质(1) (为常数)(2) (为常数)(3) ()()()1212E X X E X E X +=+(4)如果相互独立,则()()()1212E X X E X E X ⋅=⋅(5) ()()()()22D X E XE X =- (6)4. 均值与方差性质的应用若是随机变量,则一般仍是随机变量,在求的期望和方差时,熟练应用期望和方差的性质,可以避免再求的分布列带来的繁琐运算.【温馨提醒】求离散型随机变量的期望和方差的应用问题,首先应仔细地分析题意,当概率分布不是一些熟知的类型时,应全面地剖析各个随机变量所包含的各种事件,并准确判断各事件的相互关系,从而求出各随机变量相应的概率.【易错问题大揭秘】 1.随机变量取值不全致误典例 (12分)盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个.第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同).记第一次与第二次取得球的标号之和为ξ.求随机变量ξ的可能取值及其分布列.易错分析 由于随机变量取值情况较多,极易发生对随机变量取值考虑不全而导致解题错误.温馨提醒 (1)解决此类问题的关键是弄清随机变量的取值,正确应用概率公式.(2)此类问题还极易发生如下错误:虽然弄清随机变量的所有取值,但对某个取值考虑不全面.(3)避免以上错误发生的有效方法是验证随机变量的概率和是否为1.2.独立事件概率求解中的易误点典例 (12分)某射手每次射击击中目标的概率是23,且各次射击的结果互不影响. (1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;(3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总分数,求ξ的分布列.易错分析 解本题第(2)问易因不明独立事件与独立重复试验的区别,误认为是n 次独立重复试验,可导致求得P =C 35(23)3×(13)2=80243这一错误结果. 规范解答温馨提醒(1)正确区分相互独立事件与n次独立重复试验是解决这类问题的关键.独立重复试验是在同一条件下,事件重复发生或不发生.(2)独立重复试验中的概率公式P(X=k)=C k n p k(1-p)n-k表示的是n次独立重复试验中事件A发生k次的概率,p与1-p的位置不能互换,否则该式子表示的意义就发生了改变,变为事件A有k次不发生的概率了. [失误与防范]1掌握离散型随机变量的分布列,须注意:(1)分布列的结构为两行,第一行为随机变量X所有可能取得的值;第二行是对应于随机变量X的值的事件发生的概率.看每一列,实际上是上为“事件”,下为“事件发生的概率”,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.(2)要会根据分布列的两个性质来检验求得的分布列的正误.2.运用公式P(AB)=P(A)P(B)时一定要注意公式成立的条件,只有当事件A、B相互独立时,公式才成立.3.独立重复试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中某事件发生的概率相等.注意“恰好”与“至多(少)”的关系,灵活运用对立事件.4.在没有准确判断分布列模型之前不能随便套用公式.5.对于应用问题,必须对实际问题进行具体分析,一般要将问题中的随机变量设出来,再进行分析,求出随机变量的分布列,然后按定义计算出随机变量的均值、方差.。
高中高三数学《随机变量和数学期望》教案、教学设计

(3)针对不同难度的练习题,进行分层教学,使学生在逐步克服难点的过程中,提高自己的数学素养。
3.教学策略和手段:
(1)运用信息技术,如多媒体、网络资源等,为学生提供丰富的学习材料,提高课堂教学效果。
2.教学过程:
(1)教师发放练习题,要求学生在规定时间内完成。
(2)学生独立完成练习题,教师巡回指导,解答学生疑问。
(3)教师选取部分学生作品进行展示,分析解题思路和技巧,并进行点评。
(五)总结归纳
1.教学内容:对本节课所学内容进行总结,巩固学生对随机变量和数学期望的理解。
2.教学过程:
(1)教师引导学生回顾本节课所学的主要内容,如随机变量的概念、分类、表示方法,数学期望的定义、性质和计算方法等。
4.小组合作完成一道综合应用题,要求学生在解决实际问题的过程中,运用随机变量和数学期望的知识。此题目旨在培养学生的合作意识和运用数学工具解决实际问题的能力。
5.针对课堂所学内容,教师编制一份测试卷,包括选择题、填空题、解答题等,全面检测学生对本章知识的掌握程度。
作业布置要求:
1.学生应在规定时间内独立完成作业,遇到问题可请教同学或老师,培养自主解决问题的能力。
(2)以小组合作的形式,让学生探讨随机变量的表示方法,如分布列、概率密度函数等,培养他们的合作意识和解决问题的能力。
(3)通过典型例题,引导学生掌握数学期望的定义和性质,学会运用数学期望进行计算。
2.对于难点内容的教学设想:
(1)针对分布列和概率密度函数的理解,设计直观的图表和动画,帮助学生形象地理解抽象概念。
4.引导学生关注社会热点问题,运用所学知识为社会发展贡献力量,培养他们的社会责任感和使命感。
初中数学教案概率分布的期望与方差

初中数学教案概率分布的期望与方差初中数学教案概率分布的期望与方差概念介绍:在概率论中,期望和方差是描述随机变量分布情况的重要指标。
期望是对随机变量取值的加权平均,方差则是表示随机变量取值与其期望值之间的偏离程度。
一、期望的计算方法:期望是对随机变量的所有取值进行加权平均的结果,其计算方法如下:设随机变量X的取值为x1, x2, ..., xn,对应的概率为p1, p2, ..., pn,则随机变量X的期望E(X)可以通过以下公式计算:E(X) = x1*p1 + x2*p2 + ... + xn*pn二、方差的计算方法:方差是描述随机变量取值与其期望值之间偏离程度的统计量,其计算方法如下:设随机变量X的取值为x1, x2, ..., xn,对应的概率为p1, p2, ..., pn,随机变量X的期望为μ,则随机变量X的方差Var(X)可以通过以下公式计算:Var(X) = (x1-μ)^2 * p1 + (x2-μ)^2 * p2 + ... + (xn-μ)^2 * pn三、示例教案:本节以一个示例教案来说明概率分布的期望与方差的计算方法。
教案主题:掷硬币实验教学目标:1. 了解随机变量的概念及其在概率分布中的应用;2. 掌握期望和方差的计算方法;3. 运用所学知识解决实际问题。
教学准备:纸币、硬币。
教学过程:1. 引入:向学生提问:"如果我有一个均匀的硬币,在进行掷硬币实验时,正面和反面出现的概率是否相等?"2. 实验介绍:说明掷硬币实验的操作步骤,要求学生进行实际操作,并记录每次掷硬币的结果。
3. 数据整理:学生将实验结果整理成表格形式,记录正面出现的次数和反面出现的次数。
4. 概率分布的计算:根据实验结果,学生可以得到正面和反面出现的概率分布,并计算对应的期望和方差。
5. 期望和方差的解释:解释期望是对随机变量取值的加权平均结果,而方差则表示随机变量取值与其期望值之间的偏离程度。
高中数学第二章概率2.3.1离散型随机变量的数学期望学案新人教B版选修2-3

2。
3。
1 离散型随机变量的数学期望1。
理解离散型随机变量的数学期望的意义和性质,会根据离散型随机变量的分布列求出数学期望。
(重点)2。
掌握二点分布、二项分布的数学期望。
(重点)3。
会利用离散型随机变量的数学期望解决一些相关问题.(难点)[基础·初探]教材整理1 离散型随机变量的数学期望阅读教材P59~P60,完成下列问题.1。
定义一般地,设一个离散型随机变量X所有可能取的值是x1,x2,…,x n,这些值对应的概率是p,p2,…,p n,则E(X)=x1p1+x2p2+…+x n p n叫做这个离散型随机变量X的均值或数学期望1(简称期望).2.意义刻画了离散型随机变量的平均取值水平.1.下列说法正确的有________(填序号)。
①随机变量X的数学期望E(X)是个变量,其随X的变化而变化;②随机变量的均值反映样本的平均水平;③若随机变量X的数学期望E(X)=2,则E(2X)=4;④随机变量X的均值E(X)=错误!。
【解析】①错误,随机变量的数学期望E(X)是个常量,是随机变量X本身固有的一个数字特征.②错误,随机变量的均值反映随机变量取值的平均水平。
③正确,由均值的性质可知.④错误,因为E(X)=x1p1+x2p2+…+x n p n.【答案】③2。
已知离散型随机变量X的分布列为:X123P错误!错误!错误!则X的数学期望E(X)=【解析】E(X)=1×错误!+2×错误!+3×错误!=错误!。
【答案】错误!3.设E(X)=10,则E(3X+5)=________.【导学号:62980052】【解析】E(3X+5)=3E(X)+5=3×10+5=35。
【答案】35教材整理2 常见几种分布的数学期望阅读教材P60例1以上部分,完成下列问题。
名称二点分布二项分布超几何分布公式E(X)=p E(X)=np E(X)=错误!1。
若随机变量X服从二项分布B错误!,则E(X)的值为________。
人教A版数学必修第二册第十章概率难点突破课件

(易求)概率的相互独立事件的积事件.
