自动控制原理实验报告3

合集下载

自动控制原理实验报告

自动控制原理实验报告

⾃动控制原理实验报告电⼦科技⼤学⾃动化⼯程学院标准实验报告课程名称:⾃动控制原理学⽣姓名:学⽣学号:指导教师:实验项⽬名称:系统认识与系统测试⼀、实验⽬的:1、了解旋转式倒⽴摆系统的系统构成,并掌握其使⽤⽅法;2、了解随动系统的系统构成,并掌握其使⽤⽅法。

3、了解实验安全及注意事项4、了解开环系统的⼯作状态,掌握闭环系统反馈极性的判别⽅法及其影响。

5、掌握系统相关数据的测试⽅法。

⼆、实验器材:XZ-IIC 型实验仪、计算机、⾃动控制原理实验仪、万⽤表三、实验原理: 1、实验原理图:被测试系统是指:由控制部分,电动机,反馈电位器组成的部分。

2、实验电路图:⾃动控制原理实验仪被测试系四、实验内容:1、测试输⼊(外部、计算机)信号与输出⾓度信号之间的关系(曲线)。

2 、测试反馈电位器的输出电压与⾓度信号之间的关系(曲线)。

五、实验步骤:1、将系统接为单位负反馈系统,适当选取K 值(约等于3)。

2、在-5V -+5V 范围内间隔0.5V 调整R 的输出电压(⽤万⽤表监测),读出对应的输出⾓度值(可⽤计算机读出)。

3、断开系统输⼊,⽤⼿转动电机,在-150°-+150°间每隔10°选取⼀测试值⽤万⽤表监测反馈电位器的输出电压并作好记录。

(⽤计算机监测给定⾓度)六、实验数据及处理:(1)、计算机的给定电压与系统输出⾓度的关系:○1、实验电压与输出⾓度记录表:电压 -4.0 -3.5 -3.0 2.5 -2.0 -1.5 -1.0 -0.50 ⾓度电压 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 ⾓度○2、Matlab 拟合给定电压与系统输出⾓度的关系曲线:-5V5V反馈电位器被测试系统⾃动控制原理实验仪KR横轴:计算机的给定电压纵轴:系统输出⾓度斜率:35.9324 纵轴截距:-0.3294(2)、系统输出⾓度与反馈电压间的关系:○1、系统输出⾓度与反馈电压间记录表:⾓度-150 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50 电压⾓度-40 -30 -20 -10 0 10 20 30 40 50 60 电压⾓度70 80 90 100 110 120 130 140 150电压○2、Matlab拟合系统输出⾓度与反馈电压间的关系曲线:横轴:系统输出⾓度纵轴:反馈电压斜率:0.0282 纵轴截距:0.0503- 七、实验结论:⼋、总结及⼼得体会:九、对本实验过程及⽅法、⼿段的改进建议:实验项⽬名称:随动系统的时域特性分析⼀、实验⽬的:1、了解系统时域分析⽅法2、分析并掌握前向增益、反馈增益对系统动态性能的影响,并观察对稳态控制精度的影响。

实验报告-自动控制原理

实验报告-自动控制原理
________________________________________________________________________________
________________________________________________________________________________
〖分析பைடு நூலகம்:______________________________________________________________________
_______________________________________________________________________________
说明:特征参数为比例增益K和微分时间常数T。
1)R2=R1=100KΩ, C2=0.01µF,C1=1µF;特征参数实际值:K=______,T=________。
波形如下所示:
2)R2=R1=100KΩ, C2=0.01µF,C1=0.1µF;特征参数实际值:K= 1,T=0.01。
波形如下所示:
四、实验心得体会
实验报告
班级
姓名
学号
所属课程
《自动控制原理》
课时
2
实践环节
实验3控制系统的稳定性分析
地点
实字4#318
所需设备
电脑、工具箱
一、实验目的
1.观察系统的不稳定现象。
2.研究系统开环增益和时间常数对稳定性的影响
3.学习用MATLAB仿真软件对实验内容中的电路进行仿真。
2、实验步骤
_______________________________________________________________________________

自控实验报告三

自控实验报告三

自动控制原理实验报告课程名称 自动控制原理 成 绩 实验项目 控制系统的根轨迹作图 指导教师 王春玲 学生姓名 张利国 学号 200800804010 班级专业 08电科本 实验地点 综合楼205 实验日期 2010 年 11 月 24 日一、实验目的1.利用计算机完成控制系统的根轨迹作图;2.了解控制系统根轨迹图的一般规律;3.利用根轨迹进行系统分析及校正。

二、实验步骤1.在Windows 界面上用鼠标双击matlab 图标,即可打开MATLAB 命令平台。

2.练习相关M 函数根轨迹作图函数:格式1:rlocus(sys) 格式2:rlocus(sys,k)格式3:r=rlocus(sys) 格式4:[r,k]=rlocus(sys)函数功能:绘制系统根轨迹图或者计算绘图变量。

格式1:控制系统的结构图如图所示。

输入变量sys 为LTI 模型对象,k 为机器自适应产生的从0→∞的增益向量,绘制闭环系统的根轨迹图。

格式2:k 为人工给定的增益向量。

格式3:返回变量格式,不作图。

r 为返回的闭环根向量。

格式4:返回变量r 为根向量,k 为增益向量,不作图。

三、实验内容给定如下各系统的开环传递函数,作出它们的根轨迹图,并完成给定要求。

1. )2)(1()(01++=s s s k s G g程序:k=1; %零极点模型的增益值z=[]; %零点p=[0,-1,-2]; %极点sys=zpk(z,p,k); rlocus(sys)根轨迹图:要求: (1)准确记录根轨迹的起点.终点与根轨迹的条数共三条;(2)确定根轨迹的分离点与相应的根轨迹增益分离点:-0.423+7.65e-009i ;根轨迹增益为0.385。

