细菌纤维素

合集下载

细菌纤维素

细菌纤维素

应用前景
作为缓释剂,应用于西药、中药、中成药 作为增强材料,提高ZnO、金磁微粒等在细 ZnO 菌、传感器的作用 作为载体与生物芯片结合,拓展其在肿瘤、 癌症诸多方面的检测、诊断和治疗作用
发酵的调控
在纤维素的合成中,尿苷葡萄糖为合成细菌纤 维素的直接前体,而6-磷酸葡萄糖作为分支点,既 可进一步合成纤维素,又可进入磷酸戊碳循环或经 柠檬酸循环继续氧化分解,经过戊糖循环和葡萄糖 异生途径,也可通过生成6-磷酸葡萄糖,进一步转 化为纤维素,因此,在细菌纤维素的发酵生产中, 可采用适当方法来抑制或阻断戊糖的形成,使碳源 转向纤维素的合成,从而提高原料的利用率和转化 率,达到提高细菌纤维素产量的目的。
细菌纤维素的生产菌株
产纤维素细菌 杆菌属、根瘤菌属、八叠球菌属、假单胞菌 属、固氮菌属、气杆菌属和产碱菌属。其中 木醋杆菌是最早发现也是研究较为透彻的纤 维素产生菌株,可以利用多种底物生长,是 目前已知合成纤维素能力最强的微生物菌株。
培养基及培养条件
木醋杆菌C544的发酵条件和培养基成分 产纤维素适宜温度范围为25℃ ̄31℃,30℃时纤维素产量最 高; 适宜的初始pH值范围为5.5 ̄7.0,在pH6.0时纤维素产量最高。 优化出的培养基配方为:葡萄糖5.0%(w/v)、大豆蛋白胨 0.9%(w/v)、Na2HPO4·12H2O0.8%(w/v)及柠檬酸0.5%(w/v) 在最佳发酵条件下纤维素最大产量可达7.79g/L,是优化前产 量的3.52倍。 当基础培养基中加入10%(w/v)甘露醇作为碳源时,发酵终点 的pH值为4.50,对纤维素的合成有利,纤维素产量达到9.33g/L, 是优化前产量的4.22倍。
培养基及培养条件
醋杆菌C2的最适碳源为蔗糖,D-甘露糖醇, 最适氮源为蛋白胨,酵母粉,无机盐为MgSO4·7H2O 和柠檬酸三钠; 发酵最佳工艺为 :p H5.0 ,2 0℃ 发酵时间 5~ 7d 使用优化后的培养基配方,醋杆菌C2的纤维素产量 可达9.5g/L 产酶最佳培养基配方为:蔗糖7%,酵母膏0.7%,蛋白 胨1.1%,MgSO4·7H2O 0.2%,柠檬酸三钠0.1%。)

细菌纤维素生产及其应用研究进展

细菌纤维素生产及其应用研究进展
• 光合作用合成的纤维素主要是植物纤维素,在 工业上应用是最普遍的,但需经过分离纯化去 除木质素和半纤维素后才能使用;人工合成的 纤维素聚合度较低,很难达到自然界中高结晶 度和高规则结构。光合作用合成法和人T合成 法在获得纤维素过程中为能获得高纯度的纤维 素,都需消耗大量的化学原料,同时产生出相 应的环境污染问题。 由此启迪人们探索具有 巨大发展潜力的微生物合成法,微生物通过发 酵途径获得的纤维素在结构和性质上有着独特 的优越性。
三、细菌纤维素的重要应用
菲律宾、印度尼西亚、巴西、日本和美国 等国在食品、造纸、声音器材、伤口敷料工业 中均有相应的B C商品出售,尤其是在 日、美 等国,BC产业已形成年产值上亿美元的市场。 目前国内能提供的主要是由海南南国食品公司 等生产的椰果系列食品。
三、细菌纤维素的重要应用
国内在利用BC和其他材料结合生成纳米复 合材料方面也略有涉及。在食品工业中由于BC 具有很强的持水性、黏稠性和稳定性,可以作 为增稠剂、胶体填充剂和食品原料,现在已有 将BC用于发酵香肠、酸奶及冰激凌的生产研究 报道。在造纸工业方面充分利用BC的纳米级超 细特点,在造纸纸浆中加入BC,增加了纸张强 度、抗膨胀性能、弹性和耐用性。
薛璐等在发酵条件和发酵培养基的优化上进行 了研究,确立了最佳发酵条件和最佳发酵培养基 组分。 齐香君等采用RBD反应器与传统静态培养方式 生产BC,对2种培养方式的发酵动力学参数进行了 分析和讨论。结果表明,实验菌株QAX993适合在 RBD反应器中生产BC,产干纤维素量比静态培养方 式提高了2.79g/L。
细菌纤维素(bacterial cellulose,简称BC) 是由诸如醋酸杆菌属等细菌生产的一种新型高性 能微生物合成材料。与其他形式形成的纤维素相 比,尽管具有相同的化学成分,但其还具有特殊 的物理、化学和生物学特性,特别是发酵过程的 可调控、发酵底物的多样性、微生物的多样性等; 这些特性使得 BC 在食品、生物医药学、组织工 程支架材料、声学器材以及造纸、化妆品、采油、 膜过滤器等诸多领域获得较高的关注,受到国内 外学者青睐。国外对 BC 进行了广泛深入的研究, 并将其应用于食品工业、造纸和生物医学工程中, 取得了较好的研究成果。我国在微生物合成 BC 方面的研究刚起步,研究主要集中在菌种选育, 廉价培养基的选择,发酵T艺改进上。

