九年级数学圆周角和圆心角的关系3
九年级数学圆周角和圆心角关系

对的弧相等,所以整个圆也被 B
C
等分成360份。我们把每一份这
样的弧叫做1°的弧。
在同圆或等圆中,圆心角的度数和它所对的 弧的度数相等。
点与圆的位置关系有哪些?
当角的顶点发生变化时,这个角的位置有哪几种情况?
圆周角
A.
A.
A.
O.
O.
O.
B
C
பைடு நூலகம்
B
C
B
C
圆周角定义: 顶点在圆上,
并且两边都和圆相交的角
A
叫圆周角.
特征:
① 角的顶点在圆上.
② 角的两边都与圆相交. B
.
O C
1.判别下列各图形中的角是不是圆周角。
A
O B
⌒ ⌒
有没有圆周角? 有没有圆心角? 它们有什么共同的特点?
C 它们都对着同一条弧
下列图形中,哪些图形中的圆心角∠BOC 和圆周角∠A是同对一条弧。
A
A
O B
A O
B
C
O
D
C
BC
A
A
O
B
D C
O
B
C
自己动手量一量同一条弧所对的圆心角和 圆周角分别是多少度?
A A
O
O
B
C
B
C
一条弧所对的圆周角等于它所对的圆心角的一半
证明:一条弧所对的圆周角等于它所对的圆心角的一半
A
O
B
C
证明:一条弧所对的圆周角等于它所对的圆心角的一半
A O
B
C
练习:
D
1.求圆中角X的度数
C 120°
O
.O
C
70° x
圆周角圆心角关系

圆周角圆心角关系
圆周角和圆心角的关系
(一)定义
1. 圆周角:指圆的弧形轨迹沿着单位圆上某点旋转的路径轨迹水平方
向的转角,量度单位是弧度,它与普通角相比拥有更高的精度。
2. 圆心角:指两个线段(线段A和线段B)与其中一个(以下简称A)所共享的端点,A的直角顶点定义的角。
它的量度单位也是弧度。
(二)关系
1. 两种角的关系被称为帕斯卡定理:圆周角和圆心角之和为两线段所
围成的平行四边形的角的三倍。
2. 圆周角的具体值可以通过求线段A、B与圆上的一个点之间的距离,和线段A、B的距离来确定,最终得出:圆周角=(线段A、B的距离-
圆上点到线段A、B的距离)/2。
3. 若圆心角有定值,则可以通过圆周角得知圆上点到线段A、B的距离:圆上点到线段A、B的距离=线段A、B的距离-2*圆周角。
(三)应用
1. 圆周角和圆心角的关系最常见的应用就是用圆周角计算圆周上物体运动的路程。
2. 天文学中圆周角和圆心角的关系也有很多,例如行星运行轨迹和太阳系其他星系的位置等都是以圆周角和圆心角之间的关系来建立的。
3. 圆周角和圆心角在数学中也有很多应用,例如:确定三角形内某点的坐标,以及求山形线、圆锥线和圆柱曲线等的方法等。
《圆周角和圆心角的关系》圆PPT优秀课件

3-5题
• 祝你成功!
驶向胜利 的彼岸
结束寄语
下课了!
•要养成用数学的语言去说 明道理,用数学的思维去 解读世界的习惯.
梦想的力量 当我充满自信地,朝着梦想的方向迈进
并且毫不畏惧地,过着我理想中的生活 成功,会在不期然间忽然降临!
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
B
●
O
∴ ∠ABC = ∠AOC.
你能写出这个命题吗?
一条弧所对的圆周角等于它所 对的圆心角的一半.
议一议
6
圆周角和圆心角的关系
• 如果圆心不在圆周角的一边上,结果会怎样? • 3.当圆心(O)在圆周角(∠ABC)的外部时,圆周角 ∠ABC与圆心角∠AOC的大小关系会怎样? A
老师提示:能否也转化为1的情况?
A C
●
A
A C C B
●
O
B
●
O
O
B
教师提示:注意圆心与圆周角的位置关系.
议一议
4
圆周角和圆心角的关系
• 1.首先考虑一种特殊情况: • 当圆心(O)在圆周角(∠ABC)的一边(BC)上时,圆周角 A ∠ABC与圆心角∠AOC的大小关系. C ∵∠AOC是△ABO的外角, 老师期望: ∴∠AOC=∠B+∠A. 你可要理 O ∵OA=OB, 解并掌握 ∴∠A=∠B. 这个模型. B ∴∠AOC=2∠B. 一条弧所对的圆周角等于它所 即 ∠ABC = ∠AOC. 对的圆心角的一半. 你能写出这个命题吗?
想一想
2
驶向胜利 的彼岸
类比圆心角探知圆周角
2024北师大版数学九年级下册3.4.1《圆周角和圆心角的关系》教案

