【人教A版数学必修二】PPT课件全套48
【人教版】高中数学必修二:全册配套ppt课件
H E
D A
点击 旋转长方体
G F
C B
(2).与棱 A B 所在直线异面的棱共有 4 条?
分别是 :CG、HD、GF、HE
课后思考: 这个长方体的棱中共有多少对异面直线?
BACK
NEXT
例2 如图,正方体ABCD-EFGH中,O为侧面ADHE的中心,求
(1)BE与CG所成的角? (2)FO与BD所成的角?
∠ADC与∠A1B1C1两边分别对应平行,这两组角的大小
关系如何?
D1
C1
答:从图中可看出, ∠ADC=∠A1D1C1, ∠ADC +∠A1B1C1=180 O
A1 D
B1 C
A
B
定理(等角定理):空间中,如果两个角的两边分别对应平行,
那么这两个角相等或互补.
BACK
NEXT
3.异面直线所成的角
(1)复习回顾
在平面内,两条直线相交成四 个角, 其中不大于90度的角称为它 们的夹角, 用以刻画两直线的错开 程度, 如图.
(2)问题提出
在空间,如图所示, 正方体
ABCD-EFGH中, 异面直线AB
与HF的错开程度可以怎样来刻
画呢?
BACK
NEXT
O
H E
D A
G F
C B
(3)解决问题
思想方法 : 平移转化成相交直线所成的角,即化空间图形问题为平面图形问题 异面直线所成角的定义: 如图,已知两条异面直线 a , b , 经过空间任一点O作
D1 A1
D A
C1 B1
C B
异面直线: 不同在任何一个平面内的两条直线。 (即既不平行也不相交)
异面直线的画法: b
人教A版高中数学必修第二册教学课件:事件的相互独立性
=
1 12
+
1 8
+
1 4
=
11 24
,所以事件A,B,C只发生两个的概率为
11 24
.
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
人教A版高中数学必修第二册教学课件 :事件 的相互 独立性
人教A版高中数学必修第二册教学课件 :事件 的相互 独立性
(3)记A:出现偶数点,B:出现3点或6点,
则A={2,4,6},B={3,6},AB={6},
所以P(A)= 3 = 1 ,P(B)= 2 = 1 ,P(AB)= 1 .
62
63
6
【变式训练2】端午节放假,甲回老家过节的概率为 1 ,乙、丙回老家 3
过节的概率分别为 1 ,1 .假定三人的行动相互之间没有影响,那么这段 45
时间内至少1人回老家过节的概率为 ( )
A. 59
B. 1
C. 3
D. 1
60
2
5
60
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
人教A版( 高2中01数9)学高必中修数第学二必册修教第学二课册件 教:学事课件 件的:相第互 十独章立性 10.2 事件的相互独立性(共16张PPT)
所以P(AB)=P(A)P(B),
所以事件A与B相互独立.
人教A版高中数学必修二课件:圆的方程的综合应用 (共49张PPT)
1 求圆弧C2的方程; 2曲线C上是否存在点P,满足PA 30PO?若存
在,指出有几个这样的点;若不存在,请说明理由;
3已知直线l:x my 14 0与曲线C交于E、F两
点,当EF 33时,求坐标原点O到直线l的距离.
解析:(1)圆弧C1所在圆的方程为x2 y2 169,
5
解:令圆心坐标为( a,b),半径为 r,
y
则r2 12 a2 ①
由(2)知 ACB 90 r 2 b ②
由(3)
a 2b 12 (2)2
5 5
a 2b 1 ③
. 1 r C
|a| |b| r
oA
Bx
联立①②消去 r 2b2 a2 1 ④
③④
a 2b2
2b a2
1
2 方法1:当t=0时,圆C:x 2+y 2=4;
当t=1时,圆C:x2+y2-2x-2y=0.
解方程组
x 2
x2
y2 y2
4 2x
2
y
, 解得 0
x
y
0或 2
x
y
2 0
将
x y
0 2
代入圆C的方程,左边=-4t
2+4t不恒等于0;
将
x
y
2 0
代入圆C的方程,左边=0=右边,
故圆C过定点2, 0.
方法2:将圆C的方程整理为( x 2+y 2-4)
+(-2x+4)t+(-2y)t 2=0.
x2 y2 4 0
令 2x 4 0 2 y 0
,
解得
x
y
2 0
.