细菌纤维素的干燥条件

细菌纤维素的干燥条件

细菌纤维素的干燥条件细菌纤维素的干燥条件摘要:细菌纤维素是一种重要的生物资源,具有广泛的应用前景。

在细菌纤维素的生产中,干燥是非常关键的一个步骤。

本文将探讨细菌纤维素的干燥条件,包括干燥温度、湿度、干燥时间以及干燥方法等方面的内容。

通过对这些条件的深入研究,可以更好地控制细菌纤维素的质量,提高其生产效率和应用性能。

1. 引言细菌纤维素是一种由微生物合成的纤维素,其分子结构与植物纤维素相似,但具有较高的纯度和结晶度。

细菌纤维素具有广泛的应用前景,可应用于纸张、纤维素酶的生产以及生物材料制备等领域。

在细菌纤维素的制备过程中,干燥是一个关键的步骤,其干燥条件将直接影响到细菌纤维素的质量和性能。

2. 干燥温度干燥温度是细菌纤维素干燥条件的重要参数之一。

合适的干燥温度可以保证细菌纤维素的结构不受破坏,并降低干燥时间。

一般来说,细菌纤维素的干燥温度应在50-70摄氏度之间。

过低的干燥温度会延长干燥时间,过高的干燥温度则容易导致细菌纤维素的糖链结构破坏。

3. 干燥湿度干燥湿度是指干燥环境中的相对湿度。

合适的干燥湿度可以加速水分的挥发,促进细菌纤维素的干燥过程。

一般来说,细菌纤维素的干燥湿度应保持在10-20%之间。

过低的干燥湿度会导致细菌纤维素过快干燥,容易产生裂纹和破碎。

过高的干燥湿度则会增加干燥时间,降低生产效率。

4. 干燥时间干燥时间是指细菌纤维素在干燥条件下所需的时间。

干燥时间的长短直接关系到细菌纤维素的质量和生产效率。

一般来说,细菌纤维素的干燥时间应控制在12-24小时之间。

干燥时间过短会导致细菌纤维素未完全干燥,含水率较高;干燥时间过长则会增加生产成本,降低生产效率。

5. 干燥方法常用的细菌纤维素干燥方法包括自然风干、真空干燥和热风干燥等。

自然风干是最简单、最常用的干燥方法,但干燥时间较长,易受外界环境条件的影响。

真空干燥可以通过降低环境压力来加速水分的挥发,但设备成本较高。

热风干燥利用高温热风来加速水分的蒸发,干燥速度较快,但需注意避免细菌纤维素的过热和糖链结构的破坏。

细菌纤维素的介绍

细菌纤维素的介绍

1. 细菌纤维素的简介细菌纤维素(Bacterial cellulose, 简称BC)是由微生物合成的一种新型生物材料。

是一种超微超纯的纤维素,与自然界中植物或海藻产生的天然纤维素具有相同的分子结构单元,但细菌纤维素纤维却有许多独特的性质。

细菌纤维素与植物纤维素相比无木质素、果胶和半纤维素等伴生产物,具有超高的纯度,而且具有高结晶度(一般80%以上,最高可达95%,植物纤维素的为65%)和高的聚合度(DP值2000~8000)。

衍射强度(cps)衍射角(°)细菌纤维素纤维是由直径3~4纳米的微纤组合成40~60纳米粗的纤维束,并相互交织形成发达的超精细网络结构,要远小于一般植物纤维的直径。

图:细菌纤维素放大图数张放大5000和50000倍的细菌纤维素细菌纤维素的弹性模量为一般植物纤维的数倍至十倍以上,抗张强度高。

细菌纤维素有很强的持水能力。

可以吸收上百倍于自身重量的水。

细菌纤维素有较高的生物相容性、适应性和良好的生物可降解性。

细菌纤维素生物合成时的可调控性。

通过采用不同的培养方法、调节培养条件,也可得到化学性质有所差异的细菌纤维素,以满足不同应用范围的要求。

因此,细菌纤维素被公认为是性能最好、实用价值也较好的纤维素,近年来关于细菌纤维素的研究和开发应用成为当今新的微生物合成材料的研究热点之一,在食品、医学、造纸、纺织、环保、能有等各方面具有广泛的应用价值,并已在国内外得到了一定的实际应用。

2. 细菌纤维素的一些应用目前,国内细菌纤维素的规模化生产主要在食品行业中得到应用。

在食品生产中应用的细菌纤维素俗称“椰纤果”、“椰果”、“纳塔(NATA)”。

是以椰子水或椰子汁等为主要原料,发酵培养形成的凝胶状物质,外观似嫩椰子肉,具有独特的凝胶状半透明质地,以其爽滑脆嫩细腻有弹性的独特口感倍受消费者的青睐,主要应用于果冻、饮料、珍珠奶茶、罐头等食品工业。

此外,细菌纤维素富含膳食纤维,不易为人体所消化吸收,食后可增加饱腹感,可作为减肥食品,同时它可促进肠道蠕动,降低食物的滞肠时间,促进排便,并可减少肠道对致癌物质的吸收,另外可促进粪便中胆酸的排放,因而它具有一定的美容防癌等保健功能,在国际市场上一直旺销不衰。