(3)确定临界稳定时的根轨迹增益k gL上下的根轨迹增益都一样,都是6.02。

2. )164)(1()1()(202++-+=s s s s s k s G g要求: 确定根轨迹与虚轴交点并确定系统稳定的根轨迹k g 增益范围。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验一、典型环节的时域响应一.实验目的1.熟悉并掌握TD-ACC+(TD-ACS)设备的使用方法及各典型环节模拟控制电路的构成方法。

2.熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。

对比差异、分析原因。

3.了解参数变化对典型环节动态特性的影响。

二.实验设备PC机一台,TD-ACC+(TD-ACS)实验系统一套。

三.实验内容1.比例环节2.积分环节3.比例积分环节4.惯性环节5.比例微分环节6.比例积分微分环节四、实验感想在本次实验后,我了解了典型环节的时域响应方面的知识,并且通过实践,实现了时域响应相关的操作,感受到了实验成功的喜悦。

实验二、线性系统的矫正一、目的要求1.掌握系统校正的方法,重点了解串联校正。

2.根据期望的时域性能指标推导出二阶系统的串联校正环节的传递函数二、仪器设备PC 机一台,TD-ACC+(或 TD-ACS)教学实验系统一套。

三、原理简述所谓校正就是指在使系统特性发生变接方式,可分为:馈回路之内采用的测点之后和放1.原系统的结构框图及性能指标对应的模拟电路图2.期望校正后系统的性能指标3.串联校正环节的理论推导四、实验现象分析校正前:校正后:校正前:校正后:六、实验心得次实验让我进一步熟悉了TD-ACC+实验系统的使用,进一步学习了虚拟仪器,更加深入地学习了自动控制原理,更加牢固地掌握了相关理论知识,激发了我理论学习的兴趣。

实验三、线性系统的频率响应分析一、实验目的1.掌握波特图的绘制方法及由波特图来确定系统开环传函。

2.掌握实验方法测量系统的波特图。

二、实验设备PC机一台,TD-ACC+系列教学实验系统一套。

三、实验原理及内容(一)实验原理1.频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(ω由0变至∞)而变化的特性。

频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。

自控制原理实验报告(3篇)

自控制原理实验报告(3篇)

第1篇一、实验目的1. 理解自控制原理的基本概念和基本方法。

2. 掌握典型控制系统的组成和基本工作原理。

3. 学习使用实验仪器,进行控制系统模拟实验。

4. 分析和评估控制系统的性能指标,提高对控制系统设计和优化的认识。

二、实验仪器与设备1. EL-AT-III型自动控制系统实验箱一台2. 计算机一台3. 万用表一个三、实验原理1. 自控制原理基本概念:自控制原理是研究如何利用反馈信息来控制系统的行为,使其达到预定的目标。

其基本原理是:通过将系统的输出信号反馈到输入端,与输入信号进行比较,产生误差信号,然后根据误差信号调整系统的控制策略,以达到控制目标。

2. 典型控制系统组成:典型控制系统通常由控制器、被控对象、反馈环节和执行机构组成。

3. 控制系统模拟实验:利用实验箱和计算机,通过模拟电路搭建典型控制系统,进行实验研究。

四、实验内容1. 实验一:典型环节及其阶跃响应- 实验目的:掌握控制模拟实验的基本原理和一般方法,掌握控制系统时域性能指标的测量方法。

- 实验步骤:1. 搭建一阶系统的模拟电路。

2. 通过计算机等测量仪器,测量系统的输出,得到系统的动态响应曲线及性能指标。

3. 改变系统的参数,分析参数对系统性能的影响。

2. 实验二:二阶系统阶跃响应- 实验目的:了解二阶系统的阶跃响应特性,掌握二阶系统的性能指标。

- 实验步骤:1. 搭建二阶系统的模拟电路。

2. 通过计算机等测量仪器,测量系统的输出,得到系统的阶跃响应曲线及性能指标。

3. 分析二阶系统的性能指标,如上升时间、超调量、调节时间等。

3. 实验三:连续系统串联校正- 实验目的:学习连续系统串联校正方法,提高控制系统的性能。

- 实验步骤:1. 搭建连续系统的模拟电路。

2. 分析系统的性能指标,确定校正方法。

3. 通过计算机等测量仪器,测量校正后的系统输出,评估校正效果。

五、实验结果与分析1. 实验一:通过搭建一阶系统的模拟电路,测量系统的输出,得到系统的动态响应曲线及性能指标。

自动控制原理实验3

自动控制原理实验3
实验 三
经典三阶系统旳稳定性 研究
一、试验目旳
1、 熟悉反馈控制系统旳构造和工作原理; 2、了解开环放大系数对系统稳定性旳影 响。
二、试验要求:
观察开环增益对三阶系统稳定性 旳影响。
三、试验仪器:
1.自控系统教学模拟机 XMN-2 1台; 2.TDS1000B-SC 系列数字存储示波 器1台; 3.万用表
由劳斯判据懂得,当:
11.9619.6 19.6k 0
19.6k 0
得到系统稳定范围:0 k 11.96
当:
11.96 19.6 19.6k 0
得到系统临界稳定时:
k 11.96
当:
11.96 19.6 19.6k 0
得到系统不稳定范围:k 11.96
将K=510/R代入(3-6)~(3-8)得: R>42.6KΩ 系统稳定 R=42.6KΩ 系统临界稳定 R<42.6KΩ 系统不稳定
G(S)H (S)
510 / R
S(0.1S 1)(0.51S 1)
系统旳特征方程为:
S 3 11.96S 2 19.6S 19.6K 0
用劳斯判据求出系统稳定、临界稳定、 不稳定时旳开环增益:
S3
1
19.6
S2
11.96
19.6K
11.96 19.6 19.6K
S1
11.96
S0
19.6K
四、试验原理和内容:
利用自控系统教学模拟机来模拟 给定三阶系统。
经典三阶系统原理方块图如下图 所示。
G(S )H (S )
K1K 2
T0S (T1S 1)(T2S 1)
K
S(T1S 1)(T2S 1)
给定三阶系统电模拟图