(3)代入概率的积、和公式求解.
强化训练
设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分
别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立,则
同一工作日至少3人需使用设备的概率为( C )
A.0.25
自同一学校的概率.
甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.
(1)若从甲校和乙校报名的教师中各任选1名,求选出的2名教师性别
相同的概率;
✓ 从甲校和乙校报名的教师中各任选1名,所有可能的结果为(甲
男1,乙男)、(甲男2,乙男)、(甲男1,乙女1)、(甲男1,乙女2)、
(甲男2,乙女1)、(甲男2,乙女2)、(甲女,乙女1)、(甲女,乙
(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),
(C,F),(D,E),(D,F),(E,F),共15种.
✓ 由于每一张卡片被取到的机会均等,因此这些样本点的出现是等可能的.
✓ 从这六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4
的结果为(A,D),(A,E),(A,F),(B,D),(B,F),(C,F),(D,F),
格证书”的可能性大?
(2)求甲、乙、丙三人进行理论与实际操作两项考试后,恰有两人获得
“合格证书”的概率.
(1)若甲、乙、丙三人同时进行理论与实际操作两项考试,
则谁获得“合格证书”的可能性大?
✓ 记“甲获得‘合格证书’”为事件A,“乙获得‘合格证书’”为事
件B,“丙获得‘合格证书’”为事件C;
4
5
高中数学教学备课教案概率统计的综合应用离散随机变量的概率分布和期望计算

高中数学教学备课教案概率统计的综合应用离散随机变量的概率分布和期望计算高中数学教学备课教案概率统计的综合应用: 离散随机变量的概率分布和期望计算1. 简介在高中数学教学中,概率统计是一个重要的内容领域。
其中,离散随机变量的概率分布和期望计算是概率统计中的核心概念。
本教案旨在帮助教师有效地设计概率统计教学,使学生能够理解和运用离散随机变量的概率分布和期望计算。
2. 教学目标- 了解离散随机变量的概念和性质;- 掌握离散随机变量的概率分布计算方法;- 掌握离散随机变量的期望计算方法;- 能够应用离散随机变量的概率分布和期望计算解决实际问题。
3. 教学过程3.1 离散随机变量的概念和性质- 引导学生了解离散随机变量的定义和特点;- 通过例题引导学生理解离散随机变量的概念和意义。
3.2 离散随机变量的概率分布计算方法- 讲解离散随机变量的概率分布函数和概率质量函数的概念;- 通过例题演示如何计算离散随机变量的概率分布。
3.3 离散随机变量的期望计算方法- 讲解离散随机变量的期望的概念和计算方法;- 通过例题演示如何计算离散随机变量的期望。
3.4 应用实例分析- 提供一些实际问题,要求学生运用离散随机变量的概率分布和期望计算方法解决问题;- 引导学生在实际问题中应用离散随机变量的概率分布和期望计算。
4. 教学资源- PowerPoint演示文稿:包含离散随机变量的概念、计算方法和应用实例;- 课堂练习题:让学生运用所学知识解决具体问题;- 课后作业:巩固和扩展学生对离散随机变量概率分布和期望计算的掌握程度。
5. 教学评估- 课堂练习的成绩评定:根据学生对离散随机变量概率分布和期望计算的运用能力进行评分;- 课后作业的批改:检查学生对离散随机变量概率分布和期望计算的理解程度;- 学生参与度评估:观察学生在教学过程中的积极性和主动性。
6. 教学反思本节课的教学内容注重理论与实践的结合,通过理论讲解和实际应用的案例分析,帮助学生更好地理解和掌握离散随机变量的概率分布和期望计算方法。
第十讲(数学期望)

1 y x, x 1 x ,求 W 的 其它
1 )。 XY
4
Eg10:某公司计划开发一种新产品市场,并试图确定该产品的产量,他们估计出售一件产 品可获利 m 元,而挤压一件产品导致 n 元的损失,预测销售量 Y 服从指数分布,其概率密
1 y / e , y 0, 0. 度为: f ( y ) 0, y 0,
i i
i
g ( x) P ,其中 p
i
P{ xi }, i 1,2,
2. 是连续型随机变量,其密度函数为 f (x) ,则 g ( ) 是连续型随机变量 若
g ( x) f ( x)dx <+ ,则称 g () 的数学期望为
学
E E[ g ( )] g ( x) f ( x)dx
教
备课时间: 章节 年 月 §4.1 日 课题
案
第 10 次课 数学期望 3 学时
1、理解数学期望的定义并且掌握它们的计算公式; 2、掌握数学期望的性质,会求随机变量函数的数学期望,特别是利用数学期望的性质 目的 要求 计算某些随机变量函数的数学期望。 3、熟记 0-1 分布、二项分布、泊松分布、正态分布、 均匀分布和指数分布的数学期望。
k 个人共化验 k 1 次. 试问用哪一种方法可减少化验次数?
Eg6:求泊松分布的数学期望。
3
Eg7:求均匀分布的的数学期望。 三、随机变量函数的数学期望 1. 是离散型随机变量 数学期望为:E =E[ g () ]= 教
g ( ) 是离散型随机变量若 g ( xi ) pi <+ ,则定义 的
高中数学 第二章《概率》全部教案 北师大版选修2

北师大版高中数学选修2-3第二章《概率》全部教案§1 离散型随机变量及其分布列第一课时离散型随机变量一、教学目标:1、知识目标:⑴理解随机变量的意义;⑵学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;⑶理解随机变量所表示试验结果的含义,并恰当地定义随机变量。
2、能力目标:发展抽象、概括能力,提高实际解决问题的能力。
3、情感目标:学会合作探讨,体验成功,提高学习数学的兴趣.二、教学重点:随机变量、离散型随机变量、连续型随机变量的意义教学难点:随机变量、离散型随机变量、连续型随机变量的意义三、教学方法:讨论交流,探析归纳四、内容分析:本章是在初中“统计初步”和高中必修课“概率”的基础上,学习随机变量和统计的一些知识.学习这些知识后,我们将能解决类似引言中的一些实际问题五、教学过程(一)、复习引入:1.随机事件及其概率:在每次试验的结果中,如果某事件一定发生,则称为必然事件,记为U;相反,如果某事件一定不发生,则称为不可能事件,记为φ.随机试验:为了研究随机现象的统计规律性,我们把各种科学实验和对事物的观测统称为试验.如果试验具有下述特点:(1)试验可以在相同条件下重复进行;(2)每次试验的所有可能结果都是明确可知的,并且不止一个;(3)每次试验之前不能预知将会出现哪一个结果,则称这种试验为随机试验简称试验。
2.样本空间:样本点:在相同的条件下重复地进行试验,虽然每次试验的结果中所有可能发生的事件是可以明确知道的,并且其中必有且仅有一个事件发生,但是在试验之前却无法预知究意哪一个事件将在试验的结果中发生.试验的结果中每一个可能发生的事件叫做试验的样本点,通常用字母ω表示.样本空间: 试验的所有样本点ω1,ω2,ω3,…构成的集合叫做样本空间,通常用字母Ω表示,于是,我们有Ω={ω1,ω2,ω3,… }3.古典概型的特征:古典概型的随机试验具有下面两个特征:(1)有限性.只有有限多个不同的基本事件;(2)等可能性.每个基本事件出现的可能性相等.概率的古典定义 在古典概型中,如果基本事件的总数为n ,事件A所包含的基本事件个数为r(),则定义事件A的概率为.即(二)、探析新课:1、随机变量的概念:随机变量是概率论的重要概念,把随机试验的结果数量化可使我们对随机试验有更清晰的了解,还可借助更多的数学知识对其进行深入研究.有的试验结果本身已具数值意义,如产品抽样检查时的废品数,而有些虽本无数值意义但可用某种方式与数值联系,如抛硬币时规定出现徽花时用1表示,出现字时用0表示.这些数值因试验结果的不确定而带有随机性,因此也就称为随机变量.2、随机变量的定义:如果对于试验的样本空间 中的每一个样本点,变量 都有一个确定的实数值与之对应,则变量 是样本点 的实函数,记作 .我们称这样的变量 为随机变量.3、若随机变量 只能取有限个数值或可列无穷多个数值则称 为离散随机变量,在高中阶段我们只研究随机变量 取有限个数值的情形 (三)、例题探析例1、(课本例1)已知在10件产品中有2件不合格品。
概率分布以及期望和方差讲解

概率分布以及期望和方差上课时间:上课教师:上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差上课规划:解题技巧和方法一两点分布⑴两点分布如果随机变量X的分布列为X10P p q其中01p<<,1q p=-,则称离散型随机变量X服从参数为p的二点分布.二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X为任意抽取一件产品得到的结果,则X 的分布列满足二点分布.X10P0.80.2两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布.(2)典型分布的期望与方差:二点分布:在一次二点分布试验中,离散型随机变量X的期望取值为p,在n次二点分布试验中,离散型随机变量X的期望取值为np.知识内容典例分析1、在抛掷一枚图钉的随机试验中,令10X ⎧=⎨⎩,针尖向上;,针尖向下.,如果针尖向上的概率为p ,试写出随机变量X 的概率分布.2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的白球个数”,即⎩⎨⎧=,当取到红球时,,当取到白球时,01X ,求随机变量X的概率分布.3、若随机变量X 的概率分布如下:X1P29C C -38C -试求出C ,并写出X 的分布列.3、抛掷一颗骰子两次,定义随机变量⎩⎨⎧=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点面的点数数不等于第二次向上一当第一次向上一面的点ξ试写出随机变量ξ的分布列.4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P .⑴ 记投篮1次得分X ,求方差()D X 的最大值;⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差.