细菌纤维素 干燥条件

细菌纤维素 干燥条件

细菌纤维素干燥条件
细菌纤维素是一种新型的生物基础材料,具有很多独特的优点,如可
再生、可降解、高强度等。

因此,它在许多领域都有广泛的应用前景,例如医疗、环境、建筑等。

但是,细菌纤维素需要经过干燥处理才能
使用,因此干燥条件对其质量和使用效果有着至关重要的影响。

首先,细菌纤维素的干燥应该在低温下进行。

高温会导致纤维素失去
结构和组织,从而影响其性能和质量。

因此,干燥温度应该控制在50℃以下,同时要保持足够的通风,以充分排除水分。

其次,干燥时间也是细菌纤维素干燥过程中需要考虑的因素。

过长的
干燥时间会导致细菌纤维素变硬,从而影响其结构和质量。

因此,在
干燥过程中需要不断检查细菌纤维素的状态,及时判断干燥时间。

另外,干燥过程中要注意防止细菌纤维素遭受外界污染和氧化。

污染
会影响细菌纤维素的质量和性能,而氧化则可能导致纤维素分子内部
以及分子与外界环境之间的结构损失。

因此,在干燥过程中需要注意
保持环境的干净和卫生,并使用一定的气体保护技术,如常用的氮气
保护技术等。

最后,干燥条件还需要与细菌纤维素的特性相适配。

例如,对于含水
率较高的纤维素,需要较低的温度和较长的干燥时间,以避免过度失水。

综上所述,细菌纤维素的干燥条件要考虑多个因素,包括温度、时间、污染和匹配纤维素的特性等。

只有在合适的条件下进行干燥处理,才
能保证细菌纤维素获得最优质量和性能,从而更好地应用于各种领域。

细菌纤维素生产流程

细菌纤维素生产流程

细菌纤维素生产流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!细菌纤维素是一种由细菌产生的纤维素,具有许多独特的性质和应用。

以下是细菌纤维素的一般生产流程:1. 菌种选择:选择适合生产细菌纤维素的菌种。

细菌纤维素 液态金属 相变材料

细菌纤维素 液态金属 相变材料

细菌纤维素、液态金属和相变材料是当前材料科学领域备受关注的三大研究热点。

它们的出现和发展,不仅给科技领域带来了革命性的变革,也为人类社会的发展提供了新的可能性。

本文将从多个角度深入探讨这三种材料,分析其特性、应用和未来发展趋势,为读者揭示这些材料在当今世界中所扮演的重要角色。

一、细菌纤维素细菌纤维素是一种源自细菌的纤维素物质,具有优异的机械性能和生物相容性。

近年来,细菌纤维素在生物医药领域得到了广泛的应用,例如可用于医用纺织品、组织工程支架等。

与传统的纤维素材料相比,细菌纤维素的制备工艺更加环保,生产成本更低,具有更好的可持续性。

1. 细菌纤维素的制备工艺细菌纤维素是通过生物发酵的方法制备而成的,其原料来源广泛,制备工艺简单,生产成本较低。

目前,科研人员还在不断探索更高效的生产工艺,以满足不同领域的需求。

2. 细菌纤维素在生物医药中的应用由于细菌纤维素具有优异的生物相容性,可降解性和特殊的纤维结构,因此在生物医药领域得到了广泛的应用。

可用于制备生物医用材料、药物载体等,为人类的健康事业做出了重要贡献。

3. 细菌纤维素的未来发展随着生物医药领域的不断发展,细菌纤维素材料将会有更广泛的应用空间。

科研人员也在不断寻求新的改性手段,以使细菌纤维素材料的性能得到进一步提升。

二、液态金属液态金属是一类在常温下为液态的金属材料,具有优异的导热性、电导性和机械性能。

近年来,液态金属因其独特的性能而备受关注,被广泛应用于电子、汽车、航空航天等领域。

1. 液态金属的特性液态金属具有高度的流动性,可在微观尺度下呈现出非常复杂的结构。

液态金属还具有优异的导热和电导性能,使其在电子领域中有着广泛的应用。

2. 液态金属在汽车领域中的应用由于液态金属具有优异的机械性能和耐腐蚀性,因此被广泛应用于汽车制造领域。

可以用于汽车发动机零部件、底盘构件等,提升汽车的性能和安全性。

3. 液态金属的未来发展随着工程技术的不断进步,液态金属在航空航天等领域的应用也将得到进一步拓展。

细菌纤维素的制备及在食品中的应用进展

细菌纤维素的制备及在食品中的应用进展

细菌纤维素的制备
细菌纤维素的制备通常采用微生物发酵法,以天然糖类、有机酸或醇等为碳 源,通过控制培养条件和工艺参数来提高纤维素产量和品质。常见的制备方法包 括液体发酵和固体发酵。液体发酵具有生产效率高、易于工业化等优点,但需要 严格控制发酵条件,防止杂菌污染。固体发酵则以天然固态基质为培养基质,可 直接获得纤维素发酵产物。影响细菌纤维素品质的因素包括菌种、碳源、培养温 度、pH值、培养时间等。
细菌纤维素在食品中的应用进展
1、食品添加剂
细菌纤维素具有高持水性、良好的口感和稳定性能,可作为一种优质的食品 添加剂。在果蔬汁、酸奶、冰淇淋等食品中,细菌纤维素可作为增稠剂、稳定剂 和口感改善剂,提高食品的品质和稳定性。此外,细菌纤维素还可以替代传统化 学添加剂,为消费者提供更健康的选择。
2、营养补充剂
细菌纤维素的应用
1、工业领域
在工业领域,细菌纤维素被广泛应用于制造生物塑料、生物纤维和生物皮革 等产品。这些产品具有环保、可持续等优势,可替代传统的石油基材料。
2、医疗领域
在医疗领域,细菌纤维素被用于生产医用敷料、药物载体和组织工程支架等。 这些产品具有促进伤口愈合、减轻炎症反应等作用,为患者提供更好的治疗选择。
3、生物医用领域
细菌纤维素具有生物相容性和生物可降解性,在生物医用领域具有潜在的应 用价值。例如,可以将其用于药物载体、组织工程和再生医学等领域。通过与药 物分子或细胞相结合,细菌纤维素可以实现对疾病的有效治疗和组织修复。
结论
细菌纤维素作为一种重要的天然高分子纤维,在食品领域具有广泛的应用前 景。未来,随着生产工艺的优化和新型材料的研发,细菌纤维素将在食品工业和 其他领域发挥更大的作用。然而,要实现其广泛应用仍需克服生产成本高、生产 效率低等挑战。未来研究应于优化生产工艺、降低生产成本和提高产品质量等方 面,以推动细菌纤维素产业的可持续发展。