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告姓名:学号:班级:实验一 一、二阶系统的电子模拟及时域响应的动态测试一、 实验目的1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2. 学习在电子模拟机上建立典型环节系统模型的方法。

3. 学习阶跃响应的测试方法。

二、 实验内容1. 建立一阶系统的电子模型,观测并记录在不同时间常数T 时的阶跃响应曲线,并测定其过渡过程时间Ts 。

2.建立二阶系统的电子模型,并记录在不同的阻尼比ζ时的阶跃响应曲线,并测定其超调量δ%及过渡过程时间Ts 。

三、 实验原理1.一阶系统系统传递函数为: 模拟运算电路如图1-1所示:图 1-1其中R1=R2,T=R2·C 其中电阻电容的具体取值见表1-12. 二阶系统系统传递函数为: 模拟运算电路如图1-2所示:图1-2其中R2·C1=1,R3·C2=1,R4/R3=ξ21各元器件具体取值如图1-2所示。

222()()()2n n nC s s R s S S ωζωωΦ==++()()()1C s Ks R s TS Φ==+四、实验数据1.一阶系统1)数据表格(取5%误差带,理论上Ts=3T)表1-1T/s 0.25 0.5 1 R2(R1)/Ω250k 500k 1MC/μF 1 1 1Ts实测/s 0.74 1.46 2.99Ts理论/s 0.75 1.5 3 阶跃响应曲线图1-3 图1-4 图1-5 2)响应曲线图1-3 (T=0.25)图1-4 (T=0.5)图1-5 (T=1)2. 二阶系统 1)数据表格表1-2说明:(1)0﹤ζ﹤1,为欠阻尼二阶系统,超调量理论计算公式2/1%100%eπζζσ--=⨯(2)取5%误差带,当ζ值较小(0﹤ζ﹤0.7)采用近似公式 进行估算;当ζ值较大(ζ﹥0.7)采用近似公式 7.145.6-=ξsT 进行估算.2)响应曲线图1-6 (ζ=0.25)ζ0.25 0.5 0.7 1.0 /rad/s 1 1 1 1 R 4/M Ω 2.0 1.0 0.7 0.5 C2/μF 1.0 1.0 1.0 1.0 σ%实测 43.77 16.24 4.00 0.02 σ%理论 44.43 16.30 4.600 Ts 实测/s 13.55 5.47 3.03 4.72 Ts 理论/s 14 7 5 4.75 阶跃响应曲线图1-6图1-7图1-8图1-9ns T ξω5.3=图1-7 (ζ=0.5)图1-8 (ζ=0.7)图1-9 (ζ=1)五、 误差分析1. 对一阶系统阶跃响应实验当T=0.25 时, 1.3%%10075.074.0-75.0=⨯=误差。

自动控制原理实验报告,DOC

自动控制原理实验报告,DOC

自动控制原理实验报告实验一、典型环节的时域响应一.实验目的1.熟悉并掌握TD-ACC+(TD-ACS)设备的使用方法及各典型环节模拟控制电路的构成方法。

2.熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。

对比差异、分析原因。

3.了解参数变化对典型环节动态特性的影响。

PC三.1.2.3.4.5.6.一12二PC机一台,TD-ACC+(或TD-ACS)教学实验系统一套。

三、原理简述所谓校正就是指在使系统特性发生变化接方式,可分为:串馈回路之内采用的校测点之后和放1.原系统的结构框图及性能指标对应的模拟电路图2.期望校正后系统的性能指标3校正前:校正后:校正前:校正后:12PC(一)实验原理1.频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(ω由0变至∞)而变化的特性。

频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。

因此,根据控制系统对正弦输入信号的响应,可推算出系统在任意周期信号或非周期信号作用下的运动情况。

2.线性系统的频率特性系统的正弦稳态响应具有和正弦输入信号的幅值比Φ(jω)和相位差∠Φ(jω)随角频率(ω由0变到∞)变化的特性。

而幅值比Φ(jω)和相位差∠Φ(jω)恰好是函数Φ(jω)的模和幅角。

所以只要把系统的传递函数Φ(s),令s=jω,即可得到Φ(jω)。

我们把Φ(jω)称为系统的频率特性或频率传递函数。

当ω由0到∞变化时,Φ(jω)随频率ω的变化特性成为幅频特性,∠Φ(jω)随频率ω的变化特性称为相频特性。

幅频特性和相频特性结合在一起时称为频率特性。

3.频率特性的表达式(1)(2)(3)幅值不易测量,可将其构成闭环负反馈稳定系统后,通过测量信号源、反馈信号、误差信号的关系,从而推导出对象的开环频率特性。

《自动控制原理》课程实验报告(范例)

《自动控制原理》课程实验报告(范例)

《自动控制原理》课程实验报告姓名: 班级: 学号: 实验时间: 实验成绩: 一、 实验目的:1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和ωn 对二阶系统性能的影响。

