航空航天概论 飞行器飞行原理
飞行器飞行原理
飞行器飞行原理
飞行器的飞行原理在于应用空气动力学原理。
当飞行器在空中时,它会受到两个主要的力的作用:升力和阻力。
升力是垂直向上的力,使飞行器能够克服重力并保持在空中。
升力产生的主要原因是飞行器的机翼形状和空气动力学设计。
当飞行器在空中运动时,机翼会将来流的空气分成上下两个部分,使上部空气流速增大,下部空气流速减小。
根据伯努利原理,流速较大的空气产生较低的气压,而流速较小的空气产生较高的气压,这就形成了一个向上的压力差。
这个压力差产生的力就是升力,使得飞行器能够飞行。
阻力是飞行器在空中运动时的阻碍力。
飞行器的阻力由多个因素组成,包括空气摩擦阻力、压力阻力和指示阻力等。
为了减小阻力,提高飞行器的飞行效率,飞行器通常会采用流线型设计和优化的空气动力学外形。
除了升力和阻力之外,飞行器还需要考虑其他一些力的影响,如重力和推力。
重力是往下的力,会使飞行器向下掉落,而推力则是往前的力,可以克服重力并使飞行器前进。
为了平衡这些力,飞行器需要在设计中考虑到重力和推力之间的平衡关系。
飞行器的飞行过程是一个动态的系统,需要考虑多个因素的相互作用。
通过对这些力的合理应用和平衡,飞行器才能够在空中稳定地飞行。
飞行器飞行的原理
飞行器飞行的原理
飞行器的飞行原理是基于两个主要的物理原理:升力和推力。
首先是升力原理。
根据伯努利定律,当气体在速度增加的情况下,气体的压力就会降低。
飞行器的翼面具有弯曲的形状,上表面比下表面更长。
当飞行器在空中运动时,空气在翼面上方流动得更快,而在翼面下方则流动得更慢。
这样,上表面的气压就会下降,而下表面的气压就会升高。
由于气压的差异,形成了一个向上的升力,使飞行器能够克服重力并在空中飞行。
其次是推力原理。
飞行器通常使用引擎产生推力。
推力是通过将气体或喷气排出尾部来实现的。
根据牛顿第三定律,当喷气排出时,反作用力会推动飞行器向前运动。
推力的大小取决于喷气速度和喷气量。
通过控制推力的大小和方向,飞行器可以改变速度和方向。
飞行器的飞行过程可以简单描述为下面几个步骤:首先,引擎产生推力,推动飞行器向前运动;同时,翼面形成升力,抵消重力;飞行器在空中保持平衡,并通过尾部的控制面板进行姿态的调整;最后,通过改变引擎的推力和控制面板的角度,飞行器可以改变速度和方向,实现所需的飞行路径。
综上所述,飞行器飞行的原理是通过升力和推力的相互作用来实现。
升力可以使飞行器克服重力,并在空中维持平衡。
推力则产生向前的动力,使飞行器能够飞行。
航天飞行器的原理
航天飞行器的原理航天飞行器的原理是通过一系列的技术和物理原理来实现飞行和航天任务。
下面将介绍几个关键原理。
首先,航天飞行器的离地动力学原理是基于牛顿第三定律的推力原理。
它利用火箭发动机排放高速喷出的废气,通过反作用力推动飞行器向上飞行。
火箭发动机所采用的燃烧反应将燃料和氧化剂进行燃烧,产生高温高压的气体,通过喷嘴排放出去,形成推力。
推力的大小取决于喷气速度和喷气质量流量的乘积。
其次,航天飞行器的轨道动力学原理是基于万有引力定律的轨道运动原理。
根据开普勒定律,航天飞行器在地球的引力作用下沿着椭圆轨道进行运动。
轨道的形状和参数取决于航天器的速度、发射角度以及地球的质量和半径。
在进入轨道后,航天飞行器可以维持轨道飞行,并通过调整速度和角度来改变轨道。
另外,航天飞行器的空气动力学原理是基于气体流体力学的原理。
当航天飞行器在大气层中飞行时,空气分子对其产生阻力。
这个阻力是与航天器速度的平方成正比的,而与空气密度和底面积成反比,所以在飞行器进入大气层时,阻力逐渐增大,需要考虑阻力对飞行器的影响,采取相应措施,如设定合适的进入角度和采用热防护材料。
最后,航天飞行器的能源原理是通过各种能源形式的转换和利用来提供动力。
一般来说,航天飞行器的能源主要包括化学能、电能和太阳能等。
化学能主要由燃料提供,通过火箭发动机燃烧释放出来;电能则由太阳能电池板等太阳能转换成;而太阳能则是通过太阳能电池板吸收太阳能并将其转化为电能。
综上所述,航天飞行器的原理是基于推力原理、轨道运动原理、空气动力学原理以及能源原理等多个方面的物理原理,通过这些原理的相互作用实现了航天飞行器在太空中进行飞行和执行任务的能力。
飞行器的工作原理
飞行器的工作原理飞行器以其独特的工作原理和设计,开启了人类的航空事业。
本文将详细介绍飞行器的工作原理,涵盖了重力、气动力、推进力以及控制力等关键要素。
一、引言飞行器是指能够在大气层内自由飞行的装置,包括了飞机、直升机、无人机等。
它们在我们的生活中扮演着重要的角色,提供了高速、高效、便捷的交通方式。