细菌纤维素在生物医学材料中的应用

细菌纤维素在生物医学材料中的应用
直到19世纪80年代,人们才渐渐认识到BC是一种具有潜在商业价值的生物材料,因此对A.xylinum的关注逐渐由过去在实验室中研究单纯的生物合成纤维素模型飞跃到大规模工业化生产。在这个飞跃中有两个课题组的研究人员作出了开拓性工作:由索尼公司、味之素公司和日本纺织研究所组成的科研人员致力于利用BC的特殊物理性能制造高强度材料[13];另一个是由Weyerhaeuser和Cetus Corp组成的研究小组在深层搅动发酵罐中以A.xylinum为菌株生产BC[14]。到年代末期,很多有关BC的商业化应用都申请了专利。1992~1993年,Okiyama等[15,16]报道了实验室大规模培养及通过改载自:/请尊重原创,转载请注明出处。
接下来对BC的研究越来越多,应用范围也更加广泛相继有做为食品添加剂、纸张粘合剂及滤膜等方面的研究被报道。目前的研究热点主要是将BC应用于高附加值的产品,尤其是生物医用材料上。1990年和1991年日本人Yamanaka[18,19]首次以该纤维素制备人工血管获得了成功。2001年和2003年Klemn等[20,21]则以此材料研制成功小直径(1~3 mm内径)人工血管。2005年美国瑞典国际合作小组的Svensson等[22]发现以BC作为软骨组织工程支架效果良好。此外,该中空纤维管还可以作为覆盖神经纤维的护套、气管、输尿管、软骨支架,以及某些中空气管的替代品等 细菌纤维素由于具有独特的生物亲和性、生物相容性、生物可降解性、生物适应性和无过敏反应,以及高的持水性和结晶度、良好的纳米纤维网络、高的张力和强度,尤其是良好的机械韧性,因此在组织工程支架、人工血管、人工皮肤以及治疗皮肤损伤等方面具有生物相容性对于组织工程支架的构建是必不可少的。在研究组织工程BC支架构建中,体内生物相容性的评价非常重要。Helenius等[23]系统地研究了BC的体内生物相容性。实验中他们把BC植入老鼠体内周,利用组织免疫化学和电子显微镜技术,从慢性炎症反应、异物排斥反应以及细胞向内生长和血管生成等方面的特征来评价植入物的体内相容性。结果发现植入物周围无肉眼和显微镜可见的炎症反应,没有纤维化被膜和巨细胞生成。BC被成纤维细胞侵入,与宿主组织融为一体,未引起任何慢性炎症反应。因此可以断定BC的生物相容性非常好,在组织工程支架构建方面具有潜在价值。

产细菌纤维素

产细菌纤维素

产细菌纤维素
细菌纤维素是一种由一些细菌产生的纤维素物质。

它是细菌细胞外分泌的一种多聚糖,由许多纤维素链组成。

细菌纤维素具有较强的强度和生物降解性能,因此被广泛应用于生物材料和生物医学领域。

产生细菌纤维素的细菌主要有以下几种:
1. 醋酸菌:醋酸菌能够通过发酵产生纤维素,被称为醋酸菌纤维素。

醋酸菌纤维素被广泛用于食品、纺织品、纸张等领域。

2. 莱氏菌:莱氏菌是一种革兰氏阴性细菌,能够产生纤维素。

莱氏菌纤维素具有抗菌和抗氧化等特性,可以应用于药物控释、修复组织等领域。

3. 酵母菌:某些酵母菌也能够产生纤维素,这种纤维素被称为酵母菌纤维素。

酵母菌纤维素被用于食品添加剂、织物制造等领域。

细菌纤维素的应用主要包括以下几个方面:
1. 生物医学领域:细菌纤维素可以作为药物控释系统的载体,帮助控制药物的释放速度。

它也可以用于修复组织、填充空洞等医学应用。

2. 食品工业:细菌纤维素可以用作食品添加剂,增加食品的质地和口感。

3. 纺织品工业:细菌纤维素可以用于制作纺织品,提高纺织品的柔软度和稳定性。

4. 纸张工业:细菌纤维素可以用作纸张的添加剂,增加纸张的强度和柔韧性。

总之,细菌纤维素是一种具有广泛应用前景的生物材料,可以在医学、食品、纺织品和纸张等领域发挥重要作用。

细菌纤维素

细菌纤维素

音响设备振动膜
细菌纤维素的高机械强度可满足当今项级音响设 备声音振动膜材料所需的对声音振动传递快和内耗高 分子间作用力较强,强度增加 的特性要求。
此优异特性主要源于其 高纯度及超微细结构,经热 压处理制成的具有层状结构 的膜形成了更多氢键,使其 杨氏模量和机械强度大幅度 提高
纺织工业
作吸附剂和离子交换膜,从工业废水中回收重金属离子
扩大生产