2024北师大版数学九年级下册3.4.1《圆周角和圆心角的关系》教案一. 教材分析《圆周角和圆心角的关系》是北师大版数学九年级下册第3.4.1节的内容。
本节课主要让学生了解圆周角和圆心角的关系,掌握圆周角定理,并能够运用该定理解决一些实际问题。
教材通过引入圆周角和圆心角的概念,引导学生探究它们之间的关系,从而得出圆周角定理。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的周长和面积的计算方法。
他们具备一定的观察、分析和推理能力。
但是,对于圆周角和圆心角的关系,他们可能还没有直观的认识,需要通过实例和推理来理解和掌握。
三. 教学目标1.让学生了解圆周角和圆心角的概念,理解它们之间的关系。
2.让学生掌握圆周角定理,并能够运用该定理解决一些实际问题。
3.培养学生的观察能力、推理能力和解决问题的能力。
四. 教学重难点1.圆周角和圆心角的关系。
2.圆周角定理的证明和运用。
五. 教学方法1.采用问题驱动法,引导学生发现问题、分析问题和解决问题。
2.利用几何画板和实物模型,直观地展示圆周角和圆心角的关系。
3.采用小组合作学习,让学生在讨论中共同探究和解决问题。
4.通过练习题,巩固所学知识,提高解题能力。
六. 教学准备1.准备几何画板和实物模型,用于展示圆周角和圆心角的关系。
2.准备相关的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用几何画板或实物模型,展示一个圆和一些圆周角、圆心角,让学生观察它们之间的关系。
提问:你们觉得圆周角和圆心角有什么关系呢?2.呈现(10分钟)引导学生通过观察和推理,发现圆周角和圆心角的关系。
呈现圆周角定理:圆周角等于它所对圆心角的一半。
让学生理解并记住这个定理。
3.操练(10分钟)让学生分组讨论,每组设计一个实例,验证圆周角定理。
每组选取一个代表进行汇报,其他组进行评价。
通过这个过程,让学生加深对圆周角定理的理解。
4.巩固(10分钟)让学生独立完成一些相关的练习题,巩固所学知识。
九年级数学圆周角与圆心角的关系

解决几何作图题
在数学竞赛中,利用圆周 角定理可以解决一些几何 作图题。
05
练习与思考
基础练习题
1、题目
已知⊙O的半径为5cm,圆心角 ∠AOB = 100°,则弦AB的长为
_______.
2、题目
已知$angle AOB = 60^{circ}$, 点$P$是$OB$上一点,$OP =
5$,则以点$P$为圆心,与 $OA$相切的圆中最小的半径为
学习目标
理解圆周角和圆心角 的定义及性质。
能够运用圆周角与圆 心角的关系解决实际 问题。
掌握圆周角与圆心角 之间的定理及其证明。
02
圆周角与圆心角的基本概 念
圆周角的定义
顶点在圆上,两边都和圆相交的角叫 做圆周角。
圆周角等于它所夹弧所对的圆心角的 一半。
圆心角的定义
顶点在圆心上,两边都和圆相交的角叫做圆心角。 圆心角等于的半径
利用圆周角定理,可以确定一个点在 圆上的位置。
通过圆周角定理,可以计算出圆的半 径。
绘制圆的切线
利用圆周角定理,可以绘制出圆的切 线。
在数学竞赛中的应用
解决几何证明题
在数学竞赛中,利用圆周 角定理可以证明一些几何 命题。
解决几何计算题
通过圆周角定理,可以解 决一些几何计算题,例如 计算角度或长度。
证明过程还可以通过其他方法,如利用相似三角形来证明。
定理的应用示例
应用示例1
证明两个圆周角相等。如果两个 圆周角所对的弧相等,那么这两 个圆周角相等,这是圆周角定理
的一个直接应用。
应用示例2
计算圆心角的大小。已知一个圆周 角的大小,可以利用圆周角定理计 算出它所对的圆心角的大小。
应用示例3
九年级数学圆周角和圆心角知识点

九年级数学圆周角和圆心角知识点引言:数学作为一门博大精深的学科,其中的几何知识在我们的日常生活中无处不在。
而在九年级数学学习中,圆周角和圆心角是我们必须理解和掌握的重要概念之一。
本文将深入探讨九年级数学中的圆周角和圆心角知识点,希望能够为同学们的学习提供一些帮助。
一、圆周角圆周角是指一个图形所对的圆的圆周上的一部分,以弧所对的角叫做圆周角。
我们可以通过弧所对的圆心角来计算圆周角的大小。
假设圆的半径为r,圆弧对应的圆心角为θ(弧度制),那么圆周角的度数就是θ的度数。
例如,当θ为π/2时(即90度),圆周角也是90度。
圆周角的度数取决于其对应的圆心角的度数大小,换言之,圆周角可以看作是圆心角对应弧的一种度数表示。
二、圆心角圆心角是指圆周上任意两点连线与定点所夹的角,定点即为圆心。
通过圆心角的大小,我们可以判断出对应弧的长短和角的大小。
圆周上的所有圆心角的和等于360度,这是因为360度对应于一整个圆周。
根据圆心角的大小,我们可以将其分为三类:锐角、直角和钝角。
如果一个圆心角的度数小于90度,则称之为锐角;如果一个圆心角的度数等于90度,则称之为直角;如果一个圆心角的度数大于90度但小于180度,则称之为钝角。
三、圆周角和圆心角的关系圆周角和圆心角有着密切的联系。
首先,同一个圆弧所对应的圆心角和圆周角的度数相等。
这是因为,圆周角可以看作是圆心角对应的弧的度数表示。
其次,同一个圆的圆周角之和等于360度。
这是由圆心角之和等于360度所决定的。
另外,当两个圆心角的度数相等时,它们所对应的圆周角的度数也是相等的。
四、常见的圆周角和圆心角问题在九年级数学学习中,我们经常会遇到一些与圆周角和圆心角相关的问题。
下面我们来讨论一些常见的问题类型。
问题类型一:已知圆心角的度数,求圆周角的度数。
根据前文的介绍,我们可以直接通过圆心角的度数来确定圆周角的度数。
例如,当圆心角的度数为120度时,对应的圆周角的度数也为120度。
3.4.1圆周角和圆心角的关系(教案)