要理解飞行器的工作原理,我们需要了解几个基本概念和原理。
二、重力与升力重力是指地球对物体的吸引力,它是使飞行器垂直下落的力。
然而,飞行器能够克服重力并在空中飞行,这是因为它们产生了与重力相等而方向相反的力,即升力。
升力是通过机翼的形状和空气动力学原理产生的。
当飞行器的机翼在空气中运动时,它会产生一个向上的压力差,从而使飞行器受到一个向上的力。
三、气动力学原理气动力学是研究空气在物体表面上产生的力和运动的学科。
当飞行器在空中飞行时,空气会与其表面产生相互作用,产生升力和阻力。
升力已在上一节中介绍,而阻力是指空气对飞行器行进方向上的阻碍力。
飞行器需要克服阻力以保持在空中的稳定飞行。
四、推进力推进力是飞行器在空中前进的动力。
常见的飞行器使用的推进方法有以下几种:1.喷气发动机:喷气发动机通过燃烧燃料产生高温高压气体,然后将其喷出以产生反作用力,推动飞行器向前飞行。
这种推进力十分强大,适用于大型飞机。
2.螺旋桨:螺旋桨通过旋转产生气流,推动飞行器向前运动。
它通常用于直升机和小型飞机,效率较高。
3.火箭推进器:火箭推进器是通过燃烧推进剂的高能燃料产生巨大的推力,将飞行器推入太空。
五、平衡与控制在飞行过程中,飞行器需要保持平衡和控制。
平衡是指飞行器保持稳定飞行的能力,而控制则是指调整飞行器的姿态和方向。
为了实现平衡和控制,飞行器通常配备了控制面(如副翼、升降舵、方向舵)和稳定系统(如陀螺仪和自动驾驶系统)。
六、结论飞行器的工作原理是一个综合性的系统工程,涉及了物理学、机械学、气动学等多个学科。
通过合理的设计和精确的控制,飞行器能够稳定、安全地飞行在空中。
航空航天概论第2章 飞行器飞行原理
2.2.1空气流动基本规律
2、连续性定理
• 当流体连续不断而稳定地流过一个粗细不等的变截 面管道时,在管道粗的地方流速比较慢,在管道细 的地方流速比较快。这是由于管道中任一部分的流 体不能中断也不能堆积,因此在同一时间,流进任 一截面的流体质量和从另一截面的流出的流体质量 应该相等。这就是质量守恒定律。
2.1.2 大气的物理特性与标准大气
2、标准大气 • 前面所述的大气物理性质是随着所在地理位置、 季节和高度而变化的,这样就使得航空器上产生 的空气动力也发生变化,从而使飞行性能发生变 化。为了在进行航空器设计、试验和分析时所用 大气物理参数不因地而异,必须建立一个统一的 标准,即所谓的标准大气。 • 国际标准大气的规定:(1)大气被看成完全气体, 即服从状态方程。(2)以海平面的高度为零。在 海平面上,大气的标准状态为:气温t=15℃;压 强p=1 atm;密度ρ=1.2250kg/m3;声速 c=314m/s。具体的数据可以查《国际标准大气简 表》。
线与翼弦的交点叫压力中心。
3、作用在飞机上的空气动力
机翼表面的压力分布
• 机翼表面上各个点的压力大小,可以用箭头长短来表示如图。箭头方向朝外,表示比
大气压力低的吸力或叫负压力;箭头指向机翼表面,表示比大气压力高的正压力,简
称压力。
把各个箭头的外端 用平滑的曲线连接
起来,这就是用向
量表的机翼压力 分布图。图上吸力
2、翼形几何外型的参数
翼型:用平行于对称平面的切平面切割机翼所得的剖面,称为翼剖面,简称翼型。 中弧线:翼型厚度中点的连线 弯度分布:有厚度的非对称翼,构造非对称翼型的“骨架”,称为中弧线的弯板,
它的高度yf的分布(即中弧线方程)称为弯度分布。 相对厚度:翼型最大厚度( Tmax )与翼型弦长(c)的比值Tmax /c
航空航天飞行器运行的工作原理
航空航天飞行器运行的工作原理航空航天工业作为现代科技领域的重要组成部分,对于人类的探索、交流和发展起到了至关重要的作用。
在航空航天领域中,飞行器的运行原理是关键的科学问题之一。
本文将探讨航空航天飞行器的运行原理,并对其适用的场景和格式进行分析。
一、飞行器的基本组成航空航天飞行器一般由机身、发动机、翼面、操纵系统、导航系统和控制系统等几个基本部件组成。
其中机身是飞行器的骨架,发动机提供推力,翼面产生升力,操纵系统用于操纵飞行器的运动,导航系统用于确定位置和航向,控制系统用于控制飞行器的各项参数。
二、飞行器的运行原理航空航天飞行器的运行原理可以从物理学和航空力学的角度进行解释。
1. 升力和重力平衡飞行器的运行离不开升力和重力的平衡。
翼面通过产生升力来克服重力使飞行器在空中保持飞行。
翼面的升力是由气流通过翼面产生的。
通过改变翼面的外形和角度,可以调节升力的大小,从而控制飞行器的飞行高度。
2. 推力和阻力平衡除了升力和重力之外,飞行器的运行还需要推力和阻力之间的平衡。
发动机通过喷射高速气流产生推力,推动飞行器向前运动。