3.熟练掌握系统的稳定性的判断方法。

二、 实验要求:1.根据实验步骤,写出调试好的MATLAB 语言程序,及对应的MATLAB 运算结果。

2.记录各种输出波形,根据实验结果分析参数变化对系统的影响。

3.总结判断闭环系统稳定的方法,说明增益K 对系统稳定性的影响。

三、 实验步骤:1.观察函数step( )函数和impulse( )的调用格式,假设系统的传递函数模型为146473)(2342++++++=s s s s s s s G ,可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。

2.对典型二阶系统2222)(nn ns s s G ωζωω++= 1)分别绘制出ωn =2(rad/s),ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响。

2)绘制出当ζ=0.25,ωn 分别取1,2,4,6时单位阶跃响应曲线,分析参数ωn 对系统的影响。

3.单位负反馈系统的开环模型为)256)(4)(2()(2++++=s s s s Ks G ,试判断系统的稳定性,并求出使得闭环系统稳定的K 值范围四、 实验结果与结论时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。

为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。

本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。

1.用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。

《自动控制原理》实验报告讲述

《自动控制原理》实验报告讲述

《自动控制原理》实验报告姓名:学号:班级:11电气1班专业:电气工程及其自动化学院:电气与信息工程学院2013年12月目录实验一、典型环节的模拟研究实验二、二阶系统的阶跃响应分析实验三、线性系统的稳态误差分析实验四、线性系统的频率响应分析实验一典型环节的模拟研究1.1 实验目的1、熟悉并掌握TD-ACS设备的使用方法及各典型环节模拟电路的构成方法。

2、熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。

3、了解参数变化对典型环节动态特性的影响。

1.2 实验设备PC机一台,TD-ACS实验系统一套。

1.3 实验原理及内容下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。

1. 比例环节(P)(1) 方框图:如图1.1-1 所示。

图1.1-1(2) 传递函数:Uo(S)/Ui(S)=K(3) 阶跃响应:Uo(t)=K(t≥0)其中K=R1/R0(4) 模拟电路图:图1.1-2注意:图中运算放大器的正相输入端已经对地接了100K 的电阻,实验中不需要再接。

以后的实验中用到的运放也如此。

(5) 理想与实际阶跃响应对照曲线:①取R0 = 200K;R1 = 100K。

理想阶跃响应曲线实测阶跃响应曲线2.积分环节(I)(1) 方框图:如右图1.1-3 所示。

图1.1-3(2) 传递函数:错误!未找到引用源。

(3) 阶跃响应:Uo(t) = 错误!未找到引用源。

(t 0) 其中T=R0C(4) 模拟电路图:如图1.1-4 所示。

图1.1-4(5) 理想与实际阶跃响应曲线对照:①取R0 = 200K;C = 1uF。

3.比例积分环节(PI)(1)方框图:如图1.1-5 所示。

图1.1-5(2) 传递函数:错误!未找到引用源。

(3)阶跃响应:Uo(t)=K+t/T(t) (t 0) 其中K=Ri/Ro; T=RoC(4) 模拟电路图:见图1.1-6图1.1-6(5) 理想与实际阶跃响应曲线对照:①取R0 = R1 = 200K;C = 1uF。

自动控制原理实习报告

自动控制原理实习报告

实习报告:自动控制原理实验一、实验背景及目的随着现代工业的快速发展,自动控制技术在各个领域中的应用越来越广泛。

自动控制原理实验是电气工程及其自动化专业的一门重要实践课程,旨在让学生了解和掌握自动控制理论的基本原理和方法,培养学生的动手能力和实际问题解决能力。

本次实验主要涉及电动调节阀和PID控制器的相关知识。

二、实验内容及步骤1. 电动调节阀篇(1)了解电动调节阀的结构特点和工作原理。

电动调节阀主要由电动执行器与调节阀阀体构成,通过接收工业自动化控制系统的信号,来驱动阀门改变阀芯和阀座之间的截面积大小,控制管道介质的流量、温度、压力等工艺参数,实现远程自动控制。

(2)学习电动调节阀的调节稳定性和调节性能。

电动调节阀具有调节稳定,调节性能好等特点。

其结构特点包括:伺服放大器采用深度动态负反馈,可提高自动调节精度;电动操作器有多种形式,可适用于4~20mA DC或0~10mA DC;可调节范围大,固有可调比为50,流量特性有直线和等百分比;电子型电动调节阀可直接由电流信号控制阀门开度,无需伺服放大器;阀体按流体力学原理设计的等截面低流阻流道,额定流量系数增大30%。

(3)了解电动调节阀的分类及适用场合。

电动调节阀一般可分为单座式和双座式结构。

电动单座式调节阀适用于对泄漏要求严格,阀前后压差低及有一定粘度和含纤维介质的工作场合;电动双座式调节阀具有不平衡力小,允许压差大,流通能力大等待点,适用于泄漏量要求不严格的场合。

2. PID控制器篇(1)了解PID控制器的组成及作用。

PID控制器由比例控制、积分控制和微分控制组成。

比例控制是利用输入信号和参考信号的偏差量来控制;微分控制是利用输入信号的变化频率来控制;积分控制是利用输入信号的积分量来控制。

PID控制器能够通过设置比例、积分和微分三种参数来调节系统输出。

(2)学习PID控制器的开发现状。

PID控制器自发明以来已有近70年的历史,其结构简单、稳定性好、运行可靠、调节方便,已成为工业控制技术中的领先技术之一。

2019年自动控制实验报告3-实用word文档 (3页)

2019年自动控制实验报告3-实用word文档 (3页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==自动控制实验报告3THBCC-1实验平台 10/17/201X 3:24:00 PM报实验告姓名: 学号: 班级:实验指导老师:_________ 成绩:____________________一、实验目的1、通过本实验,理解系统的跟踪误差与其结构、参数与输入信号的形式、幅值大小之间的关系。