2
从碳源和培养基的组成上降低成本,提高产量
在菲律宾,人们传统上是用椰子水发酵生产细菌纤维素,产品叫Nata de coco,中国的海南省也是用本地特有的椰子水作原料生产细菌纤 维素。 在木醋杆菌的发酵中用西瓜皮汁做培养基具有更高的细菌纤维素 产量。再加入酵母浸出液和蛋白胨还能提高纤维素产量。
专业 务实 贴心
您的办公效率顾问
细菌纤维素
定义:细菌纤维素(Bacterial Cellulose,简 称BC),又称为微生物纤维素,他是一种由 细菌产生的高聚物。 结构式:
细菌纤维素
发展历程
专业 务实 贴心
您的办公效率顾问
物化特性
高结晶度、高聚合度和非常一致的分子取向,并以单 一纤维形式存在,纯度极高 纤维直径在0.01-0.1um之间,抗拉力强度高,杨氏模量高
在国内,采用大豆乳清作为培养基质制备细菌纤维素,既达到 降低细菌纤维素生产成本的目的,又为大豆乳清的无污染处理 与排放提供了新的途径。大豆乳清中含糖量较少,研究仅限于 大豆乳清代替培养基中的蒸馏水。
改性和表面修饰
一:是通过在其发酵过程中加入试剂实现
向培养基中加入萘啶酸和氯霉素可以延长细菌的生存时 间,可以发酵形成更宽的纤维素丝带。这样获得的纤维素 具有更高的杨氏模量,具有优良的机械性能

细菌纤维素的研究和应用新进展

细菌纤维素的研究和应用新进展

细菌纤维素的研究和应用新进展纤维素是地球上最丰富的生物聚合物,主要分布于植物如树木、棉花等中,它是形成植物细胞壁的主要成分,也是形成许多真菌、藻类细胞壁的主要成分。

随着人们对纤维素类产品需求的增加,人们获取纤维素的方法正不断地改进和更新。

近年,发现一些细菌也能产生纤维素,其结构、理化特性和生化特性等皆与植物纤维素有较大的差异,与植物纤维相比,细菌纤维素(Bacterial Cellulose,BC)是由超微纤维组成的超微纤维网。

不仅是地球上除植物纤维素之外的另一类由细菌合成的天然惰性材料,而且是自1989 年Yamanaka 等[1]发现BC具有独特的功能后,以微生物作为载体,在分子水平上有高纯度、高结晶度、绿色环保的BC成为世界上公认的性能优异的新型生物学材料。

本文就BC的结构、性质、研究历史以及在生物医学材料上的应用综述如下。

1细菌纤维素的结构与特性1.1细菌纤维素的结构特点:BC是由葡萄糖分子以β-1,4糖苷键聚合而成的一种具有多孔性结构及一定纳米级孔径分布的高分子材料[2]。

早在1940 年,人们就用电镜观察到BC由独特的束状纤维组成,这种束状纤维的宽度大约为100 nm,厚度为3~8 nm,每一束由许多微纤维组成,而微纤维又与其晶状结构相关。

术醋杆菌(A.xylinum)是合成BC最强的细菌之一[3],BC的生物合成可分为聚合、分泌、组装、结晶四大过程,这四大过程是高度耦合的,并和细胞膜上的特定位点密切相关。

1.2 細菌纤维素有许多独特的性质:①强的持水性和透气性:BC是一种水不溶性的惰性支持物,有很多“孔道”,有良好的透气、透水性能。

依据合成条件的不同,它能吸收60~700倍于其干重的水份[2],未经干燥的BC的强持水性能(waterretentionvalues,wRv)值高达1000%以上,冷冻干燥后的持水能力仍超过600%。

经100℃干燥后的BC在水中的再溶胀能力与棉短绒相当,即有非凡的持水性,并具有高湿强度[4];②高化学纯度和高结晶度:BC是一种“纯纤维素”,以100%纤维素的形式存在,不含半纤维素、木质素、果胶和其他细胞壁成分,结构单一,提纯过程简单;③较高的生物适应性和生物可降解性:Helenius等[5]开展了BC植入小鼠皮下组织的生物适应性研究及Klenm等[6]用BC微管材料取代老鼠颈动脉的研究都表明BC与老鼠身体没有任何排斥反应。

细菌纤维素

细菌纤维素

LOGO
图 1 细菌纤维素 膜表面吸附的菌 体
图 2 细菌纤 维素液膜
图 3 细菌纤维 素的电镜照片
LOGO
细菌纤维素的结构
• 经过长期的研究发现,细菌纤维素和植物纤维素 在化学组成和结构上没有明显的区别,都可视为 由D-吡喃葡萄糖单体以β -l,4-糖苷键连接而成 的直链多糖,直链间彼此平行,不呈螺旋结构, 无分支结构,又称为β -1,4-葡聚糖。但相邻的 吡喃葡萄糖细菌纤维素在工业中的研究现状与前 景的6个碳原子并不在同一平面上,而是呈稳定的 椅状立体结构,数个邻近的β -1,4-葡聚糖链通 过分子链内与链间的氢键作用形成稳定的不溶于 水的聚合物 。
LOGO
目前,海南省食用细 菌纤维素年产量就达 18万吨左右,年产值 近3亿元。特别是椰果 产业,目前国内从业 企业约80多家,椰果 生产已经进入工业化 阶段。椰果是甜品店 里的宠儿,但它却不 是椰子的直接产物, 而是椰子水经过细菌 发酵所产生的纤维素。
2.实验室放大能否实现
细菌纤维素凝胶面膜
LOGO
细菌纤维防螨布
LOGO
在食品工业方面
• 在食品工业方面,利用细菌纤维素的凝胶 和高持水特性及其产物醋酸、乳酸等的特 殊风味,可将其作为人造肉、人造鱼、火 腿肠中的食品成型剂、增稠剂、分散剂、 改善口感材料及肠衣和某些食品的骨架, 成为一种新型的重要食品基料。细菌纤维 素用作保健食品,具有防便秘、清肠胃、 排毒、降低胆固醇的功效。
细菌纤维素
Bacterial Cellulose
LOGO
综述
简 介 结 构 培 养 特 性 应 用
细菌纤维素
LOGO
细菌纤维素的简介
• 细菌纤维素(Bacterial Cellulose,简称BC)又称为微生 物纤维素(Microbial Cellulose),是指在不同条件下, 由醋酸菌属(Acetobacter)、土壤杆菌属 (Agrobacterium)、根瘤菌属(Rhizobium)和八 叠球菌属(Sarcina)等中的某种微生物合成的纤维素 的统称。 • 其中比较典型的是醋酸菌属中的葡糖醋杆菌 (Glucoacetobacterxylinum,旧名木醋杆菌 (Acetobacter xylinum),它具有最高的纤维素生产 能力,被确认为研究纤维素合成、结晶过程和结构性 质的模型菌株。