而阻力则是飞行器前进过程中空气的阻碍力,它与飞行速度和飞行器表面积有关。
通过控制推力和调节飞行速度,飞行器可以保持推力和阻力的平衡,实现平稳的飞行。
三、适用场景与格式选择根据航空航天飞行器运行原理的特点和具体情况,可将本文作为科普文章或技术报告进行书写。
1. 科普文章如果本文用于科普文章的场景,可以采用较为通俗易懂的语言来解释飞行器的运行原理,增加读者的兴趣和理解。
在排版上可以适当添加插图和图片,以图文并茂的形式来展示飞行器的基本构造和运行原理。
2. 技术报告如果本文用于技术报告的场景,需要更加详细和专业地阐述飞行器的运行原理。
可以逐步介绍飞行器各个部件的工作原理,包括机身结构、发动机工作原理、翼面气动特性等内容。
在排版上,可以采用章节分节的形式,使用图表和公式来支持理论的阐述和分析。
总之,航空航天飞行器是一项复杂的工程,其运行原理涉及多个领域的知识和理论。
航天飞行器的飞行原理
航天飞行器的飞行原理
航天飞行器的飞行原理是通过利用牛顿第三定律——作用与反作用,以及万有引力定律以实现飞行。
首先,航天飞行器利用火箭发动机产生巨大的推力。
火箭发动机通过喷射高速喷射物,如燃料和氧化剂的燃烧产生的高温高压气体,来产生推力。
根据牛顿第三定律,喷射的高速气体将推动火箭反方向产生的反作用力,从而推动整个航天飞行器向前飞行。
其次,航天飞行器借助地球的引力来进行轨道飞行。
根据万有引力定律,物体之间存在着万有引力,地球对航天飞行器施加的引力使其保持在围绕地球的轨道上。
为了保持轨道飞行,航天飞行器必须具有适当的速度和方向。
当航天飞行器的速度达到一定值时,它将进入地球上的轨道,并继续围绕地球飞行。
另外,航天飞行器可以利用姿态控制系统来实现航向和飞行姿势的调整。
姿态控制系统可以通过推力矢量控制或姿态调整推进器等方式,改变航天飞行器的速度和方向,从而使其能够精确进入轨道并进行飞行任务。
总之,航天飞行器的飞行原理是基于牛顿第三定律和万有引力定律的,通过产生推力和借助引力,以及利用姿态控制系统来实现飞行。
这些原理的运用使得航天飞行器能够在太空中安全地进行各种任务。
航天飞行器及原理
航天飞行器及原理
航天飞行器是一种用于在太空中进行人类飞行的载人飞行器,它的原理是基于牛顿的第三定律,即作用与反作用定律。
航天飞行器的主要部分包括发射器、推进系统、机身和控制系统等。
发射器是用于将航天飞行器送入太空的设备,它通常是一个巨大的发射塔,可以提供足够的推力和速度,使飞行器能够逃离地球的引力场。
推进系统则提供了飞行器在太空中进行姿态调整、位置调整和加速的能力。
它由发动机、燃料储存设备和推进剂组成,通过燃烧燃料产生巨大的推力,并通过喷射推进剂的气体来产生反作用力,从而推动飞行器向前飞行。
机身是航天飞行器的主要承载结构,它需要具备足够的强度和刚性,以承受发射过程中的巨大压力和震动,同时还需具备良好的气动特性,以减小飞行阻力和提高飞行的稳定性。
控制系统则是用于控制飞行器的姿态和运动的设备,它可以通过控制推进系统的喷射方向和推力大小,使飞行器实现各种姿态调整和轨道控制。
在飞行器进入太空后,它将进入轨道并继续进行各种科学实验、空间站建设、卫星发射等任务。
在任务完成后,飞行器需要再次进入大气层并通过减速和降落系统实现安全返回。
这一过程需要精确的监测和控制,以确保飞行器能够准确地返回并着陆。
总之,航天飞行器通过利用作用与反作用定律和控制系统的精确操作,能够实现在太空中的人类飞行和各种科学任务。
飞行器的工作原理
飞行器的工作原理飞行器,作为人类最伟大的发明之一,已经成为现代社会不可或缺的交通工具。
无论是商业航班、军用飞机还是私人飞行器,它们都依赖于一套复杂而精密的工作原理。
本文将深入探讨飞行器的工作原理,从空气动力学、推力和控制三个方面进行阐述。
一、空气动力学空气动力学是飞行器工作原理的基础,它研究的是空气对物体运动的影响。
飞行器通过利用空气动力学原理来产生升力和阻力,实现飞行。
1.1 升力升力是飞行器在飞行中所产生的向上的力量,使其能够克服重力并保持在空中飞行。
升力的产生主要依靠翼面的形状和空气流动的原理。
在飞行器的机翼上,上表面通常比下表面更加凸起,这样可以使得空气在上表面流动时速度更快,而下表面的流速较慢。
根据伯努利定律,速度越快的流体压力越低,因此在机翼上方形成了一个较低的气压区域,而下方则形成了一个较高的气压区域。
这种压差使得飞行器产生向上的升力。
1.2 阻力阻力是飞行器在飞行中所受到的阻碍运动的力量。
飞行器的阻力主要来自两个方面:气动阻力和重力。
气动阻力是由于飞行器在空气中运动时与空气发生摩擦而产生的。
而重力则是地球对飞行器的吸引力。
为了克服阻力,飞行器需要产生足够的推力。