二 超几何分布将离散型随机变量X 所有可能的取值i x 与该取值对应的概率i p (1,2,,)i n =列表表示:X1x 2x … i x … n x P1p2p…i p…n p一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mMN Mn NP X m --==(0m l ≤≤,l 为n 和M 中较小的一个).我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列. 超几何分布的期望和方差:若离散型随机变量X 服从参数为N M n ,,的超几何分布,则()nM E X N =,2()()()(1)n N n N M MD X N N --=-.例题:一盒子内装有10个乒乓球,其中3个旧的,7个新的,从中任意取4个,知识内容典例分析则取到新球的个数的期望值是.练习1.某人参加一次英语口语考试,已知在备选的10道试题中,能答对其中的6题,规定每次考试都从备选题中随机抽出5题进行测试,每题分数为20分,求他得分的期望值.练习2.以随机方式自5男3女的小群体中选出5人组成一个委员会,求该委员会中女性委员人数的概率分布、期望值与方差.练习3.在12个同类型的零件中有2个次品,抽取3次进行检验,每次任取一个,并且取出不再放回,若以ξ和η分别表示取出次品和正品的个数.求ξη,的期望值及方差.三 二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n kn P X k p q-==,其中0,1,2,,k n =.于是得到X的分布列X1… k… nP00C nn p q111C n n p q- …C k k n kn p q- …C n n n p q由于表中的第二行恰好是二项展开式001110()C C C C n n n kk n k nn n n n n q p p q p qp q p q --+=++++各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布,知识内容记作~(,)X B n p .二项分布的均值与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.二项分布:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.二项分布的概率计算例题:已知随机变量ξ服从二项分布,1~(4)3B ξ,,则(2)P ξ=等于 .练习1.甲乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3:1的比分获胜的概率为( ) A .827B .6481C .49D .89练习2.某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率 .(用数值表示)练习3.某人参加一次考试,4道题中解对3道则为及格,已知他的解题正确率为0.4,则他能及格的概率为_________(保留到小数点后两位小数) 接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为 .(精确到0.01)例题:从一批由9件正品,3件次品组成的产品中,有放回地抽取5次,每次抽一件,求恰好抽到两次次品的概率(结果保留2位有效数字).典例分析练习1.一台X型号的自动机床在一小时内不需要人照看的概为0.8000,有四台这种型号的自动机床各自独立工作,则在一小时内至多有2台机床需要工人照看的概率是()A.0.1536B.0.1808C.0.5632D.0.9728练习2.设在4次独立重复试验中,事件A发生的概率相同,若已知事件A至少发生一次的概率等于65,求事件A在一次试验中发生的概率.81例题:某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是1.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支2持”,则给予5万元的资助;若未获得“支持”,则不予资助.求:⑴该公司的资助总额为零的概率;⑵该公司的资助总额超过15万元的概率.练习1.某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.⑴求3位购买该商品的顾客中至少有1位采用一次性付款的概率;⑵求3位位顾客每人购买1件该商品,商场获得利润不超过650元的概率.练习2.某万国家具城进行促销活动,促销方案是:顾客每消费1000元,便,若中奖,则家具城返还顾客可获得奖券一张,每张奖券中奖的概率为15现金200元.某顾客消费了3400元,得到3张奖券.⑴求家具城恰好返还该顾客现金200元的概率;⑵求家具城至少返还该顾客现金200元的概率.例题:设飞机A有两个发动机,飞机B有四个发动机,如有半数或半数以上的发动机没有故障,就能够安全飞行,现设各个发动机发生故障的概率p是t的函数1t=-,其中t为发动机启动后所经历的时间,λ为正的常数,p eλ-试讨论飞机A与飞机B哪一个安全?(这里不考虑其它故障).练习1.假设飞机的每一台发动机在飞行中的故障率都是1P-,且各发动机互不影响.如果至少50%的发动机能正常运行,飞机就可以顺利地飞行.问对于多大的P而言,四发动机飞机比二发动机飞机更安全?练习2.一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设.他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13⑴设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列;⑵设η为这名学生在首次停车前经过的路口数,求η的分布列;⑶求这名学生在途中至少遇到一次红灯的概率.二项分布的期望与方差 例题:已知(100.8)X B ,~,求()E X 与()D X .练习1.已知~()X B n p ,,()8E X =,() 1.6D X =,则n 与p 的值分别为( ) A .10和0.8 B .20和0.4 C .10和0.2 D .100和0.8 练习 2.已知随机变量X服从参数为60.4,的二项分布,则它的期望()E X = ,方差()D X = .练习3.已知随机变量X 服从二项分布,且() 2.4E ξ=,() 1.44D ξ=,则二项分布的参数n ,p 的值分别为 , .练习4.一盒子内装有10个乒乓球,其中3个旧的,7个新的,每次取一球,取后放回,取4次,则取到新球的个数的期望值是 .例题:甲、乙、丙3人投篮,投进的概率分别是121352,,.⑴ 现3人各投篮1次,求3人都没有投进的概率;⑵ 用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望.练习1.抛掷两个骰子,当至少有一个2点或3点出现时,就说这次试验成功. ⑴ 求一次试验中成功的概率;⑵ 求在4次试验中成功次数X 的分布列及X 的数学期望与方差.练习2.某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?四 正态分布概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时, 直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布.服从正态分布的随机变量叫做正态随机变量,简称正态变量.正态变量概率密度曲线的函数表达式为22()21()2πx f x eμσσ--=⋅,x ∈R ,其中μ,σ知识内容x=μOyx是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ.正态变量的概率密度函数的图象叫做正态曲线.⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布.①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%.②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()xF x P x f t dt ξ-∞==⎰≤为概率分布函数,特别的,2~(01)N ξμσ-,,称221()2t x x e dt φ--∞=⎰π为标准正态分布函数. ()()x P x μξφσ-<=.标准正态分布的值可以通过标准正态分布表查得.(一)正态曲线(正态随机变量的概率密度曲线) 1.下列函数是正态分布密度函数的是( )A .2()21()2x r f x eσσ-=π B .222π()2πx f x e -= C .2(1)41()22x f x e-=πD .221()2x f x e=π2.若正态分布密度函数2(1)21()()2x f x ex --=∈R π,下列判断正确的是( )A .有最大值,也有最小值B .有最大值,但没最小值C .有最大值,但没最大值D .无最大值和最小值3.对于标准正态分布()01N ,的概率密度函数()2212πx f x e-=,下列说法不正确典例分析的是( ) A .()f x 为偶函数 B .()f x 最大值为12πC .()f x 在0x >时是单调减函数,在0x ≤时是单调增函数D .()f x 关于1x =对称 4.设ξ的概率密度函数为2(1)21()2x f x e--=π,则下列结论错误的是( )A .(1)(1)P P ξξ<=>B .(11)(11)P P ξξ-=-<<≤≤C .()f x 的渐近线是0x =D .1~(01)N ηξ=-, (二)求μσ,的取值以及概率例题:设2~()X N μσ,,且总体密度曲线的函数表达式为:22141()e2πx x f x -+-=,x ∈R .⑴求μσ,;⑵求(|1|2)P x -<及(12122)P x -<<+的值.练习1.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为2(80)2001()102x f x eπ--=,则下列命题中不正确的是( )A .该市这次考试的数学平均成绩为80分B .分数在120分以上的人数与分数在60分以下的人数相同C .分数在110分以上的人数与分数在50分以下的人数相同D .该市这次考试的数学标准差为10 (三)正态分布的性质及概率计算例题:设随机变量ξ服从正态分布(01)N ,,0a >,则下列结论正确的个数是____.