在今天的教学中,我发现学生们对圆周角和圆心角的关系这一部分内容兴趣浓厚,但也存在一些理解上的难点。首先,他们对圆周角和圆心角的定义掌握得相对较好,但在应用到具体问题时,还是会出现一些困惑。我意识到,这主要是因为他们在将理论知识转化为实际应用时,缺乏足够的练习和经验。
在讲授过程中,我尽量用生动的例子和直观的图形来解释这两个概念,但效果似乎并不如预期。我反思,可能需要更多的互动和实际操作,让学生在动手实践中感受圆周角和圆心角的关系。比如,可以设计一些更具挑战性的题目,让学生分组讨论,通过合作解决问题,加深对知识点的理解。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆周角和圆心角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
还有一个值得注意的问题是,在小组讨论过程中,部分学生表现出较强的依赖性,不够独立思考。针对这一问题,我将在后续教学中加强对学生的引导,培养他们独立思考的能力,鼓励他们大胆提出自己的观点和疑问。
三、教学难点与重点
1.教学重点
-理解并掌握圆周角和圆心角的定义:这是本节课的基础,要求学生能够明确圆周角和圆心角的含义,并能够正确画出相应的图形。
-掌握圆周角和圆心角的关系:学生需要理解在同圆或等圆中,相等的圆周角所对的圆心角相等,反之亦然。
-应用圆周角和圆心角的关系解决实际问题:学生应学会运用这一关系进行几何证明和计算,解决与圆相关的实际问题。
2.提高学生的逻辑推理能力:引导学生通过严密的逻辑推理证明圆周角和圆心角的关系,培养他们运用几何知识分析和解决问题的能力。
初中数学知识点精讲精析-圆周角和圆心角的关系