二、推力推力是飞行器工作的动力来源,它使得飞行器能够克服阻力并向前推进。
推力的产生主要依靠发动机的工作原理。
2.1 内燃机内燃机是目前最常用的飞行器推进装置之一。
它通过燃烧燃料来产生高温高压气体,然后将气体喷出,产生反作用力推动飞行器向前。
内燃机的工作原理可以简单概括为四个步骤:进气、压缩、燃烧和排气。
进气阶段,空气被引入发动机中;压缩阶段,气体被压缩并提高温度;燃烧阶段,燃料被喷入并与压缩的气体混合燃烧;排气阶段,燃烧产生的高温高压气体被排出发动机。
2.2 喷气发动机喷气发动机是商业飞机和军用飞机中常见的推进装置。
它利用喷射高速气流产生的反作用力来推动飞行器前进。
喷气发动机的工作原理与内燃机类似,但它不仅喷出燃料燃烧产生的气体,还将大量的空气通过压缩和加热后喷射出去,形成高速气流,产生更大的推力。
飞行器飞行原理ppt课件
2.3 飞机飞行原理
可重复使用的放热材料
用于像航天飞机类似的可重复使用的航天器的防热。 根据航天器表面不同温度的区域,采用相应的可重复使 用的防热材料。
例如:机身头部、机翼前缘温度最高,采用增强碳 碳复合材料,温度可耐受1593度;机身、机翼下表面前 部和垂尾前缘温度高,可采用防热隔热陶瓷材料;机身、 机翼上表面前部和垂尾前缘气动加热不是特别严重处, 可采用防热隔热的陶瓷瓦材料;机身中后部两侧和有效 载荷舱门处,温度相对较低(约350度),可采用柔性的 表面隔热材料;对于温度最高的区域,采用热管冷却和 强制循环冷却和发汗冷却等。
材料来制造飞机的重要受力构件和蒙皮; 2. 用隔热层来保护机内设备和人员; 3. 采用冷却液冷却结构内表面。
美国SR-71的机体结构的93%采用钛合 金越过热障,达到3.3倍音速。
52
2.3 飞机飞行原理
航天器的防热方法:
材料:石墨、陶瓷等。 高温下的热解和相变:固 液,固 气,液 气。 应用:烧蚀法适用于不重复使用的飞船、卫星等。
60
2.3 飞机飞行原理
B. 超声速飞机的机翼平面形状和布局形式
61
2.3 飞机飞行原理
62
2.3 飞机飞行原理
F-14 Tomcat 舰载机
米格-23
B-1 Lancer轰炸机
63
2.3 飞机飞行原理
边条涡
64
2.3 飞机飞行原理
超声速飞机的气动外形
鸭翼产生的脱体漩涡
机翼升力
鸭翼升力 机翼升力
流体黏性和温度有关,气体温度升高,黏性增大。液体相反。
4. 可压缩性
当气体的压强改变时,其密度和体积也改变,为气体可压缩性。 5. 声速
航空航天概论飞行器飞行原理
航空航天概论飞行器飞行原理飞行器飞行原理是航空航天学科中最基础和核心的知识之一,对于掌握和理解飞行器的飞行原理非常重要。
飞行器的飞行原理涉及到多个学科领域,包括力学、流体力学、热力学等等。
下面将从气动力、动力学和航空航天发展历史三个方面来进行介绍。
首先,气动力是影响飞行器飞行的最主要因素之一、气动力学研究飞行器在空气中受到的各种力,如升力、阻力、侧向力和推力等。
其中最重要的是升力和阻力。
升力是指飞行器受到的垂直向上的力,使得飞行器能够克服重力,保持在空中飞行。
阻力是指飞行器受到的阻碍其运动的力,主要是空气的阻力。
飞行器在飞行过程中,必须通过引擎提供的推力来克服阻力,以维持速度和提供动力。
其次,动力学是飞行器飞行原理的另一个重要方面。
动力学研究飞行器在不同状态下的运动规律,包括姿态、滚转、俯仰和偏航等。
飞行器的姿态控制是保持和调整飞行器在飞行过程中的稳定姿态。
滚转是飞行器绕纵轴的旋转运动,俯仰是飞行器绕横轴的旋转运动,偏航是飞行器绕垂直轴的旋转运动。
动力学研究有助于优化飞行器的设计和控制,提高飞行器的稳定性和操纵性。
最后,航空航天发展历史是理解飞行器飞行原理的重要基础。
人类的航空航天梦想从古代开始,并在不同历史时期取得了重大突破。
著名的莱特兄弟是第一位成功实现人类驾驶飞机飞行的人,他们的飞行器采用了传统的固定翼设计,并利用了翼面产生的升力来实现飞行。
随后,航空航天技术得到了快速发展,并出现了各种类型的飞行器,如直升机、喷气式飞机和火箭等。
在航空航天发展历史上,人们逐渐深入探索飞行器飞行原理,通过不断的实验和研究,揭示了飞行器的飞行机理。
综上所述,飞行器飞行原理是航空航天学科中最核心的知识之一、它涉及到气动力学、动力学和航空航天发展历史等多个学科领域。
了解和掌握飞行器的飞行原理,对于优化设计和控制飞行器,提高飞行器的性能和安全性具有重要意义。
概论 2章飞机飞行的基本原理1、2、3
3.机翼的迎角
• 迎角:翼弦与相对气流速度之间的夹角。
• 相对气流方向指向机翼下表面,为正迎角; • 相对气流方向指向机翼上表面,为负迎角; • 相对气流方向与翼弦重合,迎角为零。