⑴(||)(||)(||)P a P a P a ξξξ<=<+= ⑵(||)2()1P a P a ξξ<=<- ⑶(||)12()P a P a ξξ<=-< ⑷(||)1(||)P a P a ξξ<=->练习1.已知随机变量X 服从正态分布2(3)N a ,,则(3)P X <=( ) A .15B .14C .13D .12练习2.在某项测量中,测量结果X 服从正态分布()()210N σσ>,,若X 在()01,内取值的概率为0.4,则X 在()02,内取值的概率为 . 练习3.已知随机变量X 服从正态分布2(2)N σ,,(4)0.84P X =≤,则(0)P X =≤ A .0.16 B .0.32 C .0.68 D .0.84 练习4.已知2(1)X N σ-,~,若(31)0.4P X -=≤≤-,则(31)P X -=≤≤()A .0.4B .0.8C .0.6D .无法计算 加强训练:1设随机变量ξ服从正态分布(29)N ,,若(2)(2)P c P c ξξ>+=<-,则_______c =.2设~(01)N ξ,,且(||)(010)P b a a b ξ<=<<>,,则()P b ξ≥的值是_______(用a 表示).3正态变量2~(1)X N σ,,c 为常数,0c >,若(2)(23)0.4P c X c P c X c <<=<<=,求(0.5)P X ≤的值.4某种零件的尺寸服从正态分布(04)N ,,则不属于区间(44)-,这个尺寸范围的零件约占总数的 . (四)正态分布的数学期望及方差例题:如果随机变量2~()1N E D ξμσξξ==,,,求(11)P ξ-<<的值.(五)正态分布的3σ原则例题:灯泡厂生产的白炽灯寿命ξ(单位:h ),已知2~(100030)N ξ,,要使灯泡的平均寿命为1000h 的概率为99.7%,则灯泡的最低使用寿命应控制在_____小时以上.练习1.一批电池(一节)用于手电筒的寿命服从均值为35.6小时、标准差为4.4小时的正态分布,随机从这批电池中任意取一节,问这节电池可持续使用不少于40小时的概率是多少?练习2.某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是______.杂题(拓展相关:概率密度,分布函数及其他)练习3.以()F x 表示标准正态总体在区间(),x -∞内取值的概率,若随机变量ξ服从正态分布()2,N μσ,则概率()P ξμσ-<等于()A .()()F F μσμσ+--B .()()11F F --C .1F μσ-⎛⎫ ⎪⎝⎭D .()2F μσ+练习4.甲、乙两人参加一次英语口语考试,已知在备选的10道题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. ⑴ 求甲答对试题数X 的分布列、数学期望与方差; ⑵ 求甲、乙两人至少有一人考试合格的概率. 课后练习1、一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,则其中含红球个数的数学期望是_________.(用数字作答)2.、同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是()A.20B.25C.30D.403、某服务部门有n个服务对象,每个服务对象是否需要服务是独立的,若每个服务对象一天中需要服务的可能性是p,则该部门一天中平均需要服务的对象个数是()A.(1)-np pp p -B.np C.n D.(1)4、同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是()A、20B.25C.30D.405、一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸;从袋中任意摸出2个球,至少得到1个白出1个球,得到黑球的概率是25.球的概率是79⑴若袋中共有10个球,从袋中任意摸出3个球,求得到白球的个数的数学期望;⑵求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于7.并10指出袋中哪种颜色的球个数最少.5.某厂生产电子元件,其产品的次品率为5%,现从一批产品中的任意连续取出2件,求次品数ξ的概率分布列及至少有一件次品的概率.某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为56和45,且各株大树是否成活互不影响.求移栽的4株大树中:⑴至少有1株成活的概率;⑵两种大树各成活1株的概率.6.一个口袋中装有n个红球(5n≥且*n∈N)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.⑴试用n表示一次摸奖中奖的概率p;⑵若5n=,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;⑶记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P.当n取多少时,P最大?7.袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率,从B中摸出一个红球的概率为p.是13⑴从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.①求恰好摸5次停止的概率;②记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布.⑵若A B,两个袋子中的球数之比为1:2,将A B,中的球装在一起后,从中摸,求p的值.出一个红球的概率是258、一个质地不均匀的硬币抛掷5次,正面向上恰为1次的可能性不为0,而为硬币在5次抛掷中有3且与正面向上恰为2次的概率相同.令既约分数ij次正面向上的概率,求i j+.9、某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位)⑴5次预报中恰有2次准确的概率;⑵5次预报中至少有2次准确的概率;⑶5次预报中恰有2次准确,且其中第3次预报准确的概率;10、某大厦的一部电梯从底层出发后只能在第181920,,层可以停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均,求至少有两位乘客在20层下的概率.为1311、10个球中有一个红球,有放回的抽取,每次取一球,求直到第n次才取得()≤次红球的概率.k k n12、已知甲投篮的命中率是0.9,乙投篮的命中率是0.8,两人每次投篮都不受影响,求投篮3次甲胜乙的概率.(保留两位有效数字)13、若甲、乙投篮的命中率都是0.5p=,求投篮n次甲胜乙的概率.(1∈N,≥)n n14、省工商局于某年3月份,对全省流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的x饮料的合格率为80%,现有甲,乙,丙3人聚会,选用6瓶x饮料,并限定每人喝2瓶,求:⑴甲喝2瓶合格的x饮料的概率;⑵甲,乙,丙3人中只有1人喝2瓶不合格的x饮料的概率(精确到0.01).15、在一次考试中出了六道是非题,正确的记“√”号,不正确的记“×”号.若某考生随手记上六个符号,试求:⑴全部是正确的概率;⑵正确解答不少于4道的概率;⑶至少答对2道题的概率.17、某大学的校乒乓球队与数学系乒乓球队举行对抗赛,校队的实力比系队强,当一个校队队员与系队队员比赛时,校队队员获胜的概率为0.6.现在校、系双方商量对抗赛的方式,提出了三种方案:⑴双方各出3人;⑵双方各出5人;⑶双方各出7人.三种方案中场次比赛中得胜人数多的一方为胜利.问:对系队来说,哪一种方案最有利?18、某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有%60,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.⑴任选1名下岗人员,求该人参加过培训的概率;⑵任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布和期望.19、设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布及期望.20、某班级有n人,设一年365天中,恰有班上的m(m n≤)个人过生日的天数为X,求X的期望值以及至少有两人过生日的天数的期望值.21、购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有10000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10000元的概率为410.10.999⑴求一投保人在一年度内出险的概率p;⑵设保险公司开办该项险种业务除赔偿金外的成本为50000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).22、某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须进行整改.若整改后复查仍不合格,则强行关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01).⑴恰好有两家煤矿必须整改的概率;⑵平均有多少家煤矿必须整改;⑶至少关闭一家煤矿的概率.23、设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作.若一周5个工作日里均无故障,可获利润10万元;发生一次故障可获利润5万元,只发生两次故障可获利润0万元,发生三次或三次以上故障就要亏损2万元.求一周内期望利润是多少?(精确到0.001)24、在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐.已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是2.3⑴求油罐被引爆的概率;⑵如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列及Eξ.25、一个袋中有大小相同的标有1,2,3,4,5,6的6个小球,某人做如下游戏,每次从袋中拿一个球(拿后放回),记下标号.若拿出球的标号是3的倍数,则得1分,否则得1-分.⑴ 求拿4次至少得2分的概率;⑵ 求拿4次所得分数ξ的分布列和数学期望.26、某计算机程序每运行一次都随机出现一个五位的二进制数12345A a a a a a =,其中A 的各位数中,11a =,(2345)k a k =,,,出现0的概率为13,出现1的概率为23.记12345a a a a a ξ=++++,当程序运行一次时, ⑴ 求3ξ=的概率;⑵ 求ξ的概率分布和期望.27、某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是1,遇到红灯时停留的时间都是2 min.3⑴求这名学生在上学路上到第三个路口时首次遇到红灯的概率;⑵求这名学生在上学路上因遇到红灯停留的总时间 的分布列及期望.。