故圆C过定点2, 0.
动圆过定点问题有两种解法: 一是先从动圆系中取出两个已知圆,求出它们 的交点坐标,再将求得的坐标代入动圆中验证; 二是将动圆方程改写为关于参数t的等式,再 利用多项式恒等理论列出关于x,y的方程组,解得 定点坐标.
最新人教版高一数学必修第二册(A版)(全套)精品课件
8.1 基本立体图形
最新人教版高一数学必修第二册(A 版)(全套)精品课件
8.2 立体图形的直观图
最新人教版高一数学必修第二册(A 版)(全套)精品课件
第九章 统计
最新人教版高一数学必修第二册(A 版)(全套)精品课件
9.1 随机抽样
最新人教版高一数学必修第二册(A 版)(全套)精品课件
最新人教版高一数学必修数学必修第二册(A 版)(全套)精品课件
7.1 复数的概念
最新人教版高一数学必修第二册(A 版)(全套)精品课件
最新人教版高一数学必修第二册(A 版)(全套)精品课件
8.5 空间直线、平面的平行
最新人教版高一数学必修第二册(A 版)(全套)精品课件
8.6 空间直线、平面的垂直
7.2 复数的四则运算
最新人教版高一数学必修第二册(A 版)(全套)精品课件
7.3 * 复数的三角表示
最新人教版高一数学必修第二册(A 版)(全套)精品课件
第八章 立体几何初步
最新人教版高一数学必修第二册(A 版)(全套)精品课件
6.3 平面向量基本定理及坐标表 示
最新人教版高一数学必修第二册(A 版)(全套)精品课件
6.4 平面向量的应用
第六章 平面向量及其应用
最新人教版高一数学必修第二册(A 版)(全套)精品课件
6.1 平面向量的概念
最新人教版高一数学必修第二册(A 版)(全套)精品课件
6.2 平面向量的运算
最新人教版高一数学必修第二册 (A版)(全套)精品课件目录
0002页 0066页 0166页 0227页 0291页 0359页 0459页 0536页 0614页 0661页 0722页 0788页
人教版高中数学必修二全册PPT课件
圆柱、圆锥可以看作是由矩形或三角形绕其一边所在直线旋转而成,圆台是否也可看成是某图形绕轴旋转而成?
探究点3 圆台的结构特征
圆台:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.如图:
轴
下底面
上底面
侧面
母线
表示方法:用表示它的轴的字母表示,如圆台O′O.
O′
B
【变式练习】
轴:旋转轴叫做圆柱的轴;
底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面;
侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面;
母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.
轴
底面
底面
侧面
母线
表示方法:圆柱用表示它的轴的字母表示,如圆柱O′O.
A
B
探究点2 圆锥的结构特征
圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥.如图:
练习
练习
1. 对几何体三视图,下列说法正确的是:( )
A . 正视图反映物体的长和宽
B . 俯视图反映物体的长和高
C . 侧视图反映物体的高和宽
D . 正视图反映物体的高和宽
C
2 . 若某几何体任何一种视图都为圆,那么这个几何体是 ___________
球体
5、正棱锥的直观图的画法
研一研·问题探究、课堂更高效
画板演示
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
练一练·当堂检测、目标达成落实处
A
练一练·当堂检测、目标达成落实处
人教A版数学必修二高中全册课堂教学用精品PPT模版
• 2.根据“球”的定义,我们用的篮球、排球 、铅球都是球吗?
• 提示:球是球体的简称.球体包括球面及所围 成的空间部分.从集合观点看,球可看做是空 间中与一个定点的距离小于或等于定长的点的 集合,这个定点就是球心,定长就是球的半径 .通常我们用的篮球、排球是指球面,而铅球 才是球体.
平行于棱锥 底面
棱 台 的平面去截 棱锥,底面 与截面之间 的部分叫做 棱台
图形及表示
如图可记作: 棱台 ABCD-
A′B′C′D′
相关概念
上底面:原棱锥的 截面 ;下底面: 原棱锥的 底面 ; 侧面:其余各面; 侧棱:相邻侧面的 公共边; 顶点:侧面与上(下 )底面的公共顶点
• 多面体最少有几个面,几个顶点,几条棱? • 提示:多面体最少有4个面、4个顶点和6条棱.