2、研究系统的开环增益K对稳态误差的影响。

二、实验内容1、观测0型二阶系统的单位阶跃响应和单位斜坡响应,并实测它们的稳态误差;2、观测Ⅰ型二阶系统的单位阶跃响应和单位斜坡响应,并实测它们的稳态误差;3、观测Ⅱ型二阶系统的单位斜坡响应和单位抛物波,并实测它们的稳态误差。

三、实验电路和曲线结果1、0型二阶系统,模拟电路图如下:单位阶跃响应: 单位斜坡响应:理论值ess=1/3 实验值 ess=0.3384 理论值ess=? 实验值ess=?2、Ⅰ型二阶系统,模拟电路图如下:THBCC-1实验平台 3、Ⅱ型二阶系统,模拟电路图如下:单位阶跃响应: 单位斜坡响应: 10/17/201X 3:24:00 PM 理论值:ess=0 实验值:ess=0.038 理论值:ess=0.1 实验值:ess=0.0920THBCC-1实验平台 10/17/201X 3:24:00 PM单位斜坡响应:抛物波响应:理论值:ess=0 实验值:ess=0 理论值:ess=0.1 实验值:ess=0.0724四、实验思考题1、为什么0型系统不能跟踪斜坡输入信号?答:系统在输入信号不同时,可能有不同的稳态误差,0型二阶系统跟踪斜坡输入信号时,稳态误差为无穷大,输出信号难以稳定,所以无法跟踪。

2、为什么0型系统在阶跃信号输入时一定有误差存在?决定误差的因素有哪些?答:因为0型二阶系统只能跟踪阶跃输入信号,所以有误差。

自动控制原理实验报告(三)

自动控制原理实验报告(三)

线性系统的频率响应分析一、实验原理及内容频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(ω由0变至∞)而变化的特性。

频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。

因此,根据控制系统对正弦输入信号的响应,可推算出系统在任意周期信号或非周期信号作用下的运动情况。

线性系统的频率特性系统的正弦稳态响应具有和正弦输入信号的幅值比()Φ和相jw位差jwΦ随角频率(ω由0 变到∞)变化的特性。

而幅值比()Φjw 和相位差∠jwΦ的模和幅角。

所以只要把系统的传Φ恰好是函数jw递函数Φ(s),令s =jw,即可得到Φ(jw)。

我们把Φ(jw)称为系统的频率特性或频率传递函数。

当w由0 到∞变化时,Φ(jw)随频率ω 的变化特性成为幅频特性,Φ(jw)随频率w的变化特性称为相频特性。

幅频特性和相频特性结合在一起时称为频率特性。

频率特性的表达式对数频率特性:又称波特图,它包括对数幅频和对数相频两条曲线,是频率响应法中广泛使用的一组曲线。

这两组曲线连同它们的坐标组成了对数坐标图。

对数频率特性图的优点:1.它把各串联环节幅值的乘除化为加减运算,从而简化了开环频率特性的计算与作图。

2.利用渐近直线来绘制近似的对数幅频特性曲线,而且对数相频特性曲线具有奇对称于转折频率点的性质,这些可使作图大为简化。

3.通过对数的表达式,可以在一张图上既能绘制出频率特性的中、高频率特性,又能清晰地画出其低频特性。

极坐标图(或称为奈奎斯特图)对数幅相图(或称为尼柯尔斯图)本次实验中,采用对数频率特性图来进行频域响应的分析研究。

实验中提供了两种实验测试方法:直接测量和间接测量。

直接频率特性的测量用来直接测量对象的输出频率特性,适用于时域响应曲线收敛的对象(如:惯性环节)。

自动控制原理实验报告(自动化专业电子版)

自动控制原理实验报告(自动化专业电子版)

精心整理自动控制原理实验报告课程编号:ME3121023专业班级实验目的和要求:通过自动控制原理实验牢固地掌握《自动控制原理》课的基本分析方法和实验测试手段。

能应用运算放大器建立各种控制系统的数学模型,掌握系统校正的常用方法,掌握系统性能指标同系统结构和参数之间的基本关系。

通过大量实验,提高动手、动脑、理论结合实际的能力,提高从事数据采集与调试的能力,为构建系统打下坚实的基础。

一、12341分环节和比例积分微分环节。

2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关系。

3、在运算放大器上实现各环节的参数变化。

(三)、实验要求:1、仔细阅读自动控制实验装置布局图和计算机虚拟测量软件的使用说明书。

2、做好预习,根据实验内容中的原理图及相应参数,写出其传递函数的表达式,并计算各典型环节的时域输出响应和相应参数(K、T)。

3、分别画出各典型环节的理论波形。

5、输入阶跃信号,测量各典型环节的输入和输出波形及相关参数。

(四)、实验原理:实验原理及实验设计:1.2.3.时域输出响应:4.比例积分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:5.比例微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:6.123、123的原因。