新型生物材料细菌纤维素的研究现状和发展趋势

新型生物材料细菌纤维素的研究现状和发展趋势

新型生物材料细菌纤维素的研究现状和发展趋势邓甫090524105摘要:细菌纤维素是一种天然的生物高分子聚合物,具有独特的理化、机械性能,如高持水性,高杨氏模量,很好的机械强度,很好的生物相容性,因此成为一种很有前景的应用材料。

本文主要综述了细菌纤维素的结构特点和功能特性以及在各方面的用途及研究现状,并且重点介绍了细菌纤维素在造纸工业和医学方面的应用。

关键词:细菌纤维素,结构,应用,造纸工业,生物医学1.细菌纤维素的基本介绍1.1 细菌纤维素的由来细菌纤维素(Bacterial cellulose,简称BC)是由生长在液态含糖基质中的细菌产生的, 并分泌到基质中的纤维素成分, 它不是细菌细胞壁的结构成分,而是一种胞外产物。

为了与植物来源的纤维素区分,将其命名为“细菌纤维素”。

1866年英国科学家Brown 首次报导了木醋杆菌能合成纤维素。

在适当的条件下,能产生纤维素的细菌种类很多,主要集中在:醋酸杆菌属,产碱菌属,八叠球菌属,根瘤菌属,假单胞菌属,固氮杆菌属,土壤杆菌属,无色杆菌属,气杆菌属和葡糖醋杆菌属等。

近来报道的葡糖醋杆菌是醋酸杆菌科出现较晚的一个属,1997年,Y amada在进行辅酶Q 类型和16S rRNA序列比较的基础上,提出应将葡糖醋杆菌提升为属,目前,葡糖醋杆菌属共包含11个种,分别是:G.liquefaciens、G. azotocaptans、G.diazotrophicus、G.entanii、G.europaeus、G.hansenii、G.intermedius、G.johannae、G.oboediens、G.sacchari、G.xylinus。

1.2 细菌纤维素的结构细菌纤维素与自然界中的植物纤维素化学结构相似, 都是由毗喃型葡萄糖单体(β一D一葡萄糖) 通过β一1 , 4 一糖昔键连接而形成的一种无分支、大分子直链聚合物, 具有(C6H1005)n的组成, 直链间彼此平行, 不呈螺旋构象, 无分支结构, 又称为β一1 , 4 一葡聚糖。