→ 回答有关问题
• 【规范解答】截面BCFE右侧部分是棱柱,因 为它满足棱柱的定义. 2分
• 它是三棱柱BEB′-CFC′,其中△BEB′和 △CFC′是底面.4分
• EF,B′C′,BC是侧棱.
6分
• 截面BCFE左侧部分也是棱柱. 8分
• 它是四棱柱ABEA′-DCFD′,其中四边形 ABEA′和四边形DCFD′是底面.
• 【题后总结】棱柱的定义中有两个面互相平行 ,指的是两底面互相平行,但棱柱的放置方式 不同,两底面的位置也不同.但无论怎样放置 ,都应满足棱柱的定义.
• 2.本例中平面BCFE左侧的几何体A′EFD′- ABCD是棱台吗?简述理由.
最新人教版高一数学必修第二册(A版)电子课本课件【全册】
第七章 复数
最新人教版高一数学必修第二册(A 版)电子课本课件【全册】
7.1 复数的概念
最新人教版高一数学必修第二册(A 版)电子课本课件【全册】
第六章 平面向量及其应用
最新人教版高一数学必修第二册(A 版)电子课本课新人教版高一数学必修第二册(A 版)电子课本课件【全册】
6.2 平面向量的运算
最新人教版高一数学必修第二册(A 版)电子课本课件【全册】
6.3 平面向量基本定理及坐标表 示
最新人教版高一数学必修第二册(A 版)电子课本课件【全册】
6.4 平面向量的应用
最新人教版高一数学必修第二册(A 版)电子课本课件【全册】
7.2 复数的四则运算
最新人教版高一数学必修第二册(A 版)电子课本课件【全册】
7.3 * 复数的三角表示
最新人教版高一数学必修第二册(A 版)电子课本课件【全册】
最新人教版高一数学必修第二册 (A版)电子课本课件【全册】目录
0002页 0083页 0183页 0265页 0328页 0387页 0432页 0471页 0549页 0572页 0608页 0643页
第六章 平面向量及其应用 6.2 平面向量的运算 6.4 平面向量的应用 7.1 复数的概念 7.3 * 复数的三角表示 8.1 基本立体图形 8.3 简单几何体的表面积与体积 8.5 空间直线、平面的平行 第九章 统计 9.2 用样本估计总体 第十章 概率 10.2 事件的相互独立性
第八章 立体几何初步
最新人教版高一数学必修第二册(A 版)电子课本课件【全册】
8.1 基本立体图形
最新人教版高一数学必修第二册(A 版)电子课本课件【全册】
8.2 立体图形的直观图
2020最新人教版高一数学必修第二册(A版)全册教学课件
第六章 平面向量及其应用
2020最新人教版高一数学必修第二 册(A版)全册教学课件
6.1 平面向量的概念
2020最新人教版高一数学必修第二 册(A版)全册教学课件
6.2 平面向量的运算
2020最新人教版高一数学必修第 二册(A版)全册教学课件目录
0002页 0082页 0111页 0162页 0222页 0282页 0336页 0429页 0481页 0524页 0603页 0666页
第六章 平面向量及其应用 6.2 平面向量的运算 6.4 平面向量的应用 7.1 复数的概念 7.3 * 复数的三角表示 8.1 基本立体图形 8.3 简单几何体的表面积与体积 8.5 空间直线、平面的平行 第九章 统计 9.2 用样本估计总体 第十章 概率 10.2 事件的相互独立性
2020最新人教版高一数学必修第二 册(A版)全册教学课件
人教版高一数学必修第二册(A版)电子课本课件【全册】
0002页 0083页 0183页 0244页 0274页 0309页 0392页 0469页 0547页 0567页 0614页 0650页
第六章 平面向量及其应用 6.2 平面向量的运算 6.4 平面向量的应用 7.1 复数的概念 7.3 * 复数的三角表示 8.1 基本立体图形 8.3 简单几何体的表面积与体积 8.5 空间直线、平面的平行 第九章 统计 9.2 用样本估计总体 第十章 概率 10.2 事件的相互独立性
人教版高一数学必修第二册(A版)电 子课本课件【全册】6.3 平面向量基本定理及 Nhomakorabea标表 示
人教版高一数学必修第二册(A版)电 子课本课件【全册】
6.4 平面向量的应用
7.2 复数的四则运算
人教版高一数学必修第二册(A版)电 子课本课件【全册】
人教版高一数学必修第二册(A版)电 子课本课件【全册】
第七章 复数
人教版高一数学必修第二册(A版)电 子课本课件【全册】
7.1 复数的概念
人教版高一数学必修第二册(A版)电 子课本课件【全册】
第六章 平面向量及其应用
人教版高一数学必修第二册(A版)电 子课本课件【全册】
6.1 平面向量的概念
人教版高一数学必修第二册(A版)电 子课本课件【全册】
6.2 平面向量的运算
人教A版高中数学必修二课件第一章1.3.2球的体积和表面积(共41张PPT)