3·3圆周角和圆心角的关系要点精讲1.圆周角定义:圆周角(angle in a circular segment):顶点在圆上,并且角的两边和圆相交的角.两个特征:(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦.2.圆周角定理:同弧所对的圆周角相等,所对的圆周角都等于它所对的圆心角的一半.注意:(1)定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半.(2)不能丢掉“一条弧所对的”而简单说成“圆周角等于圆心角的一半”.在同圆或等圆中,同弧或等弧所对的圆周角相等.注意:(1)“同弧”指“同一个圆”.(2)“等弧”指“在同圆或等圆中”.(3)“同弧或等弧”不能改为“同弦或等弦”.3.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.注意:这一推论应用非常广泛,一般地,如果题目的已知条件中有直径时,往往作出直径上的圆周角——直角:如果需要直角或证明垂直时,往往作出直径即可解决问题.4.反证法:注意:用反证法证明命题的一般步骤:(1)假设命题的结论不成立;(2)从这个假设出发,经过推理论证,得出矛盾.(3)山矛盾判定假设不正确,从而肯定命题的结论正确.5.圆内角与圆外角:我们把顶点在圆内(两边自然和圆相交)的角叫圆内角(如图1.顶点在圆外并且两边都和圆相交的角叫圆外角(如图2).定理:圆内角的度数,等于它所对弧的度数与它的对顶角所对弧的度数之和的一半.圆外角的度数,等于它的两边所夹两条弧的度数的差的一半.典型例题1.已知:⊙O中,所对的圆周角是∠ABC,圆心角是∠AOC.求证:∠ABC=12 AOC.【解析】证明:∠AOC是△ABO的外角,∴∠AOC=∠ABO+∠BAO.∵OA=OB,∴∠ABO=∠BAO.∴∠AOC=2∠ABO.即∠ABC=12∠AOC.如果∠ABC的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?如图(1),点O在∠ABC内部时,只要作出直径BD,将这个角转化为上述情况的两个角的和即可证出.由刚才的结论可知:∠ABD=12∠AOD,∠CBD=12∠COD,∴∠ABD+∠CBD=12(∠AOD+∠COD),即∠ABC=12∠AOC.在图(2)中,当点O在∠ABC外部时,仍然是作出直径BD,将这个角转化成上述情形的两个角的差即可.由前面的结果,有∠ABD=12∠AOD,∠CBD=12∠COD.∴∠ABD-∠CBD=12(∠AOD-∠COD),即∠ABC=12∠AOC.2.如图示,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?[分析]由于AB是⊙O的直径,故连接AD.由推论直径所对的圆周角是直角,便可得AD⊥BC,又因为△ABC中,AC=AB,所以由等腰三角形的二线合一,可证得BD=CD.【解析】BD=CD.理由是:连结AD.∵AB是⊙O的直径,∴∠ADB=90°.即AD⊥BC.又∵AC=AB,∴BD=CD.3.为什么有些电影院的坐位排列(横排)呈圆弧形?说一说这种设计的合理性.【解析】有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.4.如下图,哪个角与∠BAC相等?【解析】∠BDC=∠BAC.5. 如下图,⊙O的直径AB=10 cm,C为⊙O上的一点,∠ABC=30°,求AC的长.【解析】∵AB为⊙O的直径.∴ACB=90°.又∵∠ABC=30°, ∴AC=21AB=21×10=5(cm). 6.小明想用直角尺检查某些工件是否恰好为半圆形,根据下图,你能判断哪个是半圆形?为什么?【解析】图(2)是半圆形、理由是:90°的圆周角所对的弦是直径.7.船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁,如下图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形区域内,C 表示一个危险临界点,∠ACB 就是“危险角”.当船与两个灯塔的夹角大于“危险角”时,就有可能触礁;当船与两个灯塔的夹角小于“危险角”时,就能避免触礁.(1)当船与两个灯塔的夹角∠α大于“危险角”时,船位于哪个区域?为什么? (2)当船与两个灯塔的夹角∠α小于“危险角”时,船位于哪个区域?为什么? 分析:这是一个有实际背景的问题,由题意可知:“危险角” ∠ACB 实际上就是圆周角,船P 与两个灯塔的夹角为∠α,P 有可能在⊙O 外,P 有可能在⊙O 内,当∠α>∠C 时,船位于暗礁区域内;当∠α<∠C 时,船位于暗礁区域外,我们可采用反证法进行论证. 【解析】(1)当船与两个灯塔的夹角∠α大于“危险角” ∠C 时,船位于暗礁区域内(即⊙O 内),理由是:连结BE ,假设船在(⊙O 上,则有∠α=∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 上;假设船在⊙O 外,则有∠α<∠AEB ,即∠α<∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 外.因此.船只能位于⊙O 内.(2)当船与两个灯塔的夹角∠α小于“危险角”∠C时,船位于暗礁区域外(即⊙O 外).理由是:假设船在⊙O上,则有∠α=∠C,这与∠α<∠C矛盾,所以船不可能在⊙O上;假设船在⊙O内,则有∠α>∠AEB,即∠α>∠C.这与∠α<∠C矛盾,所以船不可能在⊙O内,因此,船只能位于⊙O外.8.如图,已知在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D.求BC、AD和BD的长.分析:由AB为直径,知∠ACB=90°,又AC、AB已知,可由勾股定理求BC.又∠ADB=90°,AD=DB,由勾股定理可求AD、BD.【解析】∵AB为直径,∴∠ACB=∠ADB=90°,又∵AB=10cm,AC=6cm,又∵CD是∠ACB的平分线,∠ACD=∠DCB,∴AD=DB.在 Rt∠ADB中,9.已知AB是⊙O的直径,AE是弦,C是的中点,CD⊥AB于D,交AE于F,CB交AE于G.求证:CF=FG.分析:如图7—107,要证CF=FG,只需证∠FCG=∠FGC.由已知,∠FCG与∠B互余.如果连结AC,∠ACB=90°.∠FGC与∠CAG互余.【解析】证明:连结AC,∵AB为直径,∴∠ACB=90°,∠FGC=90°-∠CAE.又∵CD⊥AB于D,∠FCG=90°-∠B,∴∠FGC=∠FCG.因此,CF=FG.10.如图,AB 是⊙O 的直径. ABCDO(1)若OD ∥AC ,与 的大小有什么关系?为什么?(2)把(1)中的条件和结论交换一下,还能成立吗?说明理由. 【解析】(1)=延长DO 交⊙O 于E . ∵AC ∥OD , ∴=. ∵∠1=∠2, ∴=. ∴=.(2)仍成立,延长DO 交⊙O 于点E ,连结AD . ∵=,=, ∴=. ∴∠3=∠D . ∴AC ∥OD .11.如图,⊙O 上三点A 、B 、C ,AB =AC ,∠ABC 的平分线交⊙O 于点E ,∠ACB 的平分线交⊙O 于点F ,BE 和CF 相交于点D ,四边形AFDE 是菱形吗?验证你的结论. AB CDEFO【解析】四边形AFDE 是菱形.证明:∵∠ABC=∠ACB, ∠ABE=∠EBC=∠ACF=∠FCB. 又∠FAB ,∠FCB 是同弧上的圆周角, ∴∠FAB=∠FCB ,同理∠EAC=∠EBC. 有∠FAB=∠ABE=∠EAC=∠ACF.∴AF ∥ED ,AE ∥FD 且AF=AE. ∴四边形AFDE 是菱形.12.如图是一大型圆形工件被埋在土里而露出地表的部分.为推测它的半径,小亮同学谈了他的做法:先量取弦AB 的长,再量中点到AB 的距离CD 的长,就能求出这个圆形工件的半径.你认为他的做法合理吗?如不合理,说明理由;如合理,请你给出具体的数值,求出半径,与同伴交流.BDCDEO1 23CABD【解析】小亮的做法合理.取AB=8 m ,CD=2 m, 设圆形工件半径为r, ∴r 2=(r -2)2+42. 得r=5(m).13.如图,现需测量一井盖(圆形)的直径,但只有一把角尺(尺的两边互相垂直,一边有刻度,且两边长度都长于井盖的半径),请配合图形,用文字说明测量方案,写出测量的步骤.(要求写出两种测量方案)【解析】方案1:使角尺顶点在圆上,角尺两边与圆两交点连接就是圆的直径,用刻度尺量出直径.方案2:任画圆的一条弦,用尺量出弦的中点,利用角尺过弦中点做弦的垂线,垂线与圆的两交点间的线段为圆的直径.14.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD . (1)P 是上一点(不与C 、D 重合),求证:∠CPD =∠COB .(2)点P ′在劣弧CD 上(不与C 、D 重合)时,∠CP ′D 与∠COB 有什么数量关系?请证明你的结论.BA CDOP【解析】(1)证明:连结OD, ∵AB 是直径,AB ⊥CD, ∴=.∴∠COB=∠DOB=21∠COD. 又∵∠CPD=21∠COD, ∴∠CPD=∠COB. (2)∠CP ′D 与∠COB 的数量关系是:∠CP ′D+∠COB=180°.证明:∵∠CPD+∠CP ′D=180°,∠COB=∠CPD, ∴∠CP ′D+∠COB=180°15.(9分)已知,如图20,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC,过点C 作直线CD ⊥AB 于D(AD<DB),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙O 于点F,连接AF 与直线CD 交于点G.(1)求证:AC 2=AG ·AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.AB CD OEGF【解析】(1)证明:连接CB ,∵AB 是直径,CD ⊥AB , ∴∠ACB =∠ADC =90°. ∴Rt △CAD ∽Rt △BAC . ∴得∠ACD =∠ABC . ∵∠ABC =∠AFC , ∴∠ACD =∠AFC . ∴△ACG ∽△ACF . ∴ACAF AG AC. ∴AC 2=AG ·AF . (2)当点E 是AD (点A 除外)上任意一点,上述结论仍成立 ①当点E 与点D 重合时,F 与G 重合, 有AG =AF ,∵CD ⊥AB ,∴=, AC =AF . ∴AC 2=AG ·AF .②当点E 与点D 不重合时(不含点A )时,证明类似①.。
2024年《圆周角和圆心角的关系》说课稿