2.3.3 阻力
2.3.4 影响飞机升力和阻力的因素
该层内空气非常稀薄,质量仅占整个大气质量的 1/3000。
4.电离层
电离层位于中间层以上,上界离地面约800公里,其 特点是,空气密度极小,由于空气直接受到太阳短 波辐射,高度升高,气温迅速上升,并且空气具有 很大的导电性,故称电离层。由于温度较高。又称 暖层。
5.散逸层
散逸层是大气的最外层,它是地球大气的最外层, 在此层内,空气极其稀薄,又远离地面,受地球引 力很小,因而大气分子不断地向星际空间散逸,故 称散逸层。推算,散逸层离地球表面约2000一3000 公里。
迎角改变对机翼阻力的影响
• • • • • • • • • 低速飞行时包括:摩擦阻力、压差阻力和诱导 阻力。 ������ 迎角增大,摩擦阻力变化不大 ������ 迎角增大,压差阻力增大 ������ 迎角增大,诱导阻力增大,超过临界迎角, 迎角增大,升力降低,诱导阻力减小。 总体上,迎角增大,阻力增大;迎角越大,阻 力增加越多;超过临界迎角,阻力急剧增大。 简单说:迎角增大,阻力增大;迎角越大,阻力 增加越多;超过临界迎角,阻力急剧增大。
流管内流体的质量是守恒的。 通常所取的“流管”都是“细流管”。 细流管的截面积 S 0 ,就称为流线 。
2.2.3 连续性定理
描述了定常流动的流体任一流管中流体元在不同截面处的流 速 v 与截面积 S 的关系。 Δt S v
qm VA
飞行器的原理和分类
飞行器的原理和分类飞行器是一种能够在大气中自由航行的交通工具,它依靠空气动力学原理以及各种动力系统来实现飞行。
本文将探讨飞行器的原理和分类。
一、飞行器的原理1. 空气动力学原理飞行器在空中飞行时依靠空气动力学原理,其中最重要的是气流和升力的作用。
气流是指空气在飞行器周围流动的状态,而升力是由于气流对飞行器产生的上升力量。
飞行器的翼面形状、机翼的攻角和飞行速度都会影响气流的流动和升力的大小。
2. 动力系统飞行器的动力系统是提供推进力量的关键,常见的动力系统包括螺旋桨、喷气发动机和火箭引擎等。
螺旋桨通过旋转提供向前的推力,喷气发动机则是通过喷射燃料燃烧产生的高速气流来推动飞行器前进,火箭引擎则是利用燃烧推进剂产生的反冲力来推动飞行器。
二、飞行器的分类根据不同的原理和用途,飞行器可以分为以下几类:1. 飞机飞机是一种以机翼产生升力并以螺旋桨或喷气发动机提供推进力的飞行器。
根据用途和结构,飞机可以进一步分为商用飞机、军用飞机和私人飞机等。
商用飞机主要用于民航运输,军用飞机则用于军事任务,而私人飞机则被一些富豪和高管用于个人交通。
2. 直升机直升机是一种通过旋转翅膀产生升力和提供推进力的飞行器。
它可以在垂直起降,并且能够悬停在空中。
直升机广泛应用于军事、医疗救援和警务等领域,其灵活性赋予了它独特的优势。
3. 无人机无人机是一种不需要人操控的自动飞行器,它可以通过远程控制或预设的路径进行飞行任务。
无人机的应用范围非常广泛,包括军事侦察、航拍摄影、快递物流等。
4. 高空飞行器高空飞行器是指能够在离地球大气层较远的高空进行飞行的飞行器。
典型的高空飞行器有卫星和航天飞机等。
卫星用于通信、导航和气象预报等领域,而航天飞机则可用于进行载人航天探索。
总结:飞行器的原理和分类涵盖了从飞机、直升机到无人机和高空飞行器的广泛范围。
它们通过理解空气动力学原理和不同的动力系统,实现了在大气中的自由飞行。
飞行器的不断发展和应用为人类带来了便利和进步,并在各个领域发挥着重要作用。
飞行器的工作原理
飞行器的工作原理
飞行器的工作原理是基于动力学和气体力学原理的。
飞行器的动力学原理主要包括牛顿第二定律和质量守恒定律。
根据牛顿第二定律,飞行器在外力作用下会产生加速度,而加速度则决定了飞行器的速度和方向变化。
质量守恒定律指出,飞行器的质量不会随着运动发生变化,因此可以通过加入或消耗燃料来改变飞行器的速度。
另外,飞行器的气体力学原理主要涉及到气动力学和空气动力学。
气动力学研究了空气在运动物体表面产生的力和阻力,而空气动力学研究了飞行器在空气中运动时所受到的各种力的作用。
飞行器通常利用空气动力学原理来实现升力和推力的产生。
具体而言,飞行器产生升力的过程中,利用了翼面的形状和空气流动间的压差。
通过翼面的上表面和下表面之间的压力差,使得飞行器的上方产生低压区域,下方产生高压区域,从而实现了向上的升力。
而产生推力的过程中,通常通过喷射气体或者旋转螺旋桨来推动飞行器前进。
总之,飞行器的工作原理是通过动力学和气体力学原理来实现的。
通过利用这些原理,飞行器可以产生升力和推力,从而实现飞行。
飞行器是如何进行飞行的?