答案:288πcm3
5.(2013·新课标全国卷Ⅱ)已知正四棱锥O-ABCD的体积为
底3面2边,长为,则以O为3 球心,OA为半径的球的表面积为
2
_______.
【解析】设正四棱锥的高为h,则 1
3
2
h
3
2,
3
2
解得高h=则3 底2 .面正方形的对角线长为
2
2 3 6,
所以OA=所(3以2球)2的 (表6面)2积为6,
(3)此类问题的具体解题流程:
【变式训练】正方体的内切球和外接球的半径之比为()
A.∶31B.∶2C.2∶3 D.∶3
3
3
【解析】选D.设正方体的棱长为a,则内切球半径为 a ,
2
外接球半径为所以3a 半, 径之比为1∶=∶3. 3 3
2
【规范解答】有关球的计算问题 【典例】【条件分析】
【规范解答】设圆锥的底面半径为r,高为h,母线长为l,
3
3
答案:(1)√(2)√(3)×(4)√
【知识点拨】 1.对球的三点说明 (1)球的表面是曲面,不能展开在一个平面上,因此没有展开图. (2)球既是中心对称的几何体,又是轴对称的几何体,它的任何 截面均为圆面,它的三视图也都是圆. (3)球是一个封闭的几何体,既包括球的表面,又包括球面所包 围的空间.
【解题探究】1.求球的体积和表面积的关键是什么? 2.两个球的体积之比和表面积之比分别与半径有何关系? 3.两个铁球熔化为一个球后,哪一个量是不变的? 探究提示: 1.关键是确定球的半径. 2.两个球的体积之比等于两个球的半径比的立方,表面积之比 等于两个球的半径比的平方. 3.体积不变,即两个小球的体积和应与大球的体积相同.
高一数学人教A版必修2课件.ppt
6.如图用□表示一个立方体,用 表示两 个立方体叠加,用■表示三个立方体叠加, 那么图中有7个立方体叠成的几何体,从正 前方观察,可画出的平面图形是( )
答案:B
7.如下图,图(1)、(2)、(3)是图(4)表示的几何体的三视图,其中图 (1)是__正_视__图___,图(2)是__侧__视__图__,图(3)是__俯__视__图__(说出视
图名称).
8.如下图,物体的三视图有无错误?如果有,请指出并改正.
答案:正视图正确,侧视图和俯视图错误,正确的画法如图所示.
能力提升
9.根据下图中的三视图想象物体原形,并分别画出物体的实物 图.
答案:(1)的实物图为 (2)的实物图为
10.画出如下图所示几何体的三视图.
答案:几何体的三视图分别是下图(1)、(2).
正解:图中(a)是由两个长方体组合而成的,正视图正确,俯视图 错误,俯视图应该画出不可见轮廓线(用虚线表示),侧视图轮廓 是一个矩形,有一条可视的交线(用实线表示),正确画法如下图:
误区警示:画简单组合体的三视图的交线应注意两个问题,一 是交线的虚实:可视交线用实线,不可视交线用虚线;二是交 线的位置表示应准确.
答案:D
题型二 画实物图形的三视图 例2:如下图是截去一角的长方体,画出它的三视图.
解:根据长方体的轮廓线和各面交线画出三视图. 长方体截角后,截面是一个三角形,在每个视图中反映为不 同的三角形.三视图为下图.
规律技巧:在画三视图时可见轮廓线都要画成实线.
变式训练2:画出如图所示各物体的三视图.
3.三视图 光线从几何体的前面向后面正投影,得到的投影图叫做几何 体的正视图;光线从几何体的左面向右面正投影,得到的投影 图叫做几何体的侧视图;光线从几何体的上面向下面正投影, 得到的投影图叫做几何体的俯视图.几何体的正视图,侧视图, 俯视图统称几何体的三视图. 画一个几何体的三视图规则是:俯视图在正视图的下面,长度 与正视图一样(长对正),侧视图放在正视图的右侧,高度与正视 图一样(高平齐),宽度与俯视图的一样(宽相等).看不到的线画 成虚线,看得到的线画成实线.从不同的角度看同一个物体,画 出的三视图是不一样的.