概率论笔记(四)概率分布的下期望和方差的公式总结

概率论笔记(四)概率分布的下期望和方差的公式总结一:期望引入:1.1离散型随机变量的期望注:其实是在等概率的基础上引申来的,等概率下的权重都是1/N。
1.2连续型随机变量的期望注意:因为连续随机变量的一个点的概率是没有意义的,所以我们需要借用密度函数,如所示,这实际上是一个期望积累的过程。
1.3期望的性质注:其中第三个性质,可以把所有的X+Y的各种情况展开,最后得出的结果就是这样的。
二:随机变量函数(复合随机)的数学期望1.理解注:其实就是复合随机变量的期望,对于离散型,其主要是每个值增加了多少倍/减少了多少倍,但是概率不变,所以公式见上面;对于连续性随机变量,其实是一样的,每个点的概率没有变,所以就是变量本身的值发货所能了改变。
三:方差引入的意义:求每次相对于均值的波动:求波动的平方和:定义:注:其实就是对X-E(X)方,求均值其实就是方差,注意这里的均值也是加权平均,所以方差其实就是一种特殊的期望。
3.1离散型随机变量的方差3.2连续性随机变量的方差3.3方差的性质注:3)4)5)等性质可以套入定义中就可以得到,这里不多说;对于独立以及协方差见后;8)的证明如下四:协方差4.1定义注:与上一个变量相比,之前是一个变量移位平方,但这里是两个变量移位相乘。
4.2离散型二维随机变量的协方差4.3连续型二维随机变量的协方差4.4二维随机变量的协方差性质注:了解即可…4.5协方差矩阵五:相关系数所以:独立必不相关,但不相关不一定独立,因为这里的不相关指的是线性不相关,可能会有其他非线性关系,具体例子找到再补充-------。
参考链接:。
高中数学知识点总结概率分布与期望

高中数学知识点总结概率分布与期望概率分布与期望是高中数学中的重要知识点。
它们在统计学和概率论中起着重要作用。
通过对随机变量的概率分布进行研究,我们可以了解事件发生的可能性以及事件结果的平均值。
本文将对概率分布和期望进行详细讲解,并且通过例题来帮助读者更好地理解和应用这些概念。
一、概率分布概率分布描述了随机变量在每个取值上的概率。
常见的概率分布包括离散概率分布和连续概率分布。
1. 离散概率分布离散概率分布是指随机变量只取有限个或可列个值的概率分布。
在离散概率分布中,每个取值都对应一个概率。
我们可以通过列出随机变量的取值及其对应的概率来描述概率分布。
例题:某餐厅每天的顾客人数服从以下概率分布,求顾客人数的期望值。
顾客人数: 0 1 2 3 4概率: 0.1 0.3 0.4 0.15 0.05解答:期望值的计算公式为E(X) = Σ x * P(X = x),其中x表示随机变量的取值,P(X = x)表示该取值对应的概率。
根据给定的概率分布,可以计算期望值:E(X) = 0 * 0.1 + 1 * 0.3 + 2 * 0.4 + 3 * 0.15 + 4 * 0.05 = 1.9因此,顾客人数的期望值为1.9。
2. 连续概率分布连续概率分布是指随机变量在某一区间上取值的概率。
在连续概率分布中,我们使用概率密度函数来描述概率分布。
概率密度函数(PDF)有以下性质:非负性、归一性和可积性。
常见的连续概率分布包括均匀分布、正态分布和指数分布等。
这些分布都有各自的概率密度函数,可以根据具体情况进行计算。
二、期望期望是概率分布的一个重要指标,是对随机事件结果的平均值的度量。
它反映了事件结果的集中趋势。
1. 离散随机变量的期望对于离散随机变量X,其期望E(X)的计算公式为E(X) = Σ x * P(X = x),其中x表示随机变量的取值,P(X = x)表示该取值对应的概率。
2. 连续随机变量的期望对于连续随机变量X,其期望E(X)的计算公式为E(X) = ∫ xf(x) dx,其中f(x)表示X的概率密度函数。
人教版高中数学选修2-3第6讲:数学期望与方差及正态分布(教师版)

人教版高中数学 数学期望与方差及正态分布__________________________________________________________________________________ __________________________________________________________________________________1.理解离散型变量的数学期望与方差的概念.2.熟练掌握离散型变量的数学期望与方差的公式.3.熟练掌握离散型变量的数学期望与方差的性质.4.能利用数学期望与方差解决简单的实际问题.5.理解概率密度曲线和正态分布的概念.1.离散型随机变量X 的数学期望一般地,若离散型随机变量X 的概率分布如下表所示,则称1122n n x p x p x p +++为离散型随机变量X 的数学期望,记为()E X ,其中0i p ≥,i =1,2,…,n ,12p p + 1.n p ++=一般地,若离散型随机变量X 的概率分布如下表所示,则称2221122()()()n n x p x p x p μμμ-+-++-为离散型随机变量X 的方差,记为()V X ,即2;σi p ≥0,i =1,2,…,n ,121,n p p p +++=()E X μ=3.离散型随机变量X 的标准差随机变量X 的方差也称为X 的概率分布的方差,X 的方差V (X )的算术平方根称为X 的标准差,即σ=4.必备公式(1)离散型随机变量:X 的数学期望(均值)公式、方差公式、标准差公式 E(X)=1122n n x p x p x p +++;V (X )=221122()()x p x p μμ-+-+2()n n x p μ+-;σ=.(2)二项分布的数学期望、方差的计算公式 当X ~B (n ,p )时,E (X )=np ;V (X )=np(1-p). 5.离散型随机变量方差的性质设ξ是离散型随机变量,则其方差具有如下性质: (1)V (k )=0(k 为常数); (2)2();V k k V ξξ= (3)();V k V ξξ+=(4)2()(,).V a b a V a b ξξ+=∈R6.概率密度曲线(1)若数据无限增多且组距无限缩小,那么频率直方图的顶边无限缩小乃至形成一条光滑的曲线,我们将此曲线称为概率密度曲线.(2)正态密度曲线的函数表达式为22()2()e,,0,x P x x μσσμ--=∈>∈R R7.正态分布(1)若X 是一个随机变量,对任给区间(a ,b ],P (a <X ≤b )恰好是正态密度曲线下方和X 轴上(a ,b ]上方所围成的图形的面积;我们就称随机变量X 服从参数为μ和2σ的正态分布,简记为X ~N (2,μσ).(2)我们将正态分布N (0,1)称为标准正态分布,通过查标准正态分布表可以确定服从标准正态分布的随机变量的有关概率.8.正态密度曲线图象的特征(1)当x <μ时,曲线上升;当x >μ时,曲线下降;当曲线向左右两边无限延伸以x 轴为渐近线. (2)正态曲线关于直线x =μ对称;(3)σ越大,正态曲线越扁平;σ越小,正态曲线越尖陡. (4)在正态曲线下方和x 轴上方范围内的区域面积为1.类型一.离散型随机变量X 的数学期望则E (X )等于( ) A.0 B.-1C.13-D.12-[答案] C[解析] 由111()(1)01236E X =-⨯+⨯+⨯=1.3-练习1:某学校要从5名男生和2名女生中选出2人做上海世博会志愿者,若用随机变量表示选出的志愿者中女生的人数,则数学期望E ξ______.(结果用最简分数表示)[答案]47[解析] ξ可取0,1,2,因此252710(0),(1)21C P P C ξξ=====11522710,21C C C = 22271101014(2),012.212121217C P E C ξξ====⨯+⨯+⨯=类型二.离散型随机变量的方差、标准差例2:已知随机变量X 的分布表为:[解析] 因为E (X )=0.1×0+0.15×1+0.25×2+0.25×3+0.15×4+0.1×5=2.5,所以22()(0 2.5)0.1(1 2.5)0.15(2V X =-⨯+-⨯+-222.5)0.25(3 2.5)0.25⨯+-⨯+2(4 2.5)0.15(5-⨯+-22.5)0.1 2.05.⨯=练习1:甲、乙两名射手在同一条件下进行射击,分布表如下:射手乙:谁的射击水平比较稳定.[解析] 1()100.290.680.29,E X =⨯+⨯+⨯=2221()(109)0.2(99)0.6(89)0.2V X =-⨯+-⨯+-⨯0.20.20.4,=+= 2()100.490.280.49,E X =⨯+⨯+⨯=2222()(109)0.4(99)0.2(89)0.40.8V X =-⨯+-⨯+-⨯=,因为12()(),V X V X <所以射手甲的射击水平比较稳定.类型三.二项分布的数学期望与方差例3:已知随机变量ξ~B (n ,p ),且 2.4, 1.44,E V ξξ==则n ,p 的值为( ) A.8,0.3 B.6,0.4 C.2,0.2 D.5,0.6[答案] B[解析] 由np =2.4,np (1-p )=1.44,解得n =6,p =0.4.练习3:设随机变量ξ服从二项分布,即ξ~(,)B n P ,且13,,7E P ξ==则n =______,D ξ=______. [解析]13,,7E nP P ξ===13721,(1)217n D nP P ξ∴=⨯==-=⨯118(1).77-=类型四.离散型随机变量方差的性质例4:一次测试有25道选择题,每题选对得4分,选错或不选得0分,满分为100分,某生选对每道题的概率为0.8,则这名考生在这次考试中成绩的数学期望与标准差为( )A.80,8B.80,64C.70,4D.70,3 [答案] A[解析] 答对题数为,ξ成绩为4.