飞行器是如何进行飞行的?当我们看到飞机在蓝天白云中自由自在地飞翔时,不禁会想,它是如何进行飞行的呢?飞行器之所以能够在空中飞行,其关键之处便在于它能够利用空气的作用力来产生推力,从而实现飞行。
下面,我们将针对飞行器的飞行原理和运作原理进行深入探讨。
一、飞行器的工作原理1. 空气动力学原理飞行器的运作原理基于空气动力学原理,即空气的粘滞性、密度、压力和惯性都会影响翼型和机身的运动。
飞行器利用翼型产生的提升力和阻力,使其在空气中取得平衡。
同时,还需要产生推力和控制飞行姿态,确保安全飞行。
2. 发动机产生推力飞行器的发动机产生推力,使其离开地面并向前进行飞行。
发动机推动空气流经翼型,产生向上的升力和向后的推力。
射流发动机则直接产生向后的推力。
二、飞行器的构造和部件1. 机翼机翼是飞行器中最重要的部件之一,它是产生升力的主要方式。
通常由翼型、翼梁、襟翼、副翼、缝翼、外悬挂等组成。
2. 机身机身是连接飞行器各个部件的主体,它还能够提供阻力,使得飞行器保持平衡。
3. 飞行控制系统飞行控制系统是为了控制飞行器姿态,使其保持稳定飞行的系统。
包括高度控制、方向控制、气动力平衡等控制。
4. 发动机系统发动机系统是飞行器中最核心的部件之一。
通常包括发动机、推进装置、冷却装置等。
三、飞行器的飞行工作流程1. 起飞在起飞阶段,飞行器利用发动机产生的推力进行加速,从而获得大量的动能,在一定高度上开始进行飞行。
2. 巡航飞行器完成起飞后,需要通过飞行控制系统实时监测状态,以保持稳定的飞行姿态。
此时,飞行器进行巡航阶段。
3. 下降和着陆当飞行器到达目的地时,需要通过下降、着陆等过程进行安全降落。
综上所述,飞行器之所以能够进行飞行,便是依靠其内部构造和部件的协同作用。
通过快速行动、产生推力和控制飞行姿态,飞行器才能在空中自由翱翔。
航空航天概论第2,3,5章总结
第一章第二章飞行环境及飞行原理2.1 飞行环境大气环境根据大气中温度随高度的变化可将大气层划分为对流层、平流层、中间层、热层和散逸层。
1.对流层:大气中最低的一层,特点是其温度随高度增加而逐渐降低。
(0 ~18公里)2.平流层:位于对流层的上面,特点是该层中的大气主要是水平方向流动,没有上下对流。
(18~50公里)3、中间层:中间层为离地球50到80公里的一层。
在该层内,气温随高度升高而下降,且空气有相当强烈的铅垂方向的运动.4.热层:该层空气密度极小,由于空气直接受到太阳短波辐射,空气处于高度电离状态,温度又随高度增加而上升。
(80~800公里)5.散逸层:散逸层是大气层的最外层。
在此层内,空气极其稀薄,又远离地面,受地球引力很小,因而大气分子不断向星际空间逃逸。
空间环境空间飞行环境主要是指真空、电磁辐射、高能粒子辐射、等离子和微流星体等所形成的飞行环境。
(空间飞行器处于地球磁场之外,因此容易受到太阳风等因素的影响)。
为了准确描述飞行器的飞行性能,必须建立一个统一的标准,即标准大气。
目前我国所采用的国际标准大气,是一种“模式大气”。
它依据实测资料,用简化方程近似地表示大气温度、密度和压强等参数的平均铅垂分布,并将计算结果排列成表,形成国际标准大气表。
大气的物理性质大气的状态参数和状态方程大气的状态参数是指压强P、温度T和密度ρ这三个参数。
它们之间的关系可以用气体状态方程表示,即P=ρRT。
航空器在空中的飞行必须具备动力装置产生推力或拉力来克服前进的阻力。
根据产生升力的基本原理不同,航空器分为轻于(或等于)同体积空气的航空器和重于同体积空气的航空器两大类。
大气的物理性质:连续性在研究飞行器和大气之间的相对运动时,气体分子之间的距离完全可以忽略不计,即把气体看成是连续的介质。
这就是在空气动力学研究中常说的连续性假设。
粘性大气的粘性力是相邻大气层之间相互运动时产生的牵扯作用力,即大气相邻流动层间出现滑动时产生的摩擦力,也叫做大气的内摩擦力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、翼形几何外型的参数
翼型:用平行于对称平面的切平面切割机翼所得的剖面,称为翼剖面,简称翼型。 几何弦长c:连接翼型的前缘点(x=0)和后缘点(x=c)的直线长度。
翼型厚度(t):指上下翼面在垂直于翼弦方向的距离,其中最大者称为最大厚度Tmax 厚度分布(yt):在弦向任一位置x处,翼型的厚度t=yu-yl=2yu,用yt=t/2表示翼型厚度分布 前缘半径(rl): 翼型前缘为一圆弧,该圆弧半径称为前缘半径 后缘角(τ):翼型后缘上下两弧线切线的夹角称为后缘角 弦线、弦长(c):连接前缘与后缘的直线称为弦线;其长度称为弦长。