高中数学必修二全册课件ppt人教版
解析答案
反思与感悟
解 (1)∵这个几何体的所有面中没有两个互相平行的面,∴这个几何体不是棱柱. (2)在四边形ABB1A1中,在AA1上取E点,使AE=2;在BB1上取F点,使BF=2;连接C1E、EF、C1F,则过C1、E、F的截面将几何体分成两部分,其中一部分是棱柱ABC—EFC1,其侧棱长为2;截去部分是一个四棱锥C1—EA1B1F,该几何体的特征为:有一个面为多边形,其余各面都是有一个公共顶点的三角形.
①③
1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状.2.各种棱柱之间的关系(1)棱柱的分类
棱柱
(2)常见的几种四棱柱之间的转化关系
3.棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表:
名称
底面
侧面
侧棱
高
平行于底面的截面
棱柱
斜棱柱
平行且全等的两个多边形
平行四边形
第一 章 § 1.1 空间几何体的结构
第1课时 多面体的结构特征
1.认识组成我们的生活世界的各种各样的多面体;2.认识和把握棱柱、棱锥、棱台的几何结构特征;3.了解多面体可按哪些不同的标准分类,可以分成哪些类别.
问题导学
题型探究
达标检测
学习目标
问题导学 新知探究 点点落实
如图棱柱可记作:棱柱
相关概念:底面(底):两个互相 的面侧面: 侧棱:相邻侧面的顶点: 的公共顶点
互相平行
四边形
互相平行
平行
其余各面
公共边
侧面与底面
ABCDEF—
A′B′C′D′E′F′
答案
分类:①依据:底面多边形的 ②类例: (底面是三角形)、 (底面是四边形)……
人教版高中数学必修二全册课件PPT
2、过球面上的两点作球的大圆,可以作( )个。
1或无数多
3.下图中不可能围成正方体的是( )
B
4.在棱柱中………………..( )
A . 只有两个面平行
B . 所有的棱都相等
C . 所有的面都是平行四边形
D . 两底面平行,并且各侧棱也平行
侧视
改一改:某同学画的下图物体的三视图,对吗?若有错,请指出并改正.
正视图
侧视图
俯视图
对
错
错
俯视
【变式练习】
三视图的作图步骤
2.运用长对正、高平齐、宽相等的原则画出其三视图.
1. 位置正视图 侧视图 俯视图
【提升总结】
正视图
俯视图
侧视图
从前面正对着物体观察,画出正视图,正视图反映了物体的长和高及前后两个面的投影.
从上向下正对着物体观察,画出俯视图,布置在正视图的正下方,俯视图反映了物体的长和宽及上下两个面的投影.
三视图表达的意义
从左向右正对着物体观察,画出侧视图,布置在正视图的正右方,侧视图反映了物体的宽和高及左右两个面的投影.
例2 画出下面几何体的三视图.
正视图
俯视图
侧视图
画出下面正三棱锥的三视图.
棱柱
棱锥
圆柱
圆锥
圆台
棱台
球
结构特征
用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台.
棱柱
棱锥
圆柱
圆锥
圆台
棱台
球
结构特征
O
半径
球心
以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体.