细菌纤维素成分

细菌纤维素成分

细菌纤维素成分细菌纤维素是一种天然的纤维素,其成分主要由细菌合成产生。

细菌纤维素在生物学和生物工程领域具有广泛的应用,包括食品工业、医药领域、环境保护等。

本文将详细介绍细菌纤维素的成分及其特点。

一、概述细菌纤维素是由一些特定的微生物合成产生的纤维素类物质。

这些微生物包括但不限于酵母菌、藻类和革兰氏阳性菌等。

通过发酵过程,这些微生物能够将底物转化为纤维素类化合物,其中最常见的就是β-葡聚糖。

二、β-葡聚糖β-葡聚糖是最常见的一种细菌纤维素成分。

它由多个葡萄糖分子通过β-1,4-糖苷键连接而成。

这种连接方式使得β-葡聚糖在水中形成线性链状结构,并具有较高的稳定性和溶解度。

三、其他多糖类成分除了β-葡聚糖外,细菌纤维素还包含其他多糖类成分。

其中包括α-葡聚糖、γ-葡聚糖等。

这些多糖类成分与β-葡聚糖在结构上有所不同,但同样具有纤维素的特点和功能。

四、蛋白质细菌纤维素中还含有一定量的蛋白质。

这些蛋白质可能来自于微生物本身,也可能是在发酵过程中添加的外源性蛋白质。

这些蛋白质在细菌纤维素的合成和功能中起到了重要作用。

五、微量元素细菌纤维素中还含有一些微量元素,如钙、镁、铁等。

这些微量元素对于细菌纤维素的稳定性和生物活性具有重要影响。

六、特殊功能成分细菌纤维素中可能还存在一些特殊功能成分,如抗氧化物质、抗菌物质等。

这些成分赋予了细菌纤维素额外的生物活性和应用价值。

七、应用领域细菌纤维素由于其天然的成分和独特的结构,被广泛应用于食品工业、医药领域和环境保护等领域。

在食品工业中,细菌纤维素可以作为增稠剂、乳化剂和稳定剂使用。

在医药领域,细菌纤维素可以作为药物载体、伤口敷料和生物材料使用。

在环境保护领域,细菌纤维素可以用于废水处理、土壤修复等方面。

八、总结细菌纤维素是一种具有广泛应用前景的天然纤维素类物质。

其主要成分包括β-葡聚糖、其他多糖类成分、蛋白质、微量元素和特殊功能成分等。

这些成分赋予了细菌纤维素独特的性质和功能,在食品工业、医药领域和环境保护等方面发挥着重要作用。

细菌纤维素敷料

细菌纤维素敷料
特性
具有高纯度、高结晶度、高生物相容性和低免疫原性等特点 ,还具有很好的吸湿性和透气性,有利于伤口愈合和组织再 生。
历史与发展
历史
细菌纤维素敷料的研究始于20世纪80年代,随着生物技术的不断发展和应用 ,其研究和应用领域不断扩大。
发展
目前,细菌纤维素敷料已经广泛应用于伤口敷料、组织工程、药物载体等领 域,成为生物医学工程领域的重要研究方向之一。
生物合成法
生物合成法是利用生物催化剂(酶)催化纤维素合成的方 法,一般采用植物或者微生物细胞作为催化剂,通过控制 反应条件来制备细菌纤维素。
生物合成法的优点是反应条件温和、环保、成本低,但是 存在着产品质量不稳定、产量较低等缺点。
05
细菌纤维素敷料的市场分析
市场需求与增长趋势
总结词:持续增长
详细描述:随着细菌纤维素敷料在医疗、美容等领域的应用不断扩展,市场需求 持续增长。特别是医疗领域,由于细菌纤维素敷料具有良好的生物相容性和止血 性能,其需求量不断增长。
06
相关技术问题及解决方案
技术瓶颈及解决方案
生产效率低
由于细菌纤维素的生产主要依赖微生物发酵过程,而这一过 程效率较低,导致生产周期长,产量低。解决方法是筛选和 优化微生物菌种,提高其发酵产细菌纤维素的能力,同时改 进生产工艺,实现大规模生产。
提取及纯化技术不足
目前,细菌纤维素的提取和纯化方法尚不成熟,导致产品质 量不稳定。解决方法是。
加强临床研究
为了更好地了解细菌纤维素敷料在各种适应症中的疗效和安全性,未来需要进一步加强临 床研究,为其在更多领域的应用提供科学依据。
04
细菌纤维素敷料的制备方法 与技术
微生物发酵法
1
微生物发酵法是一种常用的制备细菌纤维素的 方法,通过培养微生物,利用其分泌的纤维素 来制备细菌纤维素。

细菌纤维素的生产方式

细菌纤维素的生产方式

细菌纤维素的生产方式
细菌纤维素(Bacterial Cellulose,BC)是由一种独特的细菌(Klebsiella oxytoca)合成的一种类似棉纤维的材料,它的优异性能给人们的生活带来了极大的便利。

它的生产方法一般有两种:化学和生物发酵。

化学方法要求使用高浓度的碳酸钠溶液将细菌悬浮液沉降,然后加热,同时加入氨基酸添加剂。

这种方法简便,生成的BC 纤维结构均匀,材料结构稳定,具有很高的附着性,但耗费能源较大,生产效率较低。

生物发酵法是利用蔗糖和其他基质营养物质改造蔗糖,然后观察其变化,当溶液的pH值降低到规定的水平时,将添加的糖苷连接到碳水化合物,最后产生Bacterial Cellulose。

这种方法可以保证BC有良好的再分散性、结构稳定性和高质量,但发酵过程耗时费力,受到条件的限制,生产效率也不高。

在当今日益环保和可持续发展的社会背景下,通过控制细菌本身的生长,采用复合制法的方式来合成Bacterial Cellulose,介绍新的发酵技术、酶分解技术以及绿色合成方法,更积极地探索BC在精细化工领域的应用,将为社会的可持续发展和环境的改善做出积极贡献。

细菌纤维素

细菌纤维素

细菌纤维素细菌纤维素是一种重要的生物聚合物,它是由细菌合成的一种多糖类物质,具有多种生物学功能。

细菌纤维素在自然界中广泛存在,是一种与植物纤维素相似的多糖,但结构和性质上略有不同。

细菌纤维素通常以线状或片状的形式存在,具有较高的生物降解性和生物相容性。

细菌纤维素的生物合成细菌纤维素的合成主要通过细菌体内的细胞壁合成机制完成。

这种多糖聚合物由细菌通过代谢途径合成并分泌到细胞外,形成类似纤维状的纤维素结构。

这种合成过程在细菌中起着重要的结构和功能支持作用,与细菌的生长与繁殖密切相关。

细菌纤维素的生物学功能细菌纤维素在自然界中具有多种生物学功能。

首先,它可以提供细菌细胞壁的结构支持,增强细胞的稳定性和形态。

其次,细菌纤维素在细菌之间的附着和固定过程中发挥着重要作用,帮助细菌形成群落和生物膜结构。

此外,细菌纤维素还可以作为一种重要的能量储备物质,为细菌的生长与繁殖提供能量支持。

细菌纤维素的应用由于细菌纤维素具有良好的生物相容性和生物降解性,在医学领域、食品工业和环境保护领域有着广泛的应用前景。

在医学方面,细菌纤维素可以用作生物材料,用于修复组织缺损和促进伤口愈合。

在食品工业中,细菌纤维素可以用作稳定剂和增稠剂,提高食品的口感和质感。

在环境保护领域,细菌纤维素可以用于生物降解材料的制备,减少环境污染和资源浪费。

综上所述,细菌纤维素作为一种重要的生物聚合物,在生物学功能和应用领域具有广泛的潜力和价值。

随着科学技术的发展和应用领域的不断拓展,细菌纤维素将发挥出更多的潜力,为人类社会的可持续发展和健康福祉做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LOGO
纺织工业
• 在纺织工业中,细菌纤维素的结构特点和功能 特性,使之能代替或不各种常用的树脂用于无 纺布中作粘合剂,改善无纺布的强度、透气性、 亲水性及最终产品的手感等,所适用的纤维包 括当前广泛使用于无纺布的各类纤维,如尼龙、 聚酯、木材纤维、碳纤维及玱璃纤维等。
LOGO
细菌纤维制成的衣服
LOGO
造纸工业