ξ先分析ξξ⋅~B (25,0.8),所以E ξ=25×0.8=20,所以(4)480,E E V ξξξ===25×0.8×0.2=4,所以(4)V ξ=2464,V ξ=8.=练习4:已知ξ的分布列如下表,设23,ηξ=+则E η=()A .3B .4C .-1D .1[答案] A [解析] 11111012363E ξ=-⨯+⨯+⨯=-,17(23)232333E E E ηξξ=+=+=-⨯+= 类型五.数学期望与方差的计算与应用例5:一个人每天开车上班,从他家到上班的地方有6个交通岗,假设他在各交通岗遇到红灯的事件互相独立,并且概率都是1.3假定他只在遇到红灯或到达上班地点时才停止前进.(1)设ξ为这个人的首次停止前经过的路口数.求ξ的分布表; (2)设η为这个人的途中遇到红灯的次数,求η的期望和方差; (3)求这个人首次停止前已经过两个交通岗的概率. [解析] (1)ξ的取值为0,1,2,3,4,5,6,212121(0),(1),(2)(),33333P P P ξξξ====⨯==⨯342121(3)(),(4)(),(5)3333P P P ξξξ==⨯==⨯==56212(),(6)().333P ξ⨯==所以ξ的分布表如下:(2)由题意知:1~(6,),3Bη则162,(13E V npηη=⨯==114)6(1).333p-=⨯⨯-=(3)由(1)知4 (2).27 Pξ==练习5:有一名运动员投篮的命中率为0.6,现在他进行投篮训练,若没有投进则继续投篮,若投进则停止,但最多投篮5次,求他投篮次数的数学期望.[解析]若该运动员投篮1次,则P(ξ=1)=0.6;若投篮2次,则说明他第1次没有投进,而第2次投进,P(ξ=2)=0.4×0.6=0.24;若投篮3次,则说明他前2次没有投进,而第3次投进,P(ξ=3)=0.42×0.6;若投篮4次,则说明他前3次没有投进,而第4次投进,P(ξ=4)=0.43×0.6;若投篮5次,则说明他前4次没有投进,而第5次投进与否均可,所以概率为P(ξ=5)=0.44×1.所以ξ的概率分布为:所以,投篮次数的数学期望为Eξ=1×0.6+2×0.24+3×0.096+4×0.0384+5×0.0256=1.6496.类型六.正态密度曲线的特征例6:下面给出了关于正态曲线的四个叙述:①曲线在x轴上方且与x轴不相交;②当x>μ时,曲线下降;当x<μ时,曲线上升;③当μ一定时,σ越小,总体分布越分散;σ越大,总体分布越集中;④曲线关于直线x=μ对称,且当x=μ时,位于最高点.其中正确的是()A.1个B.2个C.3个D.4个[答案] C[解析]①、②、④都正确,③不正确,应该是当μ一定时,σ越小,总体分布越集中,σ越大,总体分布越分散.练习6:若2(1)2(),xf x x R--=∈,则下列判断正确的是()A.f(x)有最大值,也有最小值B.f(x)有最大值,无最小值C.f(x)无最大值,有最小值D.f(x)无最大值,也无最小值[答案]B[解析]这个函数就是正态分布N(1,1)的概率密度函数.类型七.正态分布例7:已知正态总体的数据落在区间(-3,-1)内的概率和落在(3,5)内的概率相等,那么这个正态总体的数学期望为________.[答案]1[解析]区间(-3,-1)与(3,5)的长度相等,这说明正态曲线在两个区间上对称,易知两区间关于x=1对称,所以正态分布的数学期望是1.练习7:设随机变量ξ服从标准正态分布N (0,1),已知( 1.96)0.025Φ-=,那么(|| 1.96)P ξ<=( )A .0.025B .0.050C .0.950D .0.975[答案] C[解析] 由( 1.96)1(1.96)0.025Φ-=-Φ=,得(1.96)0.975Φ=,(|| 1.96)(1.96)( 1.96)0.9750.025P ξ<=Φ-Φ-=-=0.951.若某篮球运动员投篮命中率P =0.6,则其两次投篮命中次数η的数学期望为( ) A .0.6 B .1.2C .1.3D .0.8[答案] B2.设某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则(0)P ξ==( )A .0 B.12C.13D.23[答案] C3.已知连续型随机变量ξ的概率密度函数f (x )=()()01,1(14),504,x x x <-⎧⎪⎪-≤≤⎨⎪⎪>⎩则P (ξ=3)的值为( )A.15B .0C .3D .不确定[答案] B4.如果随机变量ξ服从(,0)N μ,而且()P C ξ≤=()P C ξ>=P ,那么P 等于( ) A .0 B .0.5C .1D .不确定[答案] B5.若从1,2,4,6,9这5个数字之中任取2个,则这2个数之积的数学期望是( ) A .8 B .17.3 C .9 D .9.5 [答案] B6.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的教学期望E ξ=______. [答案]237.某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(1)求从甲、乙两组各抽取的人数;(2)求从甲组抽取的工人中恰有1名女工人的概率;(3)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望. [答案] (1)因为抽取比例为311,102,510555=⨯=⨯+由115=得,应在甲组抽取2人,在乙组抽取1人.(2)从甲组抽取的工人中恰有1名女工人的概率11462108.15C C P C ⋅== (3)ξ的可能取值为0,1,2,31234211056(0),75C C P C C ξ==⋅=1112146342212110510528(1),75C C C C C P C C C C ξ==⋅+⋅=21622110510(3),75C C P C C ξ==⋅=31(2)1(0)(1)(3).75P P P P ξξξξ==-=-=-==分布列如下表:数学期望282810123 1.6.757575E ξ=⨯+⨯+⨯= 8.设篮球队A 与B 进行比赛,每场比赛均有一球队获胜,若一球队胜4场,则比赛结束,假定A ,B 两队在每场比赛中获胜的概率都是12,试求需要比赛场数ξ的分布列及数学期望. [答案] 依题意知,比赛场数ξ的取值为4,5,6,7.411(4)2,28P ξ∴==⨯=3341112(5)()2,2228P C ξ==⋅⨯⨯⨯= 33251115(6)()()2,22216P C ξ==⋅⋅⨯⨯=33361115(7)()()2.23216P C ξ==⋅⋅⨯⨯=从而随机变量ξ的分布列为:∴随机变量专的数学期望为1255934567.88161616E ξ=⨯+⨯+⨯+⨯=__________________________________________________________________________________________________________________________________________________________________基础巩固1.如果两名士兵在一次射击比赛中,士兵甲得1分,2分,3分的概率分别为0.4,0.1,0.5;士兵乙得1分,2分,3分的概率分别为0.1,0.6,0.3,那么两名士兵得胜希望较大的是( )A .甲B .乙C .甲与乙相同D .无法确定[答案] B2.同时抛掷2枚相同的均匀硬币,随机变量ξ=1表示结果中有正面向上的,ξ=0表示结果中没有正面向上的,则E ξ=( )A .0.6B .0.75C .0.85D .0.95[答案] B3.如果ξ是离散型随机变量,32,ηξ=+那么( ) A.32,9E E D D ηξηξ=+= B.3,32E E D D ηξηξ==+ C.32,94E E D E ηξηξ=+=+ D.34,32E E D D ηξηξ=+=+[答案] A4.某地有A ,B ,C ,D 四人先后感染了甲型H1N1流感,其中只有A 到过疫区,B 肯定是受A 感染的,对于C ,因为难以断定他是受A 还是受B 感染,于是假定他受A 和受B 感染的概率都是12,同样也假定D 受A ,B 和C 感染的概率都是13,在这种假定之下,B ,C ,D 中直接受A 感染的人数X 就是一个随机变量,X 的均值(即数学期望)=( )A.125B.116 C.87D.23[答案] B5.设随机变量ξ服从二项分布,即ξ~(,)B n P ,且13,,7E P ξ==则n =______,D ξ=______. [答案] 1821;76.在某次测量中,测量结果ξ服从正态分布N (1,2σ)(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为______.[答案] 0.87.(2014浙江卷)随机变量X 的取值为0,1,2.若P (X =0)=15,E (X )=1,则D (X )=________.[答案] 258.(2015东城二模)某校高一年级开设A ,B ,C ,D ,E 五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选A 课程,不选B 课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.(1)求甲同学选中C 课程且乙同学未选中C 课程的概率;(2)用X 表示甲、乙、丙选中C 课程的人数之和,求X 的分布列和数学期望. [答案] (1)设事件A 为“甲同学选中C 课程”,事件B 为“乙同学选中C 课程”.则1223C 2()C 3P A ==,2435C 3()C 5P B ==.因为事件A 与B 相互独立,所以甲同学选中C 课程且乙同学未选中C 课程的概率为224()()()()[1()]3515P AB P A P B P A P B ==-=⨯=.(2)设事件C 为“丙同学选中C 课程”.则2435C 3()C 5P C ==.X 的可能取值为:0,1,2,3.1224(0)()35575P X P ABC ===⨯⨯=(1)()()()P X P ABC P ABC P ABC ==++2221321232035535535575=⨯⨯+⨯⨯+⨯⨯=.(2)()()()P X P ABC P ABC P ABC ==++2322231333335535535575=⨯⨯+⨯⨯+⨯⨯=.23318(3)()35575P X P ABC ===⨯⨯=.X 为分布列为:4()0123757575757515E X =⨯+⨯+⨯+⨯==.