(七)、记录实验数据:、实测实验二二阶系统的性能研究(一)、实验目的:通过实验加深理解二阶系统的性能指标同系统参数的关系。

(二)、实验内容:1、二阶系统的时域动态性能研究;(三)、实验要求:1、做好预习,根据实验原理图所示相应参数,写出系统的开环,闭环传递函数。

(八)、思考与讨论:将实验结果与理论知识作对比,并进行讨论。

实验三系统时域分析实验(一)、实验目的:1、深入掌握二阶系统的性能指标同系统闭环极点位置的关系。

2、掌握高阶系统性能指标的估算方法及开环零、极点同闭环零、极点的关系。

3、能运用根轨迹分析法由开环零极点的位置确定闭环零极点的位置。

武汉大学《自动控制原理》实验报告

武汉大学《自动控制原理》实验报告

2016~2017学年第一学期《自动控制原理》实验报告年级:2014级班号:姓名:He 学号:成绩:教师:实验设备及编号:实验同组人名单:实验地点:电气工程学院自动控制原理实验室实验时间:2016年10月目录:实验一典型环节的电路模拟 (3)一、实验目的 (3)二、实验内容 (3)三、实验电路图及参数 (3)四、实验分析 (10)五、实验思考题 (11)实验二二阶系统的瞬态响应 (12)一、实验目的 (12)二、实验设备 (12)三、实验电路图及其传递函数 (12)四、实验结果及相应参数 (14)五、实验分析 (16)六、实验思考题 (16)实验五典型环节和系统频率特性的测量 (17)一、实验目的 (17)二、实验设备 (17)三、传递函数.模拟电路图及波特图 (17)四、实验思考题 (22)实验六线性定常系统的串联校正 (24)一、实验目的 (24)二、实验设备 (24)三、实验电路图及其实验结果 (24)四、实验分析 (28)五、实验思考题 (28)实验七单闭环直流调速系统 (29)一、实验目的 (29)二、实验设备 (29)三、PID参数记录表及其对应图像 (30)四、PID控制参数对直流电机运行的影响 (37)实验一典型环节的电路模拟一、实验目的1.熟悉THKKL-B 型模块化自控原理实验系统及“自控原理软件”的使用;2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响。

三、实验电路图及参数1.比例(P)环节比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。

它的传递函数与方框图分别为:图1-1 比例环节的模拟电路图中后一个单元为反相器,其中R0=200k。

当U i(S)输入端输入一个单位阶跃信号,且比例系数为K 时的响应曲线如图1-2 所示。

北理工自控实验报告三

北理工自控实验报告三

北理⼯⾃控实验报告三⾃动控制理论实验报告(三)班级:学号:姓名:2012.11⼀、实验⽬的1、了解和掌握各典型环节以及⼆阶系统模拟电路的构成⽅法、传递函数表达式及输出时域函数表达式。

2、观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。

3、研究I型⼆阶闭环系统的结构参数——⽆阻尼振荡频率ω和n阻尼⽐ξ对过渡过程的影响。

4、观察和分析I型⼆阶闭环系统在⽋阻尼、临界阻尼、过阻尼的瞬态响应曲线及在阶跃信号输⼊时的动态性能指标M、p t值,并p与理论计算值作对⽐。

⼆、实验内容2.1、⽐例环节的模拟电路⽐例环节的模拟电路如图1:图1 ⽐例环节模拟电路⽐例环节的阶跃响应曲线如图2:图2⽐例环节的阶跃响应曲线2.2、惯性环节的模拟电路惯性环节的模拟电路如图3:图3 惯性环节模拟电路惯性环节的阶跃响应曲线如图4:图4惯性环节的阶跃响应曲线2.3、积分环节的模拟电路积分环节的模拟电路如图5:图5 积分环节模拟电路积分环节的阶跃响应曲线如图6:图6积分环节的阶跃响应曲线2.4、⽐例积分环节的模拟电路⽐例积分环节的模拟电路如图7:图7 ⽐例积分环节模拟电路⽐例积分环节的阶跃响应曲线如图8:图8⽐例积分环节的阶跃响应曲线2.5、⽐例微分环节的模拟电路⽐例微分环节的模拟电路如图9:图9 ⽐例微分环节模拟电路⽐例微分环节的阶跃响应曲线如图10:图10⽐例微分环节的阶跃响应曲线2.6、⽐例积分微分环节的模拟电路⽐例积分微分环节的模拟电路如图11:图11 ⽐例积分微分环节模拟电路⽐例积分微分环节的阶跃响应曲线如图12:图12⽐例积分微分环节的阶跃响应曲线以下实验内容均在典型I 型⼆阶单位反馈闭环系统下进⾏。

该系统结构框图如图13:图13 I 型⼆阶闭环系统的系统框图该系统模拟电路如图14:图14I型⼆阶闭环系统模拟电路该⼆阶系统由积分环节和惯性环节构成,其积分时间常数为:111i T R C s=?=惯性时间常数为:220.1T R C s=?= 故,该系统的开环传递函数为:()(0.11)K G s s s =+ 其中,2100R KR R==所以,该系统的闭环传递函数为:2()10()1()1010G s K s G s s s Kφ==+++故,⾃然频率为:n ω=阻尼⽐为:5ξ=2.7、过阻尼响应为实现过阻尼响应,须有:1ξ>,故电路参数选为:70R k =Ω。

自动控制原理实验三控制系统的稳定性和稳态误差.1

自动控制原理实验三控制系统的稳定性和稳态误差.1

太原理工大学现代科技学院自动控制原理课程实验报告专业班级信息13-1学号201310姓名指导教师乔学工实验三 控制系统的稳定性和稳态误差一、实验目的二、实验设备三、 实验内容(1)若系统的传递函数为)523)(1()66(4)(232++++++=s s s s s s s s G利用MATLAB 求其分子和分母多项式表示传递函数。

>> clear>> num=4*[1,6,6];>> den=conv([1,0],conv([1 1],[1,3,2,5])); >> printsys(num,den)num/den =4 s^2 + 24 s + 24 ---------------------------------s^5 + 4 s^4 + 5 s^3 + 7 s^2 + 5 s(2)利用MA TLAB 实现数学模型间的转换。