球的结构特征
球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体。
人教版A版高中数学必修二全册课件【完整版】
人教版A版高中数学必修二全册课件【完整版】一、直线与方程1. 直线的斜率定义:直线斜率是指直线上任意两点之间的纵坐标之差与横坐标之差的比值。
计算公式:k = (y2 y1) / (x2 x1)性质:斜率k与直线倾斜角度的关系为k = tan(θ),其中θ为直线与x轴正方向的夹角。
2. 直线的截距定义:直线截距是指直线与y轴的交点的纵坐标。
计算公式:b = y kx,其中k为直线斜率,x为直线与x轴的交点的横坐标,y为直线与y轴的交点的纵坐标。
3. 直线方程点斜式:y y1 = k(x x1),其中k为直线斜率,(x1, y1)为直线上的一点。
斜截式:y = kx + b,其中k为直线斜率,b为直线截距。
一般式:Ax + By + C = 0,其中A、B、C为常数,且A、B 不同时为0。
4. 两条直线的位置关系平行:两条直线的斜率相等。
垂直:两条直线的斜率互为负倒数。
相交:两条直线的斜率不相等。
二、圆与方程1. 圆的定义定义:圆是平面上所有与一个固定点(圆心)距离相等的点的集合。
2. 圆的标准方程方程:(x a)² + (y b)² = r²,其中(a, b)为圆心坐标,r 为半径。
3. 圆的一般方程方程:x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。
4. 圆与直线的位置关系相离:直线与圆没有交点。
相切:直线与圆有且仅有一个交点。
相交:直线与圆有两个交点。
三、椭圆与方程1. 椭圆的定义定义:椭圆是平面上所有与两个固定点(焦点)距离之和等于常数的点的集合。
2. 椭圆的标准方程方程:(x h)²/a² + (y k)²/b² = 1,其中(h, k)为椭圆中心坐标,a为椭圆长轴的一半,b为椭圆短轴的一半。
3. 椭圆的一般方程方程:Ax² + By² + Cx + Dy + E = 0,其中A、B、C、D、E 为常数,且A、B不同时为0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解法1:(1)由x2(y1)25 得
B
mxy1m0
代
( 1 + m 2 )x 2 2 m 2 x m 2 5 0 * A
数
l
方
则 4 m 4 4 (m 2 1 )(m 2 5 ) 1 6 m 2 2 0
法: x2(y1)25,直 线 l:m xy1m0 (1)证 明 : 对 m R ,直 线 l与 圆 C总 有 两 个 不 同 的 交 点 ;
2
d251473 4,即 1 mm 223 4
得m2 3则m 3 m的值为 3
变式演练1
m为何值时,直线2xym0与圆x2 y2 5 (1)无公共点;(2)截得弦长为2;
解: ( 1 ) 由 已 知 , 圆 心 为 O ( 0 ,0 ) ,半 径 r 5 ,
圆 心 到 直 线 2 x y m 0 的 距 离 d
直线与圆的位置关系 例3直线l过点(2,2)且与圆x2+y2-2x=0相切,求直线l的方程
解:①当k不存在时,过(2,2)的直线x=2也与 y
圆相切。
2
②当K存在时,设直线l的方程为y-2=k(x-2),
由已知得圆心的坐标为(1,0),因为
O
直线l与圆相切,所以有:
k1y02k2 k2
d
1
1k2
1k2
( 2) 设 直 线 l与 圆 C交 于 A,B两 点 , 若 A B=17求 m的 值
解法2:(1)由圆方程可知,圆心为(0,1),
半径为 r =
则 圆心到直线 l 的距离为
m
m 2
1
d
1m 2
1m 2
11m 2
B
d
rA l
几 mR,总有d< 5因此所证命题成立 何 方 解法3:mx-y+1-m=0过定点(1,1)而 法 (1,1)在圆内,所以直线与圆相交。
•
2.但与此同时,诗歌批评庸俗化的趋 势越来 越明显 ,不少 诗歌批 评为了 应酬需 要,违 心而作 ,学术 含量可 疑,甚 至堕落 为诗人 小圈子 里击鼓 传花的 游戏道 具。这 类批评 对诗歌 创作来 说类同 饮鸩止 渴,还 不如索 性没有 的好。
•
3.批评文章却写得天花乱坠,一再上 演“皇 帝的新 衣”闹 剧。这 些批评 牵强附 会、肆 意升华 ,外延 无限扩 张,乃 至另起 炉灶, 使批评 成为原 创式的 畅想, 早已失 去了与 原作品 的联系 。
2.已 知 圆 C: x2(y1)25,直 线 l:m xy1m0 (1)证 明 : 对 m R,直 线 l与 圆 C总 有 两 个 不 同 的 交 点 ; ( 2) 设 直 线 l与 圆 C交 于 A,B两 点 , 若 A B=17求 m的 值
B
d
rA
l
(2)由平面解析几何的垂径定理可知 r2 d2 ( 17 )2
求过圆外一点的(x0,y0)的切线方程:
(1)几何法: 设切线的方程为:y-y0=k(x-x0), 由圆心到直线的距离等于半径,可求得k,切 线斜率即可求出。
(2)代数法:设切线的方程为:y-y0=k(x-x0), 代入圆方程得 一个关于x的一元二次方程,
由 0 求k.