2、标准大气 • 前面所述的大气物理性质是随着所在地理位置、
季节和高度而变化的,这样就使得航空器上产生 的空气动力也发生变化,从而使飞行性能发生变 化。为了在进行航空器设计、试验和分析时所用 大气物理参数不因地而异,必须建立一个统一的 标准,即所谓的标准大气。 • 国际标准大气的规定:(1)大气被看成完全气体, 即服从状态方程。(2)以海平面的高度为零。在 海平面上,大气的标准状态为:气温t=15℃;压 强p=1 atm;密度ρ=1.2250kg/m3;声速 c=314m/s。具体的数据可以查《国际标准大气简 表》。
3、作用在飞机上的空气动力
机翼的迎角
• 相对气流与机翼之间的相对位置,用迎角表示如图。迎角α :翼弦与相对气流方向所夹 的角叫迎角。相对气流方向指向机翼上表面,为负迎角;相对气流方向与翼弦重合,迎 角为零。飞行中,飞行员可通过前后移动驾驶盘来改变迎角的大小或者正负。正常飞行 中经常使用的是正迎角。
2.2.1空气流动基本规律
2、连续性定理
• 当流体连续不断而稳定地流过一个粗细不等的变截 面管道时,在管道粗的地方流速比较慢,在管道细 的地方流速比较快。这是由于管道中任一部分的流 体不能中断也不能堆积,因此在同一时间,流进任 一截面的流体质量和从另一截面的流出的流体质量 应该相等。这就是质量守恒定律。
4、低速和高速管道流动的特点
气流特性是指空气在流动中各点的速度、压力和密度等参数的变化规律。而稳定气 流是指空气在流动时,空间各点上的参数不随时间而变化。反之就是不稳定气流。
在稳 定气 流中, 空气 微团 流动 的路 线叫 做流 线
由流 线所 组成 的管 道叫 做流 管
高速流动的流守恒,流速与 截面积成反比。但在高速流动时恰好相反。
3、伯努利定理
伯努利定理是描述流体的压强和速度之间的关系可以用实验说明。如图在粗细不均 的管道中在不同截面积处安装三根一样粗细的玻璃管,首先把容器和管道的进口 和出口开头都关闭,此时管道中的流体没有流动,不同截面处(A-A、B-B、CC)的流体流速均为零,三根玻璃管中的液面高度同容器中的液面高度一样。这 表明,不同截面处的流体的压强都是相等的。现在把进口和出口的开头同时都打 开,使管道中的流体稳定地流动,并保持容器中的液面高度不变。此时三根玻璃 管中的液面高度都降低了,且不同截面处的液面高度各不相同,这说明流体在流 动过程中,不同截面处的压强也不相同。
2.2 航空器飞行原理
掌握空气流动规律是理解航空器飞行原理的关键
2.2.1空气流动基本规律—1、相对运动原理
重于空气的飞机,是靠 飞机与空气作相对运动 时所产生的空气动力, 克服自身的重力而升空 的。没有飞行速度,在 飞机上就不会产生空气 动力。空气动力的产生 是空气和飞机之间有了 相对运动的结果。
毛机翼平面面积S :S = c’G b
毛 展弦比A:机翼展长与平均几何
机 翼
弦长之比,A = b /c’G=b2/S。 梯形比λ:根稍比是指翼稍弦长
与翼根弦长之比, λ = c1/ c’0 。
1、翼形平面几何参数
e c’0
e
D b
Λ0
c0
c1
翼型:用平行于对称平面的切平面 切割机翼所得的剖面,称为 翼剖面,简称翼型。
弦长是很重要的数据,翼型上的所有尺寸数据都是弦长的相对值。
y yu
rl
O yl
τ x
c
2、翼形几何外型的参数
翼型:用平行于对称平面的切平面切割机翼所得的剖面,称为翼剖面,简称翼型。 中弧线:翼型厚度中点的连线 弯度分布:有厚度的非对称翼,构造非对称翼型的“骨架”,称为中弧线的弯板,
它的高度yf的分布(即中弧线方程)称为弯度分布。 相对厚度:翼型最大厚度( Tmax )与翼型弦长(c)的比值Tmax /c 相对弯度(f):翼型最大弯度( fmax )与翼型弦长(c)的比值,f= fmax/c
5、散逸层
• 热层顶界以上为散逸层,它是地球大气的最外层。在此层内,空气极 其稀薄,又远离地面,受地球引力很小,因而大气分子不断地向星际 空间逃逸。这层内的大气质量只是整个大气质量的10-11。大气外层的 顶界约为2000~3000km的高度。
2.1.2 大气的物理特性与标准大气
1、大气的物理特性 (1)连续性 • 在研究飞行器和大气之间的相对运动时,气体
y
yf
O
x c
yl
3、作用在飞机上的空气动力
空气动力:空气流过物体或物体在空气中运动时,空气对物 体的作用力。飞机上的空气动力R包括升力Y和阻力Q两部分。
(1)升力