能力提升1.如果~(5,0.1)B ξ,那么P (ξ≤2)=( ) A .0.0729 B .0.00856 C .0.91854 D .0.99144[答案] D2.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400[答案] B3.1盒产品中有9件正品和3件废品,若每次取1件产品,取出后不再放回,则在取得正品前已取出的废品数ξ的数学期望E ξ=______.[答案] 0.34.某射击选手每次射击击中目标的概率为0.8,现在他连续向一个目标射击,直到第一次击中目标为止,则射击次数ξ这一随机变量的数学期望为______.[答案]545.从分别标有数字1,2,3,…,n 的n 张卡片中任取一张,若卡片上数字ξ是随机变量,则ξ的数学期望为______.[答案]12n + 6.(2014湖南卷)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.[答案] (1)1315(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220,因为P (X =0)=13×25=215,P (X =100)=13×35=315,P (X =120)=23×25=415,P (X =220)=23×35=615.故所求的分布列为数学期望为E (X )=0×215+100×315+120×415+220×615300480132021001401515++===. 7.(2015湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.11[答案] (1)107; (2)顾客抽奖3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,∴1(3,)5X B , 于是00331464(0)()()55125P X C ===,11231448(1)()()55125P X C ===,22131412(2)()()P X C ===,3303141(3)()()125P X C ===,故X 的分布列为 X 的数学期望为()355E X =⨯=. 8.(2014天津)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.[答案] (1)设“选出的3名同学来自互不相同的学院”为事件A ,则()120337373104960C C C C P A C ??==.所以,选出的3名同学来自互不相同学院的概率为4960. (2)随机变量X 的所有可能值为0,1,2,3.()346310k k C C P x k C -×==()0,1,2,3k =. 所以,随机变量X 的分布列是随机变量X 的数学期望()12362103050E X ??=+??.。
浙江专版2018年高考数学专题3概率及期望与方差突破点7随机变量及其分布教学案

突破点7 随机变量及其分布(对应学生用书第26页)[核心知识提炼]提炼1离散型随机变量的分布列离散型随机变量X的分布列如下:则i(2)p1+p2+…+p i+…+p n=1(i=1,2,3,…,n).(3)E(X)=x1p1+x2p2+…+x i p i+…+x n p n为X的均值或数学期望(简称期望).D(X)=(x1-E(X))2·p1+(x2-E(X))2·p2+…+(x i-E(X))2·p i+…+(x n-E(X))2·p n 叫做随机变量X的方差.(4)均值与方差的性质①E(aX+b)=aE(X)+b;②D(aX+b)=a2D(X)(a,b为实数).(5) 两点分布与二项分布的均值、方差①若X服从两点分布,则E(X)=p,D(X)=p(1-p);②若X~B(n,p),则E(X)=np,D(X)=np(1-p).提炼2几种常见概率的计算(1)相互独立事件同时发生的概率P(AB)=P(A)P(B).(2)独立重复试验的概率如果事件A在一次试验中发生的概率是p,那么它在n次独立重复试验中恰好发生k次的概率为P n(k)=C k n p k·(1-p)n-k,k=0,1,2,…,n.[高考真题回访]回访1 离散型随机变量及其分布列1.(2013·浙江高考)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E η=53,D η=59,求a ∶b ∶c . 【导学号:68334087】[解] (1)由题意得ξ=2,3,4,5,6. 故P (ξ=2)=3×36×6=14,1分 P (ξ=3)=2×3×26×6=13, 2分 P (ξ=4)=2×3×1+2×26×6=518,3分 P (ξ=5)=2×2×16×6=19, 4分 P (ξ=6)=1×16×6=136.5分所以ξ的分布列为6分(2)由题意知η的分布列为所以E (η)=a +b +c +a +b +c +a +b +c =3,10分D (η)=⎝⎛⎭⎪⎫1-532·a a +b +c +⎝ ⎛⎭⎪⎫2-532·b a +b +c +⎝ ⎛⎭⎪⎫3-532·c a +b +c =59,化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0. 13分 解得a =3c ,b =2c ,故a ∶b ∶c =3∶2∶1. 15分回 访2 离散型随机变量的均值与方差2.(2017·浙江高考)已知随机变量ξi 满足P (ξi =1)=p i ,P (ξi =0)=1-p i ,i =1,2.若0<p 1<p 2<12,则( )A .E (ξ1)<E (ξ2),D (ξ1)<D (ξ2)B .E (ξ1)<E (ξ2),D (ξ1)>D (ξ2)C .E (ξ1)>E (ξ2),D (ξ1)<D (ξ2) D .E (ξ1)>E (ξ2),D (ξ1)>D (ξ2)A [由题意可知ξi (i =1,2)服从两点分布,∴E (ξ1)=p 1,E (ξ2)=p 2,D (ξ1)=p 1(1-p 1),D (ξ2)=p 2(1-p 2). 又∵0<p 1<p 2<12,∴E (ξ1)<E (ξ2).把方差看作函数y =x (1-x ), 根据0<ξ1<ξ2<12知,D (ξ1)<D (ξ2).故选A.]3.(2014·浙江高考)已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(m ≥3,n ≥3),从乙盒中随机抽取i (i =1,2)个球放入甲盒中.(1)放入i 个球后,甲盒中含有红球的个数记为ξi (i =1,2);(2)放入i 个球后,从甲盒中取1个球是红球的概率记为p i (i =1,2).则( )【导学号:68334088】A .p 1>p 2,E (ξ1)<E (ξ2)B .p 1<p 2,E (ξ1)>E (ξ2)C .p 1>p 2,E (ξ1)>E (ξ2)D .p 1<p 2,E (ξ1)<E (ξ2)A [随机变量ξ1,ξ2的分布列如下:所以E (ξ1)=m +n+m +n =m +n, E (ξ2)=C 2n C 2m +n +2C 1m C 1n C 2m +n +3C 2m C 2m +n =3m +nm +n ,所以E (ξ1)<E (ξ2). 因为p 1=m m +n +nm +n ·12=2m +n 2 m +n,p 2=C 2m C 2m +n +C 1m C 1n C 2m +n ·23+C 2n C 2m +n ·13=3m +n3 m +n,p 1-p 2=n6 m +n>0,所以p 1>p 2.]4.(2014·浙江高考)随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.25[设P (ξ=1)=a ,P (ξ=2)=b , 则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎪⎨⎪⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.](对应学生用书第27页) 热点题型1 相互独立事件的概率题型分析:高考主要考查相互独立事件概率的求解及实际应用,对事件相互独立性的考查相对较频繁,难度中等.【例1】 (1)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36D .0.312(2)如图71,由M 到N 的电路中有4个元件,分别标为T 1,T 2,T 3,T 4,电流能通过T 1,T 2,T 3的概率都是p ,电流能通过T 4的概率是0.9.电流能否通过各元件相互独立.已知T 1,T 2,T 3中至少有一个能通过电流的概率为0.999.图71①求p ;②求电流能在M 与N 之间通过的概率.(1)A [3次投篮投中2次的概率为P (k =2)=C 23×0.62×(1-0.6),投中3次的概率为P (k =3)=0.63,所以通过测试的概率为P (k =2)+P (k =3)=C 23×0.62×(1-0.6)+0.63=0.648.故选A.](2)记A i 表示事件:电流能通过T i ,i =1,2,3,4,A 表示事件:T 1,T 2,T 3中至少有一个能通过电流,B 表示事件:电流能在M 与N 之间通过.①A -=A -1A -2A -3,A -1,A -2,A -3相互独立,2分P (A -)=P (A -1A -2A -3)=P (A -1)P (A -2)P (A -3)=(1-p )3.3分又P (A -)=1-P (A )=1-0.999=0.001, 4分 故(1-p )3=0.001,p =0.9. 6分 ②B =A 4∪A -4A 1A 3∪A -4A -1A 2A 3,10分P (B )=P (A 4∪A -4A 1A 3∪A -4A -1A 2A 3)=P (A 4)+P (A -4A 1A 3)+P (A -4A -1A 2A 3)=P (A 4)+P (A -4)P (A 1)P (A 3)+P (A -4)P (A -1)P (A 2)·P (A 3) =0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9 =0.989 1.15分[方法指津]求相互独立事件和独立重复试验的概率的方法(1)直接法:正确分析复杂事件的构成,将复杂事件转化为几个彼此互斥的事件的和事件或几个相互独立事件同时发生的积事件或独立重复试验问题,然后用相应概率公式求解. (2)间接法:当复杂事件正面情况比较多,反面情况较少,则可利用其对立事件进行求解.