2024年《圆周角和圆心角的关系》说课稿《圆周角和圆心角的关系》说课稿1“圆周角和圆心角的关系”是义务教育课程标准实验教科书北师大版九年级数学下册第三章第三节的内容,共两个课时,下面我从第一个课时的设计进行说明.一、教材分析本课是在学习了圆的各种概念和圆心角后进而要学习的圆的又一个重要的性质,它在推理、论证和计算中应用比较广泛,是本章重点内容之一。
1、本节知识点(1)圆周角的概念(2)圆周角的定理2、教学目标(1)理解并掌握圆周角的概念;(2)掌握圆周角定理,并能熟练地运用它们进行论证和计算;(3)通过圆周角定理的证明,使学生了解分情况证明数学命题的思想和方法。
教学重点:圆周角定理。
教学难点:认识圆周角定理需要分三种情况逐一证明的必要性。
(重点与难点的突破将在教学过程中详细说明)二、本节教材安排本节共分两个课时,第一课时主要研究圆周角和圆心角的关系,第二课时研究圆周角定理的几个推论,并解决一些简单问题。
今天我向大家汇报的是第一课时的设计。
三、教学方法数学教学是师生之间、学生之间交往互动与共同发展的过程,因此,我认为教法与学法是密不可分的。
本节主要采取探究合作、启发引导的教学方法,多媒体的运用,激发了学生探究合作的积极性,为教师的启发引导提供了生动的素材,使学生获得知识,形成技能。
四、教学步骤(一)、旧知回放,探索新知(圆周角的概念的突破)1、出示课件,演示将圆心角的顶点由圆心拖至圆上,请同学们仿照圆心角的概念给形成的新角起名字,学生很容易的就会命名为圆周角。
2、引导学生进行讨论,规范圆周角的概念。
(设计意:让学生学好基础知识、基本概念,识别其内容反映出来的数学思想和方法,培养学生的基本技能、分析问题和解决问题的能力,使学生通过自己的观察与探索,发现、理解并掌握圆周角的定义。
)特别说明:本节的引入我采用了动态演示的方法,从学生已知的圆心角出发,引申到这节课要学的圆周角,便于学生在已有的知识基础上掌握所学,符合学生的认知规律.本节教材中给出的引例是一个生动而实际的例子,但我并没有采用它,是因为这个例子映射的是"同弧所对的圆周角相等"的知识点,它要引出的是第二课时的内容.本着活用教材原则,在深入挖掘教材之后,我觉得这个例子放在第一课时并不太合适.3、巩固练习,看谁最棒(请同学们判断各形的角是否是圆周角,并说明理由。
北师大版九年级数学下册:第三章3.4.2《圆周角和圆心角的关系》精品说课稿

北师大版九年级数学下册:第三章 3.4.2《圆周角和圆心角的关系》精品说课稿一. 教材分析北师大版九年级数学下册第三章《圆周角和圆心角的关系》的内容,是在学生已经掌握了圆的基本概念、圆的度量等知识的基础上进行教授的。
这一节内容主要介绍了圆周角和圆心角的关系,即圆周角等于其所对圆心角的一半。
这是圆的重要性质之一,对于学生理解圆的性质和应用具有重要的意义。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于圆的基本概念和度量知识有一定的了解。
但是,对于圆周角和圆心角的关系的理解,可能还需要进一步的引导和解释。
因此,在教学过程中,我将会注重学生的参与和实践,通过举例和练习,让学生深入理解圆周角和圆心角的关系。
三. 说教学目标1.知识与技能:学生能够理解圆周角和圆心角的关系,能够运用这一性质解决相关问题。
2.过程与方法:学生通过观察、实践和思考,培养观察能力和逻辑思维能力。
3.情感态度与价值观:学生培养对数学的兴趣,提高自信心,培养合作和探究的精神。
四. 说教学重难点1.教学重点:学生能够理解圆周角和圆心角的关系,能够运用这一性质解决相关问题。
2.教学难点:学生能够理解和证明圆周角等于其所对圆心角的一半。
五. 说教学方法与手段在教学过程中,我将采用问题驱动法和案例教学法。
通过提问和举例,引导学生思考和探索圆周角和圆心角的关系。
同时,我会利用多媒体教学手段,如PPT 和动画,来辅助解释和展示圆周角和圆心角的关系。
六. 说教学过程1.导入:通过提问和回顾,引导学生回顾已知的圆的知识,为新课的学习做好铺垫。
2.讲解:详细讲解圆周角和圆心角的关系,通过图示和实例,让学生直观地理解这一性质。
3.练习:给出一些练习题,让学生运用圆周角和圆心角的关系解决问题,巩固所学知识。
4.拓展:给出一些拓展题,让学生进一步思考和探索圆周角和圆心角的关系的应用。
5.小结:对本节课的内容进行总结,强调圆周角和圆心角的关系的重要性。
圆周角和圆心角的关系精品PPT课件

演讲人:XXXXXX
时 间:XX年XX月XX日
2、练习
①②
顶两
点边
A
在分
圆别
上与
圆
还
有
另
一
个
交
点
A
二、认识圆周角
A
P
B
P
B
O
O
P O
B
P
O
A
B
P O
A
B
三、探究圆周角与圆心角的关系
环节一:作图
.A B.
●O
我们今天就研究一条弧所对 圆周角与圆心角的大小关系
一条弧对1个圆心角,对无数个圆周角 从圆心与圆周角的位置关系来看,我们可以将这无数个圆心角分成三类:圆 心在圆周角的边上,圆心在圆周角的内部,圆心在圆周角的外部。
∠ABC=
1 2
∠AOC
三、探究圆周角与圆心角的关系 环节四:得出结论 圆周角定理 圆周角的度数等于它所对弧上的圆心角度数的_一__半__。
推论
同弧或等弧所对的圆周角______相__等。
三、探究圆周角与圆心角的关系
环节五:针对练习
1、如图,在⊙O中,∠BOC=50°,则∠BAC=
。
2、如图,点A,B,C是⊙O上的三点,∠BAC=40°,则∠BOC=
所用知识:①外角等于不相邻的 两个内角之和;②圆的半径相等
三、探究圆周角与圆心角的关系
环节三:推理证明
AD C
O
连接BO并延长作直径,将问题
转化为第一种情况解答,转化
B
是一种很重要的数学方法
∠B=
1 2
∠AOC
三、探究圆周角与圆心角的关系 环节三:推理证明
A C
人教版数学九年级圆心角和圆周角关系定理的理解和解题运用