设系统的零-极点模型为:)3)(2)(1()3(6++++=s s s s s G )(用matlab 求出其用分子和分母多项式表示的传递函数。

>> clear >> K=6; >> Z=[-3]; >> P=[-1;-2;-5];>> [num,den]=zp2tf(Z,P,K); >> printsys(num,den) num/den =…………………………………装……………………………………订………………………………………线……………………………………………6 s + 18 ----------------------- s^3 + 8 s^2 + 17 s + 10 (3)若系统的传递函数为5234)(23+++=s s s s G 试利用MA TLAB 表示。

>> clear>> num=4;den=[1,3,2,5]; >> printsys(num,den)num/den =4 --------------------- s^3 + 3 s^2 + 2 s + 52.利用MATLAB 分析系统的稳定性(1)已知系统的传递函数为122532423)()()(2345234B +++++++++==s s s s s s s s s s R s Y s G给出系统的零极点图,并判定系统的稳定性。

自控原理实验报告三

自控原理实验报告三

自控理论实验报告实验三三阶系统的稳定性和瞬态响应学院:班号:学号:姓名:实验三三阶系统的稳定性和瞬态响应一、实验目的:1.了解和掌握典型三阶系统模拟电路的构成方法及Ⅰ型三阶系统的传递函数表达式。

2.了解和掌握求解高阶闭环系统临界稳定增益K的多种方法(劳斯稳定判据法、代数求解法、MATLAB根轨迹求解法)。

3.观察和分析Ⅰ型三阶系统在阶跃信号输入时,系统的稳定、临界稳定及不稳定三种瞬态响应。

4.了解和掌握利用MATLAB的开环根轨迹求解系统的性能指标的方法。

二、实验内容及结果:1.按照三阶系统的模拟电路图连接电路;2.将函数发生器的矩形波输出作为系统输入。

运行相关的实验程序,选择“线性系统时域分析”,点击“启动实验项目”弹出实验界面后,调节实验机上函数发生器单元的“幅度调节”使矩形波输出幅度为2.5V,调节“正脉宽调节”使输出宽度≥6秒;3.运行、观察、记录:通道控制区,X轴的单位设置为1.28秒/格;分别将直读式可变电阻R调整到30K、41.7K、225K,点击“开始”,等待得到完整波形后,点击“停止”,用示波器观察输出端C(t)的系统阶跃响应,其实际响应曲线如图;K=2.22时的衰减振荡:K=12时的临界稳定等幅振荡:K=16.7时的发散振荡:三、MATLAB仿真:用MATLAB根轨迹求解法:反馈控制系统的全部性质,取决于系统的闭环传递函数,而闭环传递函数对系统性能的影响,又可用其闭环零、极点来表示。

MATLAB 的开环根轨迹图反映了系统的全部闭环零、极点在S 平面的分布情况,将容易求得临界稳定增益K 。

线性系统稳定的充分必要条件为:系统的全部闭环极点均位于左半S 平面,当被测系统为条件稳定时,其根轨迹与S 平面虚轴的交点即是其临界稳定条件。

化简为:根轨迹增益K K g 20该电路的闭环传递函数为:进入MATLAB--rlocus(num,den),设定:得到按式绘制的MATLAB 开环根轨迹图,如图所示。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。

二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。

2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。

3. 将编写好的代码上传至Arduino UNO开发板。

4.将电源适配器连接至系统,确保实验装置正常供电。

5.启动实验系统并观察电机的转动情况。

6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。

五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。

通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。

2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。

这也是导致实际转动角度与目标角度存在差异的一个重要原因。

3.电源适配器的稳定性对电机的转动精度也有一定的影响。

六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。

同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。

为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。

实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制原理
实验报告
学生:
学号:
班级:
专业:电气工程与自动化
学院:自动化学院
线性系统的频率响应分析
一、实验目的
1.掌握波特图的绘制方法及由波特图来确定系统开环传函。

2.掌握实验方法测量系统的波特图。

二、实验设备
PC机一台,TD-ACC+系列教学实验系统一套。

三、实验原理及内容
(一)实验原理
1.频率特性
当输入正弦信号时,线性系统的稳态响应具有随频率(ω由0变至∞)而变化的特性。

频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。

因此,根据控制系统对正弦输入信号的响应,可推算出系统在任意周期信号或非周期信号作用下的运动情况。

2.线性系统的频率特性
系统的正弦稳态响应具有和正弦输入信号的幅值比Φ(jω)和相位差∠Φ(j ω)随角频率(ω由0变到∞)变化的特性。

而幅值比Φ(jω)和相位差∠Φ(j ω)恰好是函数Φ(jω)的模和幅角。

所以只要把系统的传递函数Φ(s),令 s = jω,即可得到Φ(jω)。

我们把Φ(jω)称为系统的频率特性或频率传递函数。

当ω由0到∞变化时,Φ(jω)随频率ω的变化特性成为幅频特性,∠Φ(jω)随频率ω的变化特性称为相频特性。

幅频特性和相频特性结合在一起时称为频率特性。

3.频率特性的表达式
(1) 对数频率特性:又称波特图,它包括对数幅频和对数相频两条曲线,是频率响应法中广泛使用的一组曲线。

这两组曲线连同它们的坐标组成了对数坐标图。

对数频率特性图的优点:
①它把各串联环节幅值的乘除化为加减运算,简化了开环频率特性的计算与作图。

②利用渐近直线来绘制近似的对数幅频特性曲线,而且对数相频特性曲线具有奇对称于转折频率点的性质,这些可使作图大为简化。

③通过对数的表达式,可以在一张图上既能绘制出频率特性的中、高频率特性,又能清晰地画出其低频特性。

(2) 极坐标图(或称为奈奎斯特图)
(3) 对数幅相图(或称为尼柯尔斯图)
本次实验中,采用对数频率特性图来进行频域响应的分析研究。

实验中提供了两种实验测试方法:直接测量和间接测量。

直接频率特性的测量:用来直接测量对象的输出频率特性,适用于时域响应曲线收敛的对象(如:惯性环节)。

该方法在时域曲线窗口将信号源和被测系统的响应曲线显示出来,直接测量对象输出与信号源的相位差及幅值衰减情况,就可得到对象的频率特性。

间接频率特性的测量:用来测量闭环系统的开环特性,因为有些线性系统的开环时域响应曲线发散,幅值不易测量,可将其构成闭环负反馈稳定系统后,通过测量信号源、反馈信号、误差信号的关系,从而推导出对象的开环频率特性。