对于“至少”“至多”等问题往往也用这种方法求解.[变式训练1] (2017·杭州学军中学高三模拟)商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖,则顾客抽奖1次能获奖的概率是________;若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,则E (X )=________.【导学号:68334089】710 35 [由题得,在甲箱中抽中红球、白球的概率分别为25,35,在乙箱中抽中红球、白球的概率分别为12,12.抽奖一次不获奖的概率为35×12=310,所以其(对立事件)获奖的概率为1-310=710.因为每次获得一等奖的概率为25×12=15,3次抽奖相互独立,故E (X )=np=3×15=35.]热点题型2 离散型随机变量的分布列、期望和方差题型分析:离散型随机变量的分布列问题是高考的热点,常以实际生活为背景,涉及事件的相互独立性、互斥事件的概率等,综合性强,难度中等.【例2】 (1)(2017·萧山中学高三仿真考试)随机变量X 的分布列如下表,且E (X )=2,则D (2X -3)=( )A.1 C [由题可得16+p 1+13=1,解得p 1=12.所以E (X )=0×16+2×12+a ·13=2,解得a =3.所以D (X )=(0-2)2×16+(2-2)2×12+(3-2)2×13=1,所以D (2X -3)=4D (X )=4,故选C.](2)(2017·绍兴市方向性仿真考试)设X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,若E (X )=43,D (X )=29,则x 1+x 2=( )A.53B.73C.113D .3D[由已知得⎩⎪⎨⎪⎧23x 1+13x 2=43,23⎝ ⎛⎭⎪⎫x 1-432+13⎝ ⎛⎭⎪⎫x 2-432=29,解得⎩⎪⎨⎪⎧x 1=1,x 2=2或⎩⎪⎨⎪⎧x 1=53,x 2=23,因为x 1<x 2,所以⎩⎪⎨⎪⎧x 1=1,x 2=2,所以x 1+x 2=1+2=3,故选D.] [方法指津]解答离散型随机变量的分布列及相关问题的一般思路: 1 明确随机变量可能取哪些值.2 结合事件特点选取恰当的计算方法,计算这些可能取值的概率值.3 根据分布列和期望、方差公式求解.提醒:明确离散型随机变量的取值及事件间的相互关系是求解此类问题的关键.[变式训练2] (1)(2017·温州九校协作体高三期末联考)将四位同学等可能地分到甲、乙、丙三个班级,则甲班级至少有一位同学的概率是________,用随机变量ξ表示分到丙班级的人数,则E ξ=________. 【导学号:68334090】6581 43 [甲班级没有分到同学的概率为1+1+C 14+C 24+C 3434=1681,所以甲班级至少有一位同学的概率为1-1681=6581.随机变量ξ的可能取值为0,1,2,3,4,则P (ξ=0)=1681,P (ξ=1)=C 14 1+1+C 23+C 13 34=3281,P (ξ=2)=C 24 1+1+2 34=2481,P (ξ=3)=C 34×234=881,P (ξ=4)=134=181,于是E ξ=0×1681+1×3281+2×2481+3×881+4×181=43.](2)(2017·金华十校高考模拟考试)设随机变量X 的分布列为则a =310 95 [由分布列的概念易得12+15+a =1,解得a =310,则E (X )=1×12+2×15+3×310=95.]。
第7讲 分布列与数学期望(解析版)

第7讲分布列与数学期望(解析版)第7讲分布列与数学期望(解析版)在统计学中,分布列与数学期望是常用的分析工具。
它们能够帮助我们理解随机变量的分布和特征。
本文将对分布列与数学期望进行解析,并探讨它们在实际问题中的应用。
一、分布列分布列是用来描述离散型随机变量的概率分布的一种方式。
对于一个具体的随机变量X,其可能取到的数值通常是有限个或可数个。
我们可以列出每个数值对应的概率,形成一张分布列。
分布列通常以表格的形式呈现,其中包括随机变量的取值和对应的概率。
举个例子,假设随机变量X表示投掷一个骰子后的点数。
在这种情况下,X可以取到1、2、3、4、5、6这六个数值。
我们可以计算出每个数值对应的概率,得到如下的分布列:| X | 1 | 2 | 3 | 4 | 5 | 6 ||-------|-------|-------|-------|-------|-------|-------|| P(X) | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 |通过分布列,我们可以清晰地看到每个点数出现的概率是相等的。
除了离散型随机变量外,连续型随机变量也可以通过分布列进行描述。
连续型随机变量的分布列变成了概率密度函数,其中表示为概率的数值变为密度。
二、数学期望数学期望是随机变量的平均值,在概率论中有着重要的意义。
数学期望反映了随机变量取值的中心位置。
对于离散型随机变量X,其数学期望E(X)定义为:E(X) = ∑(x·P(X=x))其中,x表示随机变量X的取值,P(X=x)表示该取值的概率。
以前述的投骰子问题为例,我们可以计算出随机变量X的数学期望:E(X) = (1/6)·1 + (1/6)·2 + (1/6)·3 + (1/6)·4 + (1/6)·5 + (1/6)·6= 3.5可以看出,投骰子问题中,骰子点数的数学期望是3.5。
概率分布与数学期望

概率分布与数学期望例谈离数型随机变量概率分布与数学期望数学期望=每个个数X每个它的概率,再相加从2008年全国各省市高考数学试题中,概率统计考题,可谓“军书十二卷,卷卷有爷名”,显然它是高考的必考内容,特别是离散型随机变量概率分布与数学期望内容的考题分布极为广泛,确实是一个重要考点,但纵观其解法,可以归纳为定义法、公式法、分析法与变量推理法四种,2009年考生务必对上述四种解题方法引起高度重视,本文就其命题特点,解题规律作专题阐述,以飨读者。
一、定义法求解概率分布与数学期望定义法即根据随机事件的概率、随机变量、概率分布、数学期望的定义求解概率分布与数学期望的方法。
可使用本法解题的考题,一般以古典离散型概率为特征,它可直接利用排列组合的加法原理与乘法原理写出离散型随机变量概率的计算式,进而求得随机变量各值条件下的概率分布与数学期望。
此类题型解题思路明确,利用定义法求解,其方法容易掌握。
例1,(08浙江理)一个袋中装有若干个大小相同的黑球,白球和红球.已知从袋中任意摸出1;从袋中任意摸出2个球,得到黑球的概率是25.个球,至少得到1个白球的概率是79(1)若袋中共有10个球,(1)若袋中共有10个球,(ⅰ)求白球的个数;(ⅱ)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望Eξ.(2)求证:从袋中任意摸出2个球,至少得到1.并指出袋中哪种颜色的个黑球的概率不大于710球个数最少.分析:本题是以古典概率为题材的高考题,由于从袋中摸球是有回放地摸球,且每次摸球都是互相独立的,系互不影响事件,所发生的概率是等可能的。
故可根据概率定义,利用排列组合计算方法求解随机变量各值的概率。
解:袋中共有10个球,且至少得到1个白球7,设其中有X个白球,我们将至少得到的概率为97,又∵P(A)一个白球的事件为A,则P(A)=9=9721021110=+C C C C x x ,∴9721021110=+C C C C x x ,化简后解之得x=5或14(舍去),∴袋中有5个白球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率分布与数学期望
【真题感悟】
1. 【2010江苏,22】某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各种产品相互独立.
(1)记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;
(2)求生产4件甲产品所获得的利润不少于10万元的概率.[来源:学科网Z X X K]
【答案】(1)(2)0.8192
【解析】解:(1)由题设知,X的可能取值为10,5,2,-3,且
P(X=10)=0.8×0.9=0.72,P(X=5)=0.2×0.9=0.18,
P(X=2)=0.8×0.1=0.08,P(X=-3)=0.2×0.1=0.02.
∴X的分布列为:
(2)设生产的4件甲产品中一等品有n件,则二等品有4-n件.
由题设知4n-(4-n)≥10,解得n≥,又n∈N,得n=3,或n=4.
所求概率为P=C43×0.83×0.2+0.84=0.8192
答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192.
2. 【2012江苏,22】设ξ为随机变量.从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其数学期望E(ξ).
【解析】解:(1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点
恰有3条棱,所以共有对相交棱,因此. (2)若两条棱平行,则它们的距离为1
的共有6对,故
,
于是P(ξ=1)=1-P(ξ=0)
)=, ((个球,量(,,
, 所以的分布列为
2
3
8C 232128C 834
(0)C 6611
P ξ⨯===
=21261(C 11
P ξ==
=416
1−
−=4
4491
(4)126C P X C ===313145364913(3)63
C C C C P X C +===11
(2)1(3)(4)14
P X P X P X ==−=−==
X
.
4.【2017年高考江苏卷】已知一个口袋中有个白球,个黑球(),这些球除为
的抽屉内,其中第.
()试求编号为()随机变量
,
(2)随机变量X 的概率分布为
随机变量X 的期望为.
13120()21434631269
E X =⨯+⨯
+⨯=m n ,*,2m n n ∈N ≥1,,m n +3,
,)m n +C 1
1
C 111(1)!
()C C (1)!()!n m n
m n k n n
k n k n
m n
m n k E X k k n k n −++−==++−=⋅=⋅−−∑∑。