人教版数学九年级圆心角与圆周角关系定理的理解与解题运用一、知识解读1、圆周角与圆心角的关系:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半。
在理解关系定理的内涵时,要理清如下几点:①定理的使用范围:必须在同圆中,这是一种情况;第二是必须在等圆中。
否则,不能乱用定理。
②理解好两种等量关系一是同弧所对的圆周角相等,二是等弧所对的圆周角相等。
这是寻找角相等的基本方向。
③确定准圆周角的度数大小一是同弧所对的圆周角相等,且等于这条弧所对圆心角的一半。
二是等弧所对的圆周角相等,且等于这条弧所对圆心角的一半。
④理解好“一半”的意义在这里,有两层意义:一是当同弧或等弧所对的圆周角与圆心角度数不知道时,满足如下等量关系: 设所对的圆周角是∠1,所对的圆心角是∠2,则∠1=21∠2,或∠2=2∠1, 二是当同弧或等弧所对的圆周角与圆心角度数知道时,满足如下等量关系: 设所对的圆周角是∠1=x °,所对的圆心角是∠2=y °,则x=21 y °,或y=2 x °, 2、推论在同圆或等圆中,半圆所对的圆周角是直角;直径所对的圆周角是直角;90°的圆周角所对的弦是直径。
二、考点剖析考点1、直接用定理例1、如图1所示,⊙O 中,弦AB DC ,的延长线相交于点P ,如果120AOD ∠=o ,25BDC ∠=o ,那么P ∠= .方法解读:∠AOD 、∠ABD 是同一条弧,AD 弧上的圆心角和圆周角,根据定理就能求∠ABD 的度数; ∠ABD 是三角形PBD 的一个外角,所以,∠ABD=∠BDC+∠P ;这样,就把所求与已知联系起来了。
解:因为,∠AOD 、∠ABD 是同一条弧,AD 弧上的圆心角和圆周角,所以,∠ABD=21∠AOD=21×120°=60°, 因为,∠ABD 是三角形PBD 的一个外角,所以,∠ABD=∠BDC+∠P ,因为,∠BDC=25°,所以,∠P=60°-25°=35°。
人教版九年级数学上册《33圆周角和圆心角的关系》课件

B C A2 B A2 C 12 0 6 2 8
·O
B
∵CD平分∠ACB,
∴AD=BD.
D
又在Rt△ ABD中,AD2+BD2=AB2, A D B D 2A B 初中数2 学资 源1 网052(cm ) 22
当堂训练
1.判断题:
(1)等弧所对的圆周角相等.
(√ )
(2)相等的圆周角所对的弧也相等.(X )
角,这些个角的大小有什么关系?为什么? 如图2,圆中A⌒B=E⌒F,那么∠C和∠G的大小
有什么关系?为什么?
A
C G
E
●O
C
B
D 图1
A
O
F B
图2 E
由此你能得出什么结论?
新知探究2
如图,圆中∠C=∠G,那么 ⌒ AB和 E⌒的F 大小有
什么关系?为什么?
C G
A
O
F B
E
由此你又能得出什么结论?
圆周角定理的推论1: 用于找相 等的角
同圆或等zx圆xkw 中,同弧或等弧所对的圆周角相等; 相等的圆周角所对的弧也相等.
用于找相 等的弧
问题讨论
1.如图(1),BC是⊙O的直径,A是⊙O上 任一点,你能确定∠BAC的度数吗? 2.如图(2),圆周角∠BAC =90º,弦BC经过
圆心O吗?为什么?
A
E
A
B
O
C
B
●O
C
图(F1)
图(2)
由此你能得出什么结论?
圆周角定理的推论2: 用于构造角
半圆(或直径)所对的圆周角是直角; 90°的圆周角所对的弦是直径。
用于判断某条弦 是否是直径
圆周角定理的推论:
北师大版九年级数学下册《圆——圆周角和圆心角的关系》教学PPT课件(6篇)

D
O2
O1
E
B
F
新知探究
【跟踪训练】
1.圆内接四边形ABCD中,∠A, ∠B, ∠C的度数之比是
135°
1:2:3,则这个四边形最大角的度数是_________.
D
A
2.四边形ABCD内接于圆,AD∥BC,AB+CD=AD+BC ,
25
若AD=4,BC=6,则四边形ABCD的面积为_______.
A
A
O
O
BB
C
C
课堂小测
3. 如图,点B,C在⊙O上,且BO=BC,则圆周角∠BAC等于( D )
A
A.60°
B.50°
C.40°
D.30°
O
B
C
课堂小测
4 . 如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E.若
∠AOD=60°,则∠DBC的度数为( A)
A.30°
B.40°
C.50°
B
D.60°
D
C
OC垂直平分AD
(1)OC与AD的位置关系是__________________;
A
平行
(2)OC与BD的位置关系是___________;
4
(3)若OC=2cm,则BD=______cm.
O1
O
B
新知探究
4.如图,△ABC的顶点均在⊙O上, AB=4, ∠C=30°,求⊙O的直径.
解:连接AO并延长交⊙O于点E,
3 . 当圆心(O)在圆周角(∠ABC)的外部时,圆周角∠ABC与圆
心角∠AOC的大小关系会怎样?
提示:能否也转化为1的情况?
A
C
过点B作直径BD.由1可得:
《圆周角和圆心角的关系》圆PPT课件3(1)