日本在造纸工业中,将醋酸菌纤维素加入纸浆,可提高纸 张强度和耐用性,同时解决了废纸回收再利用后,纸纤维强 度大为下降的问题。加细菌纤维于普通纸浆可造出高品质特 殊用纸。Ajinomoto公司不三菱公司合作开发用于流通货币 制造的特级纸,印制的美元质量好、抗水、强度高。用细菌 纤维改性的高级书写纸吸墨均匀性、附着性好。由于纳米级 超细纤维对物体极强的缠绕结合能力和拉力强度,使细菌纤 维机械匀浆后不各种相互丌亲和的有机、无机纤维材料混合 制造丌同形状用途的膜片、无纺布和纸张产品十分牢固。在 制造过滤吸附有毒气体的碳纤维板时,加入醋酸菌纤维素, 可提高碳纤维板的吸附容量,减少纸中填料的泄漏。
LOGO
LOGO
细菌纤维素结构分析
图 4 细菌纤维素 的 X-射线衍射图
图 5 细菌纤维素的 CP/MAS 13C-NMR 谱
LOGO
LOGO
细菌纤维素的常用培养方式
LOGO
LOGO
细菌纤维素高产菌株的培育筛选
细菌纤维素的特性
• 可调控性。利用细菌纤维素生物合成时,可根据需要合成 各种功能材料。 • 高结晶度。细菌纤维素提纯过程简便,提纯出来的纤维素 极纯,无果胶、木质素和半纤维素等伴生物的产生。 • 高持水性。“孔道”结构使细菌纤维素具有极强的吸水性, 可吸收60~700倍于其干重的水分,因而利用细菌纤维素 的空间三维结构制备出来的医用敷料丌仅能保持伤口的干 燥,而且能吸收伤口渗出物,从而避免伤口感染。 • 高弹性模量和抗张强度。细菌纤维素由于纤维直径达到纳 米级别(10~lOOnm),其杨氏模量可高达10MP,抗拉强度 高。 • 高抗撕性。细菌纤维素膜具有极佳的形状维持能力,其抗 撕性比聚氯乙烯膜和聚乙烯醇膜和要强5倍以上。 • 可降解性。细菌纤维素可在自然界中直接降解,环保无污 染。对环境起到很好的保护作用。
LOGO
细菌纤维素的应用
医用材料 纸工业 纺织工业 食品工业
LOGO
医用材料方面
• 在医用材料方面,细菌纤维素具有良好的生物适 应性、韧性强度和水合度。有利于皮肤组织生长 和限制感染。其作为医用材料的主要特点是潮湿 情况下机械强度高,对液、气通透性好,不皮肤 相容性好、无刺激,并且结构极为细密,防菌性 和隔离性较好,现已制成人造皮肤、纱布、绷带 和“创可贴”等伤口敷料商品 。细菌纤维素膜还 可作为缓释药物的载体携带各种药物,用于皮肤 表面给药,促使创面的愈合和康复。
细菌纤维素凝胶面膜
LOGO
细菌纤维防螨布
LOGO
在食品工业方面
• 在食品工业方面,利用细菌纤维素的凝胶 和高持水特性及其产物醋酸、乳酸等的特 殊风味,可将其作为人造肉、人造鱼、火 腿肠中的食品成型剂、增稠剂、分散剂、 改善口感材料及肠衣和某些食品的骨架, 成为一种新型的重要食品基料。细菌纤维 素用作保健食品,具有防便秘、清肠胃、 排毒、降低胆固醇的功效。
3.如何降低成本以提高纤维素产量
4.如何优化纤维素产品的结构性能
LOGO
应用前景


作为缓释剂,应用于西药、中药、中成药
作为增强材料,提高ZnO、金磁微粒等在 细菌、传感器的作用

作为载体不生物芯片结合,拓展其在肿瘤、 癌症诸多方面的检测、诊断和治疗作用
LOGO
目前,海南省食用细 菌纤维素年产量就达 18万吨左右,年产值 近3亿元。特别是椰果 产业,目前国内从业 企业约80多家,椰果 生产已经进入工业化 阶段。椰果是甜品店 里的宠儿,但它却不 是椰子的直接产物, 而是椰子水经过细菌 发酵所产生的纤维素。
LOGO
需要解决的问题
1.如何选育得到高产纤维素菌 2.实验室放大能否实现
LOGO
图 1 细菌纤维素 膜表面吸附的菌 体
图 2 细菌纤 维素液膜
图 3 细菌纤维 素的电镜照片
LOGO
细菌纤维素的结构
• 经过长期的研究发现,细菌纤维素和植物纤维素 在化学组成和结构上没有明显的区别,都可视为 由D-吡喃葡萄糖单体以β -l,4-糖苷键连接而成 的直链多糖,直链间彼此平行,丌呈螺旋结构, 无分支结构,又称为β -1,4-葡聚糖。但相邻的 吡喃葡萄糖细菌纤维素在工业中的研究现状不前 景的6个碳原子并丌在同一平面上,而是呈稳定的 椅状立体结构,数个邻近的β -1,4-葡聚糖链通 过分子链内不链间的氢键作用形成稳定的丌溶于 水的聚合物 。
细菌纤维素
Bacterial Cellulose
LOGO
综述
简 介 结 构 培 养 特 性 应 用
细菌纤维素
LOGO
细菌纤维素的简介
• 细菌纤维素(Bacterial Cellulose,简称BC)又称为微生 物纤维素(Microbial Cellulose),是指在丌同条件下, 由醋酸菌属(Acetobacter)、土壤杆菌属 (Agrobacterium)、根瘤菌属(Rhizobium)和八 叠球菌属(Sarcina)等中的某种微生物合成的纤维素 的统称。 • 其中比较典型的是醋酸菌属中的葡糖醋杆菌 (Glucoacetobacterxylinum,旧名木醋杆菌 (Acetobacter xylinum),它具有最高的纤维素生产 能力,被确认为研究纤维素合成、结晶过程和结构性 质的模型菌株。
相关文档
最新文档