(若斜率不存在或斜率为0,则可以直 接判定过定点的直线是否与圆相切, 进而确定 k的取值.)
典型例题1
判断 x2直 y4线 0和x2圆 (y1 )27 的位_ 相置 离__关 __系 _
灵活应用:对任意实数k,圆C: x2+y2-6x-8y+12=0与 直线L:kx-y-4k+3=0的位置关系是( A )
A 相交 B相切 C相离 D与k值有关
圆的弦长
2.已 知 圆 C: x2(y1)25,直 线 l:mxy1m0 (1)证 明 : 对 mR,直 线 l与 圆 C总 有 两 个 不 同 的 交 点 ; ( 2) 设 直 线 l与 圆 C交 于 A,B两 点 , 若AB=17求 m的 值
解得:k 3 4
所以直线方程为:
y2 3(x2) 4
(2,2)
2x
变式演练
求 经 过 A (2 , 1 ),和 直 线 xy 1 相 切 , 且 圆 心y 在 直 线 y 2 x上 的 圆 的 方 程 。
解:设圆的(x方 a)程 2(为 yb)2 r2
圆心在直 y线 2x上 b2a (1) 又经过A(点 2,1)
•
7.诗歌批评庸俗化趋势亟须扭转。文 学批评 的职业 公信力 需要树 立,批 评家需 要贡献 学术良 知。果 真如此 ,对诗 歌和读 者,都 将是福 音。
•
8.中国音乐在发展过程中,不断承传 自我, 吸收各 地音乐 ,器乐 发达, 演奏形 式丰富 。金、 石、土 、革、 丝、木 、匏、 竹,皆 可作乐 器。乐 曲类型 已有祭 神乐、 宴乐、 军乐、 节庆乐 等区别 。玄宗 时已有 超百人 的大型 交响乐 团,其 演员按 艺术水 平分为 “坐部 伎”与 “立部 伎”。
mm ,
2 2 ( 1 )2 5
因 为 直 线 与 圆 无 公 共 点 , dr,即 m5 m5或 m5
5 故 当 m 5 或 m 5 时 , 直 线 与 圆 无 公 共 点 。 y
(2)如图,有平面几何垂径定理知
r2d21 2,即 5m 21 得 m 25 5
d
r0
x
故 当 m 2 5 时 , 直 线 被 圆 截 得 的 弦 长 为 2
•
4.评庸俗化表现为概念代替文本,行 为代替 写作。 较之个 体性的 埋头创 作,不 少诗人 似乎更 喜欢混 个脸熟 ,在这 样的背 景和语 境下, 诗歌批 评基本 沦为诗 人间的 交际和 应酬。 哪怕是 纷纷攘 攘的流 派或主 义之争 ,也往 往是你 方唱罢 我登场 ,名目 噱头不 少,却 未见得 与文学 和读者 有何关 系。
O
•A
x
C•
(2 a )2 ( 1 b )2 r2 (2 ) 因为圆与x直 y线 1相切
kACab12+1
|ab1| r (3) 2
由 (1 )2 ( )3 ) (得 a 1 : ,b 2 ,r2
所求圆的(x方 1)程 2(y是 2)2 2
•
1.批评对作品的意义不言而喻。好的 批评如 同灯光 ,指引 着作品 从暗处 走向前 台。近 些年的 诗歌批 评中, 不乏这 样的经 典或中 肯之作 。
4.2 直线、圆的位置关系 4.2.1 直线与圆的位置关系
直线与圆的位置关系
无交点时
1、直线和圆相离
图形
圆心到直线距离 d 与圆半径r之间关系
值情况
•C 2
d r 0
有一个交点时
2、直线和圆相切
•C 2
d r 0
有两个交点时
3、直线和圆相交
•C 2
dr 0
几何方法 代数方法
直线与圆位置关系的判定
•
5.一切表现形式都应该是创造的成果 。今天 的浪漫 或许是 明天的 现实, 当下的 现实也 可能是 昨天的 浪漫。 重要的 是我们 的作品 是否揭 示生命 本质, 精神是 否向真 向善向 上,以 及手上 的“主 义”是 否与我 们的诉 求达成 一致。
•
6.而批评要做的,就是把真正的创造 性成果 点亮, 让不同 形式、 不同风 格、不 同创造 性诉求 的佳作 ,在反 复的研 读与辨 析中沉 淀价值 。