E
●O
C
B
D
A
E B
C D
同弧或等弧所对的圆周角相等。
如图,在⊙O中,∠B,∠D,∠E的大小有什么关系?
为什么?
D
同弧或等弧所对的圆周角相等; 同圆或等圆中,相等的圆周角所 对的弧也相等。
B E
●O
A
C
⑴“同弧或等弧”能否改为“同弦或等弦” 不能 ?
⑵ “同圆或等圆”这一条件能否省去? 不能
随堂练习: 1.如图,在⊙O 中,∠BOC=50°,求∠BAC 的大小。
圆周角定理推论:
C
同弧(等弧)所对的圆周角相等.
都等于这条弧所对的圆心角的一半.
D
O
A
在同圆或等圆中, B 相等的圆周角所对的弧相等.
• 想一想:
• 在射门游戏中,当球员在B,D,E处射门时,他所处的位置对球 门AC分别形成三个角∠ABC, ∠ADC,∠AEC.这三个角的大 小有什么关系?你能用圆周角定理去解决问题。
九年级数学(下)第三章 圆
3.4 圆周角和圆心角的关系
A
E B
C D
知识回顾
1.圆是轴对称图形. 圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.
2.圆也是中心对称图形. 它的对称中心就是圆心.
3.顶点在圆心的角叫做圆心角.
4.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对 的弦相等。
A
E
●O
C
B
D
A
E B
C D
圆周角定义:
A
顶点在圆上,并且两边都和圆 E
相交的角叫圆周角.
●O
C
B
特征: ① 角的顶点在圆上. ② 角的两边都与圆相交 .
最新北师大版九年级数学下册《圆周角和圆心角的关系》优质教学课件