空气流过机翼的流线谱如图, 这样机翼上、下表面产生压力 差。垂直于相对气流方向的压 力差的总和,就是升力。 机 翼升力的着眼点,即升力作用 线与翼弦的交点叫压力中心。
• 机翼是产生升力和阻力的主要部件。作用于机翼 上的空气动力情况与飞机的性能密切相关,而机 翼的空气动力特性受到机翼外型的影响。机翼的 几何外型可以分为机翼平面几何形状和翼剖面几 何形状。
1、翼形几何外型的参数
1、翼形几何外型的参数
1、翼形几何外型的参数
1、翼形平面几何参数
c’0
D b
翼展长b:表征机翼邹游翼稍之间最大的横向距离。
分子之间的距离完全可以忽略不计,即把气体看 成是连续的介质。但飞行器所处的飞行环境为高 空大气层和外层空间,空气分子间的平均自由行 程很大,气体分子的自由行程大约与飞行器的外 形尺寸在同一数量级甚至更大,在此情况下,大 气就不能看成是连续介质了。 (2)压强 • 大气的压强是指物体的单位面积上所承受的大 气的法向作用力的大小。
2.1.1 大气层
3、中间层
• 中间层为离地球表面50~85km的一层。在这一层内,气温随高度升 高而下降,且空气有相当强烈的铅垂方向的运动。当高度升到80 km 左右时气温降到160~190 K。该层内空气非常稀薄,质量仅占整个大 气质量的1/3000。
4、电离层
• 从中间层顶界到离地平面800km之间的一层称为电离层也叫热层。在 此层内,空气密度极小,由于空气直接受到太阳短波辐射,所以温度 随着高度增加而上升。同时空气处于高度电离状态,因此带有很强的 导电性,能吸收、发射和折射无线电波。这对远距离无线电通信起着 很大的作用。
该层的气温主要靠地面辐射太阳的热能而加热,所以地面的温度高。 • (2)有云、雨、雾、雪等天气现象 • 地球上的水受太阳照射而蒸发,使大气中聚集大量的各种形态的水
蒸汽。同时由于气温的变化就会有云、雨、雾、雪等天气现象的产生。 • (3) 空气上下对流激烈 • 由于地面的地形和地貌的不同,因此造成垂直方向和水平方向的风,
即空气发生大量的对流。
2.1.1 大气层
2、平流层 • 平流层位于对流层的上面,其顶界约为50km。在
平流层大气主要是水平方向的流动,没有上下对 流。随着高度的增加,起初气温基本保持不变(约 为216 K);到20~32km以上,气温升高较快, 到了平流层顶界,气温升至270~290 K。平流层 的这种气温分布特征同它受地面影响较小和存在 大量臭氧有关。平流层的主要特点是空气沿铅垂 方向的运动较弱,因而气流比较平稳,能见度较 好。 • 飞行器的飞行的理想环境是对流层和平流层。
3、作用在飞机上的空气动力
机翼表面的压力分布
• 机翼表面上各个点的压力大小,可以用箭头长短来表示如图。箭头方向朝外,表示比 大气压力低的吸力或叫负压力;箭头指向机翼表面,表示比大气压力高的正压力,简 称压力。
把各个箭头的外端 用平滑的曲线连接 起来,这就是用向 量表示的机翼压力 分布图。图上吸力 用“-”表示,压力用 “+”表示。
第2章 飞行器飞行原理
2.1 飞行环境 2.2 航空器飞行基本原理 2.3 火箭与导弹飞行原理 2.4 高速飞机的特点 2.5 航天器飞行基本原理
第2章 飞行器飞行原理
飞行器为什么能够在天上自由地飞行而不会掉下来呢?通 过学习飞行器飞行的基本原理可以解答这个问题。
从力学的观点,阻碍飞行器飞行的力有两种: 一是地球的引力---试图将飞行器拉回地面 二是空气的阻力---试图阻碍飞行器向前运动
2.1.2 大气的物理特性与标准大气
1、大气的物理特性 (3)粘性 • 大气的粘性是空气在流动过程中表现出的一种物理性质,
大气的粘性力是相邻大气层之间相互运动时产生的牵扯作 用力,也叫做大气的内摩擦力 。
2.1.2 大气的物理特性与标准大气
1、大气的物理特性 (4)可压缩性 • 气体的可压缩性是指当气体的压强改变时其密
2.2.1空气流动基本规律
• 单位时间内流过截面的流体质量,即质量流量qm:
•
qm=ρvA
ρ 流体密度,kg/m3;
v 流体流速,m/s ;
A 所取截面面积,m2;
• 单位时间内通过截面A-A和B-B的流体的质量流量 应相等
qm1=qm2=常数 ρ1v1A1=ρ2v2A2=常数
这就是质量方程或连续方程。
机翼的迎角
飞机在飞行中,会有不同的飞行姿态。飞行姿态不同,迎角的正、负、大、小一般也不同。即 相对气流方向和翼弦平面下表面的夹角为正迎角,相对气流方向和翼弦平面上表面的夹角为负 迎角。机翼的迎角改变后,流线谱会改变,压力分布也随之改变,压力中心发生前后移动。