4.举例说明间接和直接频率特性测量方法的使用。

(1) 间接频率特性测量方法
1
①对象为积分环节:S1.
由于积分环节的开环时域响应曲线不收敛,稳态幅值无法测出,我们采用间接测量方法,将其构成闭环,根据闭环时的反馈及误差的相互关系,得出积分环节的频率特性。

②将积分环节构成单位负反馈,模拟电路构成如图 3.1-1所示。

③ 理论依据
图 3.1-1所示的开环频率特性为:()()()()()()()
ωωωωωωωj E j B j E j B j E j B j G ∠== 采用对数幅频特性和相频特性表示,则上式表示为:
()()()()()ωωωωωj E j B j E j B j G lg 20lg 20lg 20lg 20-== ()()()()()ωωωωωj E j B j E j B j G ∠-∠=∠
=∠ 其中 G(jw)为积分环节,所以只要将反馈信号、误差信号的幅值及相位按上式计算出来即可得积分环节的波特图。

④ 测量方式:实验中采用间接方式,只须用两路表笔 CH1和CH2来测量图
3.1-1中的反馈测量点和误差测量点,通过移动游标,确定两路信号和输入信号之间的相位和幅值关系,即可间接得出积分环节的波特图。

(2)直接频率特性测量方法
只要环节的时域响应曲线收敛就不用构成闭环系统而采用直接测量法直接测量输入、输出信号的幅值和相位关系,就可得出环节的频率特性。

① 实验对象:选择一阶惯性其传函为:()1
1.01+=
S S G ② 结构框图:如图所示
③模拟电路图
④测量方式:实验中选择直接测量方式,用 CH1路表笔测输出测量端,通过移动游标,测得输出与信号源的幅值和相位关系,直接得出一阶惯性环节的频率特性。

(二)实验内容
本次实验利用教学实验系统提供的频率特性测试虚拟仪器进行测试,画出对象波特图。

1.实验对象的结构框图
2.模拟电路图
开环传函为:()()11.01.01+=
S S S G 闭环传函:()10
1010011.01.0122++=++=ΦS S S S S 得转折频率()s rad 10=ω,阻尼比5.0=ξ。

四、实验步骤
此次实验,采用直接测量方法测量对象的闭环波特图及间接测量方法测量对象的开环波特图。

将信号源单元的“ST ”插针分别与“S ”插针和“+5V ”插针断开,运放的锁零控制端“ST ”此时接至示波器单元的“SL ”插针处,锁零端受“SL ”来控制。

实验过程中“SL ”信号由虚拟仪器自动给出。

1.实验接线:按模拟电路图 3.1-5接线,检查无误后方可开启设备电源。

2.直接测量方法 (测对象的闭环波特图)
(1)将示波器单元的“SIN ”接至图 3.1-5中的信号输入端,“CH1”路表笔插至图 3.1-5中的 4#运放的输出端。

(2)打开集成软件中的频率特性测量界面,弹出时域窗口,点击按钮,在弹出的窗口中根据需要设置好几组正弦波信号的角频率和幅值,选择测量方式为“直接”测量,每组参数应选择合适的波形比例系数,具体如下图所示:
(3)确认设置的各项参数后,点击 按钮,发送一组参数,待测试完毕,显示时域波形,此时需要用户自行移动游标,将两路游标同时放置在两路信号的相邻
的波峰(波谷)处,或零点处,来确定两路信号的相位移。

两路信号的幅值系统将自动读出。

重复操作(3),直到所有参数测量完毕。

(4)待所有参数测量完毕后,点击按钮,弹出波特图窗口,观察所测得的波特图,该图由若干点构成,幅频和相频上同一角频率下两个点对应一组参数下的测量结果。

(5)根据所测图形可适当修改正弦波信号的角频率和幅值重新测量,达到满意的效果。

3.间接测量方法:(测对象的开环波特图)
将示波器的“CH1”接至 3#运放的输出端,“CH2”接至 1#运放的输出端。

按直接测量的参数将参数设置好,将测量方式改为间接测量。

此时相位差是指反馈信号和误差信号的相位差,应将两根游标放在反馈和误差信号上。

测得对象的开环波特图如下:
4.注意:
(1)测量过程中要去除运放本身的反相的作用,即保持两路测量点的相位关系与运放无关,所以在测量过程中可能要适当加入反相器,滤除由运放所导致的相位问题。

(2)测量过程中,可能会由于所测信号幅值衰减太大,信号很难读出,须放大,若放大的比例系数不合适,会导致测量误差较大。

所以要适当地调整误差或反馈比例系数。

五、实验结果
1.直接测量结果
2.间接测量结果
六、实验心得
通过本次实验,我掌握了波特图的绘制方法及由波特图来确定系统开环传递函数,掌握了实验方法测量系统的波特图。

本次实验让我进一步熟悉了TD-ACC+实验系统的使用,进一步学习了虚拟仪器,更加深入地学习了自动控制原理有关波特图这部分的知识,更加牢固地掌握了相关理论知识,激发了我理论学习的兴趣。

相关文档
最新文档