证明:连接BD.
AB = AD,BAD = 60, B
O
△ABD是等边三角形, ABD = 60.
C
D
ACD = ABD = 60.
证明:
四边形ABCD是圆内接四边形,
BCD BAD =180.
又∵BAD = 60,
BCD =120. AB = AD,
B
ACB = ACD. ACD = 1 BCD = 60.
2.与圆周角有关的问题:弦的 条件需转化成弧的条件。
A O
C
D
1.要理解好圆周角定理的推论. 2.构造直径所对的圆周角是圆中的常用方法.引辅助线的 方法: (1)构造直径上的圆周角. (2)构造同弧所对的圆周角. 3.要多观察图形,善于识别圆周角与圆心角,构造同弧所 对的圆周角也是常用方法之一.
同弧或等弧所对的圆周角相等
教师寄语
我们一生中要认识许多人,组建许多 集体,在集体生活中,我们要学会理解和 宽容,关爱和担当,才能被赋予更大的责 任,从而拥有更多发展的机会,更好的参 与社会、国家的建设,让我们与集体共同
感谢各位聆听
B、60°;
P
C、90°;
D、45°
3、如图,∠A=50°, ∠ABC=60 °
BD是⊙O的直径,则∠AEB等于( B)
A、70°;
B、110°;
C、90°;
D、120°
B
4、如图,△ABC的顶点A、B、C
都在⊙O上,∠C=30 °,AB=2,
则⊙O的半径是 2 。
解:连接OA、OB
∵∠C=30 ° ,∴∠AOB=60 °
B C
A
O
D
EF
1.掌握圆周角定理几个推论的内容,会熟练运 用推论解决问题. 2.培养学生观察、分析及理解问题的能力. 3.在学生自主探索推论的过程中,经历猜想、 推理、验证等环节,获得正确的学习方式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选]治疗胃溃疡肝胃不和证应首选()A.化肝煎合左金丸加减B.贯煎合芍药甘草汤加减C.黄芪建中汤加减D.柴胡疏肝散合五磨饮子加减E.活络效灵丹合丹参饮加减 [单选]典型肺炎链球菌肺炎体征描述,不正确的是()A.患侧呼吸运动减弱B.患侧语颤减弱C.患侧叩诊呈浊音D.患侧听诊有支气管呼吸音、湿性啰音E.累及胸膜时,可闻及胸膜摩擦音 [名词解释]适配的灵活性 [单选,共用题干题]患者男,67岁,因“反复第1跖趾关节肿痛2年,发作2天”来诊。查体:关节局部红肿、压痛,体温37.5℃,无外伤史。诊断痛风最重要的关节液检查指标是()。A.白细胞计数增高B.细菌培养阳性C.大量的磷酸盐晶体D.尿酸盐晶体E.关节液内大量坏死组织 [单选]当设备及零部件表面有锈蚀时,应进行除锈处理,当金属表面粗糙度Ra为3.2~1.6(μm)时,可以采用的除锈方法有()。A.钢丝刷除锈B.粗砂布打磨C.酸洗除锈D.刮具除锈 [单选,A4型题,A3/A4型题]男,70岁.受凉后发热,伴胸痛2天,T38.5℃。近2个月来,常有干咳,少量白色泡沫痰,无咯血及痰中带血。体格检查,左下肺呼吸音减弱,心音正常。胸片:左下肺叶见直径3cm的块影,分叶状,边缘毛糙。首先考虑诊断是()A.肺癌B.肺脓肿C.肺结核D.肺炎E.肺 [单选]关排出阀启动时启动功率较小的是()。A.旋涡泵B.离心泵C.螺杆泵D.齿轮泵 [多选]命令统一原则,的内容的说法正确的是?()A、命令的精神要一致B、命令要逐级发布C、避免多头指挥D、监督不等于命令 [单选]显示卡上的显示存储器是()。A、随机读写RAM且暂时存储要显示的内容B、只读ROMC、将要显示的内容转换为显示器可以接受的信号D、字符发生器 [判断题]中医学把人体看成一个以脏腑经络为核心的有机整体。把人和自然界一切事物都看成是阴阳对立统一的两个方面。A.正确B.错误 [单选]氮氧化物控制技术中的()是与SCR工艺操作相关的关键因素。A.催化剂活泼B.催化剂失活和烟气中残留的氨C.空气预热D.燃烧产生的烟尘 [单选]初0%B.±25%C.±30%D.±40% [单选,A型题]急腹症的说法,以下哪项不对()A.下腹急性疼痛属于急腹症B.诊断时主要考虑消化道疾病C.疑为肠梗阻的患者,拍站立及仰卧正位片各一张D.不进行检查前准备E.肠梗阻症状开始的3~6小时内,X线检查可能是阴性结果 [单选]某医院用两种方案治疗急性肝炎,观察疗效为:无效、好转、显效和痊愈。比较两种方案疗效之间的差别,应采用的统计分析方法是()A.X2检验B.t检验C.方差分析D.秩和检验E.相关回归分析 [单选,B1型题]蟾酥的功效是()A.杀虫,解毒,截疟B.杀虫,解毒,通便C.杀虫止痒,燥湿,温肾壮阳D.解毒,止痛,开窍醒神E.解毒,杀虫,止血 [单选]有关焦痂切开减压术,下列错误的是()A.常规切至深筋膜B.深筋膜下张力过高可将肌膜切开C.肢体屈侧作纵切口,不越过踝关节或腕关节D.两侧胸壁腋前线下作纵切口E.颈部作纵切口 [问答题]在野外怎样避震? [单选,B1型题]溃疡性结肠炎引起的腹泻属于()A.分泌性腹泻B.渗透性腹泻C.渗出性腹泻D.吸收不良性腹泻E.肠蠕动增强性腹泻 [单选]骨盆外测量骶耻外径(EC)的后标志点是().A.第五腰椎棘突上B.米氏菱形窝的上角C.腰骶部菱形窝的中央D.髂后上棘连线中点下2~2.5cmE.髂嵴后连线中点上1.5cm [填空题]复杂高层结构包括(),(),(),()。 [名词解释]配料周期 [单选,A1型题]经产妇,30岁,足月妊娠在家自然分娩,胎儿娩出1小时后胎盘未娩出而入院。主诉产时顺利,娩出一个中等大小男婴,分娩至现在阴道出血量中等。前次妊娠有人工剥离胎盘史,检查宫底平脐,轮廓清晰,膀胱空虚,宫口可容3指,软产道完整,脐带外露,胎盘未娩出最常见的原 [单选]力的作用点是指力在物体上的()。A.作用位置B.重心C.中心D.圆心 [单选]岩石组合是指()。A、岩石的化学成分、构造及相互作用关系和分布情况等B、岩石的结构、构造以及各种岩石的相互关系和分布情况等C、岩石的成分、颜色、构造、结构以及各种岩石的相互关系和分布情况等D、岩石的成分、构造、结构以及各种岩石的相互关系和分布情况等 [单选]正常成人妇女的乳房(不包括胸壁和肌肉)在超声断面图上,主要分为几部分()。A.3部分B.4部分C.5部分D.6部分E.7部分 [单选]《道路交通安全法》中所称的“交通事故”是指()在道路上因过错或者意外造成的人身伤亡或者财产损失事件A、车辆B、机动车C、非机动车 [多选]对韦伯定律正确的说法是()A.是指刚刚能够引起差别感觉的刺激的增量与原刺激量的比值相对不变B.适用中等强度刺激范围C.对于不同感觉通道的K值不同D.是指感觉与刺激强度的对数成正比 [单选]地形图的比例尺是1∶500,则地形图中的1mm表示地上实际的距离为()。A.0.05mB.0.5mC.5mD.50m [单选]某轮船速12kn,航行2h后相对计程仪读数差为24'.0,计程仪改正率ΔL=0%,已知该轮实际航程为24nmile,则该轮航行在()中。A.无风流B.有风无流C.有流无风D.有风流 [单选,A2型题,A1/A2型题]病理反射中最常用、且易引出的是()。A.Oppenheim征Babinski征C.Gordon征D.Romberg征E.Chaddock征 [填空题]蔷薇科的果树有()、()、()、()等 [填空题]石油主要是由()和()两种化学元素组成。 [问答题,简答题]倒油标准化条例。 [单选,A1型题]下列哪种情况下可发生紫绀()A.毛细血管血液中高铁血红蛋白超过15g/LB.毛细血管血液中血红蛋白超过150g/LC.毛细血管血液中血红蛋白少于50g/LD.毛细血管血液中还原血红蛋白超过50g/LE.毛细血管血液中还原血红蛋白少750g/L [单选]张女士,29岁,于3年前经阴道自然分娩一健康男婴,现进行妇科查体,其子宫颈正常,则形状应该是()。A.圆形B.横椭圆形C.横裂状D.纵椭圆形E.梯形 [单选,A2型题,A1/A2型题]”医乃仁术”是指()A.道德是医学活动中的一般现象B.道德是医学的本质特征C.道德是医学的个别性质D.道德是个别医务人员的追求E.道德是医学的非本质要求 [单选]船政是清政府在福州马尾创办的一个大型()与培养科技人才专业学校的管理机构。A、军事工业B、造船工业C、飞机工业D、器械制造 [填空题]天平室的温度应保持在()内,湿度应保持在()。 [单选]在每一日历年内,客户的受电变压器(含不通过受电变压器的高压电动机)5台时,可申请全部或部分用电容量的暂时停止用电()次。A.2B.3C.4D.5 [单选]就法律关系的主体而言,债的主体()。A.双方都是特定的B.双方都不是特定的C.债权人是特定的,债务人是不特定的D.债务人是特定